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1. Introduction

Gradient-type methods and variational inequalities have recently been and continue to be important
topics in optimization theory and its applications. See, for example, [1-12] and references mentioned
therein. In the present paper we study, in the setting of a Hilbert space, weak convergence of the
sequences generated by the extragradient method, introduced in [11] for solving variational inequalities,
in the presence of summable computational errors. Our results enhance earlier results, which were
obtained by Censor, Gibali and Reich [5] for exact iterates of this method. It is shown that the weak
convergence established in [5] remains in force even in the presence of small computational errors,
which are always present in practice.

Let H be a Hilbert space equipped with an inner product (-, -) which induces the norm

x|l = (x, x)'/%, x € H.

Let D be a nonempty, closed, and convex subset of H. It is well known that for each x € H, there exists
a unique nearest point in D which is denoted by Pp(x). That is,

llx — Pp(0)Il < lx = yll, y € D.
It is also well known that Pp : H — H is a nonexpansive operator [13, 14], that is,

IPp(x) = PoWIl < llx = yll, x,y € H,
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and that for each x € H, and each y € D, we have

Pp(x) € D,
(x = Pp(x), Pp(x) —y) 2 0, (1.1)
and
llx = YII* > llx = Po()I* + lly = Pp()II*. (1.2)

Recall that a map B : H — 2% is said to be monotone if
(u-v,x—yy=0

for each x,y € H, each u € B(x) and each v € B(y).
Note that the following fact, called the Opial property, holds in H.
If a sequence {x;};”, C H converges weakly to x € H, then for each y € H \ {x}, we have

likrninf l|x, — x| < liin inf ||x; — yll.
2. The first main result

Assume that C C H is a nonempty, closed, and convex set, and let f : H — H be an operator.
Assume that
(f(x) - f(y),x —y) =0 for each x,y € C. 2.1

In other words, the operator f is monotone. Assume also that L > 0 and that

If(x) = fDIl < Lilx = yll, x,y e C. (2.2)

In other words, the operator f is Lipschitz with a Lipschitz constant L. Denote by SOL(C, f) the set of
all points x, € X such that
(f(x), x—x.)=>0, xeC. (2.3)

We assume that SOL(C, f) # 0. Note that for each x, € C, we have [15]
x. € SOL(C, f) if and only if (f(y),y — x.) >0, y € C. (2.4)
Indeed, if x, € SOL(C, f), then for each y € C, we have
),y —x) = (f(x),y —x.) = 0.

If foreachy € C,
O,y —x.) 20,

then for each x € C and each ¢ € (0, 1), we have
0 < <f((1 - t)x* + tX), (1 - I)X* +1x - -x*>

= Hf((1 = Dx, +1x), x — X,)
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and
0 < (f((1=Dx. +1x),x — x.) = (f(x), x — x.)

ast — 0*.
We now consider the following algorithm for solving our variational inequality.
Fix a number 7 € (0, L7").
Initialization. Choose any point xy € H.
Iterative step. Assume that k > 0 is an integer and that x; € H is the current iterate. Set

i = Pe(xx = 7 (%), Xee1 = Pe(xx — 71 (yi)). (2.5)

It was shown in [5] that the sequences {x;} and {y;} both converge weakly to the same limit, which
belongs to SOL(C, f). In the present paper, we show that inexact iterates of the above algorithm retain
this property provided the sequence of computational errors is summable.

The following lemma is an important ingredient of the proofs in [5] and in the present paper.

Lemma 2.1. Let {xi},>,, (i, C H, assume that (2.5) holds for each integer k > 0, and let u €
SOL(C, f). Then for each integer k > 0, we have

st — ull® < Nl — ull> = (1 = 2Ly — il
Let {Au}2, € (0,00) and

A= Z As. (2.6)

We are now ready to state our first main result which establishes the weak convergence of iterates
generated by the monotone operator f introduced in this section.

Theorem 2.2. Let T € (0, L"), (X} ey ke € H, and for each integer k > 0, let

lyx = Pc(xx = Tf ()l < Ax (2.7)

and
IXee1 = Pe(xe = Tf QI < Ay (2.8)
Then both the sequences {x},-, and {y},-, converge weakly to the same limit, which belongs to

SOL(C, f).

We precede the proof of this theorem by an auxiliary result.
3. An auxiliary result

The following lemma is an important ingredient in the proof of Theorem 2.2.

Lemma 3.1. Let 7 € (0,L7") and {X) ey iy € H, assume that for each integer k > 0, both (2.7)
and (2.8) hold, and let
u € SOL(C, f). (3.1
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Then for each integer k > 0, we have
llxe — ull < llxo — ull + A

and

e =l < e = ull® = (1= T L2)llye = %l + Aw(4llxo — ull + 10A).

Proof. Let k > 0 be an integer. Set
Vi = Pl — 7f (%)
and
Xir1 = Pe(xe = 71 (50)
Lemma 2.1, (3.2) and (3.3) imply that

%1 — ull® < llx — ull® = (1 = 7 LY)IFe — xell*.
In view of (2.7) and (3.2), we have

¥ = Yill = llyx = Pe(xx — Tfa)ll < Ax.

(3.2)

(3.3)

(3.4)

(3.5)

By (2.2), (2.8), (3.3), (3.5), and the inequality L7 < 1, and since the operator P is nonexpansive, we

have
Xkt — Xprtll = [1Pe(xx = 7 (1) — Pe(xx — f i)l

HIPc(xx = 7 (i) — Xl
<TfGe) = FON+ Ak < LrllFx — yill + Ax < 24
By (3.5) and (3.6), for each integer k > 0, we have

19k = Yill < Ary 1Risr = Xpa Il < 24
Using (3.4), (3.7), and the inequality Lt < 1, we see that for each integer k > 0,
1k — ull < |lx — ull

and
X1 — wll < Xkt = Xt Il + X — ull < Nlxe — ul] + 2A4.

It follows from (2.6) and (3.8) that for each integer k > 1,

[ee)
P = ull < Ilxo = ull +2 )" Ay < llxg = ull + 24,
i=0

Let k£ > 0 be an integer. In view of (3.4) and (3.9),
19 = xll < (1 =LYl —ull < (1 = 72L7) 2 (|lxo — ull + 24).
By (2.8), (3.3), and (3.9), we have

- 2 2
1%k = ull” = {loeer — el

(3.6)

(3.7

(3.8)

(3.9)

(3.10)

Journal of Industrial and Management Optimization Volume 22, Issue 2, 911-922.



915

S Xt = wll = 1xeer — wlll([ X1 — ull + [xee1 — ull)

S a1 = X1 lClxs 1 — vl + (X1 = Xpsall) < Arllxo — ull + SA).

It follows from (3.5), (3.9), (3.10), and the inequality 7L < 1 that
(1 = 7Ll = xell® = 11Fx — x|

< (1 =72 L) llyi = xll = 155 = xelll(1Fe = xell + [y = xlD)
< (1 =715 — yll 5w = xell + 1155 — il
< (1 = PLYMQIT = il + A) < ARllxo — ull + 5A).
Using (3.4), (3.11), and (3.12), we find that

2 1% 2
lxr = ull” < 1% — ull” + Arllxo — ull + 54)

< I = ul? = (1 = LI = P + Allxo — ull + 5A)
< o = ull® = (1 =2 L)llyx = x> + A(dllxo — ull + 10A).

This completes the proof of Lemma 3.1.
4. Proof of Theorem 2.2

Assume that
u € SOL(C, f).

Let Q be a natural number. Lemma 3.1 implies that

2 2 2
llxo — ull” = llxo — ull™ = llxg — ull

0-1

2 2

= > b = ull® = lbeer = ulP)
k=0

0-1
> > (1= 2L = yel? = Ac(4llxo — ul| + 10A)),
k=0
0-1
Do =L = il < llxo — ull® + Alxo — ull + 10A).
k=0

In view of (4.1),

(o8]

2 .
D e =yl < o0, lim ||y = xill = 0.
pr k—o0

(3.11)

(3.12)

4.1)

(4.2)

Lemma 3.1 implies that the sequence {x;};”, is bounded, and so it has a weak accumulation point. Let X

be the weak limit of a subsequence {‘xkj};il of {x;}:

lim Xk/. = X.

Jj—ooo

4.3)

Journal of Industrial and Management Optimization Volume 22, Issue 2, 911-922.



916

Clearly, x € C. In view of (4.2) and (4.3),

lim y;, = (4.4)

j—oo
in the weak topology.
Letv € C. By (1.1), for each integer k > 0,
(o = 7f () = PeCxe = 7f(x), Pe(xe = Tf (X)) = v) 2 0
and
(T (PeCx = Tf () = ) + f(x), v = Pe(x = 7f () = 0. (4.5)

Since the operator f is Lipschitz, it follows from Lemma 3.1 that the sequences {Pc(xr — 7f (X))},

and {f(xp)};2, are bounded. When combined with (2.7), (2.8), and (4.5), this implies that

lim inf(t7 ' (ye — x0) + f(x0), v —yi) > 0. (4.6)
By (4.2) and (4.6),
lim inf(f(x), v = yi) 2 0. 4.7)

Lemma 3.1, (2.1), (2.2), (4.2), (4.4), and (4.6) imply that

(SO v =) = Tm(FV).v =)

> lim sup[(f (), v = yi,) = (77" O, = ) + f (), v = )]

j—oo

= limsup[(f(v) = ;) v — i)

Jj—ooo
+(fOk;) = (X)), v = i)
—(T 0k = X)) v = i) 2 0.

So for each v € C, we have
(fv),v—x)=0. (4.8)

By (2.4),
x € SOL(C, f).

Thus, we have shown that the limit of any weakly convergent subsequence of {x}”, belongs to
SOL(C, f).

Now we show that the sequence {x;},, weakly converges to X. Suppose to the contrary that this does
not hold. Then there exists another subsequence {xz,}72, which converges weakly to X" # X, where

% € SOL(C, f).
By Lemma 3.1 applied with u = X, u = X" and the Opial property, we have

lim ||x; — X|| = liminf ||x; — X||
k—o0 k—o0
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= liminf [|x, — X|| < liminf ||, — ¥'[|
j—oo ’ j—oo
= lim ||x;; — ¥'|| = liminf ||xg, — ¥'||
j—oo : Jj—oo /
< liminf ||xz, — X[| = lim |[x;, — X||,
Jjooo 7 k—o0

a contradiction.

The contradiction we have reached shows that the sequence {x;};7 , converges weakly to . In view of
(4.2), the sequence {y.};7,, also converges weakly to ¥, as asserted. This completes the proof of Theorem
2.2.

5. The second main result

In this section we consider a modification of the algorithm studied in the previous sections. This
modification was introduced in [5], where the weak convergence of the exact iterates it generates was
proved. Here we establish the weak convergence of inexact iterates with summable errors.

Fix a number 7 € (0, L7").

We consider the following algorithm for solving our variational inequality.

Initialization. Choose any x, € H.

Iterative step. Assume that k > 0 is an integer and that x; € H is the current iterate. Set

Vi = Pe(xe — f(x0)), (5.1)
construct the half-space
Ti={weH: (X=71f(x) =y w—y) <0}, (5.2)
and set
Xes1 = Pr,(xx — 7/ (). (5.3)
In view of (1.1) and (5.1),
CcTy, k=1,2,....

The classical algorithm consists in two calculations of the nearest point projection on the set C. In
its modification introduced and studied in [5], the first step is the projection on the set C while the
second one is the projection on the half-space 7). The reason for this modification is discussed in [5].
Here, we only mention that the set C can be complicated while the projection on the half-space is easily
calculated.

It was shown in [5] that the sequences {x;} and {y;} both converge weakly to the same limit, which
belongs to SOL(C, f). In the present paper, we show that inexact iterates of the above algorithm retain
this property provided the sequence of computational errors is summable.

The following lemma is an important ingredient of the proof in [5].

Lemma 5.1. Let {x;};2,, ni, C H, for each integer k > 0, assume that (5.1)—(5.3) hold, and let
u € SOL(C, f). Then for each integer k > 0, we have

2 2 2,2 2
otesr — ull™ < |l — ull® = (1 = 7°L)lyx — xell”
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We are now ready to state our second main result.

Theorem 5.2. Let

7€ (0, L7, (5.4)
and let {A}}? ) C (0, 00) with
A=A (5.5)
k=0
Assume that {x;};,, {ihie, C H, and that, for each integer k > 0,

Vi = Pe(xp — 7f(x0)),

(5.2) holds, and
Ixes1 = Pr Ok = Tf il < Ay (5.6)

Then, the sequences {x};", and {yi};>, both converge weakly to the same limit, which belongs to
SOL(C, f).

6. An auxiliary result

Lemma 6.1. Let v € (0,L7") and {Ah2y € (0, 00) with

A= Z Ar. (5.7)

Assume that {x;};,, i}, C H, that for each integer k > 0, (5.1), (5.2), and (5.6) hold, and that
u e SOLC, f).
Then for each integer k > 0, we have
Il — ull < llxo — ull + A

and
lotees — ull® < Il = ull® = (1 = 2 LA)lyx — xll? + Ac(2llxo — ull + 3A).

Proof. Let k > 0 be an integer. Set

Xir1 = Pr (e — 71 (i) (5.8)
Lemma 5.1 and (5.8) imply that
1% = ll® < looe = ull® = (1 = T2 L2)llyx = x>, (5.9)
In view of (5.6) and (5.8),
X1 = Xprll < Are (5.10)
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By (5.7) and (5.10), we have
k1 — ull < llxxer = Xt ll + WX — ull < o — ul] + Ax
and
(o)
b — ull < Ilxo = ull + ) Ay < llxo = ull + A.
i=0
In view of (5.10) and (5.12), we also have
. 2 2
X1 — ull™ = llxeer — ull|
< ke = wll = 1sr — wlll (X1 — well + 1Xs1 — wll)
< k1 = Xl — ull + [ Xes1 = XeelD

< AeQ2lxo — ull + 2A + Ay) < Ar(2llxo — ull + 3A).

It follows from (5.9) and the above relation that
1%er = ull® < 11Zeer = ull® + Arllxo — ull + 34)
< e = ull? = (1= L) lyic = il + Ae2llxo — ull + 3.
This completes the proof of Lemma 6.1.

7. Proof of Theorem 5.2

Let
u € SOL(C, f),

and let O be a natural number. Lemma 6.1 implies that

2 2 2
llxo — ull” = [lxo — ull” — llxg — ul|

0-1

2 2

= E (e — ull” = X — ull?)
k=0

0-1
> > (1= L)l = yill? = A@llxo — ull + 3A))
k=0

and
0-1

Z(l =2 L)|lxi = yill® < llxo — ull® + AQlIxo — ull + 3A).
k=0

In view of (7.1),

(o)

2 .
§ Il = yill” < o0, lim [lyx — x|l = 0.
pr k—o0

(5.11)

(5.12)

(7.1)

(7.2)
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Lemma 6.1 implies that the sequence {x;};”, is bounded, and so it has a weak accumulation point. Let X

be the weak limit of a subsequence {ij};il of {x;}:

lll’Il ij = X.

j—)OO

It is clear that X € C. In view of (7.2) and (7.3),

lim yk_,' =X

j—oo

in the weak topology. Let v € C. By (1.1) and (5.1), for each integer k > 0, we have

X = 7f(xX0) = Yoy —v) 2 0.
In view of (7.4),
T o = x0) + f(x), v —yi) > 0.
It follows from (2.1) and (7.5) that
<f(V), V= yk)

= (SO = fO), v =y + fOr) = f(x), v = yi)
e — ) + f()sv =y = T O — X v = i)
> (fi) = [V =3y = Tk = Xew v = i)
Since the operator f is Lipschitz, it follows from (7.2) and (7.6) that

%L%(f@k) —f(x),v=y)=0

and
%L%(ﬂ - X, V=) = 0.

By (7.3), (7.6), and (7.8), we have
(f0),v = X 2 iminf(f(v),v = ) 2 0

and
(fv),v—x)=0, veC.

In view of (2.4),
X € SOL(C, f).

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

Thus we have shown that the limit of any weakly convergent subsequence of {x;}>, belongs to SOL(C, f).
Arguing as in the proof of Theorem 2.2, we can show that the sequence {x;},?, itself converges weakly

[

to X. In view of (7.2), the sequence {y:};, also converges weakly to x. This completes the proof of

Theorem 5.2.
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