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Abstract: Inventory accumulation is a natural consequence of material flow in manufacturing systems,
particularly under dynamic conditions. Manufacturing companies must manage a diverse range of inventory
types, including raw materials, semi-finished goods, and finished products. This article proposes a novel
multi-stage continuous material requirements planning (MRP) system formulated as a linear–quadratic
optimal control model that incorporates production lead times, returns, rework, and recycling. The delayed-
control framework provides the foundation for a sustainable production-planning technology roadmap
through delay-dependent feedback, dynamic flow relationships, and a multi-stage recovery operation. The
roadmap emphasizes the ability to synchronize production and inventory decisions across interrelated stages
of production and inventory levels, producing operational, efficiency, and stability improvements. Applied to
a fertilizer production case study, the model reduced inventory deviations, enhanced coordination of ordering
and production activities, and improved responsiveness to demand changes. The inclusion of perishability
and delay mechanisms produced more realistic production planning and waste minimization.
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1. Introduction

A substantial portion of a company’s capital is tied up in inventory, and hence its effective
management is necessary to maximize the utilization of the facility and optimal operations. Effective
inventory control maintains the optimal stock level, preventing shortages and excesses, which reduces
the impact of disruptions and minimizes unnecessary usage of capital. It enhances supply chain
resilience, allowing for quicker recovery from disruptions [1].
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In manufacturing, multi-stage manufacturing systems involve cumulative procedures that create
work-in-progress (WIP) inventory, which is costly, and therefore, WIP control becomes significant.
Lead time control is also essential for supply chain responsiveness, reducing inventory risk, improving
customer service, and harmonizing production with demand fluctuation, ensuring consistent on-time
delivery for customer satisfaction [2].

Material requirements planning (MRP) is a planned approach to material availability, ensuring
quantities, locations, and times are adequate to fulfill production and customer orders [3]. It reduces
costs by optimizing inventories and reorder points [4], and it aids operational priorities and capacity
planning [5]. Traditional MRP models operate on discrete time intervals, which are unsuitable for
continuous manufacturing environments (e.g., petrochemical industries), where inventory levels vary
smoothly [6]. Continuous MRP bridges this gap by making real-time control possible. However, most
models are yet to be single-stage and lack the multi-stage bill of materials (BOM) framework, or rule out
the use of lead time as a control factor [6]. This highlights an important gap: there being no common
MRP model that possesses continuous-time dynamics, multi-stage BOM, and lead-time handling.

To bridge this gap, we introduce a model of delayed control for continuous MRP with rework
and recycling opportunities. It covers production lead time and return phases in an explicit multi-level
framework. It also incorporates defect processing through rework and recycling to minimize waste and
optimize resource utilization. We apply the model in an actual industrial fertilizer plant, where inadequate
consideration of lead time resulted in overstocking, higher storage costs, and product obsolescence. By
modeling lead time and incorporating a delayed control structure, our approach enhances inventory flow,
reduces waste, and improves system responsiveness, even in a mature industrial setting.

Although the case study is based on a process for fertilizer production, the proposed framework is
applicable to other multi-stage, continuous production processes. The model is particularly relevant
in situations where product degradation, recycling in the plant, rework processes, and production
lead times are operationally significant. The novelty of this work resides in the incorporation of
reworking, recycling, and production lead-time constraints into a continuous-time optimal control
structure following a linear-quadratic (LQ) structure. This approach enables the explicit consideration
of production delays and the associated feedback from rework and recycling flows, resulting in an agile
control structure for multi-stage manufacturing systems that becomes analytically tractable. These
features together distinguish the proposed model from the literature and render it more relevant to
real-world, complex manufacturing systems.

This work is organized as follows. Section 2 offers a review of literature related to this study. The
proposed approach is described in Section 3, including two mathematical models for with lead time
and without lead time modes, while Section 4 describes the proposed linear-quadratic optimal control
model. Section 5 illustrates the proposed approach with the production system and data for fertilizer
produced by the Yeganeh Yaran Shokoofeh Dasht Company in Iran. Section 6 will feature practical
and theoretical discussions concerning the model and its simulation. Finally, concluding remarks and
suggestions for future research are provided.

2. Related work

This section categorizes existing studies around four defining characteristics of the proposed model:
(i) in-plant rework and recycling, (ii) deteriorating or perishable items, (iii) production lead times, and
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(iv) other cost-driven and MRP-related models. This structure helps clarify the progression of prior
work and emphasizes the novelty of the proposed model.

2.1. Rework and recycling in multi-stage systems

Numerous studies have focused on return stages, rework, or recycling in production systems. Pooya
and Pakdaman [7] introduced an optimal control model using neural networks for single-stage systems.
In a follow-up study, they extended the model to multi-stage production with lead times [8], but without
incorporating core MRP features. In another work [6], they considered continuous MRP with returned items
but excluded production lead times. Miri [9] proposed a partial differential equation and ordinary differential
equation (PDE-ODE)-based optimization model using genetic algorithms, but ignored returns and lead time
delays. Sowmica and Suvinthra [10] analyzed a deteriorating two-item system lacking rework, recycling,
and lead time. Rachih et al. [11] addressed reverse logistics with rework, yet did not model production lead
times. Öztürk [12] developed a rework and breakdown model of imperfect production without recycling.
Eshaghnezhad et al. [13] applied bounded optimal control methods, again without lead times or return stages.
Several contemporary studies have investigated sustainable or stochastic inventory systems that are combined
with reworking and recycling aspects. For example, Aiello et al. [14] analyzed a closed-loop structure
but noted that, in reality, full integration of multi-stage production and reworking is complicated. Recent
contributions, such as Sharma et al. [15], introduced a green supply chain model incorporating inspection and
rework using the adaptive neuro-fuzzy inference system (ANFIS) and metaheuristic optimization. Similarly,
Mahata and Debnath [16] developed a multi-stage economic production rate (EPR) model integrating flexible
production and carbon emission considerations. Our study integrates these dimensions into a continuous
multi-stage MRP framework with full return cycles.

2.2. Perishable products and deteriorating items

Deterioration in inventory systems has been widely examined, especially in models concerned with
demand forecasting and uncertainty. Hatami-Marbini et al. [17] implemented hedging-point policies
for deteriorating items in a network context. Foul et al. [18] built adaptive models for inventory in a
situation of uncertainty of deterioration. Jiayu et al. [19] presented deteriorating products in terms
of uncertainty theory. Megoze et al. [20] investigated remanufacturing with deteriorating production
based on Hamilton-Jacobi-Bellman equations. Ignaciuk [21] considered reverse logistics but excluded
deteriorated item disposal stages. However, these models typically treat single-stage systems and are
not framed within MRP-based multi-stage environments. Recently, Covei [22] proposed a regime-
switching model incorporating deterioration dynamics and probabilistic transitions in continuous
production systems. However, these models typically treat single-stage systems and are not framed
within MRP-based multi-stage environments. Our work embeds perishability directly into a dynamic,
multi-stage, continuous MRP system, allowing more accurate control of production and storage across
the bill of materials. Attia et al. [23] suggested a recycling-based optimization model and explicitly
stated that future research needs to include multi-stage effects and lead times, both of which motivated
this study.
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2.3. Production lead times and delayed systems

Lead time has been studied as a significant operational factor in production and supply chain models.
Louly et al. [4] scheduled components in assembly systems with random lead times. Grubbstrom and
Tang [5] analyzed BOM structure effects on production timing. Milne et al. [24] determined optimal lead
times using mixed-integer programming in MRP. Rigatos et al. [25] proposed a nonlinear optimal control
model with lead times but no recycling. Hedjar et al. [26] optimized production rates using optimal
control theory. Dizbin and Tan [27] incorporated lead time into demand-processing correlation models,
and Al-Khazraji et al. [28] worked on dynamic production-inventory control with delay systems. Recent
work by Jin et al. [29] presented a stochastic optimization approach for managing large-scale supply
chains with lead time uncertainty. Utama and Putri [30] developed a stochastic production–inventory
model with imperfect and scrap items; however, their method was also limited to a single-stage process
and did not include delay effects. Additionally, Hake et al. [31] evaluated artificial intelligence methods
to predict dynamic lead times in complex automotive production systems. Yet, most of these works
omit integration with rework, perishability, and continuous-time MRP logic. Our approach incorporates
lead times as explicit delays in a continuous optimal control setting, aligned with the real-time behavior
of continuous production systems.

2.4. Other related MRP and cost-driven models

Sadeghian [3] introduced the continuous MRP (CMRP) framework and compared it to traditional
discrete MRP (DMRP). Rossi et al. [32] developed an MRP model under capacity constraints. Le Thi
and Tran [33] minimized costs in multi-stage systems via nonlinear integer programming. Mezghiche et
al. [34] integrated production forecasting based on past demand and inventory. Singer and
Khmelnitsky [35], ElHafsi et al. [36], and Gao [37] extended optimal control to stochastic systems, yet
generally overlooked the full combination of rework, lead time, and BOM interactions. Dhaiban [38]
and Nakhaeinejad et al. [39] also contributed optimal control-based models but did not include lead
times or return flows. To address multi-stage uncertainty and cost-driven decisions, Schlenkrich et
al. [40] developed a progressive hedging approach for stochastic lot sizing, while Tobares et al. [41]
proposed a novel lot sizing framework grounded in physical system analogies.

While most research addresses individual features of continuous-time dynamics, rework, multi-stage
systems, production lead times, finite capacity, recycling, optimization methods, and BOM integration in
isolation, it is clear that there is a gap in terms of integrated models that can capture the full complexity
of real-case production systems. To address this complexity, we propose a multi-stage MRP-based
optimal control model that integrates production lead time, returns, rework, recycling, and finite capacity
into a continuous-time framework.

3. Proposed model

This section presents the formulation of the proposed continuous-time multi-stage MRP model and
its control structure.

The system involves combining raw materials (b and c) to form intermediate product A1, which is
then mixed with raw material d to produce the final product A. To produce one unit of A1, α units of
b and β units of c are required; one unit of A requires δ units of A1 and γ units of d (see Figure 1).
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Although we have modeled the example in a two-stage structure (e.g., two raw materials and one
intermediate product produced in combination with another raw input), the model is scalable to follow
any number of raw materials or intermediate stages. Since the equations and delay structures remain
valid in such an extension, as long as the index sets for materials and production stages are simply
extended, we can generalize the formulation to an n-level BOM system.

Figure 1. Three-level BOM structure of the product.

Pooya and Pakdaman [6, 8] proposed two related MRP models: one with finite capacity without
lead time and another that incorporates production lead time. The model proposed in this paper has
components of both of the models by Pooya and Pakdaman [6, 8]. The multi-stage continuous MRP
production-inventory system in Figure 2 includes stages for recycling and reworking returned items.
The proposed model addresses the disposal of deteriorating items as well.

In the proposed model illustrated in Figure 2, the first step orders the raw materials b and c, with
order quantities smb(t) and smc(t), respectively. The inventory levels of these raw materials at time t are
Imb(t) and Imc(t), respectively. The amounts of shipment of these items for production are Pmb(t) and
Pmc(t).

In the first production stage, the two raw materials b and c are combined to produce the intermediate
product A1. In the second stage, this intermediate item A1 is mixed with raw material d to generate the
final product A. This description clarifies how the intermediate and final stages are connected within the
production chain.

The first-stage inventory, ImA1(t), is divided into two parts: the portion PmA1(t) sent to the next
stage for the production of A, and the remainder returned at rate ωm1 due to defects in production.
Returned goods are either reworked at rate ωRA1 , recycled at rate ωCA1 , or disposed of at rate ωdA1 .
From the recycled inventory, the portions related to raw materials b and c, represented by Crb(t) and
Crc(t), are added back to their respective inventories. Items that are not eligible for rework or recycling
are treated as unusable intermediate products and are disposed of at a rate ωdA1 . This ensures that the
model properly accounts for material losses due to quality issues or degradation, and prevents unused
intermediates from re-entering the production flow.

In the second production stage, the inventory of manufactured goods ImA(t) is divided into two
parts. Part of the inventory is shipped to the customer according to the demand at time t, D(t) (i.e.,
PmA(t) = D(t)), and the remainder forms returned goods at rate ωm1. Returned goods follow the same
process as in the first stage: they may be reworked at rate ωRA, recycled at rate ωCA, or disposed of at
rate ωdA. Additionally, some shipped items, R(t), may return from the customer and be added to the
second-stage returned goods inventory.

For clarity, raw materials are indexed by i ∈ {b,c,d}, while intermediate and final products are
indexed by j ∈ {A1,A}. This distinction reflects their different roles in the production and return flows.
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Figure 2. Schematic representation of the proposed multi-stage delayed MRP system.

The variables and parameters used are listed in Tables 1 to 3.

Table 1. State variables in the proposed model.

Notation Description

Imi(t) Inventory of raw materials i ∈ {b,c,d} at time t

Im j(t) Inventory of intermediate or final products j ∈ {A1,A} at time t

IR j(t) Inventory of returned products j ∈ {A1,A} at time t

The numbers of shipped items b and c should be consistent with their usage in the BOM to prevent
excessive shipment of raw materials to produce A1. Specifically, the shipment of each raw material
should not exceed the available inventory and should remain within practical release limits, as expressed
in Eq. (3.1).

0 ≤ Pmb(t)≤ κbImb(t), 0 ≤ Pmc(t)≤ κcImc(t), 0 < κb,κc ≤ 1. (3.1)

Here, κb and κc denote the maximum proportions of the available stock that can be released for
production. This maintains a realistic link between inventory and shipment levels while preventing
unrealistic dispatching of raw materials.

The production rate of the intermediate product A1 is governed by the most constrained input material,
ensuring that the process obeys the mass balance principle and avoids overconsumption of any input, as
shown in Eq. (3.2).

smA1(t) = min
{

Pmb(t)
α

,
Pmc(t)

β

}
. (3.2)

For items b and c to be used in the correct proportions and maintain flow balance, the relationship in
Eq. (3.3) should hold. This condition prevents either input from being over- or underutilized during the
production of A1.

Pmb(t)
α

=
Pmc(t)

β
(3.3)
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Table 2. Control variables in the proposed model.

Notation Description

smi(t) Ordering and releasing level of raw materials i ∈ {b,c,d} at time t

sm j(t) Ordering and releasing level of products j ∈ {A1,A} at time t

Pmi(t) Production level of raw materials i ∈ {b,c,d} at time t

Pm j(t) Production level of intermediate and final products j ∈ {A1,A} at time t

Cri(t) Recycling level of returned raw materials i ∈ {b,c,d} at time t

CrA1(t) Recycling level of returned intermediate product A1 at time t

Pd j(t) Deterioration level of returned products j ∈ {A1,A} at time t

D(t) Released demand for final product A at time t

R(t) Returned level of final product A from the customer at time t

Table 3. Parameters and other notation in the proposed model.

Notation Description

ωm j Return rate of manufactured product j ∈ {A1,A}
ωR j Reworking rate of returned product j ∈ {A1,A}
ωC j Recycling rate of returned product j ∈ {A1,A}
ωd j Deterioration rate of returned product j ∈ {A1,A}
α Units of b required to produce one unit of A1

β Units of c required to produce one unit of A1

γ Units of d required to produce one unit of A

δ Units of A1 required to produce one unit of A

κi Maximum proportion of inventory of raw material i ∈ {b,c,d} released to production
κA1 Maximum proportion of inventory of intermediate product A1 released to production
τ j Production lead time for product j ∈ {A1,A}
T Planning horizon
t Continuous time variable, t ∈ [0,T ]
(·)⊤ Transpose of a vector or matrix

As a result, the shipment level corresponds directly to the balanced production rate of A1, as indicated
in Eq. (3.4).

smA1(t) =
Pmb(t)

α
=

Pmc(t)
β

(3.4)

Together, Eqs. (3.1)–(3.4) ensure that the first-stage production flow respects both inventory
availability and proportional material usage.

In the second production stage, the intermediate item A1 and raw material d are combined to produce
the final product A. The shipping levels of these materials are also limited by their available inventories,
as expressed in Eq. (3.5).

0 ≤ PmA1(t)≤ κA1ImA1(t), 0 ≤ Pmd(t)≤ κdImd(t), 0 < κA1,κd ≤ 1. (3.5)
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Eq. (3.6) ensures that the production rate of A depends on the most limiting input among A1 and d,
aligning with the principle of constrained production.

smA(t) = min
{

Pmd(t)
γ

,
PmA1(t)

δ

}
(3.6)

To maintain coordination between the shipments of d and A1, Eq. (3.7) enforces their proportional
usage in the production of A, ensuring that both inputs are released in balanced quantities.

Pmd(t)
γ

=
PmA1(t)

δ
(3.7)

Eqs. (3.5)–(3.7) collectively maintain proportional material flow and prevent overproduction in
the final manufacturing stage. By inserting Eqs. (3.3) and (3.7) into Eqs. (3.2) and (3.6), the overall
production rates of the intermediate and final products can be expressed in an equivalent and compact
form, as shown in Eq. (3.8). These relations capture the synchronized flow between input materials
and production stages, reflecting both the limiting input rule (via the min{·} operator) and the balanced
proportionality conditions of Eqs. (3.3), (3.4), (3.6), and (3.7).


smA1(t) = min

{
Pmb(t)

α
,

Pmc(t)
β

}
=

Pmb(t)
α

=
Pmc(t)

β
=

1
2

(
Pmb(t)

α
+

Pmc(t)
β

)
,

smA(t) = min
{

Pmd(t)
γ

,
PmA1(t)

δ

}
=

Pmd(t)
γ

=
PmA1(t)

δ
=

1
2

(
Pmd(t)

γ
+

PmA1(t)
δ

)
.

(3.8)

Eq. (3.8) therefore emerges as a direct result of combining the proportional shipment relations (Eqs. (3.3),
(3.4), (3.6), and (3.7)) with the mass-balance-based production definitions (Eqs. (3.2) and (3.6)). This
ensures that both intermediate and final production rates are physically consistent and synchronized
with their respective material inputs.

Following Figure 2, recycling and deterioration rates are expressed as:

Crb(t) = αωCA1IRA1(t)

Crc(t) = βωCA1IRA1(t)

Crd(t) = γωCAIRA(t)

CrA1(t) = δωCAIRA(t)

PdA1(t) = ωdA1IRA1(t)

PdA(t) = ωdAIRA(t)

(3.9)

The partition of returned items among reworking, recycling, and deterioration is expressed in
Eqs. (3.10) and (3.11), indicating that all returned products in both intermediate and final stages are
fully distributed among the reworking, recycling, and deterioration flows.

ωRA +ωCA +ωdA = 1 (3.10)
ωRA1 +ωCA1 +ωdA1 = 1 (3.11)
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3.1. Model 1: Without consideration of lead time

The dynamic behavior of the proposed model, considering the balance relationships in Eqs. (3.10)
and (3.11), can be expressed in terms of the relationships in Eq. (3.12).



İmb(t) = smb(t)+αωCA1IRA1(t)−Pmb(t) Imb(0) = I0
mb

İmc(t) = smc(t)+βωCA1IRA1(t)−Pmc(t) Imc(0) = I0
mc

İmA1(t) =
1

2α
Pmb(t)+ 1

2β
Pmc(t)+ωRA1IRA1(t)+δωCA2IRA2(t)−PmA1(t)−ωm1ImA1 (t) ImA1(0) = I0

mA1

İmd(t) = smd(t)+ γωCAIRA(t)−bγImd(t) Imd(0) = I0
md

İmA(t) = 1
2γ

Pmd(t)+ 1
2δ

PmA1(t)+ωRAIRA(t)−PmA −ωm2ImA(t) ImA(0) = I0
mA

İRA1(t) = ωm1(ImA1(t)−PmA1(t))− IRA1(t) IRA1(0) = I0
RA1

İRA(t) = ωm2(ImA(t)−PmA(t))+R(t)− IRA(t) IRA(0) = I0
RA

(3.12)
Column matrices x̃(t) and ũ(t) comprise state and control variables, respectively, and are defined in

Eqs. (3.13) and (3.14).

x̃(t) =
[
Imb(t) Imc(t) ImA1(t) Imd(t) ImA(t) IRA1(t) IRA(t)

]⊤ (3.13)

ũ(t) =
[
smb(t) smc(t) smd(t) Pmb(t) Pmc(t) PmA1(t) Pmd(t) PmA(t) R(t)

]⊤ (3.14)

By embedding Eqs. (3.8) and (3.9) into Eq. (3.12), the model dynamics can be represented in
matrix form. The matrices M and N, whose entries form the coefficients of state and control variables,
respectively, in Eqs. (3.13) and (3.14), are defined in matrices (3.15) and (3.16).

M =



0 0 0 0 0 αωCA1 0
0 0 0 0 0 βωCA1 0
0 0 −ωm1 0 0 ωRA1 δωCA
0 0 0 0 0 0 γωCA
0 0 0 0 −ωm2 0 ωRA
0 0 ωm1 0 0 −1 0
0 0 0 0 ωm2 0 −1


(3.15)

N =



1 0 0 −1 0 0 0 0 0
0 1 0 0 −1 0 0 0 0
0 0 0 1

2α
1
2β ωm1 −1 0 0 0

0 0 1 0 0 0 −1 0 0
0 0 0 0 0 1

2δ
1
2γ ωm2 −1 0

0 0 0 0 0 −ωm1 0 0 0
0 0 0 0 0 0 0 −ωm2 1


(3.16)

Given matrices M and N, Eq. (3.17) encapsulates a unified state-space representation, simplifying
system analysis and control.
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˙̃x = Mx̃(t)+Nũ(t), x̃(0) = x̃0 (3.17)

To obtain the target values of the state and control variables, the difference relationship is defined in
Eq. (3.18), where f is the control or state variable and f̂ is the target value of f .

∆ f (t) = f (t)− f̂ (t) (3.18)

As such, the vectors x(t) and u(t) are defined in Eqs. (3.19) and (3.20). These vectors represent the
deviations of the state and control variables from their target values.

x(t) =
[
∆Imb(t) ∆Imc(t) ∆ImA1(t) ∆Imd(t) ∆ImA(t) ∆IRA1(t) ∆IRA(t)

]⊤ (3.19)

u(t) =
[
∆smb(t) ∆smc(t) ∆smd(t) ∆Pmb(t) ∆Pmc(t) ∆PmA1(t) ∆Pmd(t) ∆PmA(t) ∆R(t)

]⊤
(3.20)

The goals for the state and control variables are the constraints that apply to these variables in the
model. The purpose of producing, reworking, or recycling items is the finite capacity for which the
workstation is intended, and the purpose of inventories is the finite capacity that should be considered for
warehouses. Therefore, when the objective function minimizes ∆ fi, the control and the state variables
converge to their target values. As such, the problem of linear binomial optimal control with finite time
is obtained.

3.2. Model 2: With consideration of lead time

This model incorporates production lead times into the delayed control framework using time-shifted
variables in the differential equations to represent internal delays. It handles internal lead times with
the ability to change reorder points and safety stock to manage the control of supplier lead times. For
example, work-in-progress product A1 production lead time is τA1 , while that for the finished product A
is τA. The change in inventory of A1 is expressed in (3.21).

İmA1(t) =
1

2α
Pmb(t − τA1)+

1
2β

Pmc(t − τA1)+ωRA1IRA1(t)+δωCAIRA(t)

−PmA1(t)−ωm1ImA1(t), ImA1(0) = I0
mA1

.

(3.21)

Eq. (3.22) is obtained considering the lead time for final product A.

İmA(t) =
1
2γ

Pmd(t − τA)+
1

2δ
PmA1(t − τA)+ωRAIRA(t)

−PmA(t)−ωm2 (ImA(t)−PmA(t)) ,

ImA(0) = I0
mA.

(3.22)

Eqs. (3.21) and (3.22) reflect the inventory dynamics of work-in-process item A1 and final product A,
respectively, with production lead times occurring in the form of time-delayed terms. These equations
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adhere to the principle of flow conservation where the rate of change of the inventory equals inflows
minus outflows. For Eq. (3.21), the inflow consists of items b and c being processed into A1. Since
production is not instantaneous, the contribution of these raw materials is modeled using delayed
inventory terms Imb(t − τA1) and Imc(t − τA1). The constants κb and κc reflect the combined effect
of shipment policies and proportional BOM usage in the delayed production process, respectively.
Additional inflows to the inventory of A1 come from reworked and recycled items, ωRA1IRA1(t) and
δωCAIRA(t), respectively. Outflows include shipment to the next stage, PmA1(t), and deterioration during
storage, ωm1ImA1(t).

Similarly, Eq. (3.22) captures the dynamics of the final product A, where the inflow is composed of
time-delayed inventory levels of A1 and raw material d. These appear as ImA1(t − τA) and Imd(t − τA),
respectively, with equal weight (coefficients κA1 and κd) to reflect balanced contribution in the BOM.
Reworked items, ωRAIRA(t), are also added to the inventory. The outflows consist of shipping to the
customer, PmA(t), and inventory deterioration, ωm2ImA(t). This modeling of production delays through
drifted arguments in state equations is similar to classical formulations of delayed differential equations
(DDEs) in control theory, where the system inputs do not immediately affect the state but only later
appear after lead times. The first-order Taylor expansion used in Eqs. (3.21) and (3.22) produces a good
and computationally efficient approximation of the delay effects in the case of systems with moderately
small production lead times. The first-order expansion maintains the analytical tractability and physical
interpretability of the model. Higher-order expansions could be utilized to improve the quality of the
time-delay representation in the case of systems with much larger delays, without modifying the overall
model structure.

Since Eqs. (3.21) and (3.22) form a linear system of differential equations with lead time, inserting
them into Eq. (3.12) and using a Taylor expansion results in (3.23).

İmb(t) = smb(t)+αωCA1 IRA1(t)−Pmb(t) Imb(0) = I0
mb

İmc(t) = smc(t)+βωCA1 IRA1(t)−Pmc(t) Imc(0) = I0
mc

İmA1(t) = κbα
2 (Imb(t)− τA1 İmb(t)

)
+κcβ

2 (Imc(t)− τA1 İmc(t)
)
+ωRA1 IRA1(t)+δωCAIRA(t)

−PmA1(t)−ωm1(ImA1(t)−PmA1(t)) ImA1(0) = I0
mA1

İmd(t) = smd(t)+ γωCAIRA(t)−bγImd(t) Imd(0) = I0
md

İmA(t) =
κd

2
(
Imd(t)− τA İmd(t)

)
+

κA1

2
(
ImA1(t)− τA İmA1(t)

)
+ωRAIRA(t)−PmA(t)

−ωm2(ImA(t)−PmA(t)) ImA(0) = I0
mA

İRA1(t) = ωm1(ImA1(t)−PmA1(t))− IRA1(t) IRA1(0) = I0
RA1

İRA(t) = ωm2(ImA(t)−PmA(t))+R(t)− IRA(t) IRA(0) = I0
RA

(3.23)

Matrices M′ and N′, whose entries form the coefficients of state variables and control variables,
respectively, are defined in matrices (3.24) and (3.25).

M′=



0 0 0 0 0 αωCA1 0
0 0 0 0 0 βωCA1 0

(κbα2 + τA1(κb)
2α3) (κcβ 2 + τA1(κc)

2β 3) −ωm1 0 0 −(τA1κbα3ωCA1 +κbβ 3τA1ωCA1 −ωRA1) δωCA
0 0 0 0 0 0 γωCA

−κd2
τ A(κcα2 + τA1a2α3) −κA1

2 τA(κbβ 2 + τA1a2β 3)
(

κd2
+

κA1
2 τAωm1

) (
κA1

2 − (κd)
2

2 γτA

)
−ωm2

κd
2 τA (τA1κcα3ωCA1 +κbβ 3τA1ωCA1 −ωRA1)

(
κA1

2 γωCAτA −
κA1

2 τAδωCA +ωRA

)
0 0 ωm1 0 0 −1 0
0 0 0 0 ωm2 0 −1


(3.24)
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N′ =



1 0 0 −1 0 0 0 0 0
0 1 0 0 −1 0 0 0 0

−κbα2τA1 −κcβ 2τA1 0 0 0 ωm1 −1 0 0 0
0 0 1 0 0 0 −1 0 0

1
2κbα2τAτA1

1
2κcβ 2τAτA1 −1

2τA 0 0 1
2τA 0 ωm2 −1 0

0 0 0 0 0 −ωm1 0 0 0
0 0 0 0 0 0 0 −ωm2 1


(3.25)

4. Solution approach

The system of differential equations related to the proposed model will be obtained and solved in
this section. Although the LQ formulation is an established control method [42], its application here
addresses specific dynamics in a multi-stage production system: inventory management, rework, and
recycling. The linear quadratic (LQ) control formulation was adopted because of its analytical tractability
and well-established stability guarantees for continuous-time systems represented by coupled differential
equations. The quadratic cost structure explicitly balances inventory deviations and control efforts while
preserving convexity and ensuring an optimal analytical solution. Although other performance indices
such as H∞ or model predictive control (MPC) could be used, these approaches are typically intended
for discrete-time or strongly disturbed systems. Given that the present model focuses on continuous
deterministic dynamics with moderate time delays, the LQ structure provides the most appropriate and
computationally efficient control mechanism. Future extensions may explore robust or predictive control
methods for stochastic or large-delay systems. By adapting the LQ approach to these manufacturing
challenges, we demonstrate its versatility in managing complex supply chain constraints and provide
insights beyond traditional LQ applications.

Matrices Q, K, and R were determined by the standard linear quadratic regulator (LQR) formulation
for stability and responsiveness to disturbances in the inventory control system. Specifically, Q penalizes
the deviations from actual inventory levels and desired inventory levels, while R penalizes the control
effort to keep production and shipment rates smooth and efficient. K is the terminal matrix that enforces
stability at the end of the control horizon. By balancing the two weighting factors (Q and R), stable
inventory dynamics are achieved with responsive disturbances to an underlying production process.
This form of selection aligns with previous parametric LQR applications in inventory systems [43]
that also used similar tuning strategies to achieve stable trajectories and returned producers to capacity
utilization. If Q = diag{qi}, K = diag{ki}, and R = diag{r j} are defined as diagonal matrices where
i = 1,2,3, . . . ,7 and j = 1,2,3, . . . ,9, these matrices represent penalty factors, and the optimal control
model can be summarized in Eq. (4.1), where K and Q are both real diagonal matrices of dimension
7, and R is the real diagonal matrix of dimension 9, all with positive entries. Eq. (4.2) constrains the
optimization problem by defining the system dynamics through a set of differential equations. It ensures
that the state vector x(t) evolves over time according to the linear system defined by matrices M and N,
with initial conditions given by x(0) = x0.

min x(T )tKx(T )+
∫ T

0
[x(t)tQx(t)+u(t)tRu(t)]dt (4.1)
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s.t. ẋ(t) = Mx(t)+Nu(t), x(0) = x0 (4.2)

From the Hamiltonian framework, the following optimal state trajectories and control inputs are
derived. Eqs. (4.3) and (4.4) represent the dynamics of the system under the optimal control law. Since
the formulation follows a standard continuous linear quadratic regulator (LQR) framework, an optimal
control approach that minimizes a quadratic cost function subject to linear system dynamics, the detailed
derivatives are omitted for brevity.

λ̇ (t) =−(2Qx(t)+Mt
λ (t)), λ (T ) = 2Kx(T ) (4.3)

ẋ(t) = Mx(t)− 1
2

NR−1Nt
λ (t), x(0) = x0 (4.4)

5. Illustrative case study

We illustrate the proposed model with a case study driven by the production of sulfur bentonite
phosphate (SBP), produced by the Yeganeh Yaran Shokoofeh Dasht Company in Iran. The SBP
production system is a three-stage continuous production flow using sulfur, bentonite soil, and potassium,
as shown in Figure 3. The system uses important operational aspects like mixing materials, reworking,
recycling, and bunch returns. The case study is an example segmentation application to model evaluation
by its two versions, with and without production lead time. In the first version of the model, lead times
at each stage of the production are assumed to be zero. In the second version, lead times are included.
The parameters and the initial inventory amounts are specified in Table 4 and Table 5, respectively, for
both versions of the model.

Figure 3. Production–inventory model of the sulfur bentonite phosphate (SBP) system with
key rate parameters.
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Table 4. Initial inventory values of the state variables.

I0
mb I0

mc I0
mA1

I0
mA I0

md I0
RA1

I0
RA

104 98 22 5 19 3 4

Table 5. Fixed parameter values used in the SBP system.
α β γ δ ωm1 ωm2 ωRA1 ωRA ωCA1 ωCA ωdA1 ωdA τA1 τA T t a b
1 10 1 20 0.042 0.026 0.81 0.73 0.17 0.21 0.02 0.06 0.1 0.05 6 1 0.01 0.1

5.1. Model 1: Without consideration of lead time

By placing the specified parameters in Table 4 and Table 5 in Eq. (3.12), a dynamic system is
obtained in which the coefficients of state and control variables form the entries of matrices M and N.

Now consider the linear binomial optimal control model in Eqs. (4.1) and (4.2). If the present penalty
factors are defined as Q = diag{15,16,10,14,3,8,9}, K = diag{120,190,140,110,145,130,125}, and
R = diag{2,6,4,5,2,2,1,1,2}, then the result is depicted in Figure 4. These matrices are selected so
that they reflect common trade-offs between inventory control and production control. The weights in Q
and K are chosen to prefer control action deviations from safety stock levels and end-period inventory
targets to be minimized, respectively. The entries of R penalize control action swings that are large,
such as ordering and shipping, to promote smoother behavior. Since company-specific cost coefficients
were not obtainable, numerical scaling was employed to achieve stable convergence performance with
consistency in managerial priorities for order responsiveness and inventory stability. The approach is
generally employed in LQR-based production-inventory models where empirical cost data are sparse.
Therefore, variables of state and control converge to their target values. Since the state and control
functions are the deviation between the answers and their target functions, according to Figure 4, when
∆ f (t)→ 0 (where f (t) can be a state or control variable), this suggests that f (t)− f̂ (t) converges to
zero or f (t)→ f̂ (t), meaning that functions (state or control) are converging according to their targets.
Convergence to target values means that inventory variables and the level of orders and shipments have
reached the desired values for managers to control.

(a) (b)

Figure 4. Final solution for (a) state variables and (b) control variables, both without
consideration of lead times.
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5.2. Model 2: With consideration of lead time

Now, if the specified parameters in Table 4 and Table 5 are included in the optimal control model
with lead time in Eq. (3.23), the matrix of coefficients of the state and control variables M′ and N′ are
obtained. Penalty factors in the current linear binomial optimal control are considered the same as in the
previous model, defined as matrices Q = diag{15,16,10,14,3,8,9}, K = diag{120,190,140,110,145,
130,125}, and R = diag{2,6,4,5,2,2,1,1,2}. The results of solving this model are shown in Figure 5.

(a) (b)

Figure 5. Final solution for (a) state variables and (b) control variables, under lead-time
conditions.

Comparing Figure 4(a) and Figure 5(a), the convergence velocity deviation of the inventories ∆ImA1 ,
∆IRA1 , ∆ImA, and ∆IRA in the model without lead time is greater than the model with lead time, but the
values of variables ∆Imb, ∆Imc, and ∆Imd in both with- and without-lead-time models are similar because
there is no lead time for inventories related to raw materials.

Because no additional bentonite soil and sulfur raw materials should be present in the 91% sulfur
production stage, the diagrams related to the deviation from the target level of the two variables of sulfur
and bentonite soil (∆Imb,∆Imc) are equal in the case without lead times. When lead time is considered
in a system, the rate at which the convergence deviates from the target level for bentonite soil is more
significant than that for sulfur. This is because the consumption coefficient of bentonite soil is greater
than that of sulfur. When comparing a 91% sulfur inventory, the deviation from the target level first
increases and then converges to zero in the case of a system with lead time. However, the behavior of
the diagram for the foam’s raw material is the same in both models.

Comparing Figure 4(b) and Figure 5(b), which are related to the deviation from the target level of
control variables, the convergence rate is higher in the model without lead time than in the model with
lead time.

Table 6 compares the objective function values for the proposed model under scenarios with and
without production lead time, which shows that including lead time results in a higher total cost.
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Table 6. Comparison of the objective functions.

With lead time Without lead time

Value of objective J∗ 351,897 216,881

5.3. Comparison of convergence of both models

We now consider the speed of convergence of three control variables Pmb, Pmc, and Smb in the two models:
with and without lead time. As depicted in Figure 6, the convergence speed is higher for all three variables
when the lead time is zero. This suggests that a model without lead time may demonstrate faster convergence
to target levels. However, considering lead time provides a more accurate and realistic representation of the
production process, which is essential for effective decision-making and long-term efficiency.

Figure 6. Comparison of the speed of convergence of the (a) transmission level of item b, (b)
transmission level of item c, and (c) ordering level of item b for both models.

6. Discussion

In previous research, several optimal control models have been proposed for managing production
and inventory of MRP systems. However, these models often fail to consider lead time or include the
return and reworking stages. This study introduces a production-inventory optimal control model that
addresses these shortcomings. The implications of the model are presented in two sections: theoretical
implications, which mainly involve comparing the proposed model with previous models, and practical
implications, which include scenarios related to interpreting the results of the proposed model.

6.1. Theoretical implications

Based on Pooya and Pakdaman’s [6] approach, an optimal continuous MRP control model can be
modified to use computational aspects of CMRP. For example, state variables for inventory, control
variables for production, ordering, and demand programs, a BOM system, and demand dependence on
BOM can all indicate CMRP computational requirements. The model proposed here is a continuous
MRP model considering the delay due to production lead time [8] and a multi-stage production-inventory
system [39]. Since time is considered a continuous parameter and the lead time is considered in each
production stage, the proposed model is more realistic and feasible for a variety of industries. It is also a
proposed model for determining production values at any given time in discrete production processes
such as a workshop, handling the flow, and applied assembly lines.
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One of the significant differences between CMRP and DMRP is lead time. In the CMRP system,
the lead time can take on continuous values. Alternatively, in the DMRP system provided by Ignaciuk
and Bartoszewicz [44], the lead time must be an integer number (i.e., if the lead time is a non-integer
number, it is rounded to the nearest larger integer). However, the number of orders received is delayed.
If the lead time is rounded to the first smaller number, orders will be received sooner, which will create
a surplus inventory and thus increase maintenance costs, and MRP objectives are not met.

According to the model proposed by Foul and Tadj [45], returned items will only be returned for
reworking from the market. In the model proposed here, the produced items will be examined before
distribution in the market to check the quality of distributed items, resulting in a reduction in the
percentage of defective items in the market.

Also, unlike the models proposed by Mishra [46], in the model proposed here, in addition to rework,
the recycling of items is considered. The recycling stage of the returned items is a benefit of this model.
Since recycled items could be used in the production process, for economic reasons, manufacturers
understand the benefits of product recycling. Returned items, in addition to manufactured goods, could
also be work-in-process goods. Returned items can be work-in-process and manufactured items, some
of which cannot be recycled and will be disposed of as spoiled items. Returned items may be reworked
or recycled. The reworking and recycling processes are assumed to be complete, and all inputs are
converted to the desired output. Otherwise, if there is waste in the recycling and reworking processes,
the model will automatically adapt to new coefficients by changing its structure.

Compared to other models in the literature, a significant advantage of our proposed model is that the
amount of items sent to the next stage is exactly the same as what is used for production. This is a ratio
of the inventory amount and its usage ratio in the BOM. This prevents the creation of excess inventory.
An accurate answer could be obtained since the proposed optimal control model is linear quadratic.
However, approximate approaches can be used for large-scale problems. The positive values of the state
variables suggest surplus inventory, which is more than the safety stocks. Alternatively, negative values
represent that inventories are less than the safety stocks. As shown in the figures, the inventories are
close to the target values after a short time when the order programs are set.

6.2. Practical implications

This study presents a novel approach to optimizing multi-stage continuous MRP systems with
finite capacity, considering production lead times and the deterioration of inventory items. This model
considers purchase and manufacturing orders, shipments, and quantities returned from the market as
control variables, while inventories serve as system states. Production lead times encompass the time
required for both production and purchase orders. Notably, our proposed system permits the transfer
of returned items from one inventory stage to the preceding one, facilitating recycling and reworking
processes.

As the conservation equations are well established in the literature, our proposed model offers a clear
advantage by focusing on using these principles to maintain the inventory balance at different stages
of production. In particular, our model emphasizes the integration of bill of materials (BOM) usage
coefficients with dynamic inventory levels, ensuring that the amount of items sent to the next stage is
neither excessive nor insufficient. This allows the model to seamlessly manage the production flow
and prevent inventory build-up in the manufacturing process while maintaining continuous production.
While prior models may individually encompass features such as lead times and rework stages, our
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comprehensive model integrates all these aspects to offer a holistic framework that captures the realities
of production-inventory systems.

A three-level BOM model is presented in this study, which is designed with a flexible framework
to support higher BOM levels. However, as BOM levels increase, it presents potential computational
challenges. Fortunately, using the modular structure of the model allows each additional BOM level to be
seamlessly integrated with the same equations and control rules. By using sparse matrix representations
and parallel processing, the complexity of the model is manageable, confirming its scalability in the
extended BOM hierarchy. Computational scalability and feasibility are important for the usability and
practicality of the model. Although this work uses a three-level BOM structure, the modularity of the
formulation ensures that the model scales very well to more complex BOM hierarchies. Extra levels can
be added with the same control logic and equations underlying each extra level. From a computational
perspective, the case study demonstrated both state and control variables converging rapidly to their set
levels by typical numerical procedures. This also indicates that the model is computationally manageable
within normal industry operating conditions. The computation time can be reduced even more, with
larger system scalability enhanced, through the inclusion of the utilization of sparse matrix computations
and parallel processing—thus defining the method for medium to large-scale manufacturing operation.

The finite capacity of activities at workstations leads to limitations such as production, reconstruction,
and recycling goals. The inventory objective is to minimize the difference in inventory level from its
safety stock level. The purpose of disposing of items indicates the target level of disposal of deteriorated
items and the capacity to order, release, and transport raw parts, among other goals. Also, in the master
production schedule (MPS), the target demand for the final product is usually defined as planned demand.
Therefore, minimizing the difference between demand and the demand target at any given time creates
consistency in the production process with the planned demand.

The proposed model has utilitarian value for designing production systems with complex BOM
structures and perishable items. Through the incorporation of lead times and return flows in a continuous
MRP setting, the model enables planning and decision-making with greater precision in capacity-
constrained environments. The model releases material in appropriate quantities between stages,
limiting excessive inventory and aligning production with actual demand. The addition of perishability
constraints minimizes waste and obsolescence of inventory, which is especially valuable for time-
sensitive industries. In all, the case study validates that the addition of lead time decelerates convergence
but increases system realism and responsiveness.

According to Figure 4(a), the potassium inventory deviation rapidly converges to the target value. If
Figure 3 is considered, the shipped level deviation of potassium is exited from this inventory, and the
ordering level deviation of the raw material is entered. Figure 4(b) shows that the convergence velocity
of sent items is greater than the order variable’s convergence velocity. This means that the input rate has
decreased relative to the output, so the potassium inventory convergence velocity has increased. The
amount of the state variable of the 91% sulfur inventory level has increased from the target predetermined
value over the time period [0,0.6] if Figure 5(a) is considered. Because in this period, the convergence
velocity of the control variables and the input state were higher than the convergence velocity of the output
variables. However, after this period, the convergence velocity in the output variables has increased, causing
a decrease in the 91% sulfur inventory deviation level from its target value.

The findings have significant implications for managers who work in multi-level production systems
that produce perishable goods. First, the inclusion of perishability considerations in the planning
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phase substantially reduces the risk of obsolescence and write-offs of products, particularly during
the later phases of production. Second, the delayed control feature of the model allows managers to
actively reduce the levels of production, thereby preventing the buildup of unwanted stocks of products
with limited shelf lives. Third, perishability constraints induce ordering patterns towards shorter-order
completion lead times and reduced inventory cushions with heightened stage coordination. Fourth, the
results identify that in such conditions, omitting perishability from the model leads to higher inventory
levels and attendant higher holding costs. Such results necessitate the incorporation of perishability in
MRP systems to heighten responsiveness, minimize waste, and improve service reliability in time-critical
manufacturing networks.

7. Concluding remarks

A quadratic linear optimal control model is developed in this paper for a multi-stage production-
inventory MRP system, which considers production lead time. In the proposed model, the objective
function’s value indicates the convergence rate of the variables (state and control functions) to their target
values. The inventories are state variables, while the order variables, the amount of shipped goods and
the amount of demand for work-in-process goods, are control variables. This model focuses on internal
lead times that can be considered as the time required to set up and process machines and the time
required to transport items between parts of the system; however, it provides flexibility to incorporate
supplier lead times when inventory strategies require it. When lead times were accounted for, the total
cost increased from 216,881 to 351,897 (approximately 62% higher), while the convergence speed of
control and state variables decreased by about 35%. This indicates that production delays increase
the realism of the model at the cost of higher total costs, which better represents actual production
behavior in continuous production systems. One of the innovations in the proposed optimal control
model compared to previous models is that by providing explicit functions, the amount of items sent to
following stages is as much as needed for production, thus preventing surplus inventory. The optimal
control problem with lead time is approximated to a problem without lead time using Taylor expansion.
Finally, the exact answer to the problem without lead time and the approximate answer to the problem
with lead time were calculated and compared. In the fertilizer production system analyzed, the lead times
(τA1 = 0.1, τA = 0.05) are relatively small when compared to the overall production horizon (T = 6).
Therefore, the first-order Taylor expansion applied in the delayed control model is sufficiently accurate
in representing the essential dynamic behavior. The higher-order expansions may be hypothetically
applied when delays become very significant; however, there is no rationale for doing so in this industrial
context. Sensitivity tests demonstrated that moderate changes in lead times (±25%) do not have an
impact on the qualitative behavior of the system, which supports the adequacy of the approximation
applied. A comparison of these responses showed that the convergence of the response without lead
time to its target value is faster than that with the lead time assumption. One of the advantages of the
proposed model is that, unlike other models in the literature, the production lead time can be continuous
and a fraction of the unit of time.

Although the research confirms the model with a real case study from the fertilizer industry, the
structure is not industry-specific. The model can be extended to other process-oriented industries
with analogous manufacturing complexities, such as pharmaceuticals, chemicals, and food processing,
by adjusting BOM patterns to stocks and attributes to lead time. These industries have multi-stage
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manufacturing flows, perishable components, process rework, and capacity limitations; thus, the
structure possesses high generality to continuous production systems.

This paper expresses form work (order, send, and demand) and state work (inventory) in terms
of time to find an open-loop solution. Future work can advance to closed-loop models where they
are expressed instead in terms of inventory to allow a dynamic response from the system. Although
comprehensive application to higher levels within the BOM lies outside the domain of work here, future
work can explore methods such as decomposition techniques, sparse matrix calculations, or parallel
processing to tackle the increased complexity in an effective manner. Expanding the alternate ordering
policy beyond the lot-for-lot system and adding limits to the control and inventory variables can improve
the optimization process. The inclusion of uncertainty techniques (i.e., robust control) could more
effectively address variability in the system. A rolling horizon or a model predictive control (MPC)
strategy could improve the robustness of the proposed model in the case of real-time disturbances to the
system. MPC permits frequent re-optimization from new system states and hence is well adapted to
dynamic manufacturing systems with uncertainty and noise being primary drivers.
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