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Abstract: Integrating selective maintenance strategies with personnel allocation for equipment groups 
is essential to meet combat missions’ demands and significantly boost overall combat effectiveness. 
Accordingly, this study aims to maximize the probability of mission completion for equipment groups 
by developing a joint optimization model under constrained resource conditions. An environmental 
coefficient is incorporated to represent the dynamic impact of varying combat environments on the 
degradation states of individual units. Using a nonhomogeneous Markov model, this study calculates 
the state transition probabilities of units throughout the mission to derive the mission completion 
probabilities for both the equipment group and the overall combat cycle. To solve this model, an 
adaptive quantum immune algorithm is applied to the case study. These findings demonstrate that the 
proposed model and algorithm enhance maintenance decision-making quality and clarify optimization 
patterns regarding resource efficiency and dynamic personnel allocation. Thus they offer both a 
theoretical foundation and practical guidance for battlefield maintenance support. 
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1. Introduction 

Modern informatized warfare relies heavily on combat forces composed of equipment groups 
integrating diverse subunits. To ensure the optimal operational performance of these equipment groups, 
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it is essential to implement maintenance strategies that are appropriately aligned with the requirements 
of combat missions. However, battlefield constraints, especially limited maintenance resources, often 
preclude the comprehensive repair of all degraded equipment. Consequently, there is a critical need to 
develop an integrated approach that determines the optimal maintenance plan. This approach must 
synthesize the real-time condition of the equipment, the mission’s demands, and resource constraints 
to simultaneously optimize the selection of maintenance targets and measures, and the allocation of 
personnel. Addressing this challenge constitutes a critical and urgent priority within the current field 
of equipment support [1]. 

Selective maintenance decision-making is widely recognized as an effective strategy for 
optimizing maintenance activities under conditions of limited resources and has attracted considerable 
scholarly attention. Previous research has primarily focused on multiobjective optimization [2–5], the 
allocation of multiple maintenance personnel [6–9], and scenarios involving multiple tasks [10–13]. 
Over the past five years, Wei-Ning Ma et al. has investigated the independent optimization challenges 
related to selective maintenance decisions and task allocation, aiming to maximize the probability of 
task completion. They concluded that incorporating combat task allocation improves outcomes [14]. 
Amjadian et al. extended the fleet selective maintenance problem (FSMP) by including asynchronous 
maintenance intervals and resource constraints, linking the selective maintenance problem (SMP) to 
the resource-constrained project scheduling problem (RCPSP). Their numerical experiments 
highlighted key trade-offs to guide optimal system performance decisions [15]. Similarly, You-Peng 
Zhang et al. examined the impact of the number of maintenance personnel on the system’s maintenance 
costs and downtime, with the objective of enhancing the system’s reliability and availability while 
minimizing maintenance expenses. Their findings suggested that a maintenance team comprising six 
personnel is optimal [16]. Chaabane’s study demonstrated that mixed-skill maintenance teams are 
more cost-effective than single-skill teams in battlefield environments [17]. Furthermore, Moghaddam 
et al. explored selective maintenance decision methodologies within wartime maintenance contexts, 
emphasizing maximization of the systems’ reliability [18]. O’Neil et al. proposed a model for jointly 
optimizing selective maintenance scheduling and task abortion decisions in a three-module critical 
system. By maintaining components during halftime breaks to minimize performance degradation for 
subsequent tasks, the model enhances the probability of task success and system survivability 
compared with strategies without task abortion [19]. 

Despite these contributions, significant gaps remain when applying the existing frameworks to 
complex battlefield environments, particularly in the following aspects. 

(1) Separately optimizing maintenance measures and personnel allocation risks strategic failure 
due to resource overextension in complex battlespaces. This necessitates an integrated framework that 
jointly considers maintenance actions, personnel skills, and resource constraints. 

(2) Existing models fail to quantify the resource efficiency boundaries of different skill 
combinations or capture the dynamic personnel demands caused by resource fluctuations in multitask 
scenarios. This gap highlights the urgent need for adaptive mechanisms to reconfigure personnel teams 
under resource constraints, ensuring continuous support across sequential missions. 

In response to these challenges, this study presents a nonhomogeneous Markov model to 
dynamically capture the effects of battlefield environment changes and equipment fatigue on unit 
degradation. It develops an integrated triune joint optimization model combining maintenance 
selection, personnel skill adaptation, and dynamic resource coordination to maximize the probability 
of task completion under mission reliability and resource constraints. The adaptive quantum immune 
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algorithm (AQIA) integrates a scheduling feedback mechanism with quadrant decision evolution, 
maintaining the population’s feasibility in complex coupled optimization problems. This model 
elucidates resource efficiency patterns and dynamic personnel allocation, offering dynamic decision 
support for battlefield equipment maintenance and support. 

2. Overview of the decision-making framework 

2.1. Technical approach and assumptions 

The technical methodology underpinning the selective maintenance decision-making model for 
equipment groups developed in this study is described in detail below. 

Step 1: Define the degradation patterns of multistate units along with the corresponding 
maintenance effects. Subsequently, the rules for selecting appropriate maintenance measures are 
formulated. Furthermore, a task completion evaluation framework is established, a resource scheduling 
mechanism is developed, and a dynamic evaluation system for personnel’s skill levels is constructed. 

Step 2: Formulate a joint optimization objective model that maximizes the overall completion 
probability of multiple tasks, while adhering to dual constraints regarding total cost and time windows. 

Step 3: Develop an AQIA to implement quantum information feedback by encoding maintenance 
measures into the quantum states, coupled with a coordinated resource scheduling mechanism. 

Step 4: Solve the model using the AQIA implemented in MATLAB. This solution yields the 
overall probability of completing multiple tasks under resource constraints and identifies the optimal 
selective maintenance scheme for the equipment group. The scheme specifies which units require 
maintenance, the maintenance measures assigned to each unit, and the scheduling of maintenance 
personnel. Furthermore, the analysis investigates the effects of personnel structure thresholds and 
resource efficiency intervals on the optimization objectives. 

The fundamental assumptions underlying the model are as follows:  
(1) The equipment ensemble experiences degradation exclusively throughout the operational 

mission period, with no degradation occurring during maintenance intervals.  
(2) The length of combat missions is subject to dynamic variation; upon completion of 

maintenance, the equipment ensemble promptly initiates the subsequent combat mission.  
(3) There is no predetermined sequence for the maintenance of individual subunits within the 

equipment ensemble; maintenance activities may be conducted simultaneously.  
(4) The equivalent duration of maintenance and the associated costs for a single repair of a subunit 

encompass all constituent components and are not further disaggregated. 

2.2. The fundamental operational level of the combat unit 

2.2.1. Definition of multistate systems 

The equipment group is defined as consisting of multiple combat units that are not completely 
homogeneous. Each combat unit is represented as a multistate system with 𝑖 distinct states, where 
state 𝑆ଵ indicates a total failure condition, state 𝑆௜ signifies a fully operational condition, and the 
intermediate 𝑖 െ 2  states correspond to partial operational conditions [20]. The system under 
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investigation in this study is categorized into five distinct states, with the performance loss associated 
with each state presented in Table 1 below. 

Table 1. Definition of the ground state. 

Equipment status Status name Core function description Performance loss threshold

S1 Entirely ineffective Loss of essential functionality 80% ൏ 𝐿ଵ ൑ 100% 

S2 Significant deterioration Core function is significantly impaired 60% ൑ 𝐿ଶ ൏ 80% 

S3 Moderate deterioration Core function is partially impaired 40% ൑ 𝐿ଷ ൏ 60% 

S4 Slight deterioration Core function is essentially standard 20% ൑ 𝐿ସ ൏ 40% 

S5 Functioning properly Core function remains intact 𝐿ହ ൏ 20% 

The dynamics of the state transitions for the entire system can be characterized by the state 
transition intensity matrix 𝛬଴, defined as follows: 

𝛬଴ ൌ

⎣
⎢
⎢
⎢
⎡

0 0 0 0 0
𝜆ଶଵ െ𝜆ଶଵ 0 0 0
𝜆ଷଵ 𝜆ଷଶ െሺ𝜆ଷଵ ൅ 𝜆ଷଶሻ 0 0
𝜆ସଵ 𝜆ସଶ 𝜆ସଷ െሺ𝜆ସଵ ൅ 𝜆ସଶ ൅ 𝜆ସଷሻ 0
𝜆ହଵ 𝜆ହଶ 𝜆ହଷ 𝜆ହସ െሺ𝜆ହଵ ൅ 𝜆ହଶ ൅ 𝜆ହଷ ൅ 𝜆ହସሻ⎦

⎥
⎥
⎥
⎤

 . 

In this formula, the element 𝜆௜௝ located at the 𝑖th row and 𝑗th column represents the transition 
rate from state 𝑆௜  to a lower energy state 𝑆௝ . Conventional homogeneous Markov models, 
characterized by constant transition rates, are inadequate for capturing the effects of varying task 
environments. Therefore, a nonhomogeneous Markov model is proposed to accurately quantify the 
degradation of each unit’s state during the task’s performance. The associated mathematical 
formulation is provided below: 

 𝛬௠ሺ𝑡ሻ ൌ 𝛼௠ ⋅ 𝛬଴ ⋅ ሺ1 ൅ 𝛽𝑡ሻ. (2.1) 

In this formula, the environmental coefficient 𝛼௠ quantifies the severity of the conditions under 
which the combat mission is conducted, whereas the coefficient 𝛽  represents the degree of 
performance degradation experienced by each unit through accumulated fatigue. The dynamic 
degradation behavior of the unit throughout the mission is modeled using the Kolmogorov differential 
equation, which is expressed as follows: 

 
ௗ௉ೠሺ௧ሻ

ௗ௧
ൌ 𝑃௨ሺ𝑡ሻ ⋅ 𝛬௠ሺ𝑡ሻ,  

 𝑃௨ሺ𝑡ሻ ൌ ሾ𝑃௨ሺ𝑆ଵ, 𝑡ሻ, 𝑃௨ሺ𝑆ଶ, 𝑡ሻ, 𝑃௨ሺ𝑆ଷ, 𝑡ሻ, 𝑃௨ሺ𝑆ସ, 𝑡ሻ, 𝑃௨ሺ𝑆ହ, 𝑡ሻሿ,  

 ∑ 𝑃௨ሺ𝑆௦, 𝑡ሻ ൌ 1ହ
௦ୀଵ . (2.2) 

In the formula above, 𝑃௨ሺ𝑡ሻ represents the probability distribution of the states of unit 𝑢 at time 
𝑡. The state transition process described in this article is illustrated in Figure 1. 
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Figure 1. Example of state transition. 

2.2.2. Modeling the effectiveness of maintenance activities 

Maintenance activities are performed on equipment at predetermined task intervals with the 
objective of restoring the equipment to an improved operational state. Based on performance 
degradation, a set of maintenance measures, denoted 𝑣 ∈ ሼ0,1,2,3,4ሽ, is defined, with its elements 
corresponding, respectively, to no maintenance, three forms of imperfect maintenance, and perfect 
maintenance. The corresponding maintenance effect matrix, 𝐴௩, is provided below: 

 𝐴௩ ൌ

⎣
⎢
⎢
⎢
⎢
⎡
𝑎ଵ,ଵ

௩ 𝑎ଵ,ଶ
௩ 𝑎ଵ,ଷ

௩ 𝑎ଵ,ସ
௩ 𝑎ଵ,ହ

௩

0 𝑎ଶ,ଶ
௩ 𝑎ଶ,ଷ

௩ 𝑎ଶ,ସ
௩ 𝑎ଶ,ହ

௩

0 0 𝑎ଷ,ଷ
௩ 𝑎ଷ,ସ

௩ 𝑎ଷ,ହ
௩

0 0 0 𝑎ସ,ସ
௩ 𝑎ସ,ହ

௩

0 0 0 0 1 ⎦
⎥
⎥
⎥
⎥
⎤

. (2.3) 

In this context, element 𝑎௜,௝
௩  denotes the probability that a unit initially in State 𝑖 transitions to 

State 𝑗 following the implementation of maintenance measure 𝑣. Each element within a row satisfies 
the condition ∑ 𝑎௜,௝

௩ହ
௝ୀ௜ ൌ 1 . Combining the hierarchical definition of performance degradation, a 

repair’s effectiveness is directly linked to the degradation threshold levels. After a complete repair, the 
unit returns to full functionality. The effectiveness of partial repairs varies dynamically with the amount 
of repair resources invested—the more resources allocated, the greater the likelihood the unit will 
achieve a better state post-repair. 

Consequently, if the initial state probability distribution of the unit at the commencement of the 
task interval is denoted by 𝑃௨ሺ𝑡ሻ, then the state probability distribution following the implementation 
of the maintenance actions can be expressed as follows: 

 𝑃௨௡௘௪ ൌ 𝑃௨ሺ𝑡ሻ ⋅ 𝐴௩. (2.4) 

2.3. Decision-making hierarchy in the maintenance strategy formulation 

2.3.1. Modeling criteria for the alignment of maintenance strategies 

Each unit has a unique initial state probability and, therefore, a distinct maintenance strategy, 
leading to differing state probability distributions following maintenance. The maintenance decision 
matrix is formally defined as follows: 



1173 

Journal of Industrial and Management Optimization  Volume 22, Issue 2, 1168–1193. 

 𝑋௠௨௩ ∈ ሼ0,1ሽ, ∀𝑚 ∈ 𝑀,  𝑢 ∈ 𝑈௠. (2.5) 

In this formula, 𝑀  denotes the set of equipment groups, 𝑈௠  represents the set of units 
contained within the equipment group 𝑚, and 𝑋௠௨௩ ൌ 1 signifies the selection of the maintenance 
measure 𝑣  applied to the unit 𝑢  within the equipment group 𝑚 . The criteria for aligning 
maintenance actions with their respective units are as follows: 

 𝑠. 𝑡. ൜
∑ 𝑋௠௨௩௩ ൌ 1, ∀ሺ𝑚, 𝑢ሻ
𝑋௠௨଴ ൌ 0, 𝑖𝑓ሺ𝑚, 𝑢ሻ ∈ 𝑈௉௥௢௛௜௕௜௧௘ௗ

. (2.6) 

In this formula, Rule 1 stipulates that each unit may select only one type of maintenance measure. 
Rule 2 specifies that if a unit (m, u) is an element of the subset 𝑈௉௥௢௛௜௕௜௧௘ௗ (critical units that require 
maintenance), the no maintenance option (𝑣 ൌ 0) is disallowed. This condition explicitly mandates 
that critical units cannot remain unmaintained and must instead select one of the maintenance measures 
corresponding to 𝑣 ൌ 0 to 𝑣 ൌ 4. 

2.3.2. An analysis of task completion rates within equipment groups 

The transition matrix is updated in accordance with the selection variable related to the 
maintenance measures. When event 𝑋௠௨௩ ൌ 1  occurs, the state probability distribution of an 
individual unit is represented by 𝑃௨௡௘௪. The completion level of a single piece of equipment is defined 
by the nonfailure states 𝑆௜ of the individual units that constitute the equipment group. Specifically, 
we require that at least 𝐾௠ units within the equipment group 𝑈௠ remain operational without failure. 
Consequently, the task completion degree function 𝐷௠ for the equipment group can be formulated as 
follows: 

 𝐷௠ ൌ ∑ ൬
𝑈௠

𝑗 ൰ ሺ∑ 𝑃௨௡௘௪ሺ𝑆௜ሻହ
௜ୀଶ ሻ௝ ∙ ሺ1 െ ∑ 𝑃௨௡௘௪ሺ𝑆௜ሻହ

௜ୀଶ ሻ௎೘ି௝௎೘
௝ୀ௄೘

. (2.7) 

In this formula, ∑ 𝑃௨௡௘௪ሺ𝑆௜ሻହ
௜ୀଶ  represents the overall probability that unit 𝑢 remains functional 

after the repair process. 

2.4. Layer for scheduling resource utilization 

2.4.1. Modeling the skill levels of maintenance personnel 

Considering that the proficiency levels of maintenance personnel directly affect their 
effectiveness, and recognizing the variability in expertise across different maintenance techniques 
among staff, assigning a maintenance skill level based on a single metric does not accurately reflect 
their true capabilities. Therefore, a maintenance technician 𝑝  can be characterized by 𝑛  distinct 
maintenance skills, which are collectively represented by a skill vector as follows: 

 𝑠௣ ൌ ሾ𝑠௣ଵ, ⋯ , 𝑠௣௡ሿ . (2.8) 

In this formula, the variable 𝑠௣௡  represents the proficiency level of individual 𝑝  in the skill 
category 𝑛, with 𝑠௣௡ taking values within the interval from 0 to 1. Moreover, by using the skill vector, 
a formula has been developed to quantify the skill levels of personnel as follows: 



1174 

Journal of Industrial and Management Optimization  Volume 22, Issue 2, 1168–1193. 

 𝑙௣௡ ൌ උ𝐿௠௔௫ ⋅ ∑ 𝜛௡
ே
௡ୀଵ 𝑠௣௡ ൅ 0.5ඏ,  

 ∑ 𝜔௡ ൌ 1. (2.9) 

2.4.2. Modeling of labor hours and costs for maintenance personnel 

During the execution of maintenance activities, resource constraints become evident, particularly 
concerning the availability of maintenance person-hours and the associated costs. It is established that 
the maintenance personnel possess specific benchmark person-hour equivalents (𝑡௟) and benchmark 
cost equivalents (𝑐௟) when performing maintenance tasks classified as Grade 𝑙. When the personnel 
undertake tasks below their designated maintenance grade, they are entitled to receive opportunity 
remuneration reflecting the skill premium, which concurrently incurs opportunity time. Consequently, 
personnel with higher skill levels require less time to complete a given task; however, this increased 
efficiency is accompanied by higher costs. This relationship can be formally expressed as follows: 

 𝑡௟௡௘௪ ൌ 𝑡௟ ⋅ ൣ1 െ 𝛾 ⋅ ൫𝑙௣௡ െ 𝑙௠௜௡൯൧,  

 𝑐௟௡௘௪ ൌ 𝑐௟ ⋅ ൣ1 ൅ 𝜑 ⋅ ൫𝑙௣௡ െ 𝑙௠௜௡൯൧. (2.10) 

In these formulae, the variables 𝑡௟  and 𝑐௟  denote the benchmark resource equivalents 
corresponding to the minimum personnel grade required to perform maintenance activities on a 
specific unit. The variables 𝑙௠௔௫ and 𝑙௠௜௡ represent, respectively, the highest skill level of personnel 
and the minimum personnel grade necessary to execute the tasks associated with the current unit; 𝑙௣௡

൒ 𝑙௠௜௡ indicates the constraint that prohibits personnel of lower grades from undertaking maintenance 
tasks assigned to higher-grade personnel. The variables 𝛾  and 𝜑  correspond to the work hour 
compression coefficient and the cost increase coefficient, respectively, both of which are restricted to 
values within the interval from 0 to 1. 

2.4.3. Modeling scheduling mechanisms incorporating degraded resource allocation and 
compensation strategies 

Let the resource allocation matrix be denoted by 𝑌 , where 𝑌௨௦ௗ௣  represents the start time, 
duration, and assigned personnel for unit 𝑢 . In cases where the initial resource allocation proves 
unsuccessful, the innovation mechanism enables resource release by dynamically reducing the 
maintenance levels of selected units. This method facilitates the derivation of a feasible solution that 
complies with resource constraints. Simultaneously, any surplus resources identified within the 
feasible solution are reallocated to restore maintenance levels, thereby promoting adaptive evolution 
and improving the overall quality of the plan. The detailed procedure and corresponding flowchart 
(Figure 2) are presented below. 
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Figure 2. Flowchart depicting the allocation and compensation processes for degradable resources. 
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Step 1: This step involves creating a prioritized queue for critical units through initial resource 
allocation and assigning personnel to specific tasks. The scheduling of time windows utilizes a gap 
detection methodology; subject to personnel availability constraints, the earliest feasible start time is 
determined accordingly as follows: 

 𝐸𝑆𝑇ሺ𝑢ሻ ൌ 𝑚𝑖𝑛ሼ 𝑎௜ ∈ 𝒜௣|ሺ𝑏௜ െ 𝑎௜ሻ ൒ 𝑡௨ሽ,  

 𝒜௣ ൌ ሼሾ𝑎௜, 𝑏௜ሿ|𝑖 ൌ 1,2, . . . , 𝑘ሽ. (2.11) 

In this formula, 𝑎௜  and 𝑏௜  denote the start and end times of the ith available time slot, 
respectively; 𝑡௨ denotes the time required to perform maintenance on unit u; and 𝒜௣ represents the 
set of time windows. Following the initial allocation of resources, we verify whether the global 
resource constraints have been satisfied. If these constraints are met, we generate the feasible plan and 
bypass the degradation decision loop. Otherwise, we identify and report the nature of the failure and 
proceed to the degradation decision loop. 

Step 2: The d decision process involves identifying the type of failure. When the failure occurs 
within a critical unit allocation, only the critical units are selected for degradation. In contrast, if the 
failure is noncritical or arises from resource overrun, a broader selection of degradable units is 
considered. Multiple categories of degradation candidate sets are automatically generated, based on 
the unit hierarchy within the current configuration 

 𝒟crit ൌ ሼ𝑢 ∈ 𝑈crit|𝑣௨ ൒ 2ሽ,  

 𝒟global ൌ ሼ𝑢 ∈ 𝑈|𝑣௨ ൒ 1ሽ. (2.12) 

In this formula, 𝑈crit denotes the set of key units and 𝑣௨ denotes the current maintenance level 
of unit 𝑢. If both the candidate degradation set and the summation are empty, the degradation decision 
loop terminates, and the current individual unit’s resource allocation is considered to be unsuccessful. 
Otherwise, after recording the resource consumption, the candidate downgrade set is iterated to 
identify the unit with the highest priority for downgrade. The primary procedure involves calculating 
the reliability impact factor 

 𝐼ሺ𝑢ሻ ൌ 1 െ 𝐴௨
ௗ. (2.13) 

In this formula, the variable 𝐴௨
ௗ  represents the probability of degradation occurring in the 

absence of any intervention.  
The resource-saving factor is calculated as follows: 

 ሺ𝑢ሻ ൌ ௱஼ೠ

஼೘ೌೣ
೩೅ೠ

೅೘ೌೣ

. (2.14) 

In this formula, the variables 𝛥𝐶௨ and 𝛥𝑇௨ represent the amount of resources conserved after a 
single stage of degradation, whereas 𝐶௠௔௫  and 𝑇௠௔௫  correspond to the overall constraints on 
resource availability.  

The level of the protection factor is calculated as 

 𝑅ሺ𝑢ሻ ൌ ቐ
𝜆high if 𝑢 ∈ 𝑈crit and 𝑣௨ ൒ 3
𝜆mid if 𝑢 ∈ 𝑈crit and 𝑣௨ ൌ 2
𝜆low if 𝑢 ∉ 𝑈crit

. (2.15) 
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In this formula, 𝜆 denotes the level of protection corresponding to various grade requirements 
and can be determined by experts. Considering the three factors previously mentioned, the 
prioritization for downgrading candidate units is established as follows: 

 𝑃ሺ𝑢ሻ ൌ െ𝜔ଵ ⋅ 𝐼ሺ𝑢ሻ ൅ 𝜔ଶ ⋅ 𝑆ሺ𝑢ሻ ൅ 𝜔ଷ ⋅ 𝑅ሺ𝑢ሻ. (2.16) 

In this formula, all weights are derived from key equipment wartime maintenance data presented 
in this paper, using data calculation and crossvalidation. The simulated analytic hierarchy process 
(AHP) designs multiple candidate weight sets, selecting the combination with the highest stability. For 
rapid implementation, equivalent weights can be directly obtained via AHP. 

Ultimately, the candidate unit with the highest priority is selected to undergo the degradation 
procedure, followed by a global reallocation of resources. If the current configuration proves feasible, 
the degradation loop exits. Otherwise, the iteration continues until the maximum cycle count is reached, 
at which point the resource allocation for that individual is marked as a failure. 

Step 3: Conduct two comprehensive completeness assessments on the set of feasible plans. These 
assessments should confirm that all critical units have undergone maintenance and that units requiring 
maintenance have been allocated the necessary resources. Upon completion of this verification, 
calculate the surplus resources available. Next, all candidate units eligible for surplus resource 
allocation are identified. Any surplus is then allocated with priority given to upgrading noncritical units 
during their idle time windows. If the proposed upgrade is feasible, update the unit’s status accordingly 
and record the final resource consumption. Should the upgrade prove unfeasible, revert the system to 
its original feasible state prior to the attempted upgrade. The condition governing the feasibility of 
surplus resource allocation is as follows: 

 ∃𝑝 ∈ 𝒫, ∃ሾ𝑏௜ െ 𝑎௜ሿ ∈ 𝒜௣ such that ሾሺ𝑏௜ െ 𝑎௜ሻ ൒ 𝑡௩ሿ ∧ ሾ𝐶total ൅ 𝑐௩ ൑ 𝐶maxሿ. (2.17) 

In this formula, the symbol 𝒫 represents the set of qualified personnel, 𝑡௩ and 𝑐௩ denote the 
resource consumption associated with the upgraded maintenance measure 𝑣, and 𝐶total indicates the 
total cost of the plan prior to the upgrade. 

Upon the successful completion of the aforementioned procedures, the allocation of resources 
may be formally deemed to be successful. 

3. Combined optimization objective function 

On the basis of the problem descriptions of the operational unit’s foundational layer (Section 2.2), 
the maintenance decision-making layer (Section 2.3), and the resource utilization scheduling layer 
(Section 2.4) as previously delineated, this study develops an integrated optimization model for 
selective maintenance decision-making and personnel allocation under resource constraints. The 
principal objective of the model is to maximize the overall mission completion rate across all 
equipment groups throughout the entire operational period, as illustrated in Figure 3. 

 

𝑀𝑎𝑥𝐷௧௢௧௔௟ ൌ ∏ 𝐷௠
ெ
௠ୀଵ

𝑠. 𝑡. ቐ
𝐶௧௢௧௔௟ ൌ ∑ 𝑐௟௡௘௪௠,௨

𝑇௧௢௧௔௟ ൌ max ሺ𝑡௦ ൅ 𝑡௟௡௘௪ሻ
 𝐶௧௢௧௔௟ ൑ 𝐶௠௔௫, 𝑇௧௢௧௔௟ ൑ 𝑇௠௔௫

. (3.1) 

The first equation shows that the individual equipment groups function independently, with the 
overall task completion level of the entire process being the product of the completion levels of each 
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equipment group (𝐷௠ ). The second defines the total equivalent cost (𝐶௧௢௧௔௟ ) associated with the 
maintenance process. The third equation specifies that the total duration of the maintenance process 
(𝑇௧௢௧௔௟) corresponds to the maximum completion time observed among the units within the equipment 
groups. Finally, the fourth equation expresses the global finite resource constraints (𝐶௠௔௫ , 𝑇௠௔௫ ) 
imposed throughout the maintenance process. 

 

Figure 3. Relationship between maintenance strategy and the equipment group’s task completion rate. 

4. Problem-solving using an AQIA 

To address the challenge of decoupling the optimization arising from the complex 
interdependence between maintenance decision-making and resource allocation, this study uses an 
enhanced AQIA [21–24] for optimization purposes. The work makes three primary contributions. First, 
it expands the solution space by encoding maintenance strategies via quantum state superposition, 
which allows a single individual to represent an exponentially large number of potential maintenance 
schemes. Second, it develops a quantum state feedback mechanism to coordinate the scheduling 
process, thereby achieving explicit decoupling between the decision variables and the resource 
constraints. Third, it formulates a four-quadrant decision model that dynamically adjusts the search 
direction by leveraging disparities among elite antibodies, a strategy that effectively guides the 
population toward the Pareto front. The primary algorithmic parameters used in this study are outlined 
in Table 2, and the detailed procedural methodology is described below. 
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Table 2. Primary algorithmic parameters. 

Parameter symbol Default value 

𝑁௣௢௣ 200 

𝐺௠௔௫ 50 

r 1.2 

𝑟௘௟௜௧௘ 0.1 

𝑟 0.2 

𝑃௖ 0.55 

𝑎 0.7 

𝑡௦ 0.5 

𝑡௖ 0.7 

𝑃௖ 0.55 

𝑃௠ 0.8 

𝜃 𝜋/25 

𝜃௕ 𝜋/27 

𝜂௦ 0.01 

𝜂௘ 0.025 

𝜂ௗ 0.02 

Step 1: Initialize the population by encoding it through quantum state superposition. 
For each antibody, initialize a quantum state matrix with elements comprising random complex 

numbers. Subsequently, normalize each row to ensure that the level of probability corresponding to 
the five maintenance measures for each maintenance unit satisfies the following normalization 
condition: 

 𝛼௨,௩ ൌ 𝑟ଵ ൅ 𝑖 ⋅ 𝑟ଶ,  

 ‖𝛼௨‖ଶ ൌ ∑ |ସ
௩ୀ଴ 𝛼௨,௩|ଶ ൌ 1. (4.1) 

Step 2: Initialize the population by using selective full collapse decoding. 
For non-elite antibodies with unallocated resources, maintenance actions are selected randomly 

according to the probability distribution 𝑝௨,௩ ൌ |𝛼௨,௩|ଶ , subject to the constraint that critical unit 
failures cannot be assigned to the maintenance measure 𝑉଴. Upon restoration of the failed antibodies, 
the maintenance decision matrix 𝑋  is updated, and the associated resources are reclassified as 
unallocated. 

Step 3: Population viability assessment and maintenance. 
Initially, resources are allocated to antibodies classified as unassigned through a scheduling 

mechanism. Subsequently, by incorporating a quantum state feedback mechanism, the physical 
information of the antibodies is transmitted to the quantum state, whereby the selection probabilities 
of the corresponding maintenance strategies within the quantum state are increased through feedback 

 𝛼ሺ௡௘௪ሻሺ𝑢, 𝑣actualሻ ൌ 𝛼ሺ𝑢, 𝑣actualሻ ∙ r. (4.2) 

In this formula, the variable r represents the reinforcement learning factor. Finally, we calculate 
the overall task completion rate of the current population, including elite antibodies, to determine the 
fitness value of each antibody. 
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Step 4: Immunological methodology. 
Initially, the quantity of elite antibodies (𝑁௘௟௜௧௘ ) is determined dynamically using a nonlinear 

decrement method. Antibodies exhibiting the highest fitness values are selected and directly retained 
within the memory library. Secondly, for non-elite antibodies (𝑁௣௢௣ െ 𝑁௘௟௜௧௘), we select the antibody 
exhibiting the lowest fitness (𝑁௖௢௡௧௥௔௥௜௔௡ ) and apply a local positional inversion to produce an 
enhanced antibody. Finally, the remaining non-elite antibodies (𝑁௡௢௡ି௘௟௜௧௟௘ െ 𝑁௖௢௡௧௥௔௥௜௔௡ ) undergo 
cloning according to their reproduction probabilities (𝑝), with priority accorded to those possessing 
higher probabilities. This process also involves suppressing antibodies with excessively high 
concentrations and eliminating those with very low fitness, thereby maintaining the total population 
size at 𝑁௣௢௣.  

For each generation within the population, the quantities of elite antibodies and reverse antibodies 
are determined using the following calculations: 

 𝑁௘௟௜௧௘ ൌ ቔ𝑟௘௟௜௧௘ ∙ 𝑁௣௢௣ ∙ 𝑐𝑜𝑠 ቀ గ௚

ଶீ೘ೌೣ
ቁቕ,  

 𝑁contrarian ൌ උ𝑟contrarian ∙ ሺ𝑁pop െ 𝑁eliteሻඏ. (4.3) 

In this formula, 𝑟௘௟௜௧௘  represents the proportion of elite antibodies, 𝑔  denotes the current 
iteration number, 𝐺௠௔௫  signifies the maximum number of iterations, and 𝑟contrarian  indicates the 
proportion of reversed antibodies. The probability of breeding is calculated as follows: 

 𝑝 ൌ 𝑎 ∙ 𝑝௙ሺ𝑖ሻ ൅ ሺ1 െ 𝑎ሻ ∙ 𝑝ௗሺ𝑖ሻ,  

 𝑝௙ሺ𝑖ሻ ൌ ௙௜௧௡௘௦௦ሺ௜ሻ

∑ ௙
ಿ೎೗೚೙೐
ೖసభ ௜௧௡௘௦௦ሺ௞ሻ

,  

 𝑝ௗሺ𝑖ሻ ൌ ௖௢௡ሺ௜ሻ

∑ ௖
ಿ೎೗೚೙೐
ೖసభ ௢௡ሺ௞ሻ

,  

 𝑐𝑜𝑛ሺ𝑖ሻ ൌ ேೞ೔೘೔೗ೌೝ

ே೎೗೚೙೐
. (4.4) 

In this formula, 𝑎 denotes the reproduction probability coefficient, 𝑁௖௟௢௡௘ signifies the number 
of remaining non-elite antibodies, and 𝑁௦௜௠௜௟௔௥ indicates the number of other antibodies to be cloned 
that satisfy the similarity threshold ( 𝑡௦ ). The similarity among antibodies to be cloned is 
comprehensively calculated using the following formula: 

 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦ሺ𝑠𝑜𝑙ଵ, 𝑠𝑜𝑙ଶሻ ൌ 0.5 ∙ 𝑋௦௜௠ ൅ 0.3 ∙ 𝑌௦௜௠ ൅ 0.2 ∙ 𝑄௦௜௠. (4.5) 

In this formula, 𝑋௦௜௠ denotes the similarity of maintenance measures, scored by the degree of 
measure matching, with the key units weighted double and averaged across all units. 𝑌௦௜௠ represents 
resource allocation similarity, combining the time difference, work hour difference, and personnel 
matching, averaged over effective units. 𝑄௦௜௠ indicates the quantum state similarity, calculated via 
the cosine similarity of complex vectors after validating the matrix. The probability of the suppression 
and elimination of reproduction are calculated as follows: 

 𝑝ᇱ ൌ ൝
0.5 ∙ 𝑝 𝑐𝑜𝑛ሺ𝑖ሻ ൐ 𝑡௖

0 𝑝 ൏ 𝑡௘
𝑝 𝑜𝑡ℎ𝑒𝑟

. (4.6) 

In this formula, 𝑡௖ and 𝑡௘ represent the inhibition and elimination concentration thresholds for 
the probability of reproduction, respectively. 
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Step 5: Crossover mutation. 
Initially, perform crossover operations on the cloned population by pairing adjacent antibodies. 

Denote the two antibodies as A and B, with a specified crossover probability. Select a crossover point 
K at random, corresponding to a row index that satisfies the condition 1 ൑ 𝐾 ൏ 𝑈 . Subsequently, 
exchange the maintenance decisions and quantum states between row 𝐾 ൅ 1  and the final row 
according to the following procedure: 

 𝑋ଵሾ𝑘 ൅ 1: , : ሿ ↔ 𝑋ଶሾ𝑘 ൅ 1: , : ሿ,  

 𝛼ଵሾ𝑘 ൅ 1: , : ሿ ↔ 𝛼ଶሾ𝑘 ൅ 1: , : ሿ. (4.7) 

Finally, depending on the probability of mutation (𝑃௠), a mutation operation is executed. The 
positions of the quantum bits within the maintenance measure’s decision layer are randomly rearranged 
and then collapsed for decoding purposes. Simultaneously, the resource allocation matrix Y, 
corresponding to all inverted, cloned, and crossover-mutated antibodies, is reinitialized, marking the 
resources as unallocated. The rotation matrix for the mutation operation, based on the reference angle 
(𝜃), is as follows: 

 𝑅𝑜𝑡௠௔௧௥௜௫ ൌ ቂ𝑐𝑜𝑠θ െ𝑠𝑖𝑛θ
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠θ

ቃ. (4.8) 

Step 6: Present the currently optimal antibody. 
All inverted, cloned, and crossover-mutated antibodies are first merged with those from the 

memory library, forming an intermediate population. After evaluation, identify and select the top 
𝑁௘௟௜௧௘ antibodies demonstrating the highest fitness levels to update the memory library. Following this 
update, the optimal antibody from the current generation is then identified as the output. 

Step 7: Evaluation of the termination criteria. 
Should the maximum number of iterations be reached, the iterative process must be terminated 

and the results presented; if not, the process should continue with quadrant-based decision evolution 
applied to the population. 

Step 8: Conducting an evolutionary population analysis within a four-quadrant decision-making 
framework. 

Using the optimal elite antibody from the memory pool as a reference, the decision space is 
divided into four quadrants based on two dimensions: Consistency between the repair strategies of 
non-elite and elite antibodies, and the difference in their fitness. The quantum state’s update rules are 
the following. 

(1) If the strategies are consistent and non-elite fitness is superior, the quantum state remains 
unchanged.  

(2) If the strategies are consistent but fitness is inferior, a small positive rotation encourages 
exploring better solutions along the original strategy.  

(3) If the strategies are inconsistent but fitness is superior, a small negative rotation balances 
retaining the advantages and maintaining diversity.  

(4) If the strategies are inconsistent and fitness is inferior, a larger positive rotation rapidly adjusts 
the strategy toward the elite antibody’s effective approach.  

 𝛥𝜃௨,௩ ൌ ൞

0 if 𝑣௖ ൌ 𝑣௘ and 𝑓௖ ൒ 𝑓௘
൅𝜂௦ ⋅ 𝜃௕ if 𝑣௖ ൌ 𝑣௘ and 𝑓௖ ൏ 𝑓௘
െ𝜂௘ ⋅ 𝜃௕ if 𝑣௖ ് 𝑣௘ and 𝑓௖ ൒ 𝑓௘
൅𝜂ௗ ⋅ 𝜃௕ if 𝑣௖ ് 𝑣௘ and 𝑓௖ ൏ 𝑓௘

. (4.9) 
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In this formula, the variable 𝜃௕  denotes the reference rotation angle, 𝜂௦  represents the 
reinforcement coefficient associated with the homogeneous strategy, 𝜂௘  corresponds to the 
adjustment coefficient for advantage exploration, and 𝜂ௗ signifies the convergence coefficient related 
to the heterogeneous strategy. Figure 4 depicts the procedural framework of the AQIA. 

 

Figure 4. Diagrammatic representation of the AQIA. 

5. Analysis of the case study 

5.1. Description of the illustrative example  

An aviation equipment maintenance facility must perform preventive maintenance on 12 
operational units within a specified wartime readiness period. These units comprise three types (A, B, 
and C), with each type containing four units: One primary and three auxiliary. This maintenance 
ensures synchronized operation for an eight-hour task. The available maintenance personnel possess 
varying skill levels, graded from 1 to 4. Key constraints for this operation encompass the maximum 
allowable equivalent maintenance costs and the total equivalent working hours. Given these limitations, 
an optimal integrated maintenance plan is essential. To address this need for an optimal plan under the 



1183 

Journal of Industrial and Management Optimization  Volume 22, Issue 2, 1168–1193. 

aforementioned constraints, the specific configurations of the equipment categories and their 
associated mission requirements are detailed in Table 3. 

Table 3. Equipment groups’ parameters. 

Types 𝛼௠ 𝛽 𝐾௠ 𝑈௠ 

A 1.2 0.018 3 4 

B 1.1 0.015 2 4 

C 1.1 0.012 2 4 

Table 4 shows the initial state probability distributions and classifications of each combat unit. 

Table 4. Parameters for each unit. 

Unit Category  State probability distribution of the unit 

P(S1) P(S2) P(S3) P(S4) P(S5) 

A1 Primary 0.05 0.10 0.15 0.30 0.40 

A2 Auxiliary 0.10 0.15 0.25 0.30 0.20 

A3 Auxiliary 0.15 0.20 0.25 0.25 0.15 

A4 Auxiliary 0.10 0.15 0.20 0.35 0.20 

B1 Primary 0.15 0.20 0.25 0.25 0.15 

B2 Auxiliary 0.20 0.25 0.25 0.20 0.10 

B3 Auxiliary 0.25 0.25 0.20 0.20 0.10 

B4 Auxiliary 0.20 0.20 0.25 0.25 0.10 

C1 Primary 0.25 0.25 0.20 0.20 0.10 

C2 Auxiliary 0.30 0.25 0.20 0.15 0.10 

C3 Auxiliary 0.35 0.25 0.15 0.15 0.10 

C4 Auxiliary 0.30 0.20 0.20 0.20 0.10 

Table 5 details the skill levels of the maintenance personnel and lists the benchmark equivalents 
for their respective working hours and costs. Here, the coefficients for work hour compression and 
cost escalation are set at 0.2 and 0.15, respectively. 

Table 5. Reference parameters for maintenance personnel. 

ID number 𝑠௣ଵሺ0.30ሻ 𝑠௣ଶሺ0.25ሻ 𝑠௣ଷሺ0.30ሻ 𝑠௣ସሺ0.15ሻ 𝑡௟ 𝑐௟ 𝑙௣௡ 

P1 0.20 0.28 0.25 0.30 18 60 1 

P2 0.55 0.60 0.48 0.58 16 80 2 

P3 0.75 0.78 0.82 0.76 14 100 3 

P4 0.92 0.95 0.93 0.90 12 120 4 

The initial probability distribution across these states differs for each unit at the start of the 
maintenance interval. Additionally, it is assumed that the underlying state transition intensity matrix is 
uniform for all units and is defined as follows: 
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 𝛬଴ ൌ

⎣
⎢
⎢
⎢
⎡

0 0 0 0 0
0.20 െ0.20 0 0 0

0 0.15 െ0.15 0 0
0 0 0.10 െ0.10 0
0 0 0 0.05 െ0.05⎦

⎥
⎥
⎥
⎤

.  

Each unit may implement one of five selectable maintenance measures, each corresponding to 
specific maintenance effects that are aligned with the degree of degradation in the performance state 
and categorized accordingly. 

 𝐴௩బ
ൌ

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1⎦

⎥
⎥
⎥
⎤

,  

 𝐴௩భ
ൌ

⎣
⎢
⎢
⎢
⎡
0.10 0.25 0.35 0.20 0.10

0 0.20 0.40 0.30 0.10
0 0 0.30 0.45 0.25
0 0 0 0.60 0.40
0 0 0 0 1 ⎦

⎥
⎥
⎥
⎤

,  

 𝐴௩మ
ൌ

⎣
⎢
⎢
⎢
⎡
0.05 0.15 0.30 0.30 0.20

0 0.10 0.25 0.40 0.25
0 0 0.15 0.40 0.45
0 0 0 0.40 0.60
0 0 0 0 1 ⎦

⎥
⎥
⎥
⎤

,  

 𝐴௩య
ൌ

⎣
⎢
⎢
⎢
⎡
0.02 0.08 0.20 0.40 0.30

0 0.05 0.15 0.35 0.45
0 0 0.10 0.30 0.60
0 0 0 0.20 0.80
0 0 0 0 1 ⎦

⎥
⎥
⎥
⎤

,  

 𝐴௩ర
ൌ

⎣
⎢
⎢
⎢
⎡
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1⎦

⎥
⎥
⎥
⎤

.  

 

5.2. Comparison and analysis of the algorithm’s performance 

To thoroughly assess the proposed algorithm’s superiority, multidimensional comparative 
experiments were conducted under equal resource and parameter settings. The comparison included the 
traditional metaheuristics of the immune algorithm (IA), genetic algorithm (GA), and particle swarm 
optimization (PSO), the hybrid algorithms of the genetic particle swarm algorithm (GA-PSO) [25] and 
genetic tabu search algorithm (GA-TS) [26], and the unmodified quantum immune algorithm (QIA) as 
a control. This analysis focused on the dynamic convergence process (Figure 5) and static statistical 
indicators (Table 6), demonstrating its distinct advantages in solving complex constrained optimization 
problems. 
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Figure 5. Comparative analysis of the algorithms’ convergence. 

As revealed in Figure 5, the AQIA demonstrates rapid convergence within the first 10 generations, 
a behavior indicative of a high-quality initial population that effectively circumvents unproductive 
search efforts. In contrast, traditional algorithms such as the IA and PSO exhibit slower convergence, 
stabilizing at inferior values—a clear reflection of their inefficient search strategies when handling 
complex constraints. The unmodified QIA performs moderately, highlighting the need for 
improvements. Although the GA shows some mid-phase search potential, it fluctuates and achieves 
lower accuracy than the AQIA. Although the hybrid algorithms GA-PSO and GA-TS achieve final 
convergence values comparable with those of the AQIA, their convergence paths are markedly slower 
and more erratic. This suggests that simple hybridization can improve the final solution’s quality but 
cannot match the search efficiency gained from deeply integrated designs, underscoring the importance 
of maintaining the population’s quality. 

Table 6. Results of 20 independent algorithm runs. 

Algorithm Optimal value Mean value Standard deviation 

AQIA 0.9636 0.9636 0 

QIA 0.9594 0.9575 0.0020 

IA 0.9597 0.9573 0.0027 

GA 0.9626 0.9614 0.0016 

PSO 0.9578 0.9529 0.0040 

GA-PSO 0.9631 0.9622 0.0012 

GA-TS 0.9636 0.9636 0 

As shown in Table 6, both the AQIA and GA-TS achieved the highest optimal value (0.9636). 
However, GA-TS’s convergence curve suggests this result requires a longer search time. Other 
algorithms, including the GA and GA-PSO, show nonzero standard deviations, indicating performance 
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fluctuations and limited reliability. PSO exhibits the poorest stability, consistent with its tendency 
toward premature convergence. 

The experiment results indicate that the AQIA demonstrates high convergence speed, solution 
accuracy, and robustness in solving this joint optimization problem. 

5.3. An empirical study of resource allocation methods 

This study adopted a stepped “resource–personnel” comparative design to systematically examine 
the coupled effects of resource constraints and personnel configurations on maintenance efficiency. 
For the experimental group, resources were incrementally increased by 50%, starting from a minimum 
viable baseline, while maintaining a fixed personnel composition. Conversely, the control group tested 
various personnel allocations under a constant level of resource consumption. Each group underwent 
independent algorithmic iterations to determine the total task completion value. Critical resource 
transformation thresholds were identified on the basis of the marginal benefit peaks and troughs, with 
a trough defined as 10% below the peak. The detailed parameters governing this experimental 
framework are provided in Table 7. 

Table 7. Experimental parameters. 

Team designation 𝑝ଵ 𝑝ଶ 𝑝ଷ 𝑝ସ Fundamental feasible solution (T, C) 

Basic group 𝑙ଵ 𝑙ଶ 𝑙ଷ 𝑙ସ (𝑙ଵ, 𝑙ଶ, 𝑙ଷ) (207, 18) 

Beginner group 𝑙ଶ 𝑙ଶ 𝑙ଷ 𝑙ସ (𝑙ଶ, 𝑙ଶ, 𝑙ଷ) (216, 14.4) 

Intermediate group 𝑙ଶ 𝑙ଷ 𝑙ଷ 𝑙ସ (𝑙ଶ, 𝑙ଷ, 𝑙ଷ) (225, 14.4) 

Advanced group 𝑙ଶ 𝑙ଷ 𝑙ସ 𝑙ସ (𝑙ଶ, 𝑙ଷ, 𝑙ସ) (234, 14.4) 

 

Figure 6. Experimental results (Part 1). 

Figure 6 shows a clear three-phase pattern in resource distribution. In the contraction phase (𝐶 ൑
643.5, ℎ ൑ 30.5), the basic group reaches a local Pareto optimum in efficiency. During the growth 
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phase (643.5 ൏ 𝐶 ൑ 1053, ℎ ൑ 53), the intermediate group improves efficiency by 4.3%. Later in this 
phase, the advanced group’s breakthrough capacity creates a bimodal synergy, narrowing the efficiency 
gap with the intermediate group to 0.5%. In the abundant resource phase (1053 ൏ 𝐶 ൑ 1345.5), the 
advanced group takes a leading role, driving task completion rates to their theoretical maximum under 
a resource surplus. This underscores the crucial role of elite human resources in achieving 
technological gains. 

 

Figure 7. Experimental results (Part 2). 

The marginal benefit curve presented in Figure 7 demonstrates a complex pattern of resource 
transformation. Notably, the beginner group reaches its maximum marginal benefit at an earlier point 
(C = 409.5); however, the magnitude of this peak is the lowest among all groups, being 24.3% less 
than that of the advanced group. This difference reflects an inherent limitation in the benefit ceiling 
for the beginner group. Moreover, the paradox observed in the advanced group’s tightening zone, 
namely high marginal benefit coupled with low task completion, stems from the high resource intensity 
required to activate top-tier personnel, a prerequisite for unlocking their breakthrough potential. 

The benefit trough points (solid markers) serve as critical early warning indicators. For instance, 
trough values approaching zero for the beginner group signal that resource input has entered a failure 
zone. Conversely, the marginal benefit of the advanced group after Point A declines to zero, reaching 
the theoretical efficiency frontier. This contrast reveals that the marginal benefit delineates the upper 
limit of potential inherent in a personnel structure, whereas realizing this potential is contingent upon 
matching resource conditions. Consequently, the marginal benefit curve should inform resource 
allocation decisions as a supplementary tool, not stand as an independent efficiency metric. In 
conclusion, the beginner group should be discontinued. 

To comprehensively investigate the universal principles underlying maintenance strategies, the 
limited resources of the advanced group at both the peak and trough efficiency points were used to 
perform algorithmic optimization for the remaining groups. As a result, the optimal allocation of 
maintenance strategies across six distinct fixed resource scenarios was established, as shown in Table 8. 
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Table 8. Allocation of optimal maintenance strategies under resource constraints. 

Unit Benefit peak points Benefit trough points 

Basic group Intermediate group Advanced group Basic group Intermediate group Advanced group

A1 (𝑣ଵ, 𝑝ଵ) (𝑣ଵ, 𝑝ଵ) (𝑣ଵ, 𝑝ଵ) (𝑣ଷ, 𝑝ଷ) (𝑣ଷ, 𝑝ଶ) (𝑣ସ, 𝑝ଷ) 

A2 (𝑣ଵ, 𝑝ଶ) (𝑣ଵ, 𝑝ଷ) (𝑣ଵ, 𝑝ସ) (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ଷ) 

A3 (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ଷ) (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ଷ) 

A4 𝑣଴ 𝑣଴ 𝑣଴ (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ଷ) 

B1 (𝑣ଵ, 𝑝ଶ) (𝑣ଵ, 𝑝ଵ) (𝑣ଵ, 𝑝ଵ) (𝑣ଷ, 𝑝ଷ) (𝑣ଶ, 𝑝ଵ) (𝑣ଵ, 𝑝ଵ) 

B2 𝑣଴ 𝑣଴ 𝑣଴ (𝑣ଷ, 𝑝ଷ) (𝑣ଷ, 𝑝ଶ) (𝑣ସ, 𝑝ଷ) 

B3 (𝑣ଷ, 𝑝ଷ) (𝑣ଶ, 𝑝ଶ) (𝑣ଵ, 𝑝ଶ) (𝑣ଷ, 𝑝ଷ) (𝑣ଷ, 𝑝ଶ) 𝑣଴ 

B4 𝑣଴ 𝑣଴ 𝑣଴ (𝑣ଶ, 𝑝ଶ) (𝑣ଶ, 𝑝ଵ) (𝑣ସ, 𝑝ସ) 

C1 (𝑣ଷ, 𝑝ଷ) (𝑣ଶ, 𝑝ଶ) (𝑣ଷ, 𝑝ଶ) (𝑣ଵ, 𝑝ଵ) (𝑣ଵ, 𝑝ଵ) (𝑣ଵ, 𝑝ଵ) 

C2 𝑣଴ 𝑣଴ 𝑣଴ (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ସ) 

C3 (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ଷ) (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ସ) (𝑣ସ, 𝑝ସ) 

C4 𝑣଴ 𝑣଴ 𝑣଴ (𝑣ଶ, 𝑝ଶ) (𝑣ଶ, 𝑝ଶ) (𝑣ସ, 𝑝ସ) 

𝐷௧௢௧௔௟ 0.6681 0.6530 0.6462 0.9801 0.9772 0.9902 

Table 8 illustrates that under conditions of resource constraints, personnel skill misalignments 
hinder strategic resilience. Specifically, the advanced group faces a skills gap resulting from the direct 
transition from 𝑙ଶ  to 𝑙ଷ , which impairs their ability to sustain equivalent skill levels during the 
maintenance of Unit A1. This leads to a 15% cost increase compared with the baseline group’s plan. 
Simultaneously, the maintenance activities for Unit B3 are forced to be downgraded, triggering a 
negative feedback loop; a similar situation is observed in the intermediate group. In contrast, the basic 
group, benefiting from a stable alignment of personnel skills, demonstrates strong adaptability by 
adopting a low-level maintenance strategy 𝑣ଵ for Unit A1. This strategy enables the reallocation of 
greater maintenance resources to Unit B3, thereby enhancing the task completion outcomes. 

Under conditions of abundant resources, the deployment density of senior personnel dictates the 
ceiling for a maintenance strategy’s potential effectiveness. The senior team, using a dual top-tier 
personnel configuration, is uniquely positioned within Unit A1 to implement an advanced maintenance 
strategy. In contrast, the baseline team, constrained to a single top-tier personnel structure, can only 
adopt a secondary combination of maintenance measures as its optimal approach. This discrepancy is 
especially pronounced at the point of minimal efficiency: The advanced cohort simultaneously applies 
multiple 𝑣ସ  maintenance procedures, resulting in a higher task completion rate. Although the 
intermediate cohort has similar resources, their efforts are directed toward lower-priority tasks, which 
constrains their capacity. For instance, Unit C1 relies on 𝑙ଶ  to perform 𝑣ଵ , thereby impeding the 
replication of an equivalent degree of focused effort. 

5.4. Policy optimization from the perspective of continuous tasks 

Previous research has indicated that the four-person maintenance strategy is significantly 
constrained by resource availability. Within the existing human resource framework, this strategy 
remains feasible for supporting single-cycle static maintenance and small-scale operational demands. 
However, in actual combat conditions, equipment units are generally required to undertake continuous 
multicycle operational tasks, which involve considerable fluctuations in the resource levels. To address 
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these challenges, a dynamic five-person configuration, designated as (𝑙ଵ, 𝑙ଶ, 𝑙ଷ, 𝑙ସ, 𝑙ସ) is proposed. 
Specifically, this approach involves implementing a hibernation mechanism in which one Grade 𝑙ସ 
employee is placed into hibernation during periods of resource scarcity, whereas one Grade 𝑙ଵ 
employee is placed into hibernation during times of resource abundance, concurrently reinstating the 
dual Grade 𝑙ସ  framework. The model simulates continuous operations within a multicycle 
maintenance context analogous to real combat scenarios, with the detailed parameters provided in 
Table 9 below. 

Table 9. Criteria for sustained combat operations. 

Task number 1 2 3 4 5 6 

Duration 8 12 10 5 6 14 

Maintenance resources (585, 33) (1170, 58) (1521, 73) (351, 23) (468, 28) (1521, 73) 

 

Figure 8. Experimental results (Part 3). 

As shown in Figure 8, the dynamic five-person team configuration secures the top rank in every 
mission phase, demonstrating consistent superiority over static configurations in a multicycle 
operational context. The overall mission completion rate for this configuration across multiple cycles 
is 0.8955, representing an absolute improvement of 3.35% compared with the static group with the 
lowest performance (the basic group at 0.8621). This performance advantage is attributed to the 
dynamic sleep mechanism’s proactive adjustment to resource variability, enabling the system to 
maintain a near-optimal operational state throughout the entire cycle. 

Table 10. Number of advanced maintenance measures. 

Task number 1 2 3 4 5 6 

Basic group 𝑣ଷ 2 4 5 1 0 5 

𝑣ସ 2 4 6 1 1 6 

Advanced group 𝑣ଷ 0 2 0 0 0 0 

𝑣ସ 3 8 12 1 2 12 

Dynamic buildup 𝑣ଷ 2 2 0 1 0 0 

𝑣ସ 2 8 12 1 2 12 
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Table 10 reveals that the core superiority of the dynamic maintenance strategy is rooted in the 
synergy between two mechanisms: Adaptive resource elasticity and cumulative state effects. During 
intervals marked by resource constraints (Tasks 1 and 4), the dynamic group closely mirrors the 
conservative approach utilized by the baseline group, thereby establishing an initial reliability 
advantage. In contrast, in periods characterized by resource abundance and surplus (Tasks 2 and 6), 
the dynamic group’s allocation to advanced maintenance measures matches or surpasses that of the 
advanced group. This adaptive member switching creates a pronounced state inheritance effect, 
culminating in the enhanced coverage efficiency that characterizes the overall maintenance strategy. 

Empirical studies show that the dynamic architecture offers new methods to enhance the sustained 
operational effectiveness of equipment formations. This framework applies to standard multiphase 
combat scenarios, including support for carrier-based aircraft groups. 

6. Conclusions 

This study focuses on equipment groups, examining selective maintenance decisions and 
personnel allocation under resource constraints. An environmental coefficient is introduced to capture 
the impact of varying subtask environments on the units’ degradation. A nonhomogeneous Markov 
model is used to calculate the probability of task completion following a unit’s degradation; these unit-
level probabilities then determine the completion probabilities for their respective subtasks. A 
maintenance optimization model is developed to maximize the overall single-cycle task completion 
probability and is solved using an AQIA. Case studies are conducted for experimental analysis and 
optimization. Key findings include the following. 

(1) The integrated optimization scheduling model based on the AQIA outperforms traditional 
algorithmic search models, showing superior convergence speed and solution quality compared with 
other hybrid metaheuristic algorithms. 

(2) A maintenance personnel structure designed for limited resources can achieve Pareto 
optimality in local efficiency from a single-cycle maintenance perspective. 

(3) A dynamic personnel allocation structure effectively mitigates resource fluctuations and 
achieves optimal efficiency locally and globally, making it the preferred strategy in multitask 
battlefield scenarios. 

(4) The model developed in this research provides theoretical guidance and technical support for 
maintenance decisions regarding equipment groups in both static maintenance and dynamic combat, 
offering valuable insights to improve the probability of task completion in coordinated multiequipment 
operations. 
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