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Abstract: Integrating selective maintenance strategies with personnel allocation for equipment groups
is essential to meet combat missions’ demands and significantly boost overall combat effectiveness.
Accordingly, this study aims to maximize the probability of mission completion for equipment groups
by developing a joint optimization model under constrained resource conditions. An environmental
coefficient is incorporated to represent the dynamic impact of varying combat environments on the
degradation states of individual units. Using a nonhomogeneous Markov model, this study calculates
the state transition probabilities of units throughout the mission to derive the mission completion
probabilities for both the equipment group and the overall combat cycle. To solve this model, an
adaptive quantum immune algorithm is applied to the case study. These findings demonstrate that the
proposed model and algorithm enhance maintenance decision-making quality and clarify optimization
patterns regarding resource efficiency and dynamic personnel allocation. Thus they offer both a
theoretical foundation and practical guidance for battlefield maintenance support.
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1. Introduction

Modern informatized warfare relies heavily on combat forces composed of equipment groups
integrating diverse subunits. To ensure the optimal operational performance of these equipment groups,
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it is essential to implement maintenance strategies that are appropriately aligned with the requirements
of combat missions. However, battlefield constraints, especially limited maintenance resources, often
preclude the comprehensive repair of all degraded equipment. Consequently, there is a critical need to
develop an integrated approach that determines the optimal maintenance plan. This approach must
synthesize the real-time condition of the equipment, the mission’s demands, and resource constraints
to simultaneously optimize the selection of maintenance targets and measures, and the allocation of
personnel. Addressing this challenge constitutes a critical and urgent priority within the current field
of equipment support [1].

Selective maintenance decision-making is widely recognized as an effective strategy for
optimizing maintenance activities under conditions of limited resources and has attracted considerable
scholarly attention. Previous research has primarily focused on multiobjective optimization [2—5], the
allocation of multiple maintenance personnel [6—9], and scenarios involving multiple tasks [10-13].
Over the past five years, Wei-Ning Ma et al. has investigated the independent optimization challenges
related to selective maintenance decisions and task allocation, aiming to maximize the probability of
task completion. They concluded that incorporating combat task allocation improves outcomes [14].
Amjadian et al. extended the fleet selective maintenance problem (FSMP) by including asynchronous
maintenance intervals and resource constraints, linking the selective maintenance problem (SMP) to
the resource-constrained project scheduling problem (RCPSP). Their numerical experiments
highlighted key trade-offs to guide optimal system performance decisions [15]. Similarly, You-Peng
Zhang et al. examined the impact of the number of maintenance personnel on the system’s maintenance
costs and downtime, with the objective of enhancing the system’s reliability and availability while
minimizing maintenance expenses. Their findings suggested that a maintenance team comprising six
personnel is optimal [16]. Chaabane’s study demonstrated that mixed-skill maintenance teams are
more cost-effective than single-skill teams in battlefield environments [17]. Furthermore, Moghaddam
et al. explored selective maintenance decision methodologies within wartime maintenance contexts,
emphasizing maximization of the systems’ reliability [18]. O’Neil et al. proposed a model for jointly
optimizing selective maintenance scheduling and task abortion decisions in a three-module critical
system. By maintaining components during halftime breaks to minimize performance degradation for
subsequent tasks, the model enhances the probability of task success and system survivability
compared with strategies without task abortion [19].

Despite these contributions, significant gaps remain when applying the existing frameworks to
complex battlefield environments, particularly in the following aspects.

(1) Separately optimizing maintenance measures and personnel allocation risks strategic failure
due to resource overextension in complex battlespaces. This necessitates an integrated framework that
jointly considers maintenance actions, personnel skills, and resource constraints.

(2) Existing models fail to quantify the resource efficiency boundaries of different skill
combinations or capture the dynamic personnel demands caused by resource fluctuations in multitask
scenarios. This gap highlights the urgent need for adaptive mechanisms to reconfigure personnel teams
under resource constraints, ensuring continuous support across sequential missions.

In response to these challenges, this study presents a nonhomogeneous Markov model to
dynamically capture the effects of battlefield environment changes and equipment fatigue on unit
degradation. It develops an integrated triune joint optimization model combining maintenance
selection, personnel skill adaptation, and dynamic resource coordination to maximize the probability
of task completion under mission reliability and resource constraints. The adaptive quantum immune
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algorithm (AQIA) integrates a scheduling feedback mechanism with quadrant decision evolution,
maintaining the population’s feasibility in complex coupled optimization problems. This model
elucidates resource efficiency patterns and dynamic personnel allocation, offering dynamic decision
support for battlefield equipment maintenance and support.

2. Overview of the decision-making framework
2.1. Technical approach and assumptions

The technical methodology underpinning the selective maintenance decision-making model for
equipment groups developed in this study is described in detail below.

Step 1: Define the degradation patterns of multistate units along with the corresponding
maintenance effects. Subsequently, the rules for selecting appropriate maintenance measures are
formulated. Furthermore, a task completion evaluation framework is established, a resource scheduling
mechanism is developed, and a dynamic evaluation system for personnel’s skill levels is constructed.

Step 2: Formulate a joint optimization objective model that maximizes the overall completion
probability of multiple tasks, while adhering to dual constraints regarding total cost and time windows.

Step 3: Develop an AQIA to implement quantum information feedback by encoding maintenance
measures into the quantum states, coupled with a coordinated resource scheduling mechanism.

Step 4: Solve the model using the AQIA implemented in MATLAB. This solution yields the
overall probability of completing multiple tasks under resource constraints and identifies the optimal
selective maintenance scheme for the equipment group. The scheme specifies which units require
maintenance, the maintenance measures assigned to each unit, and the scheduling of maintenance
personnel. Furthermore, the analysis investigates the effects of personnel structure thresholds and
resource efficiency intervals on the optimization objectives.

The fundamental assumptions underlying the model are as follows:

(1) The equipment ensemble experiences degradation exclusively throughout the operational
mission period, with no degradation occurring during maintenance intervals.

(2) The length of combat missions is subject to dynamic variation; upon completion of
maintenance, the equipment ensemble promptly initiates the subsequent combat mission.

(3) There is no predetermined sequence for the maintenance of individual subunits within the
equipment ensemble; maintenance activities may be conducted simultaneously.

(4) The equivalent duration of maintenance and the associated costs for a single repair of a subunit
encompass all constituent components and are not further disaggregated.

2.2. The fundamental operational level of the combat unit
2.2.1.  Definition of multistate systems

The equipment group is defined as consisting of multiple combat units that are not completely
homogeneous. Each combat unit is represented as a multistate system with i distinct states, where

state S; indicates a total failure condition, state S; signifies a fully operational condition, and the
intermediate i — 2 states correspond to partial operational conditions [20]. The system under
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investigation in this study is categorized into five distinct states, with the performance loss associated
with each state presented in Table 1 below.

Table 1. Definition of the ground state.

Equipment status Status name Core function description Performance loss threshold
S1 Entirely ineffective Loss of essential functionality 80% < L; £100%
S2 Significant deterioration ~ Core function is significantly impaired 60% < L, < 80%

S3 Moderate deterioration Core function is partially impaired 40% < L; < 60%

S4 Slight deterioration Core function is essentially standard 20% < L, <40%

S5 Functioning properly Core function remains intact Ls <20%

The dynamics of the state transitions for the entire system can be characterized by the state
transition intensity matrix A, defined as follows:

0 0 0 0 0
Ay —Ay 0 0 0
Ay =431 Azz —(A31 +132) 0 0
Aar Aa Aaz —(A4q + Ay + A43) 0
As1 Asy As3 e —(As1 + A5z + 453 + As4)

In this formula, the element 4;; located at the ith row and jth column represents the transition
rate from state S; to a lower energy state S;. Conventional homogeneous Markov models,
characterized by constant transition rates, are inadequate for capturing the effects of varying task
environments. Therefore, a nonhomogeneous Markov model is proposed to accurately quantify the
degradation of each unit’s state during the task’s performance. The associated mathematical
formulation is provided below:

A () = @y - Ag - (1 + BO). (2.1)

In this formula, the environmental coefficient a,, quantifies the severity of the conditions under
which the combat mission is conducted, whereas the coefficient [ represents the degree of
performance degradation experienced by each unit through accumulated fatigue. The dynamic
degradation behavior of the unit throughout the mission is modeled using the Kolmogorov differential
equation, which is expressed as follows:

dPy(t)
Tdr = B, (t) - A (2),

Pu(t) = [Pu(Sl' t): Pu(SZ' t)' Pu(SS' t)' Pu(54-1 t)' Pu(SS' t)],
Z?:l P(Ss,t) = 1. (2.2)

In the formula above, P, (t) represents the probability distribution of the states of unit u at time
t. The state transition process described in this article is illustrated in Figure 1.
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Figure 1. Example of state transition.
2.2.2.  Modeling the effectiveness of maintenance activities

Maintenance activities are performed on equipment at predetermined task intervals with the
objective of restoring the equipment to an improved operational state. Based on performance
degradation, a set of maintenance measures, denoted v € {0,1,2,3,4}, is defined, with its elements
corresponding, respectively, to no maintenance, three forms of imperfect maintenance, and perfect
maintenance. The corresponding maintenance effect matrix, A,, is provided below:

aj; ai, ajs ajs ais
0 aj, a3; a3, azs
A, =10 0 af; af, ais| (2.3)
0 0 0 aj, ags
0 0 0 0 1

In this context, element a;’; denotes the probability that a unit initially in State i transitions to
State j following the implementation of maintenance measure v. Each element within a row satisfies
the condition Z = 1. Combining the hierarchical definition of performance degradation, a
repair’s effectlveness 1s dlrectly linked to the degradation threshold levels. After a complete repair, the
unit returns to full functionality. The effectiveness of partial repairs varies dynamically with the amount
of repair resources invested—the more resources allocated, the greater the likelihood the unit will
achieve a better state post-repair.

Consequently, if the initial state probability distribution of the unit at the commencement of the

task interval is denoted by P, (t), then the state probability distribution following the implementation
of the maintenance actions can be expressed as follows:

Punew = Pu(t) - Ay. (2.4)
2.3. Decision-making hierarchy in the maintenance strategy formulation
2.3.1. Modeling criteria for the alignment of maintenance strategies
Each unit has a unique initial state probability and, therefore, a distinct maintenance strategy,

leading to differing state probability distributions following maintenance. The maintenance decision
matrix is formally defined as follows:
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Xmuw €{0,1}, VM E M, u € U,,. (2.5)

In this formula, M denotes the set of equipment groups, U,, represents the set of units
contained within the equipment group m, and X,,,,, = 1 signifies the selection of the maintenance
measure v applied to the unit u within the equipment group m. The criteria for aligning
maintenance actions with their respective units are as follows:

s.t. {Z”X""“’ =L v(mw) . (2.6)
Xonuo = 0,if (M, u) € Upronivitea
In this formula, Rule 1 stipulates that each unit may select only one type of maintenance measure.
Rule 2 specifies that if a unit (m, «) is an element of the subset Up,onipitea (critical units that require
maintenance), the no maintenance option (v = 0) is disallowed. This condition explicitly mandates
that critical units cannot remain unmaintained and must instead select one of the maintenance measures
correspondingto v =0 to v = 4.

2.3.2.  An analysis of task completion rates within equipment groups

The transition matrix is updated in accordance with the selection variable related to the
maintenance measures. When event X,,,, =1 occurs, the state probability distribution of an
individual unit is represented by P,,.,,. The completion level of a single piece of equipment is defined
by the nonfailure states S; of the individual units that constitute the equipment group. Specifically,
we require that at least K,,, units within the equipment group U,, remain operational without failure.
Consequently, the task completion degree function D,, for the equipment group can be formulated as
follows:

Dm = Z;'J;nKm (U]m> (Zis=2 Punew(Si))j ’ (1 - Zis:Z Punew(Si))Um_j- (2-7)

In this formula, Y.?_, Pynew (S;) represents the overall probability that unit u remains functional
after the repair process.

2.4. Layer for scheduling resource utilization
2.4.1. Modeling the skill levels of maintenance personnel

Considering that the proficiency levels of maintenance personnel directly affect their
effectiveness, and recognizing the variability in expertise across different maintenance techniques
among staff, assigning a maintenance skill level based on a single metric does not accurately reflect
their true capabilities. Therefore, a maintenance technician p can be characterized by n distinct
maintenance skills, which are collectively represented by a skill vector as follows:

Sp = [Sp1, "5 Spn] - (2.8)

In this formula, the variable s, represents the proficiency level of individual p in the skill
category n,with s, taking values within the interval from 0 to 1. Moreover, by using the skill vector,
a formula has been developed to quantify the skill levels of personnel as follows:
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lpn = leax : Zgzlwn Spn T O-SL

Yw, =1. (2.9)
2.4.2. Modeling of labor hours and costs for maintenance personnel

During the execution of maintenance activities, resource constraints become evident, particularly
concerning the availability of maintenance person-hours and the associated costs. It is established that
the maintenance personnel possess specific benchmark person-hour equivalents (t;) and benchmark
cost equivalents (c;) when performing maintenance tasks classified as Grade [. When the personnel
undertake tasks below their designated maintenance grade, they are entitled to receive opportunity
remuneration reflecting the skill premium, which concurrently incurs opportunity time. Consequently,
personnel with higher skill levels require less time to complete a given task; however, this increased
efficiency is accompanied by higher costs. This relationship can be formally expressed as follows:

tinew = &1 - [1 -Y- (lpn - lmin)]a
Clnew = €1 ° [1 +@- (lpn - lmin)]- (2.10)

In these formulae, the variables t; and c¢; denote the benchmark resource equivalents
corresponding to the minimum personnel grade required to perform maintenance activities on a
specific unit. The variables L., and L,;, represent, respectively, the highest skill level of personnel
and the minimum personnel grade necessary to execute the tasks associated with the current unit; [,
> lnin indicates the constraint that prohibits personnel of lower grades from undertaking maintenance
tasks assigned to higher-grade personnel. The variables y and ¢ correspond to the work hour
compression coefficient and the cost increase coefficient, respectively, both of which are restricted to
values within the interval from 0 to 1.

2.4.3. Modeling scheduling mechanisms incorporating degraded resource allocation and
compensation strategies

Let the resource allocation matrix be denoted by Y, where Y44, represents the start time,
duration, and assigned personnel for unit u. In cases where the initial resource allocation proves
unsuccessful, the innovation mechanism enables resource release by dynamically reducing the
maintenance levels of selected units. This method facilitates the derivation of a feasible solution that
complies with resource constraints. Simultaneously, any surplus resources identified within the
feasible solution are reallocated to restore maintenance levels, thereby promoting adaptive evolution
and improving the overall quality of the plan. The detailed procedure and corresponding flowchart
(Figure 2) are presented below.
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Figure 2. Flowchart depicting the allocation and compensation processes for degradable resources.
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Step 1: This step involves creating a prioritized queue for critical units through initial resource
allocation and assigning personnel to specific tasks. The scheduling of time windows utilizes a gap
detection methodology; subject to personnel availability constraints, the earliest feasible start time is
determined accordingly as follows:

EST(u) = min{a; € Ap|(b; — a;) = t,},
Ay, ={lap, bi]li =1,2,...,k}. (2.11)

In this formula, a; and b; denote the start and end times of the ith available time slot,
respectively; t, denotes the time required to perform maintenance on unit u; and A, represents the
set of time windows. Following the initial allocation of resources, we verify whether the global
resource constraints have been satisfied. If these constraints are met, we generate the feasible plan and
bypass the degradation decision loop. Otherwise, we identify and report the nature of the failure and
proceed to the degradation decision loop.

Step 2: The d decision process involves identifying the type of failure. When the failure occurs
within a critical unit allocation, only the critical units are selected for degradation. In contrast, if the
failure is noncritical or arises from resource overrun, a broader selection of degradable units is
considered. Multiple categories of degradation candidate sets are automatically generated, based on
the unit hierarchy within the current configuration

Dcrit = {u € Ucritlvu = Z}a
Dglobal = {u € Ulvu => 1} (212)

In this formula, U,; denotes the set of key units and v,, denotes the current maintenance level
of unit w. If both the candidate degradation set and the summation are empty, the degradation decision
loop terminates, and the current individual unit’s resource allocation is considered to be unsuccessful.
Otherwise, after recording the resource consumption, the candidate downgrade set is iterated to
identify the unit with the highest priority for downgrade. The primary procedure involves calculating
the reliability impact factor

Iw) =1-A¢. (2.13)

In this formula, the variable A% represents the probability of degradation occurring in the
absence of any intervention.

The resource-saving factor is calculated as follows:
AC,

(U) =4ty - (2 14)

mameax

In this formula, the variables AC,, and AT, represent the amount of resources conserved after a
single stage of degradation, whereas C,,,, and T, correspond to the overall constraints on
resource availability.

The level of the protection factor is calculated as

){high ifu€ Ucrit and Uy >3
R(u) =41, ifu€ U, andv, = 2. (2.15)
Alow ifu ¢ Ucrit

Journal of Industrial and Management Optimization Volume 22, Issue 2, 1168—1193.
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In this formula, A denotes the level of protection corresponding to various grade requirements
and can be determined by experts. Considering the three factors previously mentioned, the
prioritization for downgrading candidate units is established as follows:

P(u) = —w;-I(uw) + w, - S(u) + w3 - R(w). (2.16)

In this formula, all weights are derived from key equipment wartime maintenance data presented
in this paper, using data calculation and crossvalidation. The simulated analytic hierarchy process
(AHP) designs multiple candidate weight sets, selecting the combination with the highest stability. For
rapid implementation, equivalent weights can be directly obtained via AHP.

Ultimately, the candidate unit with the highest priority is selected to undergo the degradation
procedure, followed by a global reallocation of resources. If the current configuration proves feasible,
the degradation loop exits. Otherwise, the iteration continues until the maximum cycle count is reached,
at which point the resource allocation for that individual is marked as a failure.

Step 3: Conduct two comprehensive completeness assessments on the set of feasible plans. These
assessments should confirm that all critical units have undergone maintenance and that units requiring
maintenance have been allocated the necessary resources. Upon completion of this verification,
calculate the surplus resources available. Next, all candidate units eligible for surplus resource
allocation are identified. Any surplus is then allocated with priority given to upgrading noncritical units
during their idle time windows. If the proposed upgrade is feasible, update the unit’s status accordingly
and record the final resource consumption. Should the upgrade prove unfeasible, revert the system to
its original feasible state prior to the attempted upgrade. The condition governing the feasibility of
surplus resource allocation is as follows:

dp € P,3[b; — a;] € A, suchthat [(b; — a;) = t,] A [Cioral + €y < Ciaxl- (2.17)

In this formula, the symbol P represents the set of qualified personnel, t, and c, denote the
resource consumption associated with the upgraded maintenance measure v, and C,,, indicates the
total cost of the plan prior to the upgrade.

Upon the successful completion of the aforementioned procedures, the allocation of resources
may be formally deemed to be successful.

3. Combined optimization objective function

On the basis of the problem descriptions of the operational unit’s foundational layer (Section 2.2),
the maintenance decision-making layer (Section 2.3), and the resource utilization scheduling layer
(Section 2.4) as previously delineated, this study develops an integrated optimization model for
selective maintenance decision-making and personnel allocation under resource constraints. The
principal objective of the model is to maximize the overall mission completion rate across all
equipment groups throughout the entire operational period, as illustrated in Figure 3.

MaxDiorqr = H%:l Dy,

Crotar = Zm,u Cinew 3.1)
S.t.4 Trotar = Max (&5 + tinew)
Ctotal < Cmaertotal < Tmax

The first equation shows that the individual equipment groups function independently, with the
overall task completion level of the entire process being the product of the completion levels of each

Journal of Industrial and Management Optimization Volume 22, Issue 2, 1168—1193.



1178

equipment group (D,,). The second defines the total equivalent cost (Cyytq;) associated with the
maintenance process. The third equation specifies that the total duration of the maintenance process
(Ttotar) corresponds to the maximum completion time observed among the units within the equipment
groups. Finally, the fourth equation expresses the global finite resource constraints (Cpax> Tmax)
imposed throughout the maintenance process.

Overall Task Completion Rate

3
44

Az [ A3 ] A4 ]oooooo Cz | 03 | C4

T 1T T

State Degradatlon

eeccee | C1 | C2 \ C3 i

XW
w0 w3 w3

Selection of
¥ ‘Maintenance Strategie
& 1 ‘

P4 P2

Figure 3. Relationship between maintenance strategy and the equipment group’s task completion rate.

4. Problem-solving using an AQIA

To address the challenge of decoupling the optimization arising from the complex
interdependence between maintenance decision-making and resource allocation, this study uses an
enhanced AQIA [21-24] for optimization purposes. The work makes three primary contributions. First,
it expands the solution space by encoding maintenance strategies via quantum state superposition,
which allows a single individual to represent an exponentially large number of potential maintenance
schemes. Second, it develops a quantum state feedback mechanism to coordinate the scheduling
process, thereby achieving explicit decoupling between the decision variables and the resource
constraints. Third, it formulates a four-quadrant decision model that dynamically adjusts the search
direction by leveraging disparities among elite antibodies, a strategy that effectively guides the
population toward the Pareto front. The primary algorithmic parameters used in this study are outlined
in Table 2, and the detailed procedural methodology is described below.
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Table 2. Primary algorithmic parameters.

Parameter symbol Default value
Npop 200
Grmax 50

r 1.2
Telite 0.1

r 0.2
P, 0.55
a 0.7

ts 0.5

te 0.7
P, 0.55
Py 0.8

0 /25
0y /27
Ns 0.01
Ne 0.025
Na 0.02

Step 1: Initialize the population by encoding it through quantum state superposition.

For each antibody, initialize a quantum state matrix with elements comprising random complex
numbers. Subsequently, normalize each row to ensure that the level of probability corresponding to
the five maintenance measures for each maintenance unit satisfies the following normalization
condition:

Auy =T+ 11y,

”aullz = 14;=0 | au,vl2 =1 4.1)

Step 2: Initialize the population by using selective full collapse decoding.

For non-elite antibodies with unallocated resources, maintenance actions are selected randomly
according to the probability distribution py, = |, ,|*, subject to the constraint that critical unit
failures cannot be assigned to the maintenance measure V. Upon restoration of the failed antibodies,
the maintenance decision matrix X is updated, and the associated resources are reclassified as
unallocated.

Step 3: Population viability assessment and maintenance.

Initially, resources are allocated to antibodies classified as unassigned through a scheduling
mechanism. Subsequently, by incorporating a quantum state feedback mechanism, the physical
information of the antibodies is transmitted to the quantum state, whereby the selection probabilities
of the corresponding maintenance strategies within the quantum state are increased through feedback

amew) (u' vactual) = a(u' vactual) ‘T (42)

In this formula, the variable r represents the reinforcement learning factor. Finally, we calculate
the overall task completion rate of the current population, including elite antibodies, to determine the
fitness value of each antibody.
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Step 4: Immunological methodology.

Initially, the quantity of elite antibodies (Ng;;t.) is determined dynamically using a nonlinear
decrement method. Antibodies exhibiting the highest fitness values are selected and directly retained
within the memory library. Secondly, for non-elite antibodies (Npop — Neyite), We select the antibody
exhibiting the lowest fitness (Npntrarian) and apply a local positional inversion to produce an
enhanced antibody. Finally, the remaining non-elite antibodies (N,,pn—ciitie — Neontrarian) UNdergo
cloning according to their reproduction probabilities (p), with priority accorded to those possessing
higher probabilities. This process also involves suppressing antibodies with excessively high
concentrations and eliminating those with very low fitness, thereby maintaining the total population
size at Npop.

For each generation within the population, the quantities of elite antibodies and reverse antibodies
are determined using the following calculations:

Netite = [Telite ’ Npop ’ COS( = )Ja

ZGmax

Ncontrarian = lrcontrarian ’ (Npop —N, elite)J- (43 )

In this formula, 7., represents the proportion of elite antibodies, g denotes the current
iteration number, G,,,, signifies the maximum number of iterations, and 7,,yyarian 10dicates the
proportion of reversed antibodies. The probability of breeding is calculated as follows:

p=a pr(i)+(1—a) pgD),
fitness(i)

i) = R
pf( ) lejill""efitness(k)

. con(i)
)=,
pd( ) lejillone COTl(k)
. Nsimilar
COTl(l) = Tonle. (44)

In this formula, a denotes the reproduction probability coefficient, N ;.. signifies the number
of remaining non-elite antibodies, and Ng;pi1qr 1ndicates the number of other antibodies to be cloned
that satisfy the similarity threshold (t; ). The similarity among antibodies to be cloned is
comprehensively calculated using the following formula:

similarity(soly,sol;) = 0.5 Xgi + 0.3 - Y50 + 0.2 - Qi 4.5)

In this formula, Xg;,,, denotes the similarity of maintenance measures, scored by the degree of
measure matching, with the key units weighted double and averaged across all units. Y, represents
resource allocation similarity, combining the time difference, work hour difference, and personnel
matching, averaged over effective units. Qg;;,, indicates the quantum state similarity, calculated via
the cosine similarity of complex vectors after validating the matrix. The probability of the suppression
and elimination of reproduction are calculated as follows:

0.5:p con(i) >t,
p'=7 0 p<t. . (4.6)
p other

In this formula, t. and t, represent the inhibition and elimination concentration thresholds for
the probability of reproduction, respectively.

Journal of Industrial and Management Optimization Volume 22, Issue 2, 1168—1193.
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Step 5: Crossover mutation.

Initially, perform crossover operations on the cloned population by pairing adjacent antibodies.
Denote the two antibodies as A and B, with a specified crossover probability. Select a crossover point
K at random, corresponding to a row index that satisfies the condition 1 < K < U. Subsequently,
exchange the maintenance decisions and quantum states between row K + 1 and the final row
according to the following procedure:

Xilk+1:,:] © X[k + 11,1,
ak+1:,:] © ay[k+1:,:]. (4.7)

Finally, depending on the probability of mutation (P,,), a mutation operation is executed. The
positions of the quantum bits within the maintenance measure’s decision layer are randomly rearranged
and then collapsed for decoding purposes. Simultaneously, the resource allocation matrix Y,
corresponding to all inverted, cloned, and crossover-mutated antibodies, is reinitialized, marking the
resources as unallocated. The rotation matrix for the mutation operation, based on the reference angle
(0), is as follows:
coso —sine]

sin@  cosO (4.8)

Rotmatrix = [

Step 6: Present the currently optimal antibody.

All inverted, cloned, and crossover-mutated antibodies are first merged with those from the
memory library, forming an intermediate population. After evaluation, identify and select the top
N.jite antibodies demonstrating the highest fitness levels to update the memory library. Following this
update, the optimal antibody from the current generation is then identified as the output.

Step 7: Evaluation of the termination criteria.

Should the maximum number of iterations be reached, the iterative process must be terminated
and the results presented; if not, the process should continue with quadrant-based decision evolution
applied to the population.

Step 8: Conducting an evolutionary population analysis within a four-quadrant decision-making
framework.

Using the optimal elite antibody from the memory pool as a reference, the decision space is
divided into four quadrants based on two dimensions: Consistency between the repair strategies of
non-elite and elite antibodies, and the difference in their fitness. The quantum state’s update rules are
the following.

(1) If the strategies are consistent and non-elite fitness is superior, the quantum state remains
unchanged.

(2) If the strategies are consistent but fitness is inferior, a small positive rotation encourages
exploring better solutions along the original strategy.

(3) If the strategies are inconsistent but fitness is superior, a small negative rotation balances
retaining the advantages and maintaining diversity.

(4) If the strategies are inconsistent and fitness is inferior, a larger positive rotation rapidly adjusts
the strategy toward the elite antibody’s effective approach.

0 ifv,=v,and f, = f,
+n,-0, ifv.=v,andf. < f,
—1,-0, ifv,#v,andf. =>f,
+n4-0, ifv.#v,andf, <f,

(4.9)
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In this formula, the variable 8, denotes the reference rotation angle, 7, represents the
reinforcement coefficient associated with the homogeneous strategy, 7, corresponds to the
adjustment coefficient for advantage exploration, and 1, signifies the convergence coefticient related
to the heterogeneous strategy. Figure 4 depicts the procedural framework of the AQIA.

Initialization population
Quantum
state .L
feedback . )
¢ Decoding aphbody
evaluation
~L Four-
. quadrant
Immune operation |—» BUIId"er':en"IDW decision
ry evolutionary
,L population
A

Crossover and mutation

v

Output contemporary [—"|Update memory
optimal antibody | library

Termination No

ndition judgme

End

Figure 4. Diagrammatic representation of the AQIA.
5. Analysis of the case study
5.1. Description of the illustrative example

An aviation equipment maintenance facility must perform preventive maintenance on 12
operational units within a specified wartime readiness period. These units comprise three types (A, B,
and C), with each type containing four units: One primary and three auxiliary. This maintenance
ensures synchronized operation for an eight-hour task. The available maintenance personnel possess
varying skill levels, graded from 1 to 4. Key constraints for this operation encompass the maximum
allowable equivalent maintenance costs and the total equivalent working hours. Given these limitations,
an optimal integrated maintenance plan is essential. To address this need for an optimal plan under the

Journal of Industrial and Management Optimization Volume 22, Issue 2, 1168—1193.



1183

aforementioned constraints, the specific configurations of the equipment categories and their
associated mission requirements are detailed in Table 3.

Table 3. Equipment groups’ parameters.

Types A B K., Un
A 1.2 0.018 3 4
B 1.1 0.015 2 4
C 1.1 0.012 2 4

Table 4 shows the initial state probability distributions and classifications of each combat unit.

Table 4. Parameters for each unit.

Unit Category State probability distribution of the unit
P(S1) P(S2) P(S3) P(S4) P(S5)

Al Primary 0.05 0.10 0.15 0.30 0.40
A2 Auxiliary 0.10 0.15 0.25 0.30 0.20
A3 Auxiliary 0.15 0.20 0.25 0.25 0.15
A4 Auxiliary 0.10 0.15 0.20 0.35 0.20
Bl Primary 0.15 0.20 0.25 0.25 0.15
B2 Auxiliary 0.20 0.25 0.25 0.20 0.10
B3 Auxiliary 0.25 0.25 0.20 0.20 0.10
B4 Auxiliary 0.20 0.20 0.25 0.25 0.10
Cl Primary 0.25 0.25 0.20 0.20 0.10
C2 Auxiliary 0.30 0.25 0.20 0.15 0.10
C3 Auxiliary 0.35 0.25 0.15 0.15 0.10
C4 Auxiliary 0.30 0.20 0.20 0.20 0.10

Table 5 details the skill levels of the maintenance personnel and lists the benchmark equivalents
for their respective working hours and costs. Here, the coefficients for work hour compression and
cost escalation are set at 0.2 and 0.15, respectively.

Table 5. Reference parameters for maintenance personnel.

ID number 51(0.30) 52(0.25) 5,3(0.30) 5,4(0.15) t, a Lpn
Pl 0.20 0.28 0.25 0.30 18 60 1
P2 0.55 0.60 0.48 0.58 16 80 2
P3 0.75 0.78 0.82 0.76 14 100 3
P4 0.92 0.95 0.93 0.90 12 120 4

The initial probability distribution across these states differs for each unit at the start of the
maintenance interval. Additionally, it is assumed that the underlying state transition intensity matrix is
uniform for all units and is defined as follows:
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5.2. Comparison and analysis of the algorithm s performance
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To thoroughly assess the proposed algorithm’s superiority, multidimensional comparative
experiments were conducted under equal resource and parameter settings. The comparison included the
traditional metaheuristics of the immune algorithm (IA), genetic algorithm (GA), and particle swarm
optimization (PSO), the hybrid algorithms of the genetic particle swarm algorithm (GA-PSO) [25] and
genetic tabu search algorithm (GA-TS) [26], and the unmodified quantum immune algorithm (QIA) as
a control. This analysis focused on the dynamic convergence process (Figure 5) and static statistical
indicators (Table 6), demonstrating its distinct advantages in solving complex constrained optimization

problems.

Journal of Industrial and Management Optimization

Volume 22, Issue 2, 1168—1193.



1185

0.965 T T T T |
0.96 -
2 0.955 -
D
£
=
R
3
A 095
0.945 ]
—k—GA-PSO
—%—GA-TS
0.94 | | | | | | | | J
0 5 10 15 20 25 30 35 40 45 50

Iteration times

Figure 5. Comparative analysis of the algorithms’ convergence.

Asrevealed in Figure 5, the AQIA demonstrates rapid convergence within the first 10 generations,
a behavior indicative of a high-quality initial population that effectively circumvents unproductive
search efforts. In contrast, traditional algorithms such as the IA and PSO exhibit slower convergence,
stabilizing at inferior values—a clear reflection of their inefficient search strategies when handling
complex constraints. The unmodified QIA performs moderately, highlighting the need for
improvements. Although the GA shows some mid-phase search potential, it fluctuates and achieves
lower accuracy than the AQIA. Although the hybrid algorithms GA-PSO and GA-TS achieve final
convergence values comparable with those of the AQIA, their convergence paths are markedly slower
and more erratic. This suggests that simple hybridization can improve the final solution’s quality but
cannot match the search efficiency gained from deeply integrated designs, underscoring the importance
of maintaining the population’s quality.

Table 6. Results of 20 independent algorithm runs.

Algorithm Optimal value Mean value Standard deviation
AQIA 0.9636 0.9636 0

QIA 0.9594 0.9575 0.0020

1A 0.9597 0.9573 0.0027

GA 0.9626 0.9614 0.0016

PSO 0.9578 0.9529 0.0040

GA-PSO 0.9631 0.9622 0.0012

GA-TS 0.9636 0.9636 0

As shown in Table 6, both the AQIA and GA-TS achieved the highest optimal value (0.9636).
However, GA-TS’s convergence curve suggests this result requires a longer search time. Other
algorithms, including the GA and GA-PSO, show nonzero standard deviations, indicating performance
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fluctuations and limited reliability. PSO exhibits the poorest stability, consistent with its tendency
toward premature convergence.

The experiment results indicate that the AQIA demonstrates high convergence speed, solution
accuracy, and robustness in solving this joint optimization problem.

5.3. An empirical study of resource allocation methods

This study adopted a stepped “resource—personnel” comparative design to systematically examine
the coupled effects of resource constraints and personnel configurations on maintenance efficiency.
For the experimental group, resources were incrementally increased by 50%, starting from a minimum
viable baseline, while maintaining a fixed personnel composition. Conversely, the control group tested
various personnel allocations under a constant level of resource consumption. Each group underwent
independent algorithmic iterations to determine the total task completion value. Critical resource
transformation thresholds were identified on the basis of the marginal benefit peaks and troughs, with
a trough defined as 10% below the peak. The detailed parameters governing this experimental
framework are provided in Table 7.

Table 7. Experimental parameters.

Team designation P1 D, D3 Ds Fundamental feasible solution (T, C)
Basic group L L, l5 ly Iy, 1, 13) (207, 18)
Beginner group L, L, l; l, Ly, Ly, 13) (216, 14.4)
Intermediate group L, l; l; l, Ly, 13, 13) (225, 14.4)
Advanced group L, l; l, l, Ly, 13, 1y) (234,144
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Figure 6. Experimental results (Part 1).

Figure 6 shows a clear three-phase pattern in resource distribution. In the contraction phase (C <
643.5, h < 30.5), the basic group reaches a local Pareto optimum in efficiency. During the growth
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phase (643.5 < € < 1053, h < 53), the intermediate group improves efficiency by 4.3%. Later in this
phase, the advanced group’s breakthrough capacity creates a bimodal synergy, narrowing the efficiency
gap with the intermediate group to 0.5%. In the abundant resource phase (1053 < C < 1345.5), the
advanced group takes a leading role, driving task completion rates to their theoretical maximum under
a resource surplus. This underscores the crucial role of elite human resources in achieving
technological gains.

x10™
12 — ] —71 1 | ——Basic group
10 0.001112 —Advanccq group
Intermediate group
= Beginner group

Marginal benefit

A\ \
2000 2200

400 6\00 800 1000 1200 1400 1600 1800
Commitment of resource (Cost-labelled)

Figure 7. Experimental results (Part 2).

The marginal benefit curve presented in Figure 7 demonstrates a complex pattern of resource
transformation. Notably, the beginner group reaches its maximum marginal benefit at an earlier point
(C =409.5); however, the magnitude of this peak is the lowest among all groups, being 24.3% less
than that of the advanced group. This difference reflects an inherent limitation in the benefit ceiling
for the beginner group. Moreover, the paradox observed in the advanced group’s tightening zone,
namely high marginal benefit coupled with low task completion, stems from the high resource intensity
required to activate top-tier personnel, a prerequisite for unlocking their breakthrough potential.

The benefit trough points (solid markers) serve as critical early warning indicators. For instance,
trough values approaching zero for the beginner group signal that resource input has entered a failure
zone. Conversely, the marginal benefit of the advanced group after Point A declines to zero, reaching
the theoretical efficiency frontier. This contrast reveals that the marginal benefit delineates the upper
limit of potential inherent in a personnel structure, whereas realizing this potential is contingent upon
matching resource conditions. Consequently, the marginal benefit curve should inform resource
allocation decisions as a supplementary tool, not stand as an independent efficiency metric. In
conclusion, the beginner group should be discontinued.

To comprehensively investigate the universal principles underlying maintenance strategies, the
limited resources of the advanced group at both the peak and trough efficiency points were used to
perform algorithmic optimization for the remaining groups. As a result, the optimal allocation of
maintenance strategies across six distinct fixed resource scenarios was established, as shown in Table 8.
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Table 8. Allocation of optimal maintenance strategies under resource constraints.

Unit Benefit peak points Benefit trough points

Basic group  Intermediate group ~ Advanced group Basic group Intermediate group Advanced group

Al (v1,p1) (v1,p1) (v1,p1) (v3,p3) (v3,p2) (V4 P3)
A2 (v1,p2) (v1,p3) (v1,P4) (V4, P4) (V4 Pa) (V4 P3)
A3 (V4 P4) (4, D) (4, p3) (V4,P4) (V4 Pa) (V4 P3)
A4 Vo Vo Vo (V4,P4) (V4 Pa) (V4 P3)
Bl (v1,p2) (v1,p1) (v1,p1) (v3,p3) (v2,p1) (v1,p1)
B2 Vo Vo Vo (v3,p3) (v3,p2) (V4 P3)
B3 (v3,03) (v2,p2) (v1,p2) (v3, p3) (v3,D2) Vo

B4 Vo Vo Vo (v2,p2) (v2,p1) (V4 Pa)
Cl (v3,3) (v2,P2) (v3,p2) (v1,p1) (v1,p1) (v1,p1)
C2 Vo Vo Vo (4, D4) (V4 Pa) (V4 Pa)
C3 (V4 Pa) (4, D) (4, P3) (V4,D4) (V4 Pa) (V4 P4)
C4 Vo Vo Vo (v2,P2) (V2,D2) (Vg, Ps)
Diotar 0.6681 0.6530 0.6462 0.9801 0.9772 0.9902

Table 8 illustrates that under conditions of resource constraints, personnel skill misalignments
hinder strategic resilience. Specifically, the advanced group faces a skills gap resulting from the direct
transition from [, to [l3, which impairs their ability to sustain equivalent skill levels during the
maintenance of Unit Al. This leads to a 15% cost increase compared with the baseline group’s plan.
Simultaneously, the maintenance activities for Unit B3 are forced to be downgraded, triggering a
negative feedback loop; a similar situation is observed in the intermediate group. In contrast, the basic
group, benefiting from a stable alignment of personnel skills, demonstrates strong adaptability by
adopting a low-level maintenance strategy v; for Unit Al. This strategy enables the reallocation of
greater maintenance resources to Unit B3, thereby enhancing the task completion outcomes.

Under conditions of abundant resources, the deployment density of senior personnel dictates the
ceiling for a maintenance strategy’s potential effectiveness. The senior team, using a dual top-tier
personnel configuration, is uniquely positioned within Unit A1 to implement an advanced maintenance
strategy. In contrast, the baseline team, constrained to a single top-tier personnel structure, can only
adopt a secondary combination of maintenance measures as its optimal approach. This discrepancy is
especially pronounced at the point of minimal efficiency: The advanced cohort simultaneously applies
multiple v, maintenance procedures, resulting in a higher task completion rate. Although the
intermediate cohort has similar resources, their efforts are directed toward lower-priority tasks, which
constrains their capacity. For instance, Unit C1 relies on [, to perform v,, thereby impeding the
replication of an equivalent degree of focused effort.

5.4. Policy optimization from the perspective of continuous tasks

Previous research has indicated that the four-person maintenance strategy is significantly
constrained by resource availability. Within the existing human resource framework, this strategy
remains feasible for supporting single-cycle static maintenance and small-scale operational demands.
However, in actual combat conditions, equipment units are generally required to undertake continuous
multicycle operational tasks, which involve considerable fluctuations in the resource levels. To address
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these challenges, a dynamic five-person configuration, designated as (I, [, l3, 14, 14) is proposed.
Specifically, this approach involves implementing a hibernation mechanism in which one Grade [,
employee is placed into hibernation during periods of resource scarcity, whereas one Grade [;
employee is placed into hibernation during times of resource abundance, concurrently reinstating the
dual Grade [, framework. The model simulates continuous operations within a multicycle
maintenance context analogous to real combat scenarios, with the detailed parameters provided in
Table 9 below.

Table 9. Criteria for sustained combat operations.

Task number 1 2 3 4 5 6
Duration 8 12 10 5 6 14
Maintenance resources (585, 33) (1170, 58) (1521, 73) (351, 23) (468, 28) (1521, 73)
T T T T
= M Basic group 0.9761 0.9838 0.9838 -
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Figure 8. Experimental results (Part 3).

As shown in Figure 8, the dynamic five-person team configuration secures the top rank in every
mission phase, demonstrating consistent superiority over static configurations in a multicycle
operational context. The overall mission completion rate for this configuration across multiple cycles
is 0.8955, representing an absolute improvement of 3.35% compared with the static group with the
lowest performance (the basic group at 0.8621). This performance advantage is attributed to the
dynamic sleep mechanism’s proactive adjustment to resource variability, enabling the system to
maintain a near-optimal operational state throughout the entire cycle.

Table 10. Number of advanced maintenance measures.

Task number 1 2 3 4 5 6
Basic group V3 2 4 5 1 0 5
Uy 2 4 6 1 1 6
Advanced group Vs 0 2 0 0 0 0
Uy 3 8 12 1 2 12
Dynamic buildup V3 2 2 0 1 0 0
Uy 2 8 12 1 2 12
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Table 10 reveals that the core superiority of the dynamic maintenance strategy is rooted in the
synergy between two mechanisms: Adaptive resource elasticity and cumulative state effects. During
intervals marked by resource constraints (Tasks 1 and 4), the dynamic group closely mirrors the
conservative approach utilized by the baseline group, thereby establishing an initial reliability
advantage. In contrast, in periods characterized by resource abundance and surplus (Tasks 2 and 6),
the dynamic group’s allocation to advanced maintenance measures matches or surpasses that of the
advanced group. This adaptive member switching creates a pronounced state inheritance effect,
culminating in the enhanced coverage efficiency that characterizes the overall maintenance strategy.

Empirical studies show that the dynamic architecture offers new methods to enhance the sustained
operational effectiveness of equipment formations. This framework applies to standard multiphase
combat scenarios, including support for carrier-based aircraft groups.

6. Conclusions

This study focuses on equipment groups, examining selective maintenance decisions and
personnel allocation under resource constraints. An environmental coefficient is introduced to capture
the impact of varying subtask environments on the units’ degradation. A nonhomogeneous Markov
model is used to calculate the probability of task completion following a unit’s degradation; these unit-
level probabilities then determine the completion probabilities for their respective subtasks. A
maintenance optimization model is developed to maximize the overall single-cycle task completion
probability and is solved using an AQIA. Case studies are conducted for experimental analysis and
optimization. Key findings include the following.

(1) The integrated optimization scheduling model based on the AQIA outperforms traditional
algorithmic search models, showing superior convergence speed and solution quality compared with
other hybrid metaheuristic algorithms.

(2) A maintenance personnel structure designed for limited resources can achieve Pareto
optimality in local efficiency from a single-cycle maintenance perspective.

(3) A dynamic personnel allocation structure effectively mitigates resource fluctuations and
achieves optimal efficiency locally and globally, making it the preferred strategy in multitask
battlefield scenarios.

(4) The model developed in this research provides theoretical guidance and technical support for
maintenance decisions regarding equipment groups in both static maintenance and dynamic combat,
offering valuable insights to improve the probability of task completion in coordinated multiequipment
operations.
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