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1. Introduction

In this study, we examine the portfolio choice problem of an infinitely lived agent who cannot
tolerate any decline in consumption. [1] demonstrates that consumption is not reversible over time
and that this irreversibility generates a ratcheting effect. Motivated by [1]’s the notion of irreversible
consumption, [2] applies this idea to portfolio selection, presenting a novel framework for optimal
consumption and portfolio allocation that precludes any decrease in consumption over time. Such
behavior can be regarded as an extreme form of habit formation due to the strong restriction imposed on
feasible consumption paths. In the context of prospect theory, a loss-averse agent exhibits an asymmetric
utility structure, assigning greater disutility to losses than the utility gained from equivalent increases in
consumption. In this paper, the behavior of an individual who cannot tolerate a decrease in consumption
is treated as equivalent to infinite loss aversion [3].

While [2] assumes a concave von Neumann–Morgenstern utility function, we adopt a non-concave
utility function that combines two opposing attitudes—risk aversion and risk loving—as proposed by [4].
In our setting, the Friedman–Savage investor exhibits locally risk-seeking preferences, being risk averse
except at specific consumption levels.

Existing literature on portfolio selection with partially convex utility functions primarily focuses on
maximizing utility from terminal wealth (see [5–8]). These studies explore the risk-taking implications
of wealth-based preferences. [9] instead consider utility derived from consumption. We extend this
line of work by introducing a non-decreasing consumption constraint, thereby combining non-concave
preferences with irreversible consumption decisions.

Our contribution is to provide the optimal solution to this joint problem. To address the non-
concavity of the utility function, we replace it with its concave hull (envelope) following [10]. This
transformation enables us to employ the dual approach developed in [11] and [12] for continuous-time
consumption–investment problems.

We show that the investor optimally defers consumption adjustments even when holding sufficient
wealth within the locally risk-seeking region. Once a critical threshold is reached, a discrete jump in
consumption occurs along the linear segment of the concave hull. Furthermore, the investor exhibits
trend-chasing behavior: becoming more risk-averse in bear markets and more risk-seeking in bull
markets. Compared with [13], the agent displays lower overall risk aversion. This trend-following
behavior leads to greater risky investment and faster wealth accumulation, while exposure to financial
risk decreases sharply following the consumption jump.

Through simulation, we compute the expected time for the Friedman–Savage investor to exit the
risk-loving region. The duration of the risk-seeking regime increases with the investor’s patience, the
size of the consumption jump, and the market risk premium—findings consistent with [9].

There exists a growing literature on portfolio choice under consumption ratcheting. Building
on [2], [14] relax the homotheticity assumption and derive a solution in an infinite horizon. [13] analyze
trend-chasing behavior in a finite-horizon setting with general concave utility, while [15] study a
quadratic utility function incorporating a bliss level of consumption.

For models with Friedman–Savage type preferences, [4] first propose the utility specification to
reconcile simultaneous gambling and insurance behavior, and [16] generalize it to allow for multiple
concave and convex regions. Finally, [10] investigate a related entrepreneurial decision problem with
non-concave objectives under social insurance.
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Finally, our framework can also be viewed from an actuarial perspective. The non-decreasing
consumption constraint naturally parallels ratcheted or guaranteed-increasing payouts commonly used
in insurance and annuity products. In this interpretation, the free boundary governing consumption
adjustments corresponds to bonus-declaration or guarantee-adjustment thresholds, thereby providing a
theoretical foundation for analyzing such mechanisms within a stochastic control framework.

To connect our mechanism to insurance practice, consider a stylized with-profits annuity (or a
guaranteed withdrawal benefit with step-ups) in which the policyholder receives a payout rate that
is ratcheted upward when the insurer’s asset position becomes sufficiently strong. Let ct denote the
policyholder’s payout (consumption) rate, which is contractually non-decreasing. The insurer monitors
a solvency/asset ratio (or a shadow value of reserves) and declares a permanent bonus step-up only
when this indicator crosses a pre-specified threshold.

In our model, the optimal consumption policy exhibits exactly this structure. The free boundary
(trigger) zI(ξ) determines the first time at which it becomes optimal to increase the payout beyond level
ξ. Equivalently, the hitting time τ∗ξ = inf{t ≥ 0 : yt ≤ zI(ξ)} plays the role of the bonus-declaration time:
when the shadow value yt is high indicating (tight resources), the payout is kept unchanged; once yt falls
to the trigger, so that (resources become sufficiently abundant), a permanent step-up is executed. For
non-concave (Friedman–Savage) preferences, the concavification implies an indifference band, allowing
the payout to optimally remain at the lower boundary until the upper boundary is reached, thereby
producing discrete step-ups. This interpretation clarifies how our free-boundary characterization maps
naturally to real-world contract features such as bonus thresholds and guaranteed step-up rules.

Roadmap. The remainder of the paper is organized as follows. Section 2 introduces the market setting,
formulates the irreversible (ratcheting) consumption constraint, and describes the concavification step
via the concave hull. Section 3 develops the dual-martingale formulation, reduces the monotone
consumption problem to a continuum of optimal stopping problems indexed by the target consumption
level, and verifies optimality through a trigger (free-boundary) characterization. Section 4 specializes to
the shifted-CRRA case to obtain closed-form policies and discusses the economic interpretation of the
resulting “pause-and-jump” consumption behavior within the risk-seeking region. Section 5 concludes
by outlining limitations and directions for future research.

2. Model Setup

We consider a continuous-time frictionless financial market with no such as transaction costs, taxes,
or short-selling constraints. The market consists of a risk-free asset and a single risky asset. The risk-free
asset earns a constant interest rate r > 0. The price process S t of the risky asset follows a geometric
Brownian motion with drift µ > r and volatility σ > 0:

dS t

S t
= µ dt + σ dBt,

where Bt is a standard Brownian motion defined on a probability space (Ω,F ,F,P). The filtration
F ≡ {Ft}t≥0 is generated by Bt and augmented by all P-null sets.

Wealth dynamics. The agent’s wealth process Xt evolves according to

dXt = [rXt + (µ − r)πt − ct] dt + σπt dBt, (2.1)
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where πt denotes the dollar amount invested in the risky asset at time t, and ct is the consumption rate.
The admissible strategy (ct, πt)t≥0 is progressively measurable and satisfies∫ t

0
cs ds < ∞,

∫ t

0
π2

s ds < ∞, for every t ≥ 0, a.s. (2.2)

Preferences and constraints. The investor has an infinite horizon and derives utility from the discounted
stream of consumption over time. The objective is to maximize

U = E

[∫ ∞

0
e−βtu(ct) dt

]
, (2.3)

where β > 0 is the subjective discount rate and u(·) is the instantaneous utility function. The utility
function u is continuously differentiable, strictly increasing, and satisfies limc→∞ u′(c) = 0. It is not
globally concave, reflecting the agent’s locally risk-seeking preferences of the Friedman–Savage type.

The consumption process {ct}t≥0 is required to be non-decreasing, i.e.,

cs ≥ ct, ∀ s ≥ t,

and is right-continuous with left limits (RCLL). The initial consumption level c0− is given.
We write c0− for the given pre-decision consumption level immediately before time 0, and c0 for the

post-decision level after the agent chooses the initial adjustment at time 0. Accordingly, a jump at t = 0
is allowed and, in general, c0 , c0−.

To obtain the budget constraint from (2.1), we define

θ ≡
µ − r
σ

, Ht ≡ e−rtZt, Zt ≡ e−
1
2 θ

2t−θBt .

Here, θ represents the market price of risk, Zt is an exponential martingale, and Ht denotes the stochastic
discount factor. Using these definitions, the static budget constraint can be expressed as

E

[∫ ∞

0
Ht ct dt

]
≤ X0, (2.4)

where the left-hand side represents the present value of lifetime consumption, discounted by the
stochastic discount factor Ht. This condition requires that the expected discounted value of total
consumption cannot exceed the agent’s initial wealth X0.

To ensure that the agent’s consumption plan is admissible, we impose the following assumption.

Assumption 2.1.
X0 >

c0−

r
.

If X0 < c0−
r , the consumption process cannot be non-decreasing. When X0 =

c0−
r , the agent’s

consumption rate must remain constant at c0−, satisfying

E

[∫ ∞

0
Ht ct dt

]
= X0.

In this degenerate case, the agent cannot invest in the risky asset because any drop in wealth would
necessitate a reduction in consumption, violating the monotonicity constraint. Assumption 2.1 thus
rules out the trivial case and guarantees the feasibility of a non-trivial optimal solution.
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3. Optimization

3.1. Concavification via the concave hull

We introduce the utility maximization problem as follows:

Problem 3.1. Given c0− ≥ 0 and X0 = x > 0,

V(x, c0−) ≡ max
(c,π)∈A(x,c0−)

E

[∫ ∞

0
e−βtu(ct) dt

∣∣∣∣∣ X0 = x, c0 = c0−

]
, (3.1)

where A(x, c0−) is the set of all admissible strategies such that (i) the consumption process ct is
F-adapted, non-decreasing, positive RCLL with prescribed left limit c0− at t = 0 (so a jump at t = 0 is
allowed), (ii) πt is an F-progressively measurable process satisfying the following integrability condition:
for all T > 0,

∫ T

0
π2

t dt < ∞ a.s., (iii) the wealth process Xt in (2.1) corresponding to (c, π) satisfies
Xt ≥ 0 for all t ≥ 0 a.s.

To address the issue of non-concavity, we follow the approach of [10], which replaces the non-
concave parts of the utility function with its concave hull. Let uE(c) denote the concave envelope (or
concave hull) of u(c), defined as

uE ≡ min
f
{ f : (0,∞)→ R | f ≥ u and f is concave} . (3.2)

That is, uE(c) is the smallest concave function that dominates u(c). Since u(c) is strictly increasing and
continuous, its concave hull uE(c) is also strictly increasing and continuous. This implies that the set of
intervals where u is strictly dominated by uE is open:

{ c > 0 | uE(c) > u(c) } =
∞⋃

m=1

(cm, c̄m).

On each interval (cm, c̄m), the concave hull uE is linear and coincides with the chord connecting (cm, u(cm))
and (c̄m, u(c̄m)). Equivalently, there exists a constant slope (depending on m) such that

u(c̄m) − u(cm) = (c̄m − cm) u′E(c), c ∈ (cm, c̄m), m = 1, 2, . . . .

Moreover,
lim
c→c−m

u′E(c) > lim
c→c+m

u′E(c),

since the concave envelope contains linear segments over the non-concave regions. Figure 1 illustrates
the shapes of the original utility function u and its concave hull uE.

And, we assume the following condition to guarantee the existence of solutions.

Assumption 3.1. Let n2 < 0 denote the negative root of the quadratic equation

θ2

2
n2 +

(
β − r −

θ2

2

)
n − β = 0.

We assume that ∫ ∞

c

(
u′E(s)

)1−n2 ds < ∞. (3.3)
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Figure 1. Non-concave function and its concave hull.

This integrability condition guarantees that the key integral terms appearing in the dual representation
are finite, ensuring that the dual value function J(y, c0−) and the resulting closed-form expressions for
the optimal wealth/portfolio processes are well-defined.

The concave hull uE is the smallest concave majorant of u. Geometrically, one may think of placing
a tight rubber band above the graph of u: on regions where u is already concave, we have uE = u, while
on any interval where u fails to be concave, uE replaces u with the straight chord connecting two contact
points c− < c+. More precisely, if uE differs from u on (c−, c+), then

uE(c) = λ u(c−) + (1 − λ) u(c+), c = λc− + (1 − λ)c+, c ∈ [c−, c+],

so that uE is linear on [c−, c+] and satisfies uE ≥ u with equality at c− and c+; see Figure 2.

Example 3.1 (A piecewise-linear illustration). Consider the following piecewise-linear utility specified
by the points

(0, 0), (1, 1), (2, 1.4), (3, 2.6),

and linear interpolation between consecutive points. Equivalently,

u(c) =


c, 0 ≤ c ≤ 1,

1 + 0.4(c − 1), 1 ≤ c ≤ 2,

1.4 + 1.2(c − 2), 2 ≤ c ≤ 3.

This function is not concave because the slope increases from 0.4 on [1, 2] to 1.2 on [2, 3]. The concave
hull uE is obtained by replacing the non-concave “dip” on [1, 3] with the chord connecting (1, 1) and
(3, 2.6), i.e.,

uE(c) =

c, 0 ≤ c ≤ 1,

1 + 0.8(c − 1), 1 ≤ c ≤ 3.
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Figure 2. A piecewise-linear utility u (solid) and its concave hull uE (dashed). The concave
hull replaces the non-concave region by the chord between the contact points. At c = 2, the
hull satisfies uE(2) > u(2), illustrating how uE “fills in” the non-concave dip.

In particular, at c = 2 we have u(2) = 1.4 while uE(2) = 1.8, illustrating how uE “fills in” the
non-concave region while remaining concave and dominating u; see Figure 2.

The transformation u 7→ uE admits a standard economic reading as a concavification (or mixed-
strategy relaxation). When u is non-concave on an interval, the agent prefers to mix between two
consumption levels c− < c+ (the contact points), rather than choosing an intermediate level in the
non-concave region. Formally, for any c ∈ (c−, c+) there exists λ ∈ (0, 1) such that c = λc− + (1 − λ)c+
and uE(c) = λu(c−) + (1 − λ)u(c+), which is the utility attained by a lottery (or time-sharing) that yields
c− with probability λ and c+ with probability 1 − λ. Thus, uE represents the effective utility once the
agent can implement such mixing.

In our dynamic setting, this mixing interpretation aligns with the optimal policy structure. In
particular, when uE is linear on (c−, c+) (corresponding to the risk-seeking/non-concave region under
the original u), the agent is indifferent among consumption levels within this interval because the
effective marginal utility u′E(c) is constant there. Equivalently, any c ∈ (c−, c+) delivers the same
effective marginal trade-off, and only the endpoints c− and c+ matter. Consequently, it is optimal not
to finely tune consumption within (c−, c+), but instead to keep consumption at one boundary level
until a state-dependent trigger is reached, at which point consumption switches (or jumps) to the other
boundary level.

3.2. Dual Formulation

Dual-martingale overview. We rewrite the dynamic budget constraint in static form using the
stochastic discount factor. Introducing a Lagrange multiplier y > 0 yields a dual objective associated
with the dual state yt. The irreversibility (nondecreasing) constraint on consumption implies that raising
consumption to a level ξ is an irreversible action. Consequently, the choice of a monotone consumption
path can be reduced to a family of stopping decisions indexed by ξ. This formulation leads to a
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continuum of optimal stopping problems which can be characterized using a trigger (free-boundary)
characterization.

We now state the Lagrangian associated with Problem 3.1:

L = E

[∫ ∞

0
e−βtu(ct) dt

]
+ y

(
x − E

[∫ ∞

0
Ht ct dt

])
≤ E

[∫ ∞

0
e−βtuE(ct) dt

]
+ y

(
x − E

[∫ ∞

0
Ht ct dt

])
= E

[∫ ∞

0
e−βt(uE(ct) − ytct

)
dt

]
+ yx,

(3.4)

where y > 0 is the Lagrange multiplier associated with the budget constraint. The inequality in (3.4)
follows directly from the definition of the concave hull (3.2).

We define
yt ≡ y eβtHt,

as the Lagrange multiplier at time t, i.e., the (scaled) shadow value of wealth that represents the effective
marginal value of relaxing the budget constraint at time t.

Key objects (notation). For the reader’s convenience, we summarize several objects that appear
repeatedly: (i) yt is the (scaled) Lagrange multiplier (shadow value) of wealth; (ii) zI(ξ) is the trigger
boundary for the stopping problem associated with level ξ, i.e., the threshold at which it becomes
optimal to adjust consumption once yt falls to zI(ξ); (iii) Γ is the exponent parameter in the closed-form
expressions in Section 4 that governs the relevant integrability/finite-value condition.

Using this process, we can formulate a dual problem that transforms the choice of a non-decreasing
consumption process into a collection of optimal stopping problems.

Problem 3.2 (Dual Problem). Given y > 0 and c0− > 0, consider the following maximization problem:

J(y, c0−) ≡ sup
c∈Π(c0−)

E

[∫ ∞

0
e−βt(uE(ct) − ytct

)
dt

]
, (3.5)

where Π(c0−) denotes the set of all Ft-adapted, non-decreasing, positive RCLL processes ct starting at
c0− and satisfying the integrability condition

E

[∫ ∞

0
e−βt

∫ ct

c0−

∣∣∣u′E(ξ) − yt

∣∣∣dξ dt
]
< ∞. (3.6)

Remark 3.1. The interchange of integrals is justified by (3.6), which ensures the absolute integrability
of the relevant integrand. Indeed, by the monotonicity of ct and the definition of τξ,∫ ∞

0
e−βt

(∫ ct

c0−

∣∣∣u′E(ξ) − yt

∣∣∣ dξ)dt =
∫ ∞

c0−

(∫ ∞

τξ

e−βt
∣∣∣u′E(ξ) − yt

∣∣∣ dt
)
dξ.

Taking expectations and using (3.6) yields

E

[∫ ∞

c0−

∫ ∞

τξ

e−βt
∣∣∣u′E(ξ) − yt

∣∣∣ dt dξ
]
< ∞,

so Tonelli/Fubini applies, and the change of order of integration used above is valid.
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From irreversible consumption to a continuum of stopping problems. Because the consumption
process is constrained to be non-decreasing, raising consumption from the current level is an irreversible
action. Hence, one may view a monotone consumption path as being constructed through a sequence
of incremental upward adjustments: for each target level ξ ≥ c0−, the decision reduces to choosing the
(first) time at which consumption is increased beyond ξ. This leads naturally to a family of optimal
stopping problems indexed by ξ, analogous to the incremental irreversible investment formulation
in [17].

Lemma 3.1. The dual value function J(y, c0−) is given by,

J(y, c0−) ≤
∫ ∞

c0−

sup
τ∈S

E

[∫ ∞

τ

e−βt (u′E(ξ) − yt
)

dt
]

dξ + J1(y, c0−), (3.7)

where S is the set of all F -stopping times taking values in [0,∞), and

J1(y, c0−) =
uE(c0−)
β

−
y
r

c0−.

We will show that the inequality in (3.7) becomes an equality in the verification of Theorem 3.1.

Proof. The dual value function (3.5) satisfies

J(y, c0−) = sup
c ∈Π(c0−)

E

[∫ ∞

0
e−βt (uE(ct) − ytct) dt

]
= sup

c ∈Π(c0−)
E

[∫ ∞

0
e−βt

(∫ ct

c0−

(
u′E(ξ) − yt

)
dξ + uE(c0−) − ytc0−

)
dt

]
= sup

c ∈Π(c0−)
E

[∫ ∞

0
e−βt

(∫ ct

c0−

(
u′E(ξ) − yt

)
dξ

)
dt

]
+ E

[∫ ∞

0
e−βt (uE(c0−) − ytc0−) dt

]
.

There are two parts of the above equation, let us define as

J0(y, c0−) ≡ E
[∫ ∞

0
e−βt

(∫ ct

c0−

(
u′E(ξ) − yt

)
dξ

)
dt

]
,

J1(y, c0−) ≡ E
[∫ ∞

0
e−βt (uE(c0−) − ytc0−) dt

]
.

Additionally, we define the stopping time τξ which is the right-continuous inverse of ct as follows:

τξ ≡ inf{t > 0 | ct > ξ},

For J0(y, c0−), we can rewrite as:

J0(y, c0−) = E
[∫ ∞

0
e−βt

(∫ ct

c0−

u′E(ξ) − ytdξ
)

dt
]

= E

[∫ ∞

c0−

∫ ∞

τξ

e−βt (u′E(ξ) − yt
)

dtdξ
]
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=

∫ ∞

c0−

E

[∫ ∞

τξ

e−βt (u′E(ξ) − yt
)

dt
]

dξ

where Fubini’s theorem is applied in the second equality, which is guaranteed by the condition (3.6).
Note that τξ is an admissible stopping time, i.e., τξ ∈ S. Hence, the left-hand side is simply the

objective functional evaluated at the particular choice τ = τξ. Since the right-hand side takes the
supremum over all τ ∈ S, it must dominate the value at any feasible τ; therefore,

E

[∫ ∞

τξ

e−βt(u′E(ξ) − yt
)

dt
]
≤ sup

τ∈S

E

[∫ ∞

τ

e−βt(u′E(ξ) − yt
)

dt
]
. (3.8)

Next, J1(y, c0−) can be represented as:

J1(y, c0−) = E
[∫ ∞

0
e−βt (uE(c0−) − ytc0−) dt

]
=

uE(c0−)
β

−
y
r

c0−.

Hence, by integrating the J0(y, c0−) and J1(y, c0−), we have the following equation for any ct ∈ Π(c0−)

E

[∫ ∞

0
e−βt (uE(ct) − ytct) dt

]
≤

∫ ∞

c0−

sup
τ∈S

E

[∫ ∞

τ

e−βt (u′E(ξ) − yt
)

dt
]

dξ +
uE(c0−)
β

−
y
r

c0−.

By taking the supremum on the both-sides of the above equation over Π(c0−),

J(y, c0−) ≤
∫ ∞

c0−

sup
τ∈S

E

[∫ ∞

τ

e−βt (u′E(ξ) − yt
)

dt
]

dξ +
uE(c0−)
β

−
y
r

c0−.

□

Lemma 3.1 yields an inequality because it is derived for any admissible stopping time. The key step
is to apply Itô’s formula to the candidate value function and exploit the variational-inequality structure:
in the continuation region, the candidate solves the HJB equation, while at the intervention region, the
obstacle/gradient condition prevents any instantaneous adjustment from improving upon the candidate.
Therefore, the associated discounted process is a supermartingale, and optional sampling gives the
desired inequality.

In Theorem 3.1, we take the specific stopping rule τ∗c in (3.16), i.e., the first hitting time of the free
boundary. On [0, τ∗c) the HJB equation holds with equality, and at τ∗c the boundary (value-matching
and, when applicable, smooth-fit) conditions eliminate any slack. Hence, the stopped process becomes
a martingale and the bound in Lemma 3.1 is attained, which turns the inequality into equality in
Theorem 3.1.

Lemma 3.1 also clarifies the economic structure of the dual value function. In (3.7), the second
term corresponds to the dual value when the consumption rate remains fixed at c0−, whereas the first
term captures the incremental utility from raising consumption. The integrand u′E(ξ) − yt represents the
marginal net gain from increasing consumption by an infinitesimal amount, from c−dc to c. Accordingly,
the maximization in the first term determines the optimal timing at which this marginal gain should be
realized.
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Equivalently, Problem 3.2 can be viewed as a continuum of optimal stopping problems: for each
target level c ≥ c0−, one chooses the optimal stopping time τc at which consumption is adjusted to
c. This structure is analogous to incremental irreversible investment problems (see [17, 18]), where a
decision maker chooses the optimal time to expand capacity from K − dK to K for each K ≥ K0−. Here,
the agent chooses the optimal time to increase consumption from c − dc to c for each c ≥ c0−.

3.3. Reduction to a continuum of optimal stopping problems

We now proceed to introduce the problem of maximizing the dual value function J(y, c0−).
Problem 3.3. Optimal Stopping Problem We consider the following optimal stopping problem for
given ξ > 0:

Qξ(y) ≡ sup
τ∈S

E

[∫ ∞

τ

e−βt (u′E(ξ) − yt
)

dt
]
. (3.9)

For the stopping problem Qξ(y), we can rewrite as:

Qξ(y) = sup
τ∈S

E

[∫ ∞

τ

e−βt (u′E(ξ) − yt
)

dt
]

= sup
τ∈S

E

[
e−βτEτ

[∫ ∞

τ

e−β(t−τ) (u′E(ξ) − yt
)

dt
]]
.

Let us denote ψξ(y) as follows:

ψξ(yτ) ≡ Eτ

[∫ ∞

τ

e−β(t−τ) (u′E(ξ) − yt
)

dt
]
. (3.10)

The equation (3.10) satisfies

ψξ(y) = E
[∫ ∞

0
e−βt (u′E(ξ) − yt

)
dt

]
=

u′E(ξ)
β
−

y
r
.

Then, applying the strong Markov property, the optimal stopping problem is represented as

Qξ(y) = sup
τ∈S

E
[
e−βτψξ(yτ)

]
. (3.11)

The problem is similar to finding the optimal stopping time of a perpetual American put option.
yt = yeβtHt satisfies the following stochastic differential equation (SDE):

dyt = (β − r)ytdt − θytdBt.

Hence, the process {y}∞s=t is a strong Markov process with an infinitesimal generator L given by

L(·) ≡
1
2
θ2z2 d2

dz2 (·) + (β − r)z
d
dz

(·) − β(·).

Thus, we can derive the variational inequality (VI) from the optimal stopping problem.
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Lemma 3.2. The standard theory of the optimal stopping time problem ( [19]), the Qξ satisfies the
following VI: L(Q) = 0, if Qξ > ψξ,

L(Q) ≤ 0, if Qξ = ψξ.
(3.12)

And, it satisfies a transversality condition:

lim inf
t→∞

e−βtE
[
Q(yt, ξ)

]
= 0. (3.13)

Since we consider an infinite-horizon problem, the VI is expressed as an ordinary differential equation
(ODE) and we can obtain the solution of the VI explicitly. The subsequent lemma provides a solution to
Problem 3.3.

Lemma 3.3. The solution Qξ(y) of Problem 3.3 is given by

Qξ(y) =


u′E(ξ)

β(1 − n2)

(
y

zI(ξ)

)n2

for y > zI(ξ),

u′E(ξ)
β
−

y
r

for y ≤ zI(ξ)

where

zI(ξ) =
r
β
·

n2

n2 − 1
u′E(ξ).

Proof. We define the continuous region (CR) and adjustment region (AR) as follows:

CR =
{
y ∈ R+ : y > zI(ξ)

}
, AR =

{
y ∈ R+ : 0 < y ≤ zI(ξ)

}
.

In the continuous region, Qξ(y) follows the homogeneous equation,

1
2
θ2z2 d2

dz2 Q′′ξ (y) + (β − r)z
d
dz

Q′ξ(y) − βQξ(y) = 0. (3.14)

Then, a general solution of the above equation (3.14) is given by the following form:

Qξ(y) = A1yn1 + A2yn2 ,

where n1 > 1 and n2 < 0 are positive and negative roots of the equation (3.14), respectively. Note that
A1 must be 0, since Qξ(y) satisfies the transversality condition (3.13). Hence,

Qξ(y) = A2yn2 .

By smoothing condition at y = zI(ξ),

Qξ(zI(ξ)) =
u′E(ξ)
β
−

zI(ξ)
r
,
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Q′ξ(zI(ξ)) = −
1
r
.

Then, we get the free boundary zI(ξ) and the coefficient A2 as follows:

zI(ξ) =
r
β
·

n2

n2 − 1
u′E(ξ), A2 =

u′E(ξ)
β(1 − n2)

(zI(ξ))−n2 .

Therefore, for y > zI(ξ),

Qξ(y) =
u′E(ξ)

β(1 − n2)

(
y

zI(ξ)

)n2

.

□

3.4. Verification and trigger boundary

By Lemma 3.3, we obtain the following main theorem.
Theorem 3.1 (Verification). Let us define c∗t as the right-continuous inverse of τ∗ξ, i.e.,

c∗t = inf
{
ξ ≥ c0− : τ∗ξ > t

}
, t ≥ 0, (3.15)

where τ∗ξ is the optimal stopping time from Lemma 3.3, defined by

τ∗ξ = τ
∗
ξ(y) = inf {t > 0 : yt ≤ zI(ξ)} . (3.16)

We adopt the convention

inf ∅ := c0−. (3.17)

The c∗t satisfies the following:

(a) The dual value function for the optimal consumption process in Lemma 3.1 satisfies that

J(y, c0−) =
∫ ∞

c0−

Qξ(y)dξ +
uE(c0−)
β

−
y
r

c0−. (3.18)

(b) When we select the optimal consumption process, the investor’s expected utility of the non-concave
function is equivalent to the expected utility of the concave hull,

E

[∫ ∞

0
e−βtu(c∗t )dt

]
= E

[∫ ∞

0
e−βtuE(c∗t )dt

]
. (3.19)

Proof. (a) It is sufficient to prove that the inequality (3.8) becomes equality for the optimal consump-
tion process. We know that the c∗ is derived by the optimal stopping time τ∗. That is, τ∗ represents
the time that maximizes the right-side of the equation (3.8). Hence,

E

∫ ∞

τ∗ξ

e−βt (u′E(ξ) − yt
)

dt

 = sup
τ∈S

E

[∫ ∞

τ

e−βt (u′E(ξ) − yt
)

dt
]
.
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(b) We know that u(ξ) = uE(ξ) whenever u is concave, i.e., for ξ <
⋃∞

m=1(cm, c̄m). Hence, it suffices to
verify the identity on each non-concave interval (cm, c̄m).
Fix m ≥ 1. By the definition of the concave hull, uE coincides with the chord connecting the two
contact points (cm, u(cm)) and (c̄m, u(c̄m)). Equivalently, uE is linear on [cm, c̄m] and satisfies

uE(ξ) = λ u(cm) + (1 − λ) u(c̄m), ξ = λcm + (1 − λ)c̄m, ξ ∈ [cm, c̄m]. (3.20)

In particular, uE ≥ u on [cm, c̄m] and uE = u at the endpoints cm and c̄m.
Let us consider τ∗cm−

and τ∗c̄m+
as the first hitting times of the optimal consumption process that

reach cm− and c̄m+, respectively. More precisely, we may define

τ∗cm
:= inf{t ≥ 0 : c∗t ≥ cm}, τ∗c̄m

:= inf{t ≥ 0 : c∗t ≥ c̄m}.

During the time from τ∗cm−
to τ∗c̄m+

, the consumption is fixed at cm− due to the definition (3.17).
Moreover, the optimal policy does not take intermediate values in (cm, c̄m): it stays at the lower
boundary cm until the upper boundary is triggered, at which point consumption jumps to c̄m.
Therefore, along the optimal path, c∗t takes values in the non-concave region only through the
endpoints, at which u and uE coincide. Hence u(c∗t ) = uE(c∗t ) for all t ≥ 0. It implies that the
utility of the original function is equal to the concave hull’s one for ξ ∈

⋃∞
m=1(cm, c̄m). Therefore, it

satisfies the following:

E

[∫ ∞

0
e−βtu(c∗t )dt

]
= E

[∫ ∞

0
e−βtuE(c∗t )dt

]
.

□

Figure 3. Relationship marginal utility of wealth y and consumption c.
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Remark 3.2. On each interval (cm, c̄m) where the original utility is non-concave, the concave hull uE is
linear on [cm, c̄m], so the corresponding marginal utility is constant there, and the classical inverse is
not single-valued. In this case, the stopping rule τ∗ξ (equivalently, the trigger zI(ξ)) does not depend
on the specific ξ ∈ (cm, c̄m), and the right-continuous inverse in (3.15) selects the lower endpoint cm.
Economically, this means that during a non-concave (risk-seeking) region, consumption remains fixed at
the lower boundary cm until the upper boundary is triggered, at which point consumption jumps to c̄m.

Remark 3.3. Recall that the dual state yt can be interpreted as a (scaled) shadow value of wealth, i.e.,
the effective marginal value of relaxing the budget constraint. Accordingly, the boundary zI(ξ) serves
as a trigger for consumption adjustment: the agent maintains the current consumption regime while
yt > zI(ξ) and adjusts consumption once yt reaches the boundary. Hence,

τ∗ξ = inf{t ≥ 0 : yt ≤ zI(ξ)}

is the first hitting time of the trigger at which the optimal consumption policy switches (or jumps).

The relationship between y and c is determined by marginal utility, and Figure 3 illustrates that the
inverse marginal utility mapping is decreasing. Discontinuities at each c arise because the left and
right derivatives of the (concavified) utility differ at c, reflecting the presence of linear segments in the
concave hull. In terms of the y-process, when yt reaches the trigger level zI, consumption is adjusted
upward. Once consumption attains c, it remains fixed at that level by (3.17) until the corresponding
threshold associated with c̄ is reached, after which yt resumes its decrease. Beyond this point, the
consumption dynamics coincide with those of the baseline ratcheting model.

Theorem 3.2 (Duality). The value function (3.1) and dual value function (3.5) have the following
duality relationship for all t > 0:

V(x, ct−) = min
y>0

J(y, ct−) + yx (3.21)

From the duality, we get the following results:

(a) The optimal wealth process X∗t is given by

X∗t = −
∂J(yt, c∗t )
∂yt

=
1
β
·

n2

n2 − 1
·

1
z̄
·

(yt

z̄

)n2−1 ∫ ∞

c∗t

(
u′E(ξ)

)1−n2 dξ. (3.22)

(b) The optimal portfolio process π∗t is expressed as

π∗t =
θ

σ
yt
∂2J(yt, c∗t )
∂2yt

= −
θ

σ
·

n2

β
·

(yt

z̄

)n2−1 ∫ ∞

c∗t

(
u′E(ξ)

)1−n2 dξ. (3.23)

[13] establish the duality relationship between the value function of Problem 3.1 and the dual value
function of Problem 3.2 in Proposition 3.1. In the next section, we examine a specific utility function
and analyze the behavior of the optimal strategies.
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Figure 4. Shifted CRRA function with concave hull.

4. Implications

To illustrate our theoretical framework and its implications for stochastic optimal control, we analyze
the optimal strategies under a specific utility specification. We adopt a shifted Constant Relative Risk
Aversion (CRRA) utility function, characterized by a single non-concave segment (c, c̄) (i.e., m = 1).

Outside this interval, the agent’s utility u(ξ) follows the standard CRRA form. For simplicity and
tractability, the function is shifted upward to satisfy u(c) = 0, which is given by

u(ξ) =
ξ1−γ

1 − γ
−

c1−γ

1 − γ
, γ , 1.

This structural feature is illustrated in Figure 4, where the utility function u(ξ) (orange line) lies strictly
below the chord connecting the endpoints u(c) and c̄. As discussed in Section 3, the original objective
function u(ξ) is replaced by its concave hull, uE(ξ). In this setup, uE(ξ) is a piecewise function: it
coincides with u(ξ) in the concave regions and is represented by the linear chord spanning the non-
concave region:

uE(ξ) =

u(ξ), if ξ < (c, c̄)
u′(c)(ξ − c), if ξ ∈ (c, c̄)

This linear segment, shown as the blue line in Figure 4, effectively bridges the non-concave gap. The
transformation restores the required concavity to the problem, allowing us to apply the dual-martingale
approach.

Applying the general solutions from Theorem 3.1 and Theorem 3.2 to this specific functional form
yields explicit expressions for the optimal consumption, wealth, and portfolio processes, which are
presented in the following corollary.

Corollary 4.1. For the shifted CRRA function, the optimal solution is given as follows.
(Hitting-time notation). For each target level ξ > 0, define the optimal stopping time as the first hitting
time of the trigger boundary

τ∗ξ := inf{t > 0 : yt ≤ zI(ξ)}.
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In particular, for the endpoints of the non-concave interval [c, c̄], define

τ∗c := inf{t > 0 : yt ≤ zI(c)}, τ∗c̄ := inf{t > 0 : yt ≤ zI(c̄)}.

Equivalently, τ∗c and τ∗c̄ are the first times at which the optimal policy reaches c and c̄, respectively.

(a) The optimal consumption process c∗t is given by

c∗t =



max
{

c0−, min
0≤s≤t

(ys

z̄

)− 1
γ

}
, 0 ≤ t < τ∗c,

c, τ∗c ≤ t < τ∗c̄,

max
{

c̄, min
τ∗c̄≤s≤t

(ys

z̄

)− 1
γ

}
, t ≥ τ∗c̄.

(4.1)

(b) The optimal wealth process X∗t is represented as

X∗t =
1
β
·

n2

(n2 − 1)
·

1
Γ z̄
·

(yt

z̄

)n2−1
[
1
Γ

(
cΓ − (c∗t )Γ − c̄Γ

)
+ cΓ−1(c̄ − c)

]
+

c∗t
r
. (4.2)

(c) The optimal portfolio process π∗t is expressed by

π∗t =
θ

σ
(1 − n2)

(
X∗t −

c∗t
r

)
. (4.3)

(Definitions of constants). The constants Γ and z̄ are defined by

Γ := 1 − γ(1 − n2), z̄ :=
r
β
·

n2

n2 − 1
.

Proof. (a) By the definition of the optimal stopping time (3.16), we can derive the

{
c∗t ≥ ξ

}
=

{
min
0≤s≤t

ys

z̄
≤ ξ−γ

}
=

{
ξ ≥

(
min
0≤s≤t

ys

z̄

)− 1
γ

}
. (4.4)

The above equation (4.4) gives us the optimal consumption process,

c∗t = max
{

c0−,
(
min
0≤s≤t

ys

z̄

)− 1
γ

}
.

Therefore, using the definition of consumption in the non-concave region (3.17), we can obtain the
following optimal consumption process.

c∗t =



max
{

c0−,
(
min
0≤s≤t

ys

z̄

)− 1
γ

}
, for 0 ≤ t < τ∗c

c, for τ∗c ≤ t < τ∗c̄

max

c̄,
(

min
τ∗c̄≤s≤t

ys

z̄

)− 1
γ

 for t ≥ τ∗c̄
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(b) The dual value function J(y, c∗t ) is given by

J(y, c∗t ) =
∫ ∞

c∗t

Qξ(y)dξ +
uE(c∗t )
β
−

y
r

c∗t . (4.5)

For c∗t < c, the dual value function is expressed by

J(y, c∗t ) =
∫ ∞

c∗t

1
β
·

1
1 − n2

(y
z̄

)n2 (
u′E(ξ)

)1−n2 dξ +
uE

(
c∗t

)
β
−

yt

r
c∗t

=
1
β
·

1
1 − n2

(y
z̄

)n2
∫ c

c∗t

(
u′E(ξ)

)1−n2 dξ +
∫ c̄

c

(
u′(c)

)1−n2 dξ +
∫ ∞

c̄

(
u′E(ξ)

)1−n2 dξ
 + uE(c∗t )

β
−

y
r

c∗t

Then, we get the following form of the dual value function.

J(y, c∗t ) =
1
β
·

1
1 − n2

·

(yt

z̄

)n2
[
1
Γ

(
cΓ − (c∗t )Γ − c̄Γ

)
+ cΓ−1

(
c̄ − c

)]
+

uE
(
c∗t

)
β
−

yt

r
c∗t .

Therefore, we obtain the optimal process X∗t by equation (3.22) in Theorem 3.2,

X∗t =
1
β
·

n2

(n2 − 1)
·

1
z̄
·

(yt

z̄

)n2−1
[
1
Γ

(
cΓ − (c∗t )Γ − c̄Γ

)
+ cΓ−1(c̄ − c)

]
+

c∗t
r
.

(c) The optimal portfolio process is obtained by the optimal portfolio (3.23) in Theorem 3.2 and Part
(b).

□

(a) Consumption rate (b) Wealth and portfolio

Figure 5. Optimal policies: (a) consumption path; (b) wealth and portfolio, with the consump-
tion perpetuity c∗t /r shown as a dashed red line.

Remark 4.1. Outside the non-concave interval, we use the shifted CRRA utility

u(ξ) =
ξ1−γ

1 − γ
−

c1−γ

1 − γ
, γ , 1,

so u′(ξ) = ξ−γ. On concave parts we have u′E = u′, and therefore (7) is equivalent to∫ ∞

c
s−γ(1−n2)ds < ∞ ⇐⇒ γ(1 − n2) > 1 ⇐⇒ Γ := 1 − γ(1 − n2) < 0.
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To visualize the optimal processes derived in Corollary 4.1 and analyze the agent’s behavior, we
conduct numerical simulations. For the subsequent analysis, we adopt a baseline set of market and
preference parameters as follows:

X0 = 35, β = 0.03, r = 0.03, µ = 0.07, σ = 0.2, γ = 2, c0− = 1, c = 1.5, and c̄ = 2.

Part (a) of Corollary 4.1 shows that the optimal consumption policy follows a ratcheting rule driven
by the shadow price process yt. In particular, over the interval c on [τ∗c, τ

∗
c̄) the optimal policy is to hold

consumption exactly at c; only when the free boundary associated with c̄ is reached does consumption
jump upward to c̄. The economic intuition is that, because the marginal utility is flat on

(
c, c̄

)
under

the concave hull, the investor is locally indifferent within that band, and therefore optimally parks
consumption at the boundary until a new upward jump becomes justified. The inverse link between
the shadow price yt and the chosen consumption rate is already visible in Figure 3. Figure 5 reports
the simulated paths of the optimal consumption rate, the corresponding wealth process, and the risky
allocation.

4.1. Economic Interpretation

Pause-and-jump consumption in the risk-seeking region. Panels (a) and Figure 3 highlight the
inverse relationship between the shadow price yt and consumption. When preferences are concavified,
the concave hull uE is linear on (c, c̄), so the effective marginal utility is flat there. With irreversible
consumption, this makes fine-tuning inside the band suboptimal: the agent optimally parks consumption
at c and waits until the trigger associated with c̄ is reached, at which point consumption jumps to c̄.

Buffer saving and the option value of waiting. Part (b) implies that wealth stays strictly above the
perpetuity value c∗t /r. The gap X∗t − c∗t /r can be interpreted as discretionary (buffer) wealth. Because
raising consumption is irreversible; the agent delays upgrading the living standard until the buffer is
sufficiently large, reflecting an option value of waiting and precautionary behavior.

Risk taking scales with discretionary wealth. Part (c) shows that the risky position is proportional to
discretionary wealth. During the pause at c, the consumption floor remains low, so discretionary wealth
tends to be larger, which mechanically generates higher risk exposure relative to the smooth-adjustment
CRRA benchmark.

Part (b) states that the optimal wealth process X∗t is always strictly above the perpetuity value of the
current consumption, c∗t /r. Algebraically, X∗t is decomposed into c∗t /r plus an explicit term obtained
from the dual representation, which remains finite under Γ < 0, and strictly positive. Economically,
this gap between X∗t and c∗t /r, which is the investor’s discretionary wealth, reflects precaution: even if
wealth is already sufficient to afford a higher consumption rate c > c at that instant, the investor does not
immediately raise consumption. The decision to lift consumption, for example from c to c̄, is irreversible
because consumption does not decrease later. This irreversibility creates an option value of waiting. The
investor delays the upward adjustment until wealth is sufficiently above the threshold needed to fund the
higher standard of living on a continuing basis. Thus, a Friedman–Savage type investor will choose to
accumulate a financial buffer before exercising the option to step up consumption, precisely to avoid
being forced to cut it in the future.
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(a) Consumption rate (b) Wealth

(c) Portfolio
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Figure 6. Comparison of optimal policies under non-concave (Friedman–Savage) versus
concave (CRRA) preferences: (a) consumption, (b) wealth, (c) portfolio; (d) simulated risky-
asset price path.

Part (c) gives the optimal portfolio. The risky holding π∗t is proportional to the investor’s discretionary
wealth X∗t − c∗t /r, that is the portion of wealth in excess of the perpetuity value of current consumption.
The proportional constant is θ

σ
(1 − n2), which coincides with the constant-share result in [14]. First,

portfolio choice is pinned down by investment opportunities and discretionary wealth, but not by the
specific curvature of utility beyond the fact that we work with its concave hull. Second, risk-taking
exhibits effective state-dependent and trend-following: when discretionary wealth is high, the investor
takes a larger position in the risky asset; when discretionary wealth is low, the risky allocation is scaled
back. After a consumption jump, discretionary wealth falls because the consumption floor has moved
up, and its perpetuity value c∗t /r is larger. As a result, even if the market price of risk θ/σ is unchanged,
the investor becomes more conservative going forward. This mechanism is visible in Panel (b) of Figure
5, which plots the wealth and portfolio weight implied by Corollary 4.1.

Our model shares with [13] the key scaling property that optimal risky demand is proportional to
discretionary wealth (the component of wealth above the perpetuity value of current consumption),
implying procyclical risk-taking when wealth drifts upward. The difference is that, under globally
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concave utility, the marginal-utility inversion is single-valued, and consumption adjusts more smoothly,
so discretionary wealth (and hence risky exposure) evolves without pronounced regime changes. In
contrast, with Friedman–Savage-type preferences, the concave hull uE contains linear segments over the
non-concave region, making the effective marginal utility locally flat. This produces an indifference
band in which the agent optimally pauses consumption at the lower boundary until the upper boundary
is triggered, followed by a discrete upward jump in consumption. Mechanically, the pause keeps the
consumption floor lower for longer, increasing discretionary wealth and thereby amplifying trend-
chasing in the risky position, whereas the jump raises the floor sharply and leads to an immediate
de-risking episode. Hence, locally risk-seeking preferences generate an endogenous cycle of stronger
run-ups in risk exposure and sharper post-jump reductions, beyond what arises under concave utility.

As noted in Theorem 3.1, once consumption reaches c, the Friedman-Savage investor optimally
pauses at that level until the upper boundary c̄ is reached, whereas the benchmark CRRA investor
adjusts consumption more smoothly as depicted in Figure 6(a). This pause keeps the consumption floor
lower for longer. Consequently, discretionary wealth X∗t − c∗t /r is larger over this interval, and the risky
position, which equals θ

σ
(1 − n2) times discretionary wealth, is mechanically higher than under CRRA

(Figure 6(c)). In other words, the elevated risk taking is not merely a manifestation of local risk-seeking
on (c, c̄); it also follows directly from the policy rule that scales risky investment with the slack above
the consumption perpetuity.

This mechanism can already be visible before consumption reaches (c). Even where preferences
coincide with CRRA outside the band, the same discretionary-wealth scaling applies, so exposure
co-moves with available slack and can exceed the CRRA benchmark depending on the path (Figure
6(c)). As favorable states accumulate, the trend-following behavior of the Friedman–Savage investor
accelerates wealth growth relative to CRRA (Figure 6(b)). Note that higher exposure during the
pause does not imply wealth dominance. When the risky asset underperforms (Figure 6(d)), the
Friedman–Savage investor’s larger position can produce temporary reversals in relative wealth, even
though the strategy grows wealth faster in favorable states. After an upward ratchet, c∗t /r rises, the
slack shrinks, and the risky share naturally decreases, preserving the same link between risk-taking and
discretionary wealth.

Table 1. Average time (years) spent at the baseline consumption c before the next consumption
jump, under variations in β, c̄, and µ. The ‘Benchmark’ column uses X0 = 35, β = 0.03, r =
0.03, µ = 0.07, σ = 0.2, γ = 2, c0− = 1, c = 1.5, and c̄ = 2. The ‘(Std.)’ row reports
standard deviations.

Parameter Benchmark
β c̄ µ

0.01 0.05 2.5 3 0.05 0.1
Mean 14.18 10.65 14.98 21.89 27.35 21.83 7.414
(Std.) (14.90) (10.27) (15.80) (16.40) (16.94) (14.34) (10.98)

Table 1 reports the average time (in years) the investor remains at the baseline consumption before
the next ratchet, under variations in β, c̄, and µ. Under the benchmark parameters, the mean duration is
14.18 years with substantial dispersion, reflecting the intrinsic variability of hitting times.
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Varying the discount rate shows a clear boundary effect. When β = 0.01 (more patient), the mean
time shortens to 10.65 years, whereas for β = 0.05 (more impatient), it lengthens to 14.98 years. Since
the free boundary satisfies z̄ = r

β
n2

n2−1 , a smaller β raises z̄ and makes the ratchet condition easier to meet
along a given yt-path, thereby reducing the expected waiting time. Economically, a lower discount rate
increases the present value of the utility gain from a permanent consumption step-up, so the agent is
willing to exercise the irreversible “upgrade option” with a smaller buffer (i.e., under less favorable
states). This manifests as an earlier boundary hit in the dual trigger formulation. Put differently, although
a more patient agent values future utility more, the relevant comparison here is between exercising now
and waiting longer under an irreversible rule; a smaller β raises the continuation value of locking in a
higher consumption level, lowering the effective hurdle for exercising the step-up.

Changing the target level c̄ has the expected effect. Raising c̄ from 2.5 to 3 increases the mean
duration from 21.89 to 27.35 years. A larger contemplated jump requires a higher wealth (or more
favorable states) before adjustment, so the investor remains at c longer on average.

Market conditions, captured by µ, move the duration in the opposite direction. A higher drift µ = 0.1
speeds up wealth accumulation and boundary hits, shortening the mean to 7.41 years, whereas a lower
drift µ = 0.05 stretches it to 21.83 years. The standard deviations indicate substantial dispersion across
all cases, consistent with the stochastic nature of first-passage times.

5. Concluding Remarks

We study a continuous-time consumption–investment problem with an irreversible (non-decreasing)
consumption constraint and a Friedman-Savage-type utility function that is locally non-concave. To
handle the non-concavity, we concavify preferences by replacing u with its concave hull uE. This
transformation preserves the economic content of the problem while restoring concavity, thereby
allowing the dual-martingale method and the standard verification machinery for ratcheting problems to
apply. A key implication is a pause-and-jump structure in optimal consumption: within the locally
risk-seeking band, the agent optimally keeps consumption at the lower boundary and upgrades discretely
only when the trigger (free boundary) is reached.

Our results further reveal that the agent’s exposure to risky assets is generally higher than that of a
standard investor with a globally concave utility function. Following a consumption jump, however, risky
investment is sharply reduced, reflecting a switch from locally risk-seeking to risk-averse behavior. The
resulting portfolio rule is proportional to the agent’s discretionary wealth, defined as wealth in excess
of the perpetuity value of current consumption. During the pause at the lower boundary, discretionary
wealth tends to be larger, which can generate higher exposure to the risky asset relative to a benchmark
CRRA investor with smoother consumption adjustments. After an upward ratchet, the consumption
floor increases and discretionary wealth mechanically shrinks, leading to a sharp reduction in risk-taking.
This endogenous pattern links discrete consumption upgrades to alternating phases of elevated risk
exposure and subsequent de-risking.

From an actuarial perspective, the non-decreasing consumption rule can be interpreted as a ratch-
eted or guaranteed-increasing payout, as commonly observed in with-profits annuities or guaranteed
withdrawal benefit contracts. In this context, the free boundary that triggers consumption adjustments
corresponds to the declaration threshold for bonuses or guarantee step-ups. Specifically, the bound-
ary governing optimal consumption adjustments plays the role of a declaration or step-up threshold:
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bonuses (or guarantee step-ups) are optimally locked in only when the underlying surplus or buffer
becomes sufficiently large. Our framework therefore provides a tractable theoretical foundation for
analyzing dynamic guarantee mechanisms under behavioral (Friedman–Savage-type) preferences within
a continuous-time stochastic control setting.

Limitations and future research. Our baseline model assumes constant investment opportunities
and a single risky asset. Natural extensions include multiple risky assets, stochastic interest rates
or time-varying risk premia, and market frictions such as transaction costs or borrowing constraints.
Finally, it would be valuable to connect the model to data by testing for step-like consumption upgrades
and their association with wealth thresholds, as well as by exploring the calibration implications for
ratcheted payout products.
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