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Abstract: We studied a continuous-time exploratory mean-variance portfolio optimization problem
using a reinforcement learning framework. The problem was set in a Markov regime-switching
financial market, which captured time-varying market characteristics. Under different regimes, the
risky asset followed constant elasticity of variance dynamics with regime-dependent parameters.
Within this setting, the exploratory mean-variance portfolio optimization problem was formulated as a
stochastic control problem. Stochastic dynamic programming techniques were employed to derive
the Hamilton–Jacobi–Bellman equation associated with the exploratory control problem. We first
derived analytical solutions for the optimal investment strategy and the corresponding value function.
Although these solutions admitted closed-form representations, they were expressed in an integral
form, which made them difficult to implement directly in practical numerical computations. Because
of this, we developed a reinforcement learning algorithm to approximate the optimal investment policy
and the corresponding value function. Based on the structural properties of the analytical solutions,
we established the convergence of both the investment policy and the value function by invoking
the policy improvement theorem. This result provided a rigorous theoretical foundation for the
proposed algorithm. In the algorithmic implementation, linear function approximation was employed
to parameterize both the value function and the investment policy. Finally, numerical experiments
were conducted to verify the convergence behavior of the proposed algorithm and to demonstrate its
effectiveness in solving the considered portfolio optimization problem.
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1. Introduction

The mean-variance (MV) portfolio optimization in continuous time aims to maximize the
investor’s expected terminal wealth and minimize portfolio volatility at the fixed horizon.
Markowitz [1] first proposed the MV portfolio optimization problem, but only for single-period cases.
Since then, the problem has been extensively studied and extended. Li and Ng [2] investigated
multiperiod portfolio problems. Numerous other extensions have followed. For instance, Zhou and
Li [3] proposed stochastic control models of the linear–quadratic (LQ) type, and the MV efficient
frontier was further analyzed by Chiu and Li [4]. Zhang et al. [5] derived equilibrium strategies via
forward backward stochastic differential equations under the log-return based framework.

The classical mean-variance model mentioned above operates under the assumption that the
financial market functions within a single regime. In reality, the market may exhibit distinct regimes
with transitions among them (e.g., bear and bull phases in equity markets). Regime-switching
dynamics are typically modeled by continuous-time Markov chains, where model parameters (e.g.,
equity returns, volatilities) vary according to the finite market regimes. Hamilton [6] pioneered the
use of regime-switching models in the financial literature. Subsequent research extended Markov
regime-switching models to option valuation, optimal asset allocation, and portfolio selection
problems. Zhou and Yin [7] investigated a regime-switching framework in which the risk-free interest
rate and stock volatility switch among finite states. Gal’perin et al. [8] studied a jump-diffusion risky
asset model in which the drift, diffusion, and jump components are modulated by a homogeneous
Markov chain. Chen et al. [9] integrated a Markov regime-switching model into asset selection
framework. Xie [10], Chen and Yang [11] and Chen and Huang [12] examined an asset-liability
model with Markov regime switching. Zhou [13] addressed an optimal investment-consumption
model in which market dynamics are governed by a Markov regime-switching mechanism and the
value function is approximated using a Markov chain approximation method. Eisenberg et al. [14]
investigated reinsurance pricing by applying a two-state Markov regime-switching framework. Their
work demonstrated that the solution to the Hamilton–Jacobi–Bellman (HJB) equation, as well as the
resulting reinsurance strategy, can be uniquely represented through a recursive approach, with the
strategy emerging as the limit of ordinary differential equation (ODE) solutions. Zhao and Song [15]
explored liability valuation for life insurers in a regime-switching market, establishing an interest rate
risk model with regime shifts and demonstrating its superior suitability for modeling interest rate risk.

The application of reinforcement learning (RL) is becoming increasingly prevalent in the financial
field, with prominent use cases in algorithmic finance and quantitative investment strategies. While
RL offers the advantage of learning autonomously without supervised data, it faces challenges like the
exploration-exploitation trade-off, sparse rewards, and high-dimensional state spaces. Techniques such
as experience replay, target networks, and entropy regularization help improve stability. In our paper,
we use RL to solve a regime-switching MV problem, where an agent establishes an optimal policy
by balancing exploration (testing new actions) and exploitation (capitalizing on known strategies) to
maximize long-term risk-adjusted returns.

Wang et al. [16] introduced a theoretical framework that integrates entropy regularization into
continuous-time relaxed control, providing a foundational analysis of the exploration–exploitation
trade-off in RL. In their entropy-regularized framework, Wang and Zhou [17] developed an MV
portfolio optimization model. Their analysis revealed that the optimal policy is Gaussian,
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characterized by a variance that decays over time. Furthermore, they proposed an exploratory MV
(EMV) algorithm and showed it achieved superior performance compared with traditional maximum
likelihood estimation (MLE) as well as the deep deterministic policy gradient approach. Guo et
al. [18] and Firoozi et al. [19] extended this RL framework to mean-field games. Jia and
Zhou [20–22] introduced policy evaluation (PE)-based algorithms, policy gradient (PG)-based
continuous-time algorithms, and Q-learning algorithms. Dai et al. [23] developed an extension of the
exploratory stochastic control framework for incomplete markets characterized by regime-switching
risky asset prices. For the time-inconsistent MV problem, the incorporation of an entropy regularizer
induced exploration and led to a Nash equilibrium policy that followed a Gaussian distribution. Dai et
al. [24] studied the Merton expected utility maximization problem in an incomplete market, proposing
a recursive weighted exploration scheme that yields an optimal Gaussian policy.

Han et al. [25] introduced an alternative measure of behavioral randomness called Choquet
regularization. They showed that, in infinite-horizon LQ control, the choice of regularizer dictates the
form of the optimal exploration distribution, which is not necessarily Gaussian. Subsequently, they
derived several explicit optimal distributions corresponding to different regularizers. Using Choquet
regularization to quantify exploration, Guo et al. [26] extended this investigation to the exploratory
MV problem. Guo [27] studied a competitive market involving two agents, modeled as a
non-zero-sum differential game with partially and fully unknown model parameters. Under the RL
framework, agents aim to maximize their own Choquet-regularized MV criterion. Their study
continues to employ this regularization approach.

We extend the reinforcement learning framework to a financial market with regime switching.
Most existing literature on regime switching focuses solely on parameter variations across different
market states. Chen et al. [28] considered a risky asset modeled by a geometric Brownian motion
(GBM) whose parameters depend on the market state. An MV portfolio selection problem featuring
unobservable market regimes (bull/bear) was addressed by Wu and Li [29]. In this study, we first
propose a regime-switching framework in which the risky asset is modeled via a constant elasticity of
variance (CEV) process with state-dependent parameters, allowing for transitions between n distinct
CEV models in different market states. This means the drift rate, volatility, and elasticity of variance
coefficient can all vary with market regime shifts. Furthermore, this framework enables the
investigation of the risky asset following distinct stochastic processes under different market regimes.
For instance, it allows the risky asset to follow different stochastic volatility models in different states.
This feature gives our research notable theoretical and practical significance. Second, inspired by Li
et al. [30], we derive closed-form solutions for the optimal value function and policy under n distinct
CEV models with regime-switching market states. Finally, we integrate the MV problem with RL
techniques and develop a novel RL algorithm specifically designed for our proposed framework.

The following sections outline the content of this paper. Section 2 introduces an exploratory MV
model with regime switching. We derive the optimal strategy solution in Section 3. Section 4 presents
a policy iteration procedure along with its convergence proof. Section 5 proposes a RL algorithm.
Section 6 exhibits the numerical results. Section 7 presents the concluding remarks, and the complete
technical arguments together with auxiliary results are deferred to the Appendix.
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2. Model formulation

Let (Ω,F,P) be a complete probability space, where the filtration F := {Ft}t≥0 is right-continuous, P-
complete, and generated by a standard Brownian motion {W(t)}t≥0 and a continuous-time homogeneous
Markov process {αt}t≥0. The investment horizon T is fixed, and the investor trades continuously over
the period [0,T ].

We consider a financial market modulated by a continuous-time homogeneous Markov chain {αt}t≥0
with a state space N = {e1,e2, . . . ,en}, where {ei}1≤i≤n represents the standard basis vector whose i-th
component is 1 and all other components are 0. Here, αt = ei indicates that the market state at time t is in
the i-th regime. The transition probabilities are defined as pi j(τ) = p(αt+τ = e j|αt = ei) = p(ατ = e j|α0 =

ei), ∀t, τ ≥ 0,ei,e j ∈ N , and the transition probability matrix is denoted by P(t) = (pi j(t)). A transition
intensity rate matrix Q = (qi j)n×n ∈ R

n×n can be derived from P(t) and usually used to generate the
evolution of the Markov chain. Here, qi j is the instantaneous transition intensity of the Markov chain
from ei to e j. The entries qi j satisfy: (I) qi j ≥ 0, if i , j; (II) qii ≤ 0 and qii = −

∑
j,i qi j; i = 1, · · · ,n.

The process {αt}t≥0 can be decomposed into the following semi-martingale representation

αt = α0+

∫ t

0
Qαudu+M(t), (2.1)

where M(t) is a martingale.

2.1. The classical regime-switching MV problem

We consider a financial market with two assets. The risk-free bond S 0(t) satisfies

dS 0(t) = rS 0(t)dt, (2.2)

where r > 0 represents the constant risk-free interest rate. The price process S (t) of the risky asset
follows a regime switching CEV model

dS (t)
S (t)

= µ(t,αt)dt+σ(t,αt)S (t)β(t,αt)dWt, S (0) = s0 > 0, (2.3)

where µ(t,αt)S (t) is the growth rate, and σ(t,αt)S (t)β(t,αt)+1 is the volatility rate. β(t,αt) is a constant
elasticity coefficient, and it is generally assumed that β(t,αt)≤ 0. Here, the growth rate and the volatility
rate depend on αt.

Remark 2.1. The variation in the elasticity coefficient across different regimes leads to model
transitions among these regimes. For example, consider a two-regime system N = {e1,e2}. When
β(t,e1) = 0, the risky asset model becomes dS (t)

S (t) = µ(t,e1)dt +σ(t,e1)dW(t), which follows a GBM.

When β(t,e2) = −1
2 , the risky asset model becomes dS (t)

S (t) = µ(t,e2)dt + σ(t,e2)S (t)−
1
2 dW(t), which

follows a Cox-Ingersoll-Ross (CIR) process. Thus, the risky asset model dynamically switches
between GBM and CIR process depending on the market regime.

We consider a general situation in which the risky asset price model switches among n different
CEV models. The investor allocates this portfolio between a risky asset and a risk-free asset. Let
u(t,αt) be the discounted value allocated to the risky asset at time t. The control process
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{u = u(t,αt) : t ∈ [0,T ],αt ∈ N} is adapted to {Ft}t∈[0,T ]. Let {Xu(t,αt),0 ≤ t ≤ T } denote the investor’s
discounted wealth process. Under the self-financing strategy, Xu(t,αt) satisfies

dXu(t,αt) = (µ(t,αt)− r)u(t,αt)dt+σ(t,αt)S (t)β(t,αt)u(t,αt)dWt, (2.4)

with an initial wealth Xu(t,αt) = x > 0 and an initial regime αt = ei ∈ N . u = {u(t,αt) : t ∈ [0,T ],αt ∈ N}

is called an admissible strategy if
(i) u(t,αt) is Ft-progressively measurable;

(ii) ∀t ∈ [0,T ], E
[∫ T

0 (σ(t,αt)S (t)β(t,αt)u(t,αt))2dt
]
<∞;

(iii) the pair (u(t,αt),Xu(t,αt)) is the unique strong solution to SDE (2.4) .
We aim to balance returns and mitigate risk by using the MV optimization framework on a fixed

horizon [0,T ]. Our goal is to minimize the variance of Xu(T,αT ) subject to a fixed expected value z.
The problem is formulated as

min
u

Var[Xu(T,αT )],

subject to E[Xu(T,αT )] = z.
(2.5)

Since the objective function depends nonlinearly on terminal wealth, the MV problem exhibits time
inconsistency. Generally, there are two approaches to solving this problem: solve the pre-commitment
strategy [31] or solve the Nash equilibrium strategy [32]. We primarily seek the optimal
pre-commitment strategy, where the investor determines the optimal strategy at the initial time and
then consistently implements this predetermined strategy at all future moments. By introducing a
Lagrange multiplier w, the constrained problem in (2.5) is transformed into a classical unconstrained
problem

min
u

E
(
Xu(T,αT )−w

)2
− (w− z)2. (2.6)

The optimal solution to (2.6) is denoted by u∗ = {u∗(t,αt),0 ≤ t ≤ T }, which depends on w. The optimal
Lagrange multiplier w∗ is determined by solving E

[
Xu∗(T,αT ;w)

]
= z.

Given a strategy u, we define the value function as

Vu(t, x, s,ei) = E
[(

Xu(T,αT )−w
)2
∣∣∣∣Xt = x,S t = s,αt = ei

]
− (w− z)2. (2.7)

The classical optimal value function is defined as

Vcl(t, x, s,ei) =min
u

E
[(

Xu(T,αT )−w
)2
∣∣∣∣Xt = x,S t = s,αt = ei

]
− (w− z)2. (2.8)

2.2. The EMV problem with regime switching

Reinforcement learning techniques do not require estimating model parameters. Instead, they learn
optimal strategies through interaction with the market environment, achieved via a balance of
exploration and exploitation. Building upon the framework of Wang et al. [16], we transform the
control process in Equation (2.4) into a distributional control process. Consider Π = {Πt(u),0 ≤ t ≤ T }
as the probability distribution function of the strategy u(t,αt), and let M represent the set of
probability measures on R. For any Π ∈ M and x ∈ R, we have Π(x) = Π((−∞, x]). Let Mp (where
p ∈ [1,∞)) denote the subset ofM consisting of probability measures with finite p-th moments. If a
random variable X has distribution Π, we write X ∼ Π.
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The probability distribution of u(t,α) is denoted by Π ∈M2, with its mean and variance defined as
M(t,αt) :=

∫
R

u(t,αt)dΠt(u) and N2(t,αt) :=
∫
R

u2(t,αt)dΠt(u)−M2(t,αt). Then, equation (2.4) becomes

dXΠ(t) = (µ(t,αt)− r)M(t,αt)dt+σ(t,αt)S
β(t,αt)
t

(
M(t,αt)dWt +N(t,αt)dW̃t

)
. (2.9)

The derivation of the exploratory wealth process is provided in the Appendix. The Brownian motions
W̃t and Wt represent market noise sources. W̃t specifically models exploration-induced noise which
can be used for stochastic strategy generation. The coefficient of dW̃t corresponds to the variance of
Πt, which quantifies the intensity of additional noise introduced into the system.

According to Han [25], to characterize the stochasticity of randomized strategies, we utilize the
Choquet regularizer Φĥ. For a given bounded variation concave distortion function ĥ : [0,1]→ R with
boundary conditions ĥ(0) = 0, ĥ(1) = 1 and any probability measure Π ∈M, the regularizer Φĥ onM
is defined as

Φĥ(Π) =
∫
R

ĥ◦Π ([x,∞))dx:=
∫ 0

−∞

[ĥ◦Π([x,∞))− ĥ(1)]dx+
∫ ∞

0
ĥ◦Π([x,∞))dx.

ĥ ◦ Π represents the distortion measure, and ĥ ◦ Π = ĥ (Π) denotes the composition of distortion
function and probability measure. According to Wang et al. (Lemma 1) [33], the regularizer admits a
representation based on quantile functions. For a distribution Π ∈ M and p ∈ (0,1], the left quantile
function (or lower quantile) is defined as QΠ(p) = inf{x ∈ R : Π(x) ⩾ p}. When ĥ is left-continuous,
the regularizer admits the following quantile representation

Φĥ(Π) =
∫ 1

0
QΠ(1− p)dĥ(p).

The exploratory strategy means solving the EMV problem with regime switching within the RL
framework. For any fixed w, we introduce an exploration weight λ(t) > 0 to derive the Choquet-
regularized exploratory mean-variance problem with regime switching

min
Π∈A(Π)

E
[(

XΠ(T,αT )−w
)2
−

∫ T

t
λ(τ)Φĥ(Π)dτ

]
− (w− z)2. (2.10)

The set A(Π) represents the admissible set of distributional controls, and the Lagrange multiplier can
be determined via E[XΠ

∗

(T,αT ;w)] = z.

Definition 2.1. (admissible strategy) Let B(R) denote the Borel algebra on R. The strategy Π ∈ A(π)
is called an admissible strategy if
(i) For t ⩽ τ ⩽ T, it holds that Πτ ∈M(R);
(ii) ∀A ∈ B(R),

{∫
AΠτ(u)du, t ⩽ τ ⩽ T

}
is Ft-progressively measurable;

(iii) E
[∫ T

t
(
µ2
τ +σ

2
τ

)
dτ

]
<∞;

(iv) E
[
(XΠT −w)2−

∫ T
t λ(τ)Φĥ(Πτ)dτ

∣∣∣XΠt = x,S t = s,αt = ei

]
<∞ .

Given a strategy Π , the value function is defined as

VΠ(t, x, s,ei) = E
[(

XΠ(T,αT )−w
)2
−

∫ T

t
λ(τ)Φĥ(Π)dτ

∣∣∣∣∣∣XΠt = x,S t = s,αt = ei

]
− (w− z)2. (2.11)
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The optimal value function is defined as

V(t, x, s,ei) = min
Π∈A(Π)

E
[(

XΠ(T,αT )−w
)2
−

∫ T

t
λ(τ)Φĥ(Π)dτ

∣∣∣∣∣∣XΠt = x,S t = s,αt = ei

]
− (w− z)2. (2.12)

3. Solving the EMV problem with markov regime switching

To solve the EMV problem with regime switching, we apply the classical Bellman optimality
principle

V(t, x, s,ei) = min
Π∈A(Π)

E
[
V(h, x, s,ei)−

∫ h

t
λ(τ)Φĥ(Π)dτ

∣∣∣∣∣∣XΠt = x,S t = s,αt = ei

]
, (3.1)

with 0 ≤ t < h ≤ T, (t, x, s) ∈ [0,T ]×R×R. In brief, we denote µi = µ(t,αt|αt = ei), σi = σ(t,αt|αt =

ei), βi = β(t,αt|αt = ei), Mi = M(t,αt|αt = ei), Ni = N(t,αt|αt = ei). V(t, s, x,ei) satisfies the following
HJB equation

min
Π∈M(Π)

[
(µi− r)MiVx(t, s, x,ei)+

1
2
σ2

i s2βi
(
M2

i +N2
i

)
Vxx(t, s, x,ei)+σ2

i s2βi+1MiVsx(t, s, x,ei)−λ(t)Φĥ(Π)
]

+Vt(t, s, x,ei)+
1
2
σ2

i s2βi+2Vss(t, s, x,ei)+µisVs(t, s, x,ei)+
n∑

j=1

qi jV
(
t, x, s,e j

)
= 0,

i = 1,2, . . . ,n. The terminal condition is V(T, x, s,ei) = (x−w)2− (w− z)2. The minimization term in the
above equation is denoted as

φ(t, x, s,ei,Π) = (µi− r)MiVx(t, s, x,ei)+
1
2
σ2

i s2βi
(
M2

i +N2
i

)
Vxx(t, s, x,ei)+µisVs(t, s, x,ei)

+σ2
i s2βi+1MiVsx(t, s, x,ei)−λ(t)Φĥ(Π).

We can observe that the function φ(t, x, s,ei,Π) depends solely on Mi and N2
i besides Φĥ(Π). Then, we

have
min
Π∈M(Π)

φ(t, x, s,ei,Π) = min
mi∈R,ni>0

min
Π∈M(R)

µ(Π)=mi,σ(Π)2=n2
i

φ(t, x, s,ei,Π).

The embedded minimization problem equivalently becomes

max
Π∈M(R)

Φĥ(Π) s.t. Mi = mi,N2
i = n2

i .

We need the following lemma given by Han et al. (2023) [25].

Lemma 1. If ĥ is continuous and not identically zero, then the optimization problem

max
Π∈M2

Φĥ(Π) s.t. µ(Π) = µt and σ2(Π) = σ2
t . (3.2)

The quantile function of the optimal control Π∗ satisfies

QΠ∗(p) = µt +σt
ĥ′(1− p)

∥ĥ′∥2
, a.e. f or p ∈ (0,1), (3.3)
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and the maximum value of (3.2) is Φĥ(Π∗) = σt∥ĥ′∥2, where ĥ′ is the right-hand derivative of ĥ and

∥ĥ′∥2 =
(∫ 1

0 (ĥ′(p))2dp
)1/2

.

According to Lemma 1, the quantile function QΠ∗(p) of the optimal strategy Π∗ satisfies

QΠ∗(p) = Mi+Ni
ĥ′(1− p)

∥ĥ′∥2
,

and Φĥ(Π∗) = Ni∥ĥ′∥2, thus, the mean and variance can be expressed as

(M∗i ,N
∗
i ) =arg min

mi∈R,ni>0

[
(µi− r)miVx(t, s, x,ei)+

1
2
σ2

i s2βi
(
mi

2+ni
2
)
Vxx(t, s, x,ei)

+σ2
i s2βi+1miVsx(t, s, x,ei)−λ(t)ni∥ĥ′∥2

]
+Vt(t, s, x,ei)

+
1
2
σ2

i s2βi+2Vss(t, s, x,ei)+µisVs(t, s, x,ei)+
n∑

j=1

qi jV
(
t, x, s,e j

)
.

The first-order condition yields the following expressions for the optimal mean and standard deviation

M∗i = −
(µi− r)Vx(t, s, x,ei)+σ2

i s2βi+1Vsx(t, s, x,ei)

σ2
i s2βiVxx(t, s, x,ei)

, (3.4)

N∗i =
λ(t)

∥∥∥ĥ′
∥∥∥

2

σ2
i s2βiVxx(t, s, x,ei)

. (3.5)

We conjecture that the value function is

V(t, s, x,ei) = a(t, s,ei)(x−w)2− (w− z)2+b(t, s,ei). (3.6)

Substituting the optimal strategy (3.4) (3.5) and the value function (3.6) into the HJB equation yields

at(t, s,ei)(x−w)2+bt(t, s,ei)+ (µi− r)

− (µi− r)2a(t, s,ei)+σ2
i s2βi+12as(t, s,ei)

σ2
i s2βi2a(t, s,ei)

2a(t, s,ei)(x−w)2

+
1
2
σ2

i s2βi


 (µi− r)2a(x−w)+σ2

i s2βi+12as(t, s,ei)(x−w)

σ2
i s2βi2a(t, s,ei)

2

+

 λ(t)
∥∥∥ĥ′

∥∥∥
2

2σ2
i s2βia(t, s,ei)

22a(t, s,ei)

+µis
(
as(t, s,ei)(x−w)2+bs(t, s,ei)

)
+

1
2
σ2

i s2βi+2
(
ass(t, s,ei)(x−w)2+bss(t, s,ei)

)
+σ2

i s2βi+1

− (µi− r)2(x−w)a(t, s,ei)+2σ2
i s2βi+1as(t, s,ei)(x−w)

2σ2
i s2βia(t, s,ei)

 (2as(t, s,ei)(x−w))

−
λ2(t)

∥∥∥ĥ′
∥∥∥2

2

2σ2
i s2βia(t, s,ei)

+

n∑
j=1

qi j
(
a
(
t, s,e j

)
(x−w)2− (w− z)2+b

(
t, s,e j

))
= 0.
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By variable separation, we can obtain a(t, s,ei), b(t, s,ei) should satisfy the following equations

at(t, s,ei)−

 (µi− r)2

σ2
i s2βi

a(t, s,ei)+ (−2(µi− r)+µi)sas(t, s,ei)−σ2
i s2β+2 as(t, s,ei)2

a(t, s,ei)

+
1
2
σ2

i s2βi+2ass(t, s,ei)+
n∑

j=1

qi ja
(
t, s,e j

)
= 0,

(3.7)

bt(t, s,ei)−
1
4

λ2(t)
∥∥∥ĥ′

∥∥∥2
2

σ2
i s2βia(t, s,ei)

+µisbs(t, s,ei)+
1
2
σ2

i s2βi+2bss(t, s,ei)+
n∑

j=1

qi jb
(
t, s,e j

)
= 0, (3.8)

and satisfy the terminal condition a (T, s,ei) = 1, b (T, s,ei) = 0, i = 1, · · · ,n. Subsequently, we will
evaluate for the parameters a(t, s,ei) and b(t, s,ei).

Proposition 3.1. Let a(t, s) = [a(t, s,e1), · · · ,a(t, s,en)]⊤, then

a(t, s) =H(t)exp(K(t)Y), (3.9)

where vector exp(K(t)Y) represents applying the exponential function element-wise to each element of
vector K(t)Y, H(t) and K(t) satisfy (3.16) and (3.17).

Proof. Since (3.7) is a nonlinear second-order partial differential equation whose explicit solution is
difficult to obtain directly, we can nevertheless employ a power transformation and change of variables
to convert this nonlinear PDE into a linear partial differential equation. Let

a (t, s,ei) = f (t,yi,ei) yi = s−2βi ,

with the terminal conditions f (T,y,ei) = 1, then we have

at(t, s,ei) = ft(t,yi,ei), as(t, s,ei) = −2βi fyi(t,yi,ei)s−2βi−1,

ass(t, s,ei) = −2βi
[
−s−2βi−2(2βi+1) fyi(t,yi,ei)−2βis−4βi−2 fyiyi(t,yi,ei)

]
.

Substituting these partial derivatives into Equation (3.7), we obtain

ft(t,yi,ei)−
(µi− r)2

σ2
i

yi f (t,yi,ei)− (2r−µi)2βiyi fyi(t,yi,ei)+σ2
i βi(2βi+1) fyi(t,yi,ei)

+2σ2
i β

2
i yi fyiyi(t,yi,ei)−4σ2

i β
2
i

f 2
yi

(t,yi,ei)

f (t,yi,ei)
yi+

n∑
j=1

qi j f
(
t,y j,e j

)
= 0.

(3.10)

For convenience, we define some new notations

A = diag

− (µ1− r)2

σ2
1

, · · · ,−
(µn− r)2

σ2
n

 , B = diag(−2(2r−µ1)β1, · · · ,−2(2r−µn)βn),

C = diag(σ2
1β1(2β1+1), · · · ,σ2

nβn(2βn+1)), D = diag(−4σ2
1β

2
1, · · · ,−4σ2

nβ
2
n),

E = diag(2σ2
1β

2
1, · · · ,2σ

2
nβ

2
n), f(t,Y) = [ f (t,y1,e1), · · · , f (t,yn,en)]⊤,

Y = [y1, · · · ,yn]⊤ = [s−2β1 , · · · , s−2βn]⊤, Ỹ = diag(Y).
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We define the notations, then Equation (3.8) can be transformed into the following matrix equation

∂f
∂t
+AỸf +BỸ∇Yf +C∇Yf +EỸ∆Yf +DỸ

(
(∇Yf)2

f

)
+Qf = 0, (3.11)

where ∇Yf and ∆Yf represent the first and second-order derivatives of the vector f with respect to the
vector Y in element-wise sense. (∇Yf)2 represents the element-wise multiplication of the vector ∇Yf
with itself. (∇Yf)2

f represents the element-wise division of the vector (∇Yf)2 by the vector f. For the
differential equation (3.11), we assume a solution of the form

f(t,Y) =H(t)exp(K(t)Y), (3.12)

where

H(t) = diag(h1(t), ...,hn(t)) ,K(t) = diag(k1(t), ...,kn(t)) .

H(t) and K(t) satisfy the terminal conditions H(T ) = I, and K(T ) = 0, where 0 and I represent the n×n
zero matrix and identity matrix. Notice that ∇Yf = K(t)f, ∆Yf = K(t)2f, (∇Yf)2

f = K(t)2f. Substituting
(3.12) into (3.11), we get

Ḣ(t)eKY+H(t)K̇(t)ỸeKY+AỸH(t)eKY+BỸK(t)H(t)eKY+CK(t)H(t)eKY

+EỸK(t)2H(t)eKY+DỸK(t)2H(t)eKY+QH(t)eKY = 0.
(3.13)

Applying separation of variables yields

Ḣ(t)+CK(t)H(t)+QH(t) = 0, (3.14)

K̇(t)+A+BK(t)−EK2(t) = 0. (3.15)

Subject to the terminal conditions H(T ) = I and K(T ) = 0, the solutions of the aforementioned
differential equations are given by

H(t) = exp
(∫ T

t
(Q+CK(τ))dτ

)
, K(t) = diag(k1(t), · · · ,kn(t)), (3.16)

Journal of Industrial and Management Optimization Volume 22, Issue 2, 1087–1111.



1097

where ki satisfies

(a) when βi , 0,

if µi =
√

2r, then ki(t) =
r2(2−

√
2)2(T − t)

2σ2
i βi

(
1+ r(2−

√
2)βi(T − t)

) ,

if µi >
√

2r, then ki(t) =

−(2r−µi)+
√
µ2

i −2r2 tan

βi

√
µ2

i −2r2(t−T ))+ arctan

 2r−µi√
µ2

i −2r2


2σ2

i βi
,

if µi <
√

2r, then ki(t) =
−(2r−µi+

√
2r2−µ2

i )
√

2r2−µ2
i

σ2
i βi

(
(2r−µi−

√
2r2−µ2

i )e2βi

√
2r2−µ2

i (t−T ))− (2r−µi+

√
2r2−µ2

i )
)

−

2r−µi+

√
2r2−µ2

i

2σ2
i βi

,

(b) when β1 = 0, then ki(t) =
(µi− r)2

σ2
i

(t−T ).

(3.17)

Proposition 3.2. For ατ = em, we denote βm = β(τ,em), σm = σ(τ,em), km = k(τ,em), hm = h(τ,em). The
expression for b(t, s,ei) is

b (t, s,ei) = −
∫ T

t

n∑
m=1

pim(τ− t)
1
4
λ2(τ)∥ĥ′∥22
σ2

m
E

(
S −2βm
τ a−1(τ,S τ,em)

∣∣∣S t = s,αt = ei,ατ = em
)
dτ, (3.18)

with

E
(
S −2βm
τ a−1(τ,S τ,m)

∣∣∣S t = s,αt = ei,ατ = em
)

=

h−1
m e−km , if βm = 0,

h−1
m 4β2

m

(
− ∂∂ηF

(
η,τ− t,y0|η = k̂m, y0 =

1
4β2

i
s−2βi

))
, if βm < 0,

where ∂∂ηF (η,τ− t,y0) satisfies (3.25), and the transition probability satisfies pim(τ− t)= p(ατ = em|αt =

ei).

Proof. From Equation (2.3), S τ satisfies dS τ = µ(τ,ατ)S τdτ+σ(τ,ατ)S
β(τ,ατ)+1
τ dWτ, t ≤ τ ≤ T . By

Itô’s formula for b (τ,S τ,ατ)

db (τ,S τ,ατ) =

bτ+µ(τ,ατ)S τbs+
1
2
σ(τ,ατ)2S 2β(τ,ατ)+2

τ bss+

n∑
j=1

qατ jb
(
τ,S τ,e j

)dτ

+σ(τ,ατ)S
β(τ,ατ)+1
τ bsdWτ.
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Taking the integral of both sides over [t,T ], we obtain∫ T

t
db (τ,S τ,ατ) =

∫ T

t

bτ+µ(τ,ατ)S τbs+
1
2
σ(τ,ατ)2S 2β(τ,ατ)+2

τ bss+

n∑
j=1

qατ jb
(
τ,S τ,e j

)dτ

+

∫ T

t
σ(τ,ατ)S

β(τ,ατ)+1
τ bsdWτ.

Considering that b (T,S T ,αT ) = 0 and S t = s, αt = ei, then∫ T

t
db (τ,S τ,ατ) = −b (t, s,ei) .

Taking the conditional expectation operator given (S t,αt) = (s,ei), the martingale term vanishes, then

−b (t, s,ei)= E

∫ T

t

bτ+µ(τ,ατ)S τbs+
1
2
σ(τ,ατ)2S 2β(τ,ατ)+2

τ bss+

n∑
j=1

qατ jb
(
τ,S τ,e j

)dτ

∣∣∣∣∣∣∣∣S t = s, αt = ei

 .
Let g (τ,S τ,ατ) = −1

4
λ2(τ)

∥∥∥ĥ′
∥∥∥2

2

σ2(τ,ατ)S
2β(τ,ατ)
τ a(τ,S τ,ατ)

. Recall Equation (3.8) that can be simplified to

b (t, s,ei) = E
(∫ T

t
g (τ,S τ,ατ)dτ

∣∣∣∣∣∣S t = s, αt = ei

)
= −

∫ T

t

n∑
m=1

pim(τ− t)
1
4
λ2(τ)∥ĥ′∥22
σ2(τ,em)

E
(
S −2β(τ,em)
τ a−1(τ,S τ,em)

∣∣∣S t = s,αt = ei,ατ = em
)
dτ.

(3.19)

In the following, we compute E
(
S −2β(τ,em)
τ a−1(τ,S τ,em)

∣∣∣S t = s,αt = ei,ατ = em
)
, indeed

E
(
S −2β(τ,em)
τ a−1(τ,S τ,em)

∣∣∣S t = s,αt = ei,ατ = em
)

=E
(
S −2β(τ,em)
τ f −1(τ,S −2β(τ,em)

τ ,em)
∣∣∣S t = s,αt = ei,ατ = em

)
=h−1(τ,em)E

(
S −2β(τ,em)
τ e−k(τ,em)S −2β(τ,em)

τ
∣∣∣S t = s,αt = ei,ατ = em

)
.

(3.20)

(i) When β(τ,em) = 0, the integral simplifies to

b (t, s,ei) = −
∫ T

t

n∑
m=1

pim(τ− t)
1
4
λ2(τ)∥ĥ′∥22
σ2(τ,em)

h−1(τ,em))e−k(τ,em)dτ, (3.21)

where h(τ,em) and k(τ,em) are determined by equations (3.16) and (3.17).
(ii) When β(τ,em) < 0. We consider a CIR process which is constructed by Y(τ,em) = 1

4β(τ,em)2 S −2β(τ,em)
τ ,

by Itô’s formula

dY(τ,em) = γ(τ,em) (θ(τ,em)−Y(τ,em))dτ+ σ̂(τ,em)
√

Y(τ,em)dWτ, (3.22)

with parameters γ(τ,em) = 2µ(τ,em)β(τ,em), θ(τ,em) = σ2(τ,em) 2β(τ,em)+1
4γ(τ,em)β(τ,em) ,

σ̂(τ,em) = −sgn(β(τ,em))σ(τ,em), γ(τ,em)θ(τ,em) = σ2(τ,em)2β(τ,em)+1
4β(τ,em) . Denote σ̂m = σ̂(τ,em),
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γm = γ(τ,em), βm = β(τ,em), σm = σ(τ,em), θm = θ(τ,em), k̂m = k̂(τ,em), km = k(τ,em), Ym = Y(τ,em).
We can get a simpler expression for (3.20)

h−1(τ,em)E
(
S −2βm
τ e−kmS −2βm

τ
∣∣∣S t = s,αt = ei,ατ = em

)
= h−1(τ,em)4β2

mE
(
Yme−k̂mYm

∣∣∣S t = s,αt = ei,ατ = em

)
,

(3.23)

where k̂m = 4kmβ
2
m. Now E(Yme−k̂mYm

∣∣∣S t = s,αt = ei,ατ = em) will be determined, for this, let
F (η,τ− t,y0) = E(e−ηYm

∣∣∣Yt = y0), where the initial value of process Ym is y0 =
1

4β2
i
s−2βi , then by the

Laplace transform

E(Yme−k̂mYm
∣∣∣S t = s,αt = ei,ατ = em) = −

∂

∂η
F

η,τ− t,y0|η = k̂m,y0 =
1

4β2
i

s−2βi

 .
According to Jeanblanc et al.(2009) [34]

F(η,τ− t,y0) = exp
{
−Aη(τ− t)− y0Gη(τ− t)

}
, (3.24)

with

Gη(τ− t) =
2γmη

σ̂2
mη(eγm(τ−t)−1)+2γmeγm(τ−t)

,

Aη(τ− t) = −
2γmθm

σ̂2
m

ln
2γmeγm(τ−t)

σ̂2
mη(eγm(τ−t)−1)+2γmeγm(τ−t)

.

The partial derivative is derived as

∂F
∂η

(η,τ− t,y0) = −
(
A′η(τ− t)+ y0 G′η (τ− t)

)
exp

(
−Aη(τ− t)− y0 Gη(τ− t)

)
= −

 2γmθm(eγm(τ−t)−1)
σ̂2

mη(eγm(τ−t)−1)+2γmeγm(τ−t)
+y0

4γ2
meγm(τ−t)[

σ̂2
mη(eγm(τ−t)−1)+2γmeγm(τ−t)

]2


×exp

[
2γmθm

σ̂2
m

ln
2γmeγm(τ−t)

σ̂2
mη(eγm(τ−t)−1)+2γmeγm(τ−t)

− y0
2γmη

σ̂2
mη(eγm(τ−t)−1)+2γmeγm(τ−t)

]
.

(3.25)

Theorem 3.1. Denote b(t, s)= [b(t, s,e1), · · · ,b(t, s,en)]⊤. a(t, s) and b(t, s) are determined by equations
(3.9), (3.18). 1⊤n represents a column vector where all elements are equal to 1. Define the value
function vector under different regimes as V(t, s, x) = [V(t, s, x,e1), · · · ,V(t, s, x,en)]⊤, then V(t, s, x) can
be expressed as follows

V(t, s, x) = a(t, s)(x−w)2− (w− z)21⊤n +b(t, s), (3.26)

The optimal strategy associated with regime i is denoted by Π∗i , with its quantile function given by

QΠ∗(p) =
[
(µ− rI)(σ2)−1+2βK(t)

]
Y−1(x−w)+

λ(t)
2

(σ2)−1
(
H(t)exp(K(t)Ỹ)

)
Y−1ĥ′(1− p), (3.27)
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where QΠ(p) =
(
QΠ1(p), · · · ,QΠn(p)

)⊤, µ = diag(µ1, · · ·µn), σ2 = diag
(
σ2

1, · · · ,σ
2
n

)
, β = diag(β1, · · ·βn),

Y−1 =
(
y−1

1 , · · · ,y
−1
n

)⊤
. In matrix form, the mean and standard of the optimal strategy under distinct

market regimes can be expressed

M∗ =
(
M∗1,M

∗
2, · · ·M

∗
n

)⊤
=

[
(µ− rI)

(
σ2

)−1
+2βK(t)

]
Y−1(x−w), (3.28)

N∗ =
(
N∗1 ,N

∗
2 , · · ·N

∗
n

)⊤
=
λ(t)
2

(σ2)−1 exp
(∫ T

t
(Q+CK(τ))dτ

)
exp(K(t)Ỹ)Y−1∥ĥ′∥2, (3.29)

K(t) and H(t) are determined by equations (3.16) (3.17). Through the constraint E(XΠ
∗

T ) = z, the

optimal Lagrange multiplier with start regime ei at time t is given by w∗ =
z−x0exp

{(
ui−r

σ2
i
+2βiki

)
s2βiT

}
1−exp

{(
ui−r

σ2
i
+2βiki

)
s2βiT

} .

Theorem 3.1 reveals that the strategy mean depends on the wealth level x, with only K(t) being time-
dependent. Since K(t) increases over time, it follows that the mean exhibits a monotonically increasing
trend with respect to time t. The standard deviation of the exploratory optimal strategy is independent
of the wealth x and never diminishes to zero. Meanwhile the standard deviation declines with the
volatility. Stochastic environments provide more learning opportunities, but because exploration is
costly, the investor tends to reduce exploration. Notably, M∗ does not depend on the exploration weight
λ(t), N∗ is related to λ(t). This result reveals a clear separation between exploitation and exploration.
λ(t) is a decreasing function of time. This means that the investor gradually focuses more on exploiting
the existing strategy.

Theorem 3.2. The optimal value function of the MV problem with regime switching of (2.7) is given
by

Vcl(t, s, x) = a(t, s)(x−w)2− (w− z)21⊤n , (3.30)

where Vcl(t, s, x) = [Vcl(t, s, x,e1), · · · ,Vcl(t, s, x,en)]⊤, and a(t, s) are determined by equations (3.9).
The corresponding optimal strategy is given by u∗t . In matrix form, under distinct market regimes it
can be expressed

u∗t =
(
u∗(t, s, x,e1), · · · ,u∗(t, s, x,en)

)⊤
=

[
(µ− rI)

(
σ2

)−1
+2βK(t)

]
Y−1(x−w), (3.31)

K(t) are determined by equations(3.17). The optimal Lagrange multiplier with start regime ei at time t

is given by w∗ =
z−x0exp

{(
ui−r

σ2
i
+2βiki

)
s2βi T

}
1−exp

{(
ui−r

σ2
i
+2βiki

)
s2βi T

} .

When the exploration weight λ(t) decreases to 0, the EMV problem with regime switching
converges to the classical MV problem with regime switching. It follows directly that

lim
λ(t)→0

Π∗(·; t, s, x,ei) = u∗(·; t, s, x,ei),

and
lim
λ(t)→0

∣∣∣V(t, s, x,ei)−Vcl(t, s, x,ei)
∣∣∣ = 0.
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According to Theorems 3.1 and 3.2, in the classical MV model, the investor focuses solely on
exploitation-making optimal decisions based on currently known information without considering
exploration of unknown environments. If a ’reasonably good’ strategy is discovered early by chance,
the investor may become trapped in a local optimum. As a result, they might consistently stick to this
strategy and fail to discover the truly global optimal solution. In contrast, the exploratory
mean-variance strategy under the reinforcement learning framework explicitly incorporates an
exploration mechanism into the objective function through a regularizer. This approach not only
encourages policy randomness to collect more environmental data but also continuously improves
model quality to support better decision-making in the future, thereby achieving a deeper
understanding of environmental characteristics through dynamic learning.

4. Policy iteration

Policy iteration is a dynamic programming algorithm used to solve Markov decision processes or
stochastic control problems. It alternates between
(i) Policy evaluation: For any given policy, estimate its value function.
(ii) Policy improvement: Based on the value function of any given policy, update the policy.

Although Theorem 3.1 characterizes the optimal strategy distribution for the regime-switching
EMV problem, its practical implementation relies on an iterative process. We typically begin with an
initial policy guess, Π0, and refine it successively until convergence. The policy improvement
theorem (PIT) establishes an iterative update procedure that ensures a monotonic improvement or at
least non-degradation of the policy performance.

Theorem 4.1. [PIT] Let w ∈R be fixed andΠ ∈A(π) be any given admissible feedback control strategy.
Under the regularizer Φh, when the regime is ei at time t the corresponding value function VΠ(·, ·, ·,ei)
satisfies VΠxx(t, x, s,ei)> 0, ∀(t, x, s,ei) ∈ [0,T ]×R×R×N . We now construct a new strategy distribution
Π̃ whose regularizer is given by

Q
Π̃

(p) = −
(µi− r)VΠx +σ

2
i s2βi+1VΠsx

σ2
i s2βiVΠxx

+
λ(t)

σ2
i s2βiVΠxx

ĥ′(1− p). (4.1)

If the new strategy is feasible, then ∀(t, x, s,ei) ∈ [0,T ]×R×R×N , we have VΠ̃(t, x, s,ei)≤VΠ(t, x, s,ei).

See the Appendix for the proof.

Theorem 4.2. For p ∈ (0,1), let Π(0) denote the initial investment strategy, under which the regularizer
is given by

Q(0)
Π

(p) =
[
(µ− rI)(σ2)−1+2βK(0)(t)

]
Y−1(x−w)+

λ(t)
2

(σ2)−1
(
H(0)(t)exp(K(0)(t)Ỹ)

)
Y−1ĥ′(1− p).

(4.2)
For all m ≥ 1, the strategy Π(m)(t, x, s) is updated according to the following equation

Q(m)
Π

(p) =
[
(µ− rI)(σ2)−1+2βK(m)(t)

]
Y−1(x−w)+

λ(t)
2

(σ2)−1
(
H(m)(t)exp(K(m)(t)Ỹ)

)
Y−1ĥ′(1− p),
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where (K(m),H(m)) satisfy the following iterative formulaK̇(m)(t) = −A−BK(m)(t)+EK(m−1)(t)K(m−1)(t), K(m)(T ) = 0,
Ḣ(m)(t) = −QH(m)(t)−CK(m−1)(t)H(m−1)(t), H(m)(T ) = I,

(4.3)

Then
lim

m→∞

∥∥∥K(m)(t)−K∗(t)
∥∥∥
∞
= 0, (4.4)

lim
m→∞

∥∥∥H(m)(t)−H∗(t)
∥∥∥
∞
= 0, (4.5)

where ∥∥∥K(m)(t)−K∗(t)
∥∥∥
∞

:=max
{∣∣∣∣(k(m)

i (t)− k∗i (t)
)∣∣∣∣ ,1 ≤ i ≤ n

}
,∥∥∥H(m)(t)−H∗(t)

∥∥∥
∞

:=max
{∣∣∣∣(h(m)

i (t)−h∗i (t)
)∣∣∣∣ ,1 ≤ i ≤ n

}
.

Proof. i) We first prove limm→∞
∥∥∥K(m)(t)−K∗(t)

∥∥∥
∞
= 0. Recall ki(t) is (i, i)-th entry of the diagonal

matrix K(t). It only needs to prove limm→∞ |k
(m)
i (t)− k∗i (t)| = 0. Without loss of generality, let T = 1

and W :=maxm |k
(m)
i (t)|. Let δ(m)

i (t) = k(m)
i (t)− k∗i (t). For δ(m+1)

i (t), we have

δ̇(m+1)
i (t) = k̇(m+1)

i (t)− k̇∗i (t) = 2σ2
i β

2
i

(
k(m)

i (t)− k∗i (t)
) (

k(m)
i (t)+ k∗i (t)

)
+2(2r−µi)βiδ

(m+1)
i (t).

where δ̇(m+1)
i (t) is the derivative of δ(m+1)

i (t) with respect to t. Integrating both sides yields

δ(m+1)
i (t) =

∫ 1

t
e2(2r−µi)βi(s−t)(−2σ2

i β
2
i )

(
k(m)

i (s)− k∗i (s)
) (
δ(m)

i (s)+2k∗i (s)
)
ds.

Let C1 = 2σ2
i β

2
i e2|2r−µi||βi|, thus∣∣∣∣δ(m+1)

i (t)
∣∣∣∣ ≤ 2σ2

i β
2
i

∫ 1

t
e2|2r−µi||βi|

∣∣∣∣δ(m)
i (s)

∣∣∣∣ (2W +
∣∣∣∣δ(m)

i (s)
∣∣∣∣)ds

=C1

∫ 1

t

∣∣∣∣δ(m)
i (s)

∣∣∣∣ (2W +
∣∣∣∣δ(m)

i (s)
∣∣∣∣)ds.

Assume
∣∣∣∣k(0)

i − k∗i
∣∣∣∣ ≤ w. To prove that δ(m)

i (t) converges to zero as m→∞, we introduce a sequence
{Lm}m with L0 = w, which satisfies the recursive relation

Lm+1 =
ϵ

m+1
Lm+

ζ

m+1
L2

m,

with ϵ = 2σ2
i β

2
i e2|2r−µi||βi|2

∣∣∣k∗i (t)
∣∣∣ and ζ = 2σ2

i β
2
i e2|2r−µi||βi|.We argue that

∣∣∣∣δ(m)
i (t)

∣∣∣∣ ≤ Lm(1− t)m, in fact it
clearly holds when m = 0, if it is true for m, then we have∣∣∣∣δ(m+1)

i (t)
∣∣∣∣ ≤C1

∫ 1

t
Lm(1− s)m

(
2W +L2

m(1− s)2m
)
ds

=C1
Lm(1− t)m+1 (2W)

m+1
+C1

L2
m(1− t)2m+1

2m+1

≤

(
C1Lm2W

m+1
+

L2
mC1

m+1

)
(1− t)m+1

= Lm+1(1− t)m+1.
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For the sequence {Lm}m with L0 = w, we see that

Lm+1

Lm
=
ϵ + ζLm

m+1
, Lm+1 =

w
(m+1)!

m+1∏
i=0

(ϵ + ζLi).

Specially choose w < 1 such that wsupm
(ϵ+ζ)m

(m+1)! < 1, then Lm ≤ 1,Lm ≤ w (ϵ+ζ)m

m! and

lim
m→∞

∣∣∣∣δ(m)
i (t)

∣∣∣∣ ≤ lim
m→∞

Lm(1− t)m ≤ lim
m→∞

w
(ϵ + ζ)m(1− t)m

m!
= 0.

This gives
lim

m→∞

∣∣∣∣δ(m)
i (t)

∣∣∣∣ = 0,

which implies
lim

m→∞

∣∣∣∣k(m)
i (t)− k∗i (t)

∣∣∣∣ = 0, lim
m→∞

∥∥∥K(m)(t)−K∗(t)
∥∥∥
∞
= 0.

ii) We prove limm→∞
∥∥∥H(m)(t)−H∗(t)

∥∥∥
∞
= 0. Similarly, define ξ(m)(t) := H(m)(t) − H∗(t) and∥∥∥ξ(m)(t)

∥∥∥
∞

:=max
{∣∣∣∣(ξ(m)

i (t)− ξ∗i (t)
)∣∣∣∣ ,1 ≤ i ≤ n

}
. For ξ̇(m+1)(t), we have∥∥∥∥ξ̇(m+1)(t)

∥∥∥∥
∞
=

∥∥∥Ḣ(m+1)(t)− Ḣ∗(t)
∥∥∥
∞
=

∥∥∥∥−Qξ(m+1)(t)−C(K(m)(t)ξ(m)(t)−C
(
K(m)(t)−K∗(t)

)
H∗(t))

∥∥∥∥
∞
,

taking the integral, we have∥∥∥ξ(m+1)(t)
∥∥∥
∞
=

∥∥∥∥∥∥
∫ 1

t
eQ(s−t)

[
CK(m)(s)ξ(m)(s)+C

(
K(m)(s)−K∗(s)

)
H∗(s)

]
ds

∥∥∥∥∥∥
∞

≤

∫ 1

t

∥∥∥eQ(s−t)
∥∥∥
∞
∥C∥∞

[∥∥∥K(m)(s)
∥∥∥
∞

∥∥∥ξ(m)(s)
∥∥∥
∞
+

∥∥∥∥(K(m)(s)−K∗(s)
)∥∥∥∥
∞

∥∥∥H∗(s)
∥∥∥
∞

]
ds

≤ max
t≤s≤1

∥∥∥eQ(1−t)
∥∥∥
∞
∥C∥∞

∫ 1

t

[∥∥∥K(m)(s)
∥∥∥
∞

∥∥∥ξ(m)(s)
∥∥∥
∞
+

∥∥∥∥(K(m)(s)−K∗(s)
)∥∥∥∥
∞

∥∥∥H∗(s)
∥∥∥
∞

]
ds.

By Gronwall’s inequality we get∥∥∥ξ(m+1)(t)
∥∥∥ ≤ e

∥∥∥eQ(1−t)
∥∥∥
∞
∥C∥∞

∫ 1
t ∥K

(m)(s)∥∞ds max
t≤s≤1

∥∥∥eQ(1−t)
∥∥∥
∞
∥C∥∞

∫ 1

t

∥∥∥K(m)(t)−K∗(t)
∥∥∥
∞

∥∥∥H∗(s)
∥∥∥
∞

ds.

The earlier result limm→∞
∥∥∥K(m)(t)−K∗(t)

∥∥∥
∞
= 0 and

∥∥∥K(m)(t)
∥∥∥
∞

is bounded together to give
limm→∞ ∥ξ

(m+1)(t)∥∞ = 0, thus
lim

m→∞
∥H(m)(t)−H∗(t)∥∞ = 0.

5. Algorithm design

We develop an RL algorithm to solve the EMV problem with regime switching. The investor knows
the risk-free rate r and the exploration weight λ(t). However, the investor may not be able to accurately
evaluate the volatilities and the returns, and might not even know which type of CEV model the risky
asset follows. All he can rely on are the historical observations of (S t,αt).

Journal of Industrial and Management Optimization Volume 22, Issue 2, 1087–1111.



1104

In numerical experiments, we consider investment strategies following a normal distribution. Let
ĥ(p) =

∫ p
0 z(1− s)ds, where z is the standard normal distribution function. According to Han et al.

[25], we have Φĥ(Π) =
∫ 1

0 QΠ(p)z(p)dp. In this case, ∥ĥ′∥22 = 1. The mean and standard deviation
corresponding to the optimal investment strategy under n regimes are given by

M∗ =
(
M∗1,M

∗
2, · · ·M

∗
n

)⊤
=

[
(µ− rI)

(
σ2

)−1
+2βK(t)

]
Y−1(x−w), (5.1)

N∗ =
(
N∗1 ,N

∗
2 , · · ·N

∗
n

)⊤
=
λ(t)
2

(σ2)−1 exp
(∫ T

t
(Q+CK(τ))dτ

)
exp(K(t)Ỹ)Y−1, (5.2)

For numerical illustration, we consider a financial market with only two regimes N = {e1,e2}, and
assume β1 = 0, β2 = −

1
2 , which means the risky asset price switches between the GBM and the CIR

process. To implement the algorithm, we employ a discrete-time approximation of the problem under
study. First, we discretize the continuous time horizon [0,T ] into N equal-length intervals, ∆t = tk+1−

tk, k = 0,1, . . . ,N −1. The investor has collected the historical data of the discrete observations. Based
on the historical information, he follows the strategy Π(tk) at time tk and draws an action u(tk) from
Π(tk). The discounted wealth process at the discretized time tk+1 is given by

Xπ (tk+1) ≈ Xπ (tk)+u (tk)
e−rtk+1S (tk+1)− e−rtkS (tk)

e−rtkS (tk)
. (5.3)

We can obtain a series of samples D = {(tτ, xτ, sτ,ατ), τ = 0,1, . . . ,N − 1}. In reinforcement learning,
common methods for value function and policy parameterization include linear function approximation
(Sutton (1988) [35]) and nonlinear function approximation using neural networks (Mnih et al. (2015)
[36]). We adopt the linear function approximation approach to parameterize the value function and the
policy. If the initial regime is ei, the following expression is used to approximate the strategy defined
in (3.28)–(3.29) as well as the value function in (3.26).

VΘ(t, x, s,ei) = p(θ(V,0)
i ,T − t)ep(θ(V,1)

i ,T−t)s−2βi (x−w)2+ p(θ(V,2)
i ,T − t)s−4βi

+ p(θ(V,3)
i ,T − t)s−2βi + p(θ(V,4)

i ,T − t),
(5.4)

M∗i = −
ϕVΘx + ξs

2βi+1VΘsx

ξs2βiVΘxx
, N∗i =

λ(t)
∥∥∥ĥ′

∥∥∥
2

ξs2βiVΘxx
. (5.5)

The policy parameters are ϕ = (µi − r) and ξ = σ2
i . The function p(θ, t), where θ ∈ Rd is a parameter

vector, typically consists of the first d terms of a Taylor series expansion. Let
Θ = (θ(V,0)

i , θ(V,1)
i , θ(V,2)

i , θ(V,3)
i , θ(V,4)

i ). The components of Θ represent the corresponding Taylor
coefficients. In this paper, we update these parameters using the temporal difference (TD) learning
which was initially introduced by Sutton (1988) [35]. From Bellman’s optimality principle, we have

Vπ(t, x, s,ei) = E
[
Vπ(h,Xh,S h,αh)−

∫ h

t
λ(v)Φ(v)dv

∣∣∣∣Xt = x,S t = s,αt = ei

]
.

For fixed (t, x, s,ei) ∈ [0,T ]×R×R×N , dividing both sides by h− t and rearranging terms yields

E
[
Vπ(h,Xh,S h,αh)−Vπ(t, x, s,ei)

h− t
−

1
h− t

∫ h

t
λ(v)Φ(v)dv

∣∣∣∣Xt = x,S t = s,αt = ei

]
= 0.
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When h = t+∆t, the Bellman error is defined as

δt := V̇Πt −λ(t)Φ(Π),

where V̇πt =
Vπ(t+∆t,Xt+∆t,S t+∆t,αt+∆t)−Vπ(t,x,s,ei)

∆t , with ∆t being the discretization step size of the learning
algorithm. The TD loss is defined as the mean squared TD error evaluated at discrete time points
tk=0,...,K−1. Via the parameterized value function and policy, it can be expressed as

T D(Θ,ϕ,ξ) =
1
2

E

K−1∑
k=0

(
VΘ(t+∆t,Xt+∆t,S t+∆t,αt+∆t)−VΘ(t, x, s,ei)

∆t
−λ(t)Φ(Θ,ϕ,ξ)(Π)

)2

∆t

 . (5.6)

The market parameters Θ,ϕ,ξ are updated via gradient descent

Θ(n+1)← Θ(n)−ηΘ∇ΘT D(Θ,ϕ,ξ),

ϕ(n+1)← ϕ(n)−ηϕ∇ϕT D(Θ,ϕ,ξ),

ξ(n+1)← ξ(n)−ηξ∇ξT D(Θ,ϕ,ξ).

Finally, the Lagrange multiplier is updated according to the terminal condition E[XT ] = z

wn+1 = wn−ηw(XT − z),

where the learning rate satisfies ηw > 0.

algorithm 1 Exploratory mean-variance portfolio under regime switching
1: Input: Learning rates ηΘ, ηϕ, ηξ, ηw, sample average size N, investment horizon T , time step

size ∆t = T/N, exploration weight λ(t), initial wealth x0, iteration count for updating the Lagrange
multiplier w, number of iterations M.

2: Initialize Θ, ϕ, ξ and w.
3: for k = 1→ M do
4: for i = 1→

⌊
T
∆t

⌋
do

5: The tuple
(
tki ,X

k
i ,S

k
i ,α

k
i

)
is sampled from the policy Π(ϕ,ξ) .

6: Acquire all data setsD =
{(

tki ,X
k
i , S k

i ,α
k
i

)
,1 ≤ i ≤

⌊
T
∆t

⌋}
.

7: Compute VΘ .
8: Update

Θ(k+1)← Θ(k)−ηΘ∇ΘT D(Θ,ϕ,ξ),

ϕ(k+1)← ϕ(k)−ηϕ∇ϕT D(Θ,ϕ,ξ),

ξ(k+1)← ξ(k)−ηξ∇ξT D(Θ,ϕ,ξ).

9: end for
10: Update Π(ϕ,ξ) from (5.5).
11: if k mod N == 0 then
12: Update w← w−ηw

(
1
N
∑k

j=k−N+1 X j
⌊ T
∆t ⌋
− z

)
.

13: end if
14: end for
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Numerical experiments based on simulated data are conducted to validate the proposed algorithm.
The regularizer is selected such that the randomized policy follows a normal distribution. The
investment horizon is fixed at to T = 1 with time step ∆t = 1

252 (corresponding to N = 252 steps for the
annual MV problem). The annualized interest rate is set to r = 0.02. For both the GBM and the CIR
process, the annualized return µ takes values in {0.03,0.05} and volatility σ in {0.1,0.2}. The initial
wealth is X0 = 1, with a target annualized terminal return of 40% (z = 1.4). Assume the Markov

regime transition intensity rate matrix as Q =
(
−1 1
1 −1

)
. Parametrize (5.4) and (5.5) by selecting

p(θ,T − t) as
p(θ, t) = θ0t2+ θ1t+ θ2.

Figure 1. Parameters of the Taylor expansion in the value function.

Figure 2. The parameters in the Policy.
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Figure 3. The mean and variance of exploratory strategies.

Figure 4. Learning curves of the sample mean of terminal wealth.

From Figures 1 and 2, we can observe that, after 8500 iterations, the Taylor expansion parameters
of the value function stabilize, showing good convergence. The policy parameters ϕ and ξ stabilize
after 9000 iterations. At this point, both the policy and value function exhibit stable convergence
behavior. Figure 3 compares the mean-variance performance of the optimal strategy under the risky
asset models of GBM, CIR, and regime switching between the two models. Figure 3 shows that after
1000 iterations, the mean of the exploration strategy converges to the target value of 1.4. Compared to
the single-regime market, the regime-switching strategy exhibits larger fluctuations in the mean,
indicating lower stability. The variance of the strategy converges after approximately 12,000
iterations. Initially, the variance of the CIR process is larger, indicating a broader exploration range.
However, as the iterations progress, the variance rapidly decreases and becomes smaller than that of
the regime-switching strategy, with the GBM variance consistently remaining low. This may be due to
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the regime-switching market intensifying exploration, leading to higher variance. Additionally, the
higher exploration cost associated with regime switching slows down the convergence of the variance.
Figures 4 and 5 compare the sample means and variances of terminal wealth, calculated every 50
iterations, between the RL algorithm proposed in this paper and the traditional MLE method. The
results show that the RL algorithm exhibits more stable convergence, with smaller variance in
terminal wealth concentrated around the target value of 1.4, demonstrating superior learning
performance.

Figure 5. Learning curves of the sample variance of terminal wealth.

6. Conclusion

We introduce a continuous-time reinforcement learning framework for a financial market with
Markov regime switching. In this setting, the risky asset transitions among n distinct CEV models,
with market coefficients evolving according to the prevailing regime. The regime dynamics are
governed by a continuous-time Markov chain. Within the reinforcement learning framework, we
establish an EMV problem for the investor, and derive the optimal strategy together with the
corresponding value function across n different CEV models via the dynamic programming approach.
To identify the optimal strategy within a reinforcement learning framework, we construct a policy
iteration scheme and prove the convergence of the policy. From an algorithmic and implementation
perspective, we concentrate on a setting in which the model switches between a GBM and a CIR
process, with a given regularizer that ensures the policy follows a normal distribution. The policy and
value function are parameterized using linear function approximation, and numerical experiments are
conducted to demonstrate the convergence of the parameters.
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