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1. Introduction

The Generalized Nash Equilibrium Problem (GNEP) is a non-cooperative game involving N players,
in which the strategy set available to each player depends on the strategies chosen by all other players.
This formulation was first introduced by Debreu [1] in 1952. GNEPs have widespread applications in
economics, engineering, mathematics, operational research, telecommunications, and climate change.
Game theory plays an important role in Industrial management for analyzing strategic business decisions
in competitive markets. We refer to the survey papers [2, 3].

The development of computational algorithms for convex GNEPs has led to several approaches.
Notable examples are the Nikaido-Isoda-type function [4], the gap function method [5], penalty
methods [6], and the parametrized variational inequality approach [7]. Conjugate duality has also been
applied to this problem in [8, 9].
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Moreover, in recent years, applications of GNEPs have been increasing in many fields. GNEP’s
approach to Malfatti’s problem [10] was considered in [11]. Some applications of GNEPs for the
banking and insurance sectors were been considered in [12] and [13], respectively.

In [14], the author investigated regret-based reinforcement learning frameworks for computing
Nash equilibria in multi-agent stochastic environments. Similarly, the researchers in [15] introduced an
adaptive Nash equilibrium search method incorporating better-response dynamics to address nonlinearity
and convergence issues in strategic interaction models. Furthermore, the researchers in [16] proposed a
structured variational formulation for noncooperative games, demonstrating that decomposition-based
optimization can significantly reduce computational burden while ensuring feasibility under nonlinear
payoff relationships.

In recent years, in addition to the Nash equilibrium, research on the Berge equilibrium has been
conducted intensively. We refer to [17] for the regularized function approach and to [18] for the bimatrix
game.

It seems that with the convex GNEP, the theory, algorithms, and examples of the nonconvex GNEP
are not well developed. To the best of our knowledge, except for a few papers, there are no extensive
investigations into nonconvex GNEPs. We refer to [19] for nonconvex games with side constraints and
to [20] for weighted potential games.

A local quasi-Nash equilibrium (QNE) for non-convex problems is determined via variational
inequality problems in [19]. In [20], local and global search methods were developed by introducing a
weighted potential function for the nonconvex quadratic games. These methods differ significantly from
our approach.

In this paper, we investigate GNEPs with quadratic nonconvex objective functions and jointly convex
constraints. We show that an optimization reformulation of the nonconvex GNEPs is based on the
regularized Nikaido-Isoda function. Then, we reduce this optimization problem to a D.C. minimization
problem and apply D.C. programming methods [21]. This approach is the main contribution of this
paper.

The D.C. programming was widely studied in [22–25]. For instance, in [24], local optimality
conditions of D.C. programming and D.C. duality were examined. The survey of D.C. programming is
presented in [22, 25, 26].

The paper is organized as follows: In Section 2, we consider some classes of convex GNEPs and
reformulations of optimization problems using the Nikaido-Isoda functions. In Section 3, we consider a
quadratic nonconvex GNEP with joint constraints and the reformulation of the equivalent optimization
problem. Then, we show that the optimization problem reduces to a D.C. programming problem. In
Section 4, we recall the local and global methods for the D.C. minimization problem and apply these
methods to the problem. Some numerical results are provided in Section 5.

2. Generalized Nash equilibrium problem and equivalent optimization formulations

Let us consider an N-player game. Each player k (k = 1, ...,N) controls his strategy vector

xk := (x1
k , ..., x

nk
k )T ∈ Rnk

of nk decision variables. The vector

x := (x1, ..., xN)T ∈ Rn
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contains the n =
N∑

k=1
nk decision variables of all players. To emphasize the k−th player’s variables within

x, one can write (xk, x−k) instead of x, where x−k is formed by all the players’ decision variables except
those of player k.

In the generalized Nash equilibrium problem, player k (k = 1, ...,N) controls xk ∈ R
nk and tries to

solve the following optimization problem

Pk(x−k) : min
xk
θk(xk, x−k)

s.t. xk ∈ Xk(x−k).

Here, a cost function θk : Rn → R for each player k depends on the player’s own decision variables xk

and the decision variables x−k of the other players.
Each player’s strategy xk belongs to a feasible set Xk(x−k) ⊂ Rnk , which depends on the strategies

of the rival players. Xk(x−k) is called a feasible set of player k. In many applications, these feasible
sets are defined by inequality constraints. For each player k = 1, ...,N, and a given continuous function
gk : Rn → Rmk , the set Xk(x−k) is defined as:

Xk(x−k) := {xk | gk(xk, x−k) ≤ 0}. (2.1)

For any given x ∈ Rn, let us define the set X(x):

X(x) :=
N∏

k=1

Xk(x−k) = {y ∈ Rn | yk ∈ Xk(x−k), k = 1, ...,N}. (2.2)

A feasible point x̄ is a solution of the GNEP if, for all players k = 1, ...,N, we have

θk(x̄k, x̄−k) ≤ θk(xk, x̄−k), ∀xk ∈ Xk(x−k).

Point x̄ is also known as a generalized Nash equilibrium. Now we consider some important subclasses
of GNEP.
Player convex GNEPs are an important subclass of GNEPs. In these games, each player’s feasible
strategy set Xk(x−k) remains closed and convex regardless of rivals’ choices x−k, and their objective
function θk(·, x−k) is also convex.
A particularly important subclass of GNEPs arises when there exists a nonempty set X ⊆ Rn, satisfying
the condition

Xk(x−k) = {xk ∈ R
nk | (xk, x−k) ∈ X} (2.3)

for every player k = 1, . . . ,N and all x−k. Such problems are commonly referred to as GNEPs with
shared or common constraints.

Proposition 1. [3] For GNEPs satisfying (2.3), the following equivalences hold:

x ∈ X(x)⇔ xk ∈ Xk(x−k) for all k = 1, ...,N ⇔ x ∈ X.

An important subclass of convex GNEPs with shared constraints is known as jointly convex GNEPs.
In a jointly convex GNEP, for every player k and all rival strategies x−k, the cost function θk(·, x−k) is
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convex. Furthermore, the shared constraint set X ⊆ Rn from condition (2.3) is nonempty, closed, and
convex. This set X is defined as:

X = {x ∈ Rn | G(x) ≤ 0}, (2.4)

where G : Rn → RM is a componentwise convex function. Thus, (2.4) becomes:

Xk(x−k) = {xk ∈ R
nk | G(xk, x−k) ≤ 0}.

This definition implies that all jointly convex GNEPs are also player convex.
We now turn to the optimization reformulations of convex GNEPs derived from Nikaido-Isoda functions.

Let the function ψ : Rn × Rn → R be defined by

ψ(x, y) :=
N∑

k=1

[θk(xk, x−k) − θk(yk, x−k)]

and consider the corresponding optimal value function

V(x) = sup
y∈X(x)

ψ(x, y), (2.5)

defined for all x ∈ Rn. Note that the supremum in (2.5) may be attained at multiple points in X(x). It
is verified that V(x) ≥ 0 for all x ∈ X(x) and that a point x̄ is a generalized Nash equilibrium (GNE)
of the GNEP if and only if x̄ ∈ X(x) and V(x̄) = 0. This establishes V as a gap function for the
GNEP. Consequently, solving the GNEP is equivalent to solving the following constrained optimization
problem:

min
x∈X(x)

V(x) (2.6)

and achieving an optimal value of zero.
To ensure the existence of a unique maximizer in the evaluation of V(x) for the GNEP, we regularize

the problem by replacing ψ with the regularized Nikaido-Isoda function:

ψα(x, y) =
N∑

k=1

[θk(xk, x−k) − θk(yk, x−k)] −
α

2
∥x − y∥2 (2.7)

where α > 0 is a given parameter. We consider the optimal value function

Vα(x) = sup
y∈X(x)

ψα(x, y), (2.8)

where for each fixed x ∈ Rn, the function ψα is strongly concave with respect to y.
Therefore, solving a GNEP is equivalent to solving a smooth optimization problem with zero optimal

value:
min
x∈X(x)

Vα(x). (2.9)

Problems (2.6) and (2.9) are so-called quasi-optimization problems [2]. By Theorem 2.3 and Theorem
2.4 [3], the player convex GNEP (2.6) and (2.9) (or the jointly convex GNEP) reduce to the following
equivalent optimization problems

min
x∈X

V(x), (2.10)

and
min
x∈X

Vα(x). (2.11)
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3. Generalized Nash equilibrium with quadratic objective functions

In this section, we examine a GNEP featuring nonconvex quadratic objective functions and jointly
convex constraints. Now we consider the following game:

PQ
k (x−k) : min

xk
θk(xk, x−k) = xT

k

(1
2

Bkkxk + dk

)
+

j,k∑
j∈N

xT
k Ck jx j,

s.t. xk ∈ Xk(x−k),

for specified matrices Ck j ∈ R
nk×n j with symmetric Bkk (without loss of generality) and jointly convex

constraints Xk(x−k) as reformulated in (2.4). We employ the regularized Nikaido-Isoda function (2.7) to
formulate the equivalent optimization problem and examine the properties of the gap function.

Lemma 1. Let α > 0 be chosen. Then the regularized Nikaido-Isoda function ψQ
α for the problem

PQ
k (x−k) is strictly concave in y for any given x ∈ X.

Proof. Let x ∈ Rn be fixed. We consider Nikaido-Isoda function for the problem PQ
k (x−k):

ψQ
α (x, y) =

N∑
k=1

[
xT

k

(1
2

Bkkxk + dk

)
+

j,k∑
j∈N

xT
k Ck jx j − yT

k

(1
2

Bkkyk + dk

)
−

−

j,k∑
j∈N

yT
k Ck jx j

]
−
α

2
∥x − y∥2 (3.1)

The Hessian of ψQ
α (x, ·) in variable y for any given x ∈ X is denoted by Jα(x):

Jα(x) =


S 11 O · · · O
0 S 22 · · · O
· · · · · · · · ·

O O · · · S NN

 (3.2)

where S kk = −(Bkk + αIk), k = 1, ...,N are nk order square block matrices and Ik are unit matrices of nk

order. Since the matrices Bkk, k = 1, ...,N are indefinite and symmetric, the matrices S kk, k = 1, ...,N
are diagonal dominated negative definite matrices for chosen α > 0. Therefore,

⟨Jα(x)x, x⟩ < 0, ∀x ∈ X.

This completes the Lemma. □
By analogy (2.8), we formulate the max-value function as follows:

VQ
α (x) = sup

y∈X
ψQ
α (x, y), x ∈ X. (3.3)

Further properties of VQ
α (x) are given in the following assertions:
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Proposition 2. For the problem (PQ
k (x−k)), the following statements hold:

(a) VQ
α (x) ≥ 0 for all x ∈ X.

(b) x∗ is a generalized Nash equilibrium if and only if x∗ ∈ X and VQ
α (x∗) = 0.

(c) For every x ∈ X, there exists a unique vector zα = (z1
α, ..., z

N
α ), such that

zα(x) = arg min
z∈X

( N∑
k=1

θk(zk, x−k) +
α

2
∥x − z∥2

)
(3.4)

(d) x∗is a generalized Nash equilibrium if and only if x∗ = zα(x∗) holds, that is, x∗ is a fixed point of the
mapping x→ zα(x).

Proof. a) For any x ∈ X, we have

VQ
α (x) = max

y∈X
ψQ
α (x, y) ≥ ψQ

α (x, x) = 0.

b) Suppose that x∗ is a solution of the GNEP. Then x∗ ∈ X and

θk(x∗k, x
∗
−k) ≤ θk(xk, x∗−k), ∀xk ∈ Xk(x∗−k)

for all k = 1, ...,N. Hence,

ψQ
α (x∗, z) =

N∑
k=1

[θk(x∗k, x
∗
−k) − θk(zk, x∗−k)] −

α

2
∥x∗k − zk∥

2 ≤ 0

for all z ∈ X. This implies
VQ
α (x∗) = max

z∈X
ψQ
α (x∗, z) ≤ 0.

Together with part (a), we have VQ
α (x∗) = 0.

Conversely, assume that x∗ ∈ X and VQ
α (x∗) = 0. Then

ψQ
α (x∗, z) ≤ 0 (3.5)

holds for all z ∈ X. Assume there is a vector ȳ ∈ X such that ψQ
α (x∗, ȳ) > 0.

Then λx∗ + (1 − λȳ) ∈ X for all λ ∈ (0, 1), and Lemma 1 implies

ψQ
α (x∗, λx∗ + (1 − λ)ȳ) > λψQ

α (x∗, x∗) + (1 − λ)ψQ
α (x∗, ȳ) = (1 − λ)ψQ

α (x∗, ȳ) > 0

for all λ ∈ (0, 1) sufficiently close to 1. This is a contradiction to (3.3).
c) From Lemma 1, the mapping zk → θk(zk, x−k) +

α

2
∥xk − zk∥

2 is strongly convex for any given x, while
taking into account that X is a nonempty, closed, and convex set.
d) See proof Proposition 2.3 [27]. □

Therefore, VQ
α (x) serves as a gap function for problem PQ

k (x−k). By Proposition 2, solving PQ
k (x−k) is

equivalent to finding a global minimum of the following smooth constrained optimization problem:

min
x∈X

VQ
α (x). (3.6)
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Using δX, the indicator function of X, we reduce (3.6) to the unconstrained problem:

min
x∈Rn

[VQ
α (x) + δX] (3.7)

with zero optimal value.
We consider the following D.C. reformulation of the function VQ

α with a parameter α > 0 [5]:

VQ
α (x) + δX = lα(x) − ϕα(x) (3.8)

with the functions lα : Rn → R ∪ {+∞} and ϕα : Rn → R ∪ {+∞} defined by

lα(x) :=
α

2
∥x∥2 +

N∑
k=1

θk(x) + δX(x), (3.9)

ϕα(x) :=
α

2
∥x∥2 + inf

z∈X

( N∑
k=1

θk(zk, x−k) +
α

2
∥x − z∥2

)
. (3.10)

The following lemma has been formulated in [5] for convex GNEPs. This result is shown to extend to
the case of nonconvex quadratic problems.

Lemma 2. Let lα and ϕα be defined by (3.9) and (3.10), respectively. The following properties hold:
(a) The functions lα and ϕα are lower semicontinuous (lsc) and strongly convex on Rn, with dom(lα) =
dom(ϕα) = X.
(b) A point x̄ solves the GNEP if and only if it solves the unconstrained optimization problem

min
x∈Rn

[
lα(x) − ϕα(x)

]
(3.11)

and the optimal value of this problem is zero.

Proof. a) We prove the three properties sequentially.
Lower semicontinuity: From equations (3.9) and (3.10), lα and ϕα are constructed as sums of continuous
quadratic functions. Since continuous functions are lower semicontinuous, and finite sums of lower
semicontinuous functions remain lower semicontinuous, it follows that lα and ϕα are lower semicontinu-
ous on Rn.
Strong convexity: The definitions of lα and ϕα contain terms of the form:

lα(x) = [convex terms] +
α

2
∥x∥2, ϕα(x) = [convex terms] +

α

2
∥x∥2,

where α
2 ∥x∥

2 is strongly convex for α > 0. Since adding a strongly convex function to a convex function
preserves strong convexity, lα and ϕα are strongly convex on Rn.
Domain: The definitions of lα and ϕα include the indicator function δX(x), which equals 0 if x ∈ X and
+∞ otherwise. Therefore, the domain of both functions is X. Thus, lα and ϕα are lower semicontinuous,
strongly convex functions with domain X.
b) First assume that x∗ is a Nash equilibrium. Then Proposition 2 (d) implies x∗ = zα(x∗). Hence,

lα(x∗)− ϕα(x∗) =
α

2
∥x∗∥2 +

N∑
k=1
θk(x∗) + δX(x∗)−

α

2
∥x∗∥2 − inf

z∈Ω(x∗)

( N∑
k=1
θk(zk, x∗−k)−

α

2
∥x∗ − z∥2

)
=
α

2
∥x∗∥2 +
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N∑
k=1
θk(x∗)+ +δX(x∗) −

α

2
∥x∗∥2 −

( N∑
k=1
θk(zk

α(x∗), x∗
−k) −

α

2
∥x∗ − zα(x∗)∥2

)
= 0, since δX(x∗) = 0.

Conversely, let x∗ ∈ Rn be any solution to problem (3.11)

0 = lα(x∗) − ϕα(x∗) = min
x∈Rn

[lα(x) − ϕα(x)].

Therefore, x∗ = zα(x∗) clearly. So x∗ is also a solution of PQ
k (x−k). □

Remark 1. We reduce the generalized Nash equilibrium problem (PQ
k (x−k)), which has a non-convex

quadratic objective function and shared convex constraints, into a smooth constrained optimization
problem using a regularization function, as shown in (3.6). Subsequently, by utilizing an indicator
function, this problem is further reformulated into an unconstrained optimization problem, which is
then equivalently reduced to the unconstrained D.C minimization problem (3.11). In the next section,
we introduce local and global search algorithms for solving problem (3.11).

4. A special local and global method for D.C. minimization problem

In recent decades, increasing methodological attention has been directed toward the development
of specialized local search strategies within the framework of D.C. optimization [21, 28–41]. In the
previous section, we constructed the function lα(x), ϕα(x) and proved that lα(·), ϕα(·) are strongly convex
and function

VQ(x) := VQ
α (x) + δX = lα(x) − ϕα(x) (4.1)

is a D.C. function. In formulation (4.1), the objective constitutes a difference-of-convex expression,
resulting in an unconstrained D.C. minimization framework. The method incorporates local and
global optimality requirements consistent with prior theoretical developments in the field [31, 33–35,
37, 38, 40]. These considerations lead to the construction of a dedicated algorithm for solving (4.1).
The corresponding Global Search component follows a two-stage structure [35]: The Global Search
framework is organized into two major components [35]:

• A Local Search stage.
• A mechanism designed to escape stationary points based on the global optimality criterion (GOC).

Local search method. Rewrite the problem (4.1) as the following D.C. minimization problem:

(P) VQ(x) = lα(x) − ϕα(x)→ min, x ∈ Rn (4.2)

where VQ : Rn → R ∪ {+∞}, and functions lα, ϕα are convex by Lemma 3.
Similarly, in [33, 34], reduce problem (4.2) into the partially linearized problem

(PLs) VQ
s (x) = lα(x) − ⟨▽ϕα(xs), x⟩ → min

x
, x ∈ Rn (4.3)

Here, ∇ϕα(xs) denotes a subgradient of ϕα(·) evaluated at the point xs, that is, ∇ϕα(xs) ∈ ∂ϕα(xs). The
linearized formulation in (4.3) was examined in the context of D.C. optimization, where a corresponding
local search framework was first introduced in [33]. The following observations are relevant for the
subsequent analysis:
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1. The feasible set of problem (3.6) is nonempty.
2. According to Lemma 2, the optimal value of Problem (P) equals zero, i.e.,

Υ(P) := inf
x∈Rn

VQ(x) = 0.

Since the reformulated subproblem (PLs) consists of a convex objective over the full space Rn, it can
be solved using standard convex optimization techniques (see, e.g., [42]) with arbitrarily prescribed
accuracy. A new iterate xs+1 is then generated as an approximate solution of (PLs), such that the
following condition is satisfied:

VQ
s (xs+1) = lα(xs+1) − ⟨▽ϕα(xs), xs+1⟩ ≤ Υ(PLs) + δs, x ∈ Rn (4.4)

where Υ(PLs) denotes the optimal objective value of linearized problem (PLs), and the sequence δs is
assumed to satisfy

∞∑
s=0

δs < +∞. (4.5)

It follows directly that the iterate xs+1 remains feasible not only for the linearized subproblem (PLs),
but also for the original formulation (P). This observation motivates the construction of an iterative
process in which a sequence {xs} ⊂ Rn is generated, beginning from an initial point x0 and updated by
repeatedly solving (PLs).

The key structural properties of this sequence are consistent with the results investigated in [33]. In
particular, VQ

s := VQ
s (xs) and the corresponding improvement measure ∆VQ

s := VQ
s (xs) − VQ

s (xs+1) form
convergent sequences.

Lemma 3. The sequence {xs} generated according to update rule (4.4) possesses the following conver-
gence properties:

(i) lim
s→∞

VQ
s = VQ ≤ Υ(P),

(ii) lim
s→∞
∆VQ

s = 0,

(iii) lim
s→∞

(
Υ(PLs) − ∆VQ

s (xs+1)
)
= 0.

(4.6)

Proof. The result follows from Theorem 1 in [33] after identifying the functions f , g, h, and Φs used
therein with VQ, lα, ϕα and VQ

s , respectively. □

The next auxiliary result will be used in the analysis.

Lemma 4. [33] Assume that the sequence {xs} generated by update rule (4.4), together with the
corresponding subgradients

ys := ∇ϕα(xs) ∈ ∂ϕα(xs), s = 1, 2, . . . ,

converges. Then the convergence holds in the following sense:

(H)

 lim
s→∞

xs = x,

lim
s→∞

ys = y ∈ ∂ϕα(x).
(4.7)
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Then the number sequence Υs = Υ(PLs) converges so that

lim
s→∞
Υs = Υ∗ (4.8)

as well as the sequence
{
VQ

s (xs+1)
}
:

lim
s→∞

VQ
s (xs+1) = VQ

∗ (4.9)

From (4.6.(ii)) it follows that Υ∗ = VQ
∗ . (P).

Proposition 3. [33] In addition to assumption (H), suppose that the following supplementary condition
is satisfied:

(H1) lim
s→∞

ys = y ∈ ϕα(x∗). (4.10)

where ys := ∇ϕα(xs) ∈ ∂ϕα(xs) for all s = 1, 2, . . .. Then the accumulation point x∗ of the sequence {xs}

is a solution of the optimization problem

(PL∗) VQ
∗ (x) = lα(x) − ⟨y, x⟩ → min

x∈Rn
. (4.11)

Proof. From relations (4.2)–(4.3), (4.8), and (4.9), we obtain

VQ(x∗) = lα(x∗) − ⟨y, x∗⟩ = Υ∗, (4.12)

which follows from the continuity of both lα(·) and the inner product operator. Furthermore, using the
inequalities

Υ∗ ≥ VQ
s (x) = lα(x∗) − ⟨y, x∗⟩, ∀ x ∈ Rn,

and passing to the limit as s→ ∞, we arrive at

Υ∗ ≥ VQ
∗ (x) = lα(x∗) − ⟨y, x⟩, ∀ x ∈ Rn,

which completes the proof, since the continuity of ϕα(·) and the inner product has been used in the
limiting process. □

Remark 2. Following the framework proposed in [33], the stopping rule for the iterative procedure is
established using one of the following conditions:

VQ(xs) − VQ(xs+1) ≤
τ

2
, δs ≤

τ

2
, (4.13)

or equivalently,

VQ
s (xs) − VQ

s (xs+1) = lα(xs) − lα(xs+1) − ⟨∇ϕα(xs), xs − xs+1⟩ ≤
τ

2
, δs ≤

τ

2
.

These formulations are sufficient to terminate the procedure defined by (4.8).

Journal of Industrial and Management Optimization Volume 22, Issue 2, 860–879.



870

A further consequence, analogous to Proposition 1 in [33], is the convergence of successive iterates
with respect to the decision variable:

lim
s→∞
∥xs − xs+1∥ = 0. (4.14)

This property holds under the assumption that ϕα(·) is strongly convex, i.e.,

ϕα(x) ≥ ϕα(y) + ⟨∇ϕα(y), x − y⟩ +
µ0

2
∥x − y∥2, ∀ x, y ∈ Rn, (4.15)

consistent with the argument used in Proposition 1 of [33].

Algorithm 1 Local Search Algorithm

Step 0. Choose x0 ∈ Rn, a tolerance τ > 0, and a sequence {δs}s≥0 with δs ≥ 0 and
+∞∑
s=0
δs < +∞. Set

s := 0.
Step 1. Compute a subgradient

ys := ∇ϕα(xs) ∈ ∂ϕα(xs),

and consider
(PLs) min

x∈Rn
VQ

s (x) := lα(x) − ⟨ys, x⟩.

Step 2. Compute xs+1 such that
VQ

s (xs+1) ≤ Υ(PLs) + δs.

Step 3. If either of the following equivalent conditions holds:

VQ(xs) − VQ(xs+1) ≤
τ

2
and δs ≤

τ

2
,

or
VQ

s (xs) − VQ
s (xs+1) = lα(xs) − lα(xs+1) − ⟨ys, xs − xs+1⟩ ≤

τ

2
, δs ≤

τ

2
,

then stop and output xs+1 as the current stationary point of (P).
Step 4. Set s := s + 1 and go to Step 1.

Global search procedure. [34] For problem (P), the global optimality condition (GOC) can be
stated as follows: If z is a global solution of (P), then for every pair (y, β) ∈ Rn × R, the following
system holds:  ϕα(y) = β − ξ, ξ := lα(z) − ϕα(z) ≡ l(z),

lα(x) − β ≥ ⟨∇ϕα(y), x − y⟩, ∀ x ∈ Rn.
(4.16)

If there exists a pair (ŷ, β̂) satisfying (4.16) and a point x̂ ∈ Rn such that

lα(x̂) < β̂ + ⟨∇ϕα(ŷ), x̂ − ŷ⟩,

then, using the convexity of ϕα(·), we obtain

l(x̂) = lα(x̂) − ϕα(x̂) < ϕα(ŷ) + ξ − ϕα(ŷ) = l(z),
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which implies that x̂ provides an improvement over z.
By varying the pair (y, β) in (4.16) and solving the corresponding linearized subproblems of the form

min
x∈Rn

(lα(x) − ⟨∇ϕα(y), x⟩) , (4.17)

(where y is not necessarily feasible), a set of candidate points x(y, β) for the local search stage is obtained.
In practice, it is not required to examine all possible pairs (y, β); identifying a single violated inequality
in (4.16) is sufficient to generate a new improving starting point.

Extensive computational studies reported in [34] provide evidence of the effectiveness of this global
search strategy.

Algorithm 2 Global Search Algorithm
Step 0. Choose an initial point x0,0 ∈ Rn and a tolerance ε > 0. Set the outer iteration counter k := 0.
Step 1. Starting from xk,0, apply the Local Search Algorithm 1 to problem (P) and obtain a stationary
point zk. Set

ξk := lα(zk) − ϕα(zk) = VQ(zk).

Step 2. Generate a finite set of test points Yk ⊂ Rn (not necessarily feasible), for example perturbations
of zk.
Step 3.
for each y ∈ Yk do

Compute
β(y) := ϕα(y) + ξk,

so that the first relation in (4.16) is satisfied: ϕα(y) = β(y) − ξk.
Solve the linearized subproblem

(PL(y)) min
x∈Rn

(
lα(x) − ⟨∇ϕα(y), x⟩

)
,

and compute an approximate minimizer x̂(y) and the value

Λ(y) := lα(x̂(y)) − ⟨∇ϕα(y), x̂(y)⟩.

Define
Θ(y) := β(y) − ⟨∇ϕα(y), y⟩.

if Λ(y) < Θ(y) − ε then
(violation of GOC found)
Set xk+1,0 := x̂(y), k := k + 1, and go to Step 1.

end if
end for
Step 4. If no y ∈ Yk satisfies Λ(y) < Θ(y) − ε, accept zk as an (approximate) global solution of (P)
and stop.
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5. Numerical Results

Example 1. Consider a two-player nonconvex game with quadratic payoffs and scalar strategies [20]: f1(x1, x2) = x2
1 + x1x2 → max

x1
,

x1 ∈ X1 = [−1, 1],

 f2(x1, x2) = −x2
2 +

1
2

x1x2 → max
x2
,

x2 ∈ X2 = [−1, 1].
(5.1)

We reformulate problem (5.1) as the constrained minimization problem

θ1(x1, x2) = −x2
1 − x1x2 → min

x1∈X1
, θ2(x1, x2) = x2

2 −
1
2

x1x2 → min
x2∈X2

, (5.2)

and denote X := X1 × X2.
The Nikaido-Isoda regularization function for problem (5.2) is given by

lQ
α (x) =

2∑
k=1

[
θk(xk, x−k) − θk(zk, x−k)

]
−
α

2
∥x − z∥2.

Now we construct the D.C. formulation of problem (5.2). We obtain

VQ
α (x) = −x2

1 −
3
2

x1x2 + x2
2 −min

z∈X
ηα(z1, z2), (5.3)

where
ηα(z1, z2) = −z2

1 − z1x2 + z2
2 −

1
2

x1z2 +
α

2
(x1 − z1)2 +

α

2
(x2 − z2)2. (5.4)

We solve the following problem for a fixed point (x1, x2) ∈ X:

min
z∈X

ηα(z1, z2) (5.5)

with
X =

{
(z1, z2) ∈ R2

∣∣∣ − z1 − 1 ≤ 0, z1 − 1 ≤ 0, −z2 − 1 ≤ 0, z2 − 1 ≤ 0
}
.

The Lagrangian function associated with this problem is

L(z1, z2, λ) = − z2
1 − z1x2 + z2

2 −
1
2

x1z2 +
α

2
(x1 − z1)2 +

α

2
(x2 − z2)2

+ λ1(z1 − 1) + λ2(z2 − 1) + λ3(−z1 − 1) + λ4(−z2 − 1)→ min .

The KKT conditions are therefore

∂L
∂z1
= −2z1 − x2 + α(z1 − x1) + λ1 − λ3 = 0,

∂L
∂z2
= 2z2 −

1
2

x1 + α(z2 − x2) + λ2 − λ4 = 0,

λ1(z1 − 1) = 0, λ2(z2 − 1) = 0,

λ3(−z1 − 1) = 0, λ4(−z2 − 1) = 0,

λi ≥ 0, i = 1, 2, 3, 4.

(5.6)
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The solution of system (5.6) is z∗ = (1, 0).
The Hessian matrix of problem (5.5) is

H(z∗) =
(
α + 2 0

0 α − 2

)
.

In Lemma 2, we assume that parameter α is positive. Then H(z∗) > 0, and, hence, z∗ = (1, 0) is a (local)
solution of problem (5.5). Therefore,

ηα(z∗) =
α

2
(
x2

1 + x2
2
)
− αx1 + x2 −

α

2
− 1,

and
VQ
α (x) = −

(
α

2
+ 1

)
x2

1 −

(
α

2
− 1

)
x2

2 −
3
2

x1x2 + αx1 − x2 −
α

2
+ 1.

Using indicator functions, we decompose the above function into two convex functions as follows:

lα(x) = αx1 − x2 −
α

2
+ 1,

ϕα(x) =
(
α

2
+ 1

)
x2

1 +

(
α

2
− 1

)
x2

2 +
3
2

x1x2 + δX(x).

Then (5.3) is equivalent to the following D.C. minimization problem:

VQ(x) =
(
lα(x) − ϕα(x)

)
→ min

x∈R2
, (5.7)

where lα(·) and ϕα(·) are convex functions for positive and sufficiently large α.
The proposed algorithm described in the previous section is applied to problem (5.6). Fixing the
regularization parameter at α = 2.5, the corresponding D.C. decomposition takes the form

l(x) =
5
2

x1 − x2 −
5
4
+ 1, ϕ(x) =

7
4

x2
1 +

1
4

x2
2 +

3
2

x1x2 + δX(x).

The following parameter values are used in the local and global search phases of the algorithm:

σ = 50, ρs = 10−7, τk = 10−5, δk = 10−5.

Using these settings, the algorithm converges to the solution

x∗ = (1, 1
4 )⊤, VQ

∗ (x∗) = 0.

It can be readily verified that the corresponding equilibrium objective values for problem (5.1) are

θ1(x∗) = 1.250, θ2(x∗) = 0.625.

(x0, y0) VQ(x0, y0) V(x0, y0) Loc. S.A. Glob. S.A. Time VQ
∗ (x∗, y∗)

(0, 1) −1.50 0.075 48 3 6.21 0.00
(1, 0) −4.25 −0.241 73 3 6.41 0.00
(1, 1) −3.25 −2.759 97 2 7.34 0.00
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Example 2. Consider a two-player nonconvex game with matrix form:

A =


3 8 14 2 7 19
5 4 16 4 11 3

20 0 15 13 10 6

 , B =


14 1 7 20 12 5
8 26 2 13 11 9
3 0 6 10 4 11

 .
Given the payoff functions of the two players corresponding to these matrices, we have

f1(x, y) = 3x1y1 + 8x1y2 + 14x1y3 + 2x1y4 + 7x1y5 + 19x1y6

+ 5x2y1 + 4x2y2 + 16x2y3 + 4x2y4 + 11x2y5 + 3x2y6

+ 20x3y1 + 15x3y3 + 13x3y4 + 10x3y5 + 6x3y6 → max
(x,y)∈X×Y

,

and

f2(x, y) = 14x1y1 + x1y2 + 7x1y3 + 20x1y4 + 12x1y5 + 5x1y6

+ 8x2y1 + 26x2y2 + 2x2y3 + 13x2y4 + 11x2y5 + 9x2y6

+ 3x3y1 + 6x3y3 + 10x3y4 + 4x3y5 + 11x3y6 → max
(x,y)∈X×Y

with constraints

X × Y =
{
(x, y) ∈ R9

∣∣∣ 3∑
i=1

xi = 1,
6∑

j=1

y j = 1, xi ≥ 0, y j ≥ 0, i = 1, . . . , 3, j = 1, . . . , 6
}
.

We now derive an explicit D.C. decomposition for the resulting quadratic objective. As such, we
introduce the stacked variable

z := (x1, x2, x3, y1, . . . , y6)⊤ ∈ Z, Z =
{
z ∈ R9

∣∣∣ 3∑
i=1

zi = 1,
9∑

i=4

z j = 1, zi ≥ 0, i = 1, . . . , 9
}

so that the bilinear payoff f1(x, y) can be written in quadratic form as

f1(z) = x⊤Ay =
1
2

z⊤Q1z,

where

Q1 :=
(
O3×3 A
A⊤ O6×6

)
∈ R9×9.

In order to apply the D.C. programming framework, we consider the minimization of − f1, that is,

F(z) := − f1(z) = −
1
2

z⊤Q1z = z⊤Q̃z, Q̃ := −
1
2

Q1.

Choosing a constant λ > 0 sufficiently large so that λI9 ± Q̃ are positive semidefinite, we obtain the
following D.C. decomposition:

l(z) :=
1
2

z⊤(λI9 + Q̃)z, ϕ(z) :=
1
2

z⊤(λI9 − Q̃)z.
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By construction, l(·) and ϕ(·) are convex on R9 and

VQ(z) = l(z) − ϕ(z),

which provides an explicit D.C. representation of the objective function in terms of variable z. A fully
analogous construction can be performed for the second payoff f2(x, y) (or for a combined objective
based on both players’ payoffs) by replacing Q1 with the corresponding quadratic matrix.
Then, for α = 2.5, the corresponding functions l(·) and ϕ(·) in (3.9) and (3.10) are given by:

l(x) = 204x2
1 + 1 +

489
4

x2
2 +

479
4

x2
3 +

435
4

x2
4 +

51
2

x2
5 +

339
2

x2
6 +

95
2

x2
7 +

271
4

x2
8

+
435

4
x2

9 +
571
2

x1x2 +
857
4

x1x3 +
17
2

x1x4 +
9
2

x1x5 +
21
2

x1x6 + 11x1x7 +
19
2

x1x8

+ 12x1x9 + 221x2x3 + 9x2x4 +
3
2

x2x5 + 9x2x6 +
17
2

x2x7 + 11x2x8 + 6x2x9

+
23
2

x3x4 +
13
2

x3x5 +
21
2

x3x6 +
23
2

x3x7 + 7x3x8 +
19
2

x3x9 + 77x4x5 + 216x4x6

+ 143x4x7 + 138x4x8 +
223
2

x4x9 + 109x5x6 + 49x5x7 +
127
2

x5x8 +
203
2

x5x9

+
287
2

x6x7 + 212x6x8 + 214x6x9 + 94x7x8 + 72x7x9 + 128x8x9,

ϕ(x) = 204x2
1 +

489
4

x2
2 + 161x2

3 +
435

4
x2

4 +
51
2

x2
5 +

339
2

x2
6 +

95
2

x2
7 +

271
4

x2
8

+
435
4

x2
9 + 285x1x2 + 203x1x3 −

17
2

x1x4 −
9
2

x1x5 − 8x1x6 − 11x1x7 −
19
2

x1x8

− 12x1x9 +
325

2
x2x3 −

13
2

x2x4 − 4x2x5 − 9x2x6 −
13
2

x2x7 − 11x2x8 − 6x2x9

−
23
2

x3x4 −
25
2

x3x5 +
23
2

x3x6 −
23
2

x3x7 − 7x3x8 −
19
2

x3x9 +
149
2

x4x5 + 211x4x6

+ 143x4x7 + 138x4x8 + 116x4x9 + 109x5x6 + 49x5x7 +
127
2

x5x8 +
203
2

x5x9

+
287
2

x6x7 + 212x6x8 + 217x6x9 + 94x7x8 + 77x7x9 + 123x8x9.

A mixed-strategy equilibrium for this problem is

x∗ = (0.714286, 0.285714, 0)⊤, y∗ = (0, 0, 0.4444444, 0, 0, 0.555556)⊤.

The corresponding equilibrium payoffs are

f1(x∗, y∗) = 14.555556, f2(x∗, y∗) = 14.888889, VQ
∗ = 2.31 × 10−8.

Example 3. Consider another two-player nonconvex game in matrix form:

A =



3 5 20
8 1 6

14 16 15
2 4 13
7 11 10

19 3 8


, B =



14 8 3
1 7 19
7 2 6

20 13 10
12 11 4
5 9 11


.
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For this example, we again fix the regularization parameter at α = 2.5, as in the previous case.
Applying the proposed D.C. global search algorithm with the same parameter settings yields the
mixed-strategy equilibrium

x∗ = (0.444447, 0, 0.555553, 0, 0, 0)⊤, y∗ = (0, 0.312501, 0.687499)⊤.

The corresponding equilibrium payoffs are

f1(x∗, y∗) = 4.666659, f2(x∗, y∗) = 15.312499, VQ
∗ = 2.87 · 10−8.

6. Conclusion

We examine the GNEP with nonconvex quadratic objective functions and jointly convex constraints.
Based on the regularized Nikaido-Isoda function and gap function, we reduce the problem to an
unconstrained optimization problem with a D.C. objective function. Then, we apply Local and Global
search algorithms developed in [21]. For the first time, an attempt has been made to solve a nonconvex
GNEP problem with jointly convex constraints by the D.C. optimization approach.
We can apply the theory and algorithms of the variational inequality problems and penalty methods to
problem (3.6), which will be done in the next papers.
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