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1. Introduction

An invariant volume is a powerful tool for understanding the asymptotic nature of a dynamical system.
In particular, it is a well-known fact that unconstrained mechanical systems are volume-preserving.
The case of nonholonomic systems is more nuanced as these systems generally fail to preserve the
symplectic form (which follows from the fact that nonholonomic systems are not variational) and
hence, the induced volume form. This makes the study of invariant volumes in nonholonomic systems
nontrivial and the existence of an invariant volume is an exceptional scenario which should not be
expected in general [1, 2]. A famous example of this is the Chaplygin sleigh; this system, although
energy-preserving, experiences volume “dissipation” which results in asymptotic stability (cf. [3] for a
general discussion on stability of nonholonomic systems or [4] for an interpretation via impact systems).

The existence of an invariant volume for a nonholonomic system offers two key insights. The first
is the usual case in dynamical systems where an invariant volume allows for the use of the Birkhoff
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Ergodic Theorem (cf. e.g. 4.1.2 in [5]), for recurrence (with the caveat of the volume being finite
although some results still hold for infinite measures [6]), and as an obstruction to asymptotic stability.
The other is unique to nonholonomic systems; even though nonholonomic systems are not Hamiltonian,
“nonholonomic systems which do preserve volume are in a quantifiable sense closer to Hamiltonian
systems than their volume changing counterparts,” [7] (see also [8–12]). Therefore, being able to find
an invariant volume for a nonholonomic system allows for understanding its asymptotic behavior and
can provide a way to “Hamiltonize” a nonholonomic system (although most systems with an invariant
volume still cannot be Hamiltonized, cf. [13]).

There exists an abundance of research into finding invariant volumes for nonholonomic systems where
the constraints are linear and symmetries are present: Chaplygin systems are studied in, e.g. [11, 14–19],
Euler-Poincaré-Suslov systems are studied in, e.g. [20, 21], systems with internal degrees of freedom are
studied in, e.g. [20, 22, 23], and [24] studies the case of symmetric kinetic systems where the dimension
assumption does not hold. Related work on asympotic dynamics may be found in [25]. There are also results
demonstrating that no invariant volumes exist, e.g. [26,27].

The contribution of this work is to consider conditions for the existence of invariant volume in
nonholonomic systems such that

1. the constraints need not be linear/affine in the velocities,

2. the analysis can be carried out on the ambient manifold rather than resorting to local coordinates, and

3. absolutely no symmetry assumptions are used.

Such an approach seems to be new.
Our main result is an existence condition for an invariant measure for a hyper-regular Lagrangian

system with an admissible set of nonlinear nonholonomic constraints obeying Chetaev’s rule. In the
linear case the existence of a basic invariant density reduces to checking whether or not a certain 1-form
can be made to be exact, [28], and this special case is similar to results in [15, 24].

Preliminaries on nonholonomic systems are presented in Section 2. Section 3 presents the construc-
tion of the “extended nonholonomic vector fields” on the entire cotangent space T ∗Q which restricts to
the nonholonomic vector field on M. Although there does not exist a canonical choice for the extended
vector field, they will agree once restricted. An advantage of this approach is that one is able to design
extended vector fields which ensure that the constraint manifold is an exponentially stable invariant
manifold. The divergence calculation for a nonholonomic system is performed in Section 4 via extended
nonholonomic vector fields. The main results, Theorem 5.2 and Theorem 5.6, are proved in Section 5
(cf. Theorems 5.2 and 5.6). Additionally, it is shown that the invariant volume does not depend on the
choice of extended nonholonomic vector field chosen and is unique up to a constant of motion. Section
6 presents an interpretation of the linear constraint case to the torsion of the nonholonomic connection,
which seems to be a novel observation. This paper concludes with examples in Section 7.

This paper is a continuation of the work done in [29] and, as such, many of the results below can be
found there.
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2. Preliminaries and notation

2.1. Unconstrained mechanics

We will first briefly cover the case of unconstrained mechanical systems before discussing nonholo-
nomic systems. A smooth (finite-dimensional, dim(Q) = n) manifold Q is called the configuration
space, the tangent bundle T Q is called the state space, and the cotangent bundle T ∗Q is called the phase
space. The bundle projection maps will be denoted by τQ : T Q→ Q and πQ : T ∗Q→ Q.

2.1.1. Lagrangian systems

Lagrangian systems are described by a smooth real-valued function on the state space called the
Lagrangian, L : T Q→ Q. The dynamics generated from the Lagrangian function arise from Hamilton’s
principle and are given by the Euler-Lagrange equations,

d
dt
∂L
∂q̇
−
∂L
∂q

= 0.

2.1.2. Hamiltonian systems

In constrast to Lagrangian systems, Hamiltonian systems evolve on the phase space. For a given
Lagrangian, denote FL : T Q→ T ∗Q as its fiber derivative.

Definition 2.1. A Lagrangian, L : T Q→ R, is hyperregular if the fiber derivative is a global diffeomor-
phism. Furthermore, a Lagrangian is natural if it has the form

L(v) =
1
2

g(v, v) − τ∗QV(v),

where g is a Riemannian metric on Q and V ∈ C∞(Q).

Throughout this work, all Lagrangians will be assumed to be hyperregular. Moreover, when affine
constraints are considered, the Lagrangian will be assumed to be natural.

For a given Lagrangian, we define the Hamiltonian H : T ∗Q→ R via the Legendre transform:

H(p) = 〈p, v〉 − L(v), p = FL(v).

Let ω = dqi ∧ dpi be the canonical symplectic form on T ∗Q. The resulting Hamiltonian vector field
arising from the Hamiltonian H and the symplectic form ω is denoted by XH and is given by

iXHω = dH,

where iXω = ω(X, ·) is the contraction. An important feature of Hamiltonian vector fields is that they
preserve the symplectic form, and thus are volume-preserving.

Theorem 2.2 (Liouville’s Theorem). Hamiltonian dynamics preserve the symplectic form and, addi-
tionally, preserve the volume form ωn.

Liouville’s theorem does not apply to general nonholonomic systems as they are generally not
symplectic. Determining when an analogous version of this theorem applies to constrained systems is
the main goal of this work.

Journal of Geometric Mechanics Volume 15, Issue 1, 256–286



259

2.2. Constrained dynamics

For unconstrained Lagrangian systems, motion is allowed to occur in the entire state space, T Q. For
constrained systems, motion is restricted to lie on a constraint manifold N ⊂ T Q and we tacitly assume
that τQ(N) = Q. For the purposes of this work, we will not differentiate between nonholonomic and
holonomic constraints as the machinery for the former will suffice for the latter.

Let N ⊂ T Q be the constraint submanifold which is, locally, described via the zero level-set of a
regular function G : T Q→ Rk, k < n = dim(Q). Let us denote each component of this function by Ψα,
α = 1, . . . , k, i.e.

N =

k⋂
α=1

(Ψα)−1(0).

To transfer to the Hamiltonian point of view, we assume that the Lagrangian, L : T Q → R, is hyper-
regular. The constraints on the cotangent bundle become

Φα = (FL−1)∗Ψα, M = FL(N) =

k⋂
α=1

(Φα)−1 (0).

These constraints are admissible if the following matrix is non-singular [18].

mαβ = C∗dΦβ (XΦα) , (mαβ) = (mαβ)−1,

where XΦα is the Hamiltonian vector field generated by Φα and C : T (T ∗Q)→ T (T ∗Q) is the FL-related
almost-tangent structure, explained below.

The constrained Euler-Lagrange equations become modified via Chetaev’s rule (which is not neces-
sarily the physically correct procedure, cf. [30] for a discussion), which will provide equivalent results
to those in [31] where the “almost-tangent” structure of the tangent bundle is utilized. For Lagrangian
systems, Chetaev’s rule states that if we have the nonlinear constraints Ψα, then the constraint forces
have the following form

d
dt

(
∂L
∂q̇

)
−
∂L
∂q

= λα · S
∗dΨα, (2.1)

where S : T (T Q)→ T (T Q) is a (1,1)-tensor called the almost-tangent structure and, in local coordinates,
is given by

S =
∂

∂q̇i ⊗ dqi.

If, rather than being general nonlinear, the constraints are affine in the velocities,

Ψα(v) = ηα(v) + τ∗Qξ
α(v),

where ηα ∈ Ω1(Q) are 1-forms and ξα ∈ C∞(Q) are functions, then (2.1) becomes

d
dt

(
∂L
∂q̇

)
−
∂L
∂q

= λα · τ
∗
Qη

α.

However, this work will focus on the Hamiltonian formalism. The constraint manifold, M ⊂ T ∗Q, is
locally described by the joint level-set of the functions Φα : T ∗Q → R where Φ(p) = Ψ ◦ FL−1(p).
Moving (2.1) to the cotangent side, the constrained Hamiltonian equations of motion become

iXM
H
ω|M = dH|M + λα · C

∗dΦα|M, (2.2)
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where C : T (T ∗Q)→ T (T ∗Q) is the FL-related almost-tangent structure, i.e. if L is natural, then

C∗
(
αidqi + β jdp j

)
= gi jβ

jdqi.

2.3. Notation

Throughout this work, L : T Q→ R will be a hyperregular Lagrangian with corresponding Hamil-
tonian H : T ∗Q → R. The constraint manifold will be called N ⊂ T Q or M = FL(N) ⊂ T ∗Q. These
submanifolds will be locally described by the joint zero level-set of a collection of smooth functions,

N =

k⋂
α=1

(Ψα)−1(0), M =

k⋂
α=1

(Φα)−1(0).

If the constraints are affine in the velocities/momentum, the Lagrangian will be assumed to be natural
with Riemannian metric g. In this case, the constraining functions will have the form

Ψα(v) = ηα(v) + τ∗Qξ
α(v), Φα(p) = P(Wα)(p) + π∗Qξ

α(p),

where ηα are 1-forms, ξα are functions, Wα = FL−1(ηα) are vector fields, and P(Wα) is the vector field’s
momentum

P(Wα)(p) = 〈p,Wα(πQ(p))〉.

In this case of affine constraints,D ⊂ T Q will be the distribution

Dq =

k⋂
α=1

ker ηαq ,

andD∗ = FL(D) ⊂ T ∗Q.
Finally, the nonholonomic vector fields with Hamiltonian H and constraint manifold M will be

denoted by XM
H .

3. Extended nonholonomic vector fields

Given a constraint manifold, M ⊂ T ∗Q, we can determine the nonholonomic vector field, XM
H ∈ X(M)

via (2.2). Commonly local, noncanonical, coordinates are chosen for M (cf. §5.8 in [20] and [32]).
However, we will instead work with a tubular neighborhood (for ease, this will be written as the entire
manifold T ∗Q) and define an extended vector field Xext

H ∈ X(T ∗Q) such that Xext
H |M = XM

H . This section
outlines an intrinsic (albeit non-unique) way to determine such a vector field.

Definition 3.1. For a given constraint submanifold M ⊂ T ∗Q, a realization of M is an ordered collection
of functions C := {Φα : T ∗Q→ R} such that zero is a regular value of G = Φ1 × . . . × Φk and

M =
⋂
α

(Φα)−1(0).

If the functions Φα are affine in momenta, i.e. Φα = P(Xα) + π∗Q f α, then the realization is called affine.
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Remark 3.2. In the case where the Lagrangian is natural (which provides a Riemannian metric on Q)
and the constraint submanifold is affine, we can choose the realization to be affine:

C = {P(W1) + π∗Qξ
1, . . . , P(Wk) + π∗Qξ

k},

where W i = FL−1ηi = (ηi)].

By replacing M with a realization C , we can extend the nonholonomic vector field to a vector
field on T ∗Q such that Φα are first integrals. Recall that the form of the nonholonomic vector field is
iXM

H
ω = dH + λαC

∗dΦα. We construct the extended nonholonomic vector field, ΞC
H , by requiring that:

(NH.1) iΞC
H
ω = dH + λαC

∗dΦα for smooth functions λα : T ∗Q→ R, and

(NH.2) LΞC
H

Φα = 0 for all Φα ∈ C .

Under reasonable compatibility assumptions on C (cf. §3.4.1 in [18], see Definition 3.4 below), such
a vector field exists and is unique. However, given two different realizations, C and C ′, of the same
constraint manifold M, it is not generally true that ΞC

H = ΞC ′

H , however ΞC
H |M = ΞC ′

H |M.

Remark 3.3. The constraint manifold is given by the joint zero level-sets of the Φα while the realization
provides additional irrelevant information off of the constraint manifold. This is why ΞC

H , ΞC ′

H but they
agree once restricted as will be proved in Proposition 3.6 below.

Definition 3.4. For a realization C = {Φ1, . . . ,Φk}, the constraint mass matrix, (mαβ), is given by
“orthogonally” pairing the constraints,

mαβ = C∗dΦα (XΦβ) .

The realization is admissible if this matrix is non-singular on a tubular neighborhood of M. The inverse
matrix will be denoted by (mαβ) = (mαβ)−1.

When the constraints are affine (along with a natural Lagrangian), the constraint mass matrix becomes

mαβ = g(Wα,Wβ) = ηα(Wβ),

and admissibility of the constraints is equivalent to the constraints being linearly independent.
We can now write down a formula for ΞC

H . Using (NH.1) and (NH.2), we get that (where {·, ·} is the
standard Poisson bracket)

LΞC
H

Φβ = iX
Φβ
ω(ΞC

H )

= −iΞC
H
ω(XΦβ)

= −dH (XΦβ) − λαC∗dΦα(XΦβ)

=
{
Φβ,H

}
− λαC

∗dΦα(XΦβ) = 0.

This implies that
{
Φβ,H

}
= mαβλα. Due to the constraint mass matrix being nondegenerate, the

multipliers are uniquely determined and the extended nonholonomic vector field is determined by

iΞC
H
ω = dH − mαβ {H,Φα} C∗dΦβ (3.1)
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Definition 3.5. The 1-form on T ∗Q given by

νC
H := dH − mαβ {H,Φα} C∗dΦβ,

is called the nonholonomic 1-form with respect to the realization C .

Proposition 3.6. Given two different realization, C and C̃ , the extended nonholonomic vector fields
given by (3.1) agree on M.

Proof. Let C = {Φα} and C̃ = {Φ̃α} be two different realizations of the same manifold M and let x ∈ M.
Their differentials span the annihilator,

span
{
dΦα

x
}

= span
{
dΦ̃α

x

}
= Ann(TxM).

As the map C : T (T ∗Q)→ T (T ∗Q) is linear, we have

span
{
C∗dΦα

x
}

= span
{
C∗dΦ̃α

x

}
.

As the multipliers are unique, we must have

mαβ {H,Φα} C∗dΦβ|M = m̃αβ

{
H, Φ̃α

}
C∗dΦ̃β|M,

and therefore the resulting extended nonholonomic vector fields must agree on M.

Remark 3.7. A consequence of Proposition 3.6 is that this procedure of extending the nonholonomic
vector field is still valid when M is not globally defined as the level-set of functions. Suppose that
U,V ⊂ M are two neighborhoods characterized by the zero level-sets of functions Φ, φ : T ∗Q → R.
Then Φ and φ both define different realizations on U ∩ V . However, their corresponding vector fields
agree on the intersection. This observation will make the constructions required for Theorem 5.2
well-defined even if M cannot be globally defined as a level set.

3.1. Stabilizing extended vector fields

The extended nonholonomic vector field, XM
H , is a vector field on the ambient space T ∗Q and has M

as an invariant manifold. As such, an integral curve of XM
H is only a valid trajectory if its initial condition

lies in M. In practice using numerical techniques, round off errors can result in trajectories drifting away
from M. To counter this effect, the condition (NH.2) can be replaced to include something in the spirit
of a “control Lyapunov function” [33]. This modification will only be explored in this section while the
rest of this paper will be concerned with the unmodified approach explained above.

Let the modified feedback nonholonomic criteria be:

(NH.1) iΞC
H
ω = dH + λαC

∗dΦα, for smooth functions λα : T ∗Q→ R, and

(NH.2’) LΞC
H

Φα = −καΦα for some positive constants κα,

where there is no summation in (NH.2’).
This approach has the advantage that if x0 < M, its trajectory exponentially approaches M, i.e.

suppose that ϕt is the flow of the extended feedback nonholonomic vector field, then

Φα (ϕt(x0)) = e−κ
α

Φα (x0)→ 0.

Mimicking the derivation of (3.1), we arrive at

iΞC
H
ω = dH − mαβ ({H,Φα} − καΦα) · C∗dΦβ. (3.2)
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Example 1 (Simple Pendulum). Consider the simple pendulum viewed as a constrained system in R2.
The Hamiltonian and constraint are

H =
1

2m

(
p2

x + p2
y

)
+ mgy, Φ = xpx + ypy = 0,

where m is the mass of the pendulum and g is the acceleration due to gravity. The equations of motion
from (3.2) are

ẋ =
1
m

px, ẏ =
1
m

py,

ṗx =
x

x2 + y2

[
mgy −

1
m

(p2
x + p2

y) − κ
(
xpx + ypy

)]
,

ṗy =
y

x2 + y2

[
mgy −

1
m

(p2
x + p2

y) − κ
(
xpx + ypy

)]
− mg.

(3.3)

A valid initial condition, z0 = (x(0), y(0), px(0), py(0)), for (3.3) needs to satisfy the constraint
Φ(z0) = 0. However, due to running numerical errors, the constraint will not be preserved as the state is
integrated. By choosing κ > 0, a correcting feedback is introduced to help preserve Φ = 0 as shown in
Figure 1.

3.2. Ideal constraints

We end this section with a brief consideration of ideal constraints - constraints that perform no work
on the system. As discussed in [31], a constraint Ψ on T Q is ideal if and only if

q̇i∂Ψ

∂q̇i

∣∣∣∣∣
M

= 0.

On the cotangent side, this condition becomes

C∗dΦ (XH)|M = 0.

In particular, if all the constraints are ideal, then energy is conserved. Indeed,

Ḣ = mαβ{H,Φα}C∗dΦβ(XH).

Constraints will not be assumed to be ideal. Indeed, examples 7.1.2, 7.1.3, and 7.2.1 will all be subject to
non-ideal constraints. In particular, these examples will be volume-preserving but not energy-preserving
(although a modified energy integral exists for the first two examples [34]).

4. Nonholonomic volume

For a given nonholonomic vector field XM
H ∈ X(M), a volume-form µ ∈ Ω2n−k(M) is invariant if and

only if
divµ(XM

H ) = 0.

This section offers a way to choose a volume-form µ based off a (non-canonical choice) of realization C
as well as showing how to compute the divergence of the nonholonomic vector fields with respect to
this volume.
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(a) State trajectory with κ = 0. (b) Constraint trajectory with κ = 0.

(c) State trajectory with κ = 10. (d) Constraint trajectory with κ = 10.

Figure 1. The introduction of a positive κ helps to stabilize the numerical trajectory. Numerical
integration was performed with Matlab’s ode45.
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4.1. Nonholonomic volume form

The symplectic manifold T ∗Q has a canonical volume form ωn. However, the nonholonomic flow
takes place on a submanifold M ⊂ T ∗Q which is 2n − k dimensional. Therefore, ωn is not a volume
form on M. Here, we construct a volume form on M which is unique up to the choice of realization.
The derivation of this will be similar to the construction of the volume form on an energy surface in
§3.4 of [35]. For the realization C = {Φ1, . . . ,Φk}, define the k-form

σC := dΦ1 ∧ . . . ∧ dΦk.

Definition 4.1. If we denote the inclusion map by ι : M ↪→ T ∗Q, then a nonholonomic volume, µC , is
given by

µC = ι∗ε, σC ∧ ε = ωn.

Proposition 4.2. Given an ordered collection of constraints, C , the induced volume form µC is unique.

Proof. Suppose that ε and ε′ are two forms satisfying σC ∧ ε = ωn. Then

ε − ε′ = α, σC ∧ α = 0.

Now let ι : M ↪→ T ∗Q be the inclusion. Then from the above, we see that

ι∗ε = ι∗ε′ + ι∗α.

The result will follow so long as ι∗α = 0. Suppose that ι∗α , 0 and choose vectors v1, . . . , v2n−k ∈

TxM ⊂ TxT ∗Q such that α(v1, . . . , v2n−k) , 0. Complete this collection of vectors to a basis of TxT ∗Q:
v1, . . . , v2n−k, v2n−k+1, . . . , v2n such that σC (v2n−k+1, . . . , v2n) , 0. Then we have

σC ∧ α
(
v1, . . . , v2n

)
= (−1)(2n−k)kα(v1, . . . , v2n−k) · σC (v2n−k+1, . . . , v2n) , 0,

which is a contradiction.

Remark 4.3. Notice that for an ordered collection of constraints the volume form is unique. However,
changing the order of the constraints changes the sign of the induced volume form and re-scaling
constraints re-scales the volume form. In this sense, C uniquely determines µC , but M only determines
µC up to a multiple. This is to be expected as all volume-forms are related by a multiplicative factor.

While examining the failure of Liouville’s theorem (Theorem 2.2) for nonholonomic systems, we
will see when µC is preserved under the flow of XM

H . More generally, we will consider the existence of a
smooth density f ∈ C∞(M) when fµC is preserved.

4.2. Divergence

Let ω = dqi ∧ dpi be the standard symplectic form on T ∗Q. This in turn induces a volume form
ωn. A measure of how much a flow fails to preserve a volume form is described by its divergence.
We proceed with computing the divergence of a nonholonomic vector field, divµC

(XM
H ). When this is

nonzero, we will be interested in finding a density, f , such that div fµC
(XM

H ) = 0. This problem will be
addressed in §5.

Before we begin with the divergence calculation, we first present a helpful lemma which allows us to
relate the divergence of the extended nonholonomic vector field with the corresponding restricted vector
field.
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Lemma 4.4. If C is a realization of the constraint manifold M ⊂ T ∗Q, then

divωn

(
ΞC

H

)∣∣∣∣
M

= divµC

(
XM

H

)
.

Proof. Leibniz’s rule for the Lie derivative provides

LΞC
H
ωn = LΞC

H
(σC ∧ ε)

=
(
LΞC

H
σC

)
∧ ε + σC ∧

(
LΞC

H
ε
)
.

However, LΞC
H
σC = 0 because the constraints are preserved under the flow. Applying this, we see that

LΞC
H
ωn = σC ∧

(
LΞC

H
ε
)
,

which gives (
divωn

(
ΞC

H

))
σC ∧ ε = σC ∧

(
LΞC

H
ε
)
.

Due to the fact that the Lie derivative commutes with restriction, the result follows.

This lemma allows for us to calculate the divergence of the extended nonholonomic vector field and
to restrict to the constraint distribution afterwards.

Using Cartan’s magic formula along with Lemma 4.4, we see

LΞC
H

(ωn) = iΞC
H

dωn + diΞC
H
ωn

= n · d
(
iΞC

H
ω ∧ ωn−1

)
= n · d

(
iΞC

H
ω
)
∧ ωn−1 − n ·

(
iΞC

H
ω
)
∧ dωn−1

= n · dνC
H ∧ ω

n−1.

The divergence of the system is controlled by the failure of νC
H to be closed. Its derivative is given by

dνC
H = ddH − d

(
mαβ {H,Φα} · C∗dΦβ

)
.

Let φα = mαβΦ
β. As Φβ = 0 on M, the derivative becomes (where restriction to M is implied)

dνC
H = −d{H, φβ} ∧ C∗dΦβ + {H, φβ} · dC∗dΦβ.

The form dνC
H is a general 2-form. However, the only terms that survive once it is wedged with ωn−1 are

the diagonal terms, dqi ∧ dpi. Using local coordinates, aβi dqi = C∗dΦβ, we have

(
dνC

H

)
diag

=

∂{H, φβ}∂pi
aβi − {H, φβ}

∂aβi
∂pi

 dqi ∧ dpi.

Therefore, the divergence is given by

divµC
(XM

H ) = n ·

∂{H, φβ}∂pi
aβi − {H, φβ}

∂aβi
∂pi

 .
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The first component of this expression can be written intrinsically. Notice that

dπQ · X f =
∂ f
∂pi

∂

∂qi ,

where πQ : T ∗Q→ Q is the cotangent bundle projection. Therefore, the divergence can now be written
as

divµC
(XM

H ) = −n ·

C∗dΦβ
(
[XH, Xφβ]

)
+ {H, φβ}

∂aβi
∂pi

 . (4.1)

4.3. Intrinsic forms of the divergence

Suppose the Lagrangian is natural with Riemannian metric g = (gi j). Then

C∗dΦβ = gi j
∂Φβ

∂p j
dxi, aβi = gi j

∂Φβ

∂p j
,

∂aβi
∂pi

= gi j
∂2Φβ

∂pi∂p j
.

Let us call this final double sumMβ. Applying this to (4.1), we have

divµC
(XM

H ) = −n · C∗dΦβ
(
[XH, Xφβ]

)
− n ·

{
H, φβ

}
Mβ.

Next, assume that (in addition to the Lagrangian being natural), the constraints are affine which makes
Mβ = 0. Also the matrix, mαβ, does not depend on p and therefore, the divergence can be written as

divµC
(XM

H ) = −n · mαβ · π
∗
Qη

β ([XH, XΦα]) , (4.2)

as C∗dΦβ = π∗Qη
β for affine constraints.

For affine systems with natural Lagrangians, the divergence can be expressed intrinsically via (4.2).
To understand the divergence in the general nonlinear case (with potentially non-natural Lagrangians),
we need an intrinsic way to interpret the termMβ. This can be accomplished via the following procedure:

C∞(T ∗Q) Ω1(T ∗Q) X(T ∗Q) C∞(T ∗Q)

Φβ aβi dxi aβi
∂

∂pi

∂aβi
∂pi

C∗d −ω] divωn (·)

∆C

The divergence for a nonholonomic system subject to nonlinear constraints is thus

divµC
(XM

H ) = dim(Q) ·
(
C∗dΦβ

([
XH, Xφβ

])
+

{
H, φβ

}
∆C

(
Φβ

))
, (4.3)

which is the key to proving Theorem 5.2 below.

5. Invariant volumes and the cohomology equation

In general, the divergence of a nonholonomic system does not vanish as (4.1) shows. When does
there exist a different volume form on M that is invariant under the flow? i.e. does there exist a density
ρ > 0 such that divρµC

(XM
H ) = 0? Finding such a ρ requires solving a certain type of partial differential

equation which is known as the smooth dynamical cohomology equation. Solving this PDE is generally
quite difficult. However, when the constraints are affine and the density is assumed to be basic, the
problem becomes considerably more tractable
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5.1. The cohomology equation

What conditions need to be met for ρ such that ρµC is an invariant volume form? Using the formula
for the divergence as well as the fact that the Lie derivative is a derivation yields:

divρµC

(
XM

H

)
= divµC

(
XM

H

)
+

1
ρ
LXM

H
(ρ).

Therefore the density, ρ, yields an invariant measure if and only if

1
ρ
LXM

H
(ρ) = −divµC

(
XM

H

)
. (5.1)

Notice that the left hand side of (5.1) can be integrated to

1
ρ
LXM

H
(ρ) = d (ln ρ)

(
XM

H

)
.

Calling λ = ln ρ, we have the following lemma.

Lemma 5.1. For a nonholonomic vector field, XM
H , there exists a smooth invariant volume, ρµC , if there

exists an exact 1-form α = dλ such that

α
(
XM

H

)
= −divµC

(
XM

H

)
. (5.2)

Then the density is (up to a multiplicative constant) ρ = eλ.

Therefore the existence of invariant volumes boils down to finding global solutions to the PDE (5.2).
Using the divergence calculation, (4.3), we can state the main result.

Theorem 5.2. The nonholonomic Hamiltonian vector field XM
H possesses a smooth invariant volume,

ρµC , if there exists an exact 1-form α ∈ Ω1(T ∗Q) such that

−α
(
XM

H

)
= dim(Q) ·

(
C∗dΦβ

(
[XH, Xφβ]

)
+ {H, φβ}∆C

(
Φβ

))
.

The remainder of this section deals with uniqueness of solutions and a necessary condition for
solutions to exist.

Remark 5.3. PDEs of the form dg(X) = f for a given smooth function f , vector field X and with g
as the unknown are called cohomology equations [36, 37]. Thus the equation (5.2) is a cohomology
equation.

5.1.1. Uniqueness

The problem of existence is quite difficult in general and we postpone that discussion until the next
subsection where we assume that the solution has the form ρ = π∗Qρ̃. In the meantime, assuming that
there exists a function λ ∈ C∞(M) that solves (5.2), do there exist other solutions? Suppose that λ1

and λ2 both solve (5.2). Then their difference must be a first integral of the system: LXM
H

(λ1 − λ2) = 0.
Solutions of (5.2) are then unique up to constants of motion. i.e. if λ solves (5.2), then every invariant
density has the form (again, up to a multiplicative constant)

ρ = exp (λ + constant of motion) .

Therefore invariant measures can be thought of as an affine space with dimension being equal to the
number of first integrals of the nonholonomic system.
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5.2. Special case: basic densities and affine constraints

In general, solving the cohomology equation (5.2) is quite difficult. It turns out, however, that it is
relatively easy to determine necessary and sufficient conditions on the solvability when the density is
assumed to be basic and the constraints are affine.

For the remainder of this section, unless otherwise stated, the constraints are assumed to be affine. In
particular, if N ⊂ T Q, then the constraints have the form

Ψα(v) = ηα(v) + τ∗Qξ
α(v),

for 1-forms ηα and function ξα. On the cotangent side, the constraints become

Φα(p) = P(Wα)(p) + π∗Qξ
α(p), (5.3)

where Wα = FL−1ηα.

Definition 5.4. A density ρ : T ∗Q→ R is said to be basic if ρ = π∗Qρ̃ for some ρ̃ : Q→ R.

Under this assumption, (4.2) can be presented in a surprisingly nice way. In this case, the divergence
can be described by an equivalence class of “affine-forms.” The density form and density function,
defined below, is a representative element from this class.

Definition 5.5. Let C be an affine realization of M ⊂ T ∗Q of the form (5.3). Then, define the density
form and the density function to be

ϑC = mαβ · LWαηβ,

ζC = mαβ · LWαξβ,

respectively.

Studying this pair, (ϑC , ζC ), provides necessary and sufficient conditions for the existence of basic
densities.

Theorem 5.6. For a natural Hamiltonian system subject to affine constraints, there exists an invariant
volume of the form (π∗Qρ̃)µC if and only if there exists functions ϕγ such that

n · ϑC − ϕγη
γ = −d ln ρ̃,

n · ζC − ϕγξγ = 0.
(5.4)

Proof. To prove this, we will show that −n · π∗Qϑ(XM
H )− n · π∗QζC = divC (XM

H ). Recall that the differential
of a 1-form is given by dα(X,Y) = Xα(Y) − Yα(X) − α([X,Y]) and that π∗Qη

β(XH)|M = −ξβ. Returning
to (4.2), we have

divµC
(XM

H ) = −n · mαβ · π
∗
Qη

β ([XH, XΦα])

= −n · mαβ ·
(
XHmαβ + XΦαξβ − π∗Qdηα(XH, XΦα)

)
= −n · mαβ ·

(
dmαβ(q̇) + dξβ(Wα) − dηα(q̇,Wβ)

)
= −n · mαβ ·

[
(diWβηα + iWβdηα) (q̇) + dξβ(Wα)

]
= −n · mαβ ·

[
LWβηα(q̇) +LWαξβ

]
= −n · ϑC (q̇) − n · ζC .
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This computation shows that divµC
(XM

H ) = −n · ϑC (q̇) − n · ζC , but q̇ cannot be arbitrary as it must lie
within M which states that ηα(q̇) + ξα = 0. Adding multiples of the constraints to the divergence to
produce an exact 1-form yields (5.4).

This theorem allows for a straight-forward algorithm to find invariant volumes in nonholonomic
systems subject to affine constraints; one only needs to compute the pair (ϑC , ζC ) and determine whether
or not it can be made exact by appending constraints to it. This procedure will be carried out on multiple
examples in §7.

Remark 5.7. In the pure kinetic energy case with linear constraints discussed in [24], it is proved that
if the system admits an (arbitrary) invariant volume, then one can always find another invariant volume
form whose density function depends only on the (reduced) configuration variables. Moreover, systems
subjected to affine constraints may possess an invariant volume whose density is not basic, cf. [38].

The above shows that “exactness” of (ϑC , ζC ) determines the existence of a density depending on
configuration. How does this depend on the choice of C to realize the constraints? It turns out the
answer is independent of the choice of realization.

Theorem 5.8. Let C1 and C2 both be affine realizations of the constraint manifold M. Suppose that
there exist functions ϕγ such that

ϑC1 − ϕγη
γ
1 = −d ln ρ̃1, ζC1 − ϕγξ

γ
1 = 0,

then there exists functions ψγ such that

ϑC2 − ψγη
γ
2 = −d ln ρ̃2, ζC2 − ψγξ

γ
2 = 0.

Moreover, (π∗Qρ̃1)µC1 = (π∗Qρ̃2)µC2 modulo a constant of motion.

Proof. Let ηγ2 = cγαηα1 and ξγ2 = cγαξα1 where cγα is the required coordinate change. For ease of notation,
we will drop the subscript “1.” The matrices are related via

mαβ
2 = cαγcβδm

γδ
1 .

The density form is

mαβ
2 ϑ2 = LcαγWγ

(
cβδη

δ
)

= cαγcβδLWγηδ + cβδm
δγ
1 dcαγ + cαγdcβδ(W

γ)ηδ

= mαβ
2 ϑ1 + mαβ

2 σ
γ
αdcαγ + cαγdcβδ(W

γ)ηδ,

where (σγ
α) := (cαγ)−1. By Lemma 5.9 below, we have

mαβ
2 ϑ2 = mαβ

2 ϑ1 + mαβ
2 d

[
ln det(cαγ)

]
+ cαγdcβδ(W

γ)ηδ. (5.5)

This shows that ϑ1 and ϑ2 differ by something exact and a multiple of the constraining 1-forms. Using
the fact that ϑ1 − ϕγη

γ
1 = −d ln ρ̃1, we see that

ϑ2 −
(
ϕγ + Cγ

)
ηγ = d

[
− ln ρ̃1 + ln det(cαγ)

]
,
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where mαβ
2 Cγ = cαδdcβγ(Wδ). This provides

ρ̃2 = det(σγ
α)ρ̃1, ψγ = cδγ

[
ϕδ + Cδ

]
.

These values of ψγ make ϑ2 exact. We next check that these values of ψγ make ζ2 vanish.

mαβ
2

(
ζ2 − ψγc

γ
δξ

δ
)

= cαγcβδLWγξδ + cαγdcβδ(W
γ)ξδ − mαβ

2 ψγc
γ
δξ

δ

= mαβ
2 ζ1 − mαβ

2 ϕδξ
δ = 0.

It remains to show that (π∗Qρ̃1)µC1 = (π∗Qρ̃2)µC2 . This is equivalent to µC1 = (π∗Q det(cαγ))µC2 . Recalling
Definition 4.1, we have σ1 = dΦ1 ∧ . . . dΦk and

σ2 =

k∧
i=1

d
(
ci
γΦ

γ
)

= det(cαγ)σ1 +

k∧
i=1

Φγdci
γ.

Upon applying the constraints, the last term disappears and we obtain

σ1 ∧ ε1 = σ2 ∧ ε2 = det(cαγ)σ1 ∧ ε2.

This implies the desired result.

5.2.1. Invariant volumes of holonomic systems

A reason why studying (ϑC , ζC ) is insightful is that it immediately demonstrates why holonomic
systems systems are measure-preserving, i.e. when ηα = d f α and ξα = 0, (5.4) can always be solved.
This short section idemonstrates how our general theory collapses to the known holonomic case. We
start with a helpful lemma.

Lemma 5.9 (*). mαβ · dmαβ = d
[
ln det

(
mαβ

)]
.

Proof. It suffices to check along a curve in the manifold. Let γ : I → Q be a curve and let A(t) =(
mαβ

)
◦ γ(t) be the mass matrix along the curve. Note that A(t) is positive-definite and changes smoothly

with t. We have
d
dt

ln det A(t) =

d
dt det A(t)
det A(t)

=

m∑
i=1

det Ai(t)
det A(t)

,

where Ai(t) is obtained from A(t) by differentiating the i-th row and leaving all other rows intact, i.e.

Ai(t) =



a11(t) · · · a1m(t)
...

. . .
...

a(i−1)1(t) · · · a(i−1)m(t)
a′i1(t) · · · a′im(t)

a(i+1)1(t) · · · a(i+1)m(t)
...

. . .
...

am1(t) · · · amm(t)


.

*We thank Dr. Alexander Barvinok for help with this proof.
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Expanding det Ai(t) along the i-th row:

det Ai(t) =

m∑
j=1

(−1)i+ j−1a′i j(t) det Ai j(t),

where Ai j(t) is the (m − 1) × (m − 1) matrix obtained from Ai(t) and hence from A(t) by crossing out the
i-th row and j-th column.

Next, observe that (−1)i+ j−1 det Ai j/ det A(t) is the ( j, i)-th entry of the inverse matrix A−1(t) = (bi j)(t),
and since A(t) is symmetric, is also the (i, j)-th entry of (bi j)(t). Summarizing,

d
dt

ln det A(t) =

m∑
i, j=1

a′i j(t)bi j(t).

Proposition 5.10. If the constraints are holonomic, then there exist function ϕγ such that ϑC − ϕγη
γ is

exact. In particular, if C is chosen such that all ηα are closed, ϑC is exact.

Proof. When the constraints are holonomic, the 1-forms ηα can be chosen such that they are closed.
Then the density form is

ϑC = mαβ

(
diWβηα + iWβ�

�dηα
)

= mαβ · dmαβ

= d
[
ln det

(
mαβ

)]
,

which is exact by Lemma 5.9. If a different realization is chosen, Theorem 5.8 states that the resulting
(5.4) is still solvable.

6. Connections with the nonholonomic connection

It turns out that for natural Lagrangian systems subject to linear constraints, the divergence -
particularly the density form - is encoded in the nonholonomic connection. This interpretation seems to
be new.

Throughout this section, let L : T Q→ R be a natural Lagrangian with Riemannian metric g subject
to the linear constraints ηα(v) = 0. The nonholonomic connection for this system is given by (cf. §5.3
in [20] and [39]):

∇C
X Y = ∇XY + W i · mi j

[
X

(
η j(Y)

)
− η j (∇XY)

]
.

The equations of motion can then be described via

∇C
q̇ q̇ = F,

where F contains the potential and external forces (the constraint forces are contained in the connection).
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6.1. Torsion

The nonintegrability of the constraints appears in the torsion of the connection. Computing this, we
see

T C (X,Y) = ∇C
X Y − ∇C

Y X − [X,Y]

= W i · mi j

[
X(η j(Y)) − Y(η j(X)) − η j(∇XY − ∇Y X)

]
= W j · mi j

[
X(η j(Y)) − Y(η j(X)) − η j([X,Y])

]
= W j · mi j · dη j(X,Y).

The torsion can be written as
TC = mαβ ·Wα ⊗ dηβ.

Indeed, if the constraining 1-forms η j are all closed (so holonomic) then the torsion vanishes. It is
worth pointing out that the torsion is vertical-valued; if X,Y ∈ M, then TC (X,Y) ∈ M⊥, i.e. T (X,Y) is
orthogonal to the constraint distribution.

Due to the fact that the torsion is a (1,2)-tensor, its trace will be a (0,1)-tensor. Therefore, the trace of
the nonholonomic torsion will be a 1-form:

tr T C = mαβ · iWαdηβ.

Returning to the density form, we see that

tr T C + d ln det
(
mαβ

)
= ϑC ,

i.e. the trace of the torsion differs from the density form by something exact. This leads to the following
theorem.

Theorem 6.1. A natural nonholonomic system subject to linear constraints has an invariant volume of
the form (π∗Qρ) · µC if and only if there exists functions ϕγ such that

tr TC + ϕγη
γ

is exact.

Remark 6.2. The vanishing of the torsion shows that the constraints are integrable while the integrability
of the (trace of the) torsion shows that a volume is preserved.

In the case of nonholonomic systems, the nonholonomic connection is compatible with the metric
but has nonzero torsion. This idea extends to arbitrary, metric-compatible connections as the following
theorem states.

Theorem 6.3. Let ∇̃ be an affine connection compatible with the metric with torsion T̃ . There exists an
invariant volume with density of the form π∗Qρ for the geodesic spray if and only if tr T̃ is exact.

Proof. Consider the volume form on T Q given by

Ω = det g · dx1 ∧ . . . ∧ dxn ∧ dv1 ∧ . . . ∧ dvn.
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We want to compute LXΩ where X is the geodesic spray given by

X = vi ∂

∂xi − Γi
jkv

jvk ∂

∂vi .

The Lie derivative is then

LXΩ = diXΩ

=
(
d
[
det g

]
(v) − det g

(
Γi

ik + Γi
ki

)
vk

)
·

1
det g

Ω,

and therefore the divergence is given by

divΩ(X) = d
[
ln det g

]
(v) −

(
Γi

ik + Γi
ki

)
vk. (6.1)

We will now use the fact that the connection is compatible with the metric:

∂g jk

∂xi = g`kΓ`i j + g j`Γ
`
ik.

This implies that

g jk∂g jk

∂xi = g jkg`kΓ`i j + g jkg j`Γ
`
ik

= δ
j
`Γ

`
i j + δk

`Γ
`
i j = 2Γk

ik.

Integrating the left-hand side above gives

d
[
ln det g

]
(v) = 2Γi

kiv
k. (6.2)

Substituting (6.2) into (6.1), we get

divΩ(X) =
(
Γi

ki − Γi
ik

)
vk.

It remains to show that this is the trace of the torsion. Indeed,

T̃ =
(
Γk

i j − Γk
ji

) ∂

∂xk ⊗ dxi ⊗ dx j

=⇒ tr T̃ =
(
Γi

ki − Γi
ik

)
dxk.

We conclude that
divΩ(X) = tr T̃ (v).

This shows that a way to interpret the torsion of a connection is by measuring how much the geodesic
spray fails to preserve volume.

7. Examples

We end this work with applying both Theorem 5.2 and Theorem 5.6 to various nonholonomic systems
by calculating the general divergence for nonlinear systems or ϑC and ζC for affine/linear systems.
Examples are taken from [18, 20, 31].
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7.1. Affine constraints

We begin by examining multiple nonholonomic systems subject to affine/linear constraints.

7.1.1. The chaplygin sleigh

As an example of Theorem 5.6, we will prove that no invariant basic volumes exist for the Chaplygin
sleigh. The Chaplygin sleigh has the configuration space Q = SE2, the special Euclidean group, and the
following Lagrangian

L =
1
2

(
mẋ2 + mẏ2 +

(
I + ma2

)
θ̇2 − 2maẋθ̇ sin θ + 2maẏθ̇ cos θ

)
,

where (x, y) ∈ R2 is the coordinate of the contact point, θ ∈ SO2 is its orientation, m is the sleigh’s mass,
I is the moment of inertia about the center of mass, and a is the distance from the center of mass to the
contact point (cf. §1.7 in [20]).

The nonholonomic constraint is that the sleigh can only slide in the direction it is pointing and is
given by

ẏ cos θ − ẋ sin θ = 0,

which corresponds to the 1-form η = (cos θ) dy − (sin θ) dx and function ξ = 0.
To determine the existence of an invariant volume, we only need to compute ϑC as ζC = 0. The

constraining vector field and 1-form are:

W =
ma2 + I

Im

[
cos θ

∂

∂y
− sin θ

∂

∂x

]
−

a
I
∂

∂θ
, η = (cos θ)dy − (sin θ)dx.

This gives us

ϑC =
1

η(W)
LWη

=
ma

ma2 + I
[
(sin θ)dy + (cos θ)dx

]
.

As a consequence of this, the divergence of the Chaplygin sleigh is given by

divµC
(XDH ) = −

3mav
I + ma2 , v = ẋ cos θ + ẏ sin θ. (7.1)

We want to show that for any η̃ ∈ Γ(D0), ϑC + η̃ is not exact. Because there is only one constraint, it
suffices to show that there does not exist a smooth k such that ϑC + k · η is closed, i.e. it requires the
following to be zero:

d (ϑC + k · η) =
ma

ma2 + I
[
(cos θ)dθ ∧ dy − (sin θ)dθ ∧ dx

]
+

(
∂k
∂x

cos θ +
∂k
∂y

sin θ
)

dx ∧ dy

+

(
∂k
∂θ

cos θ − k sin θ
)

dθ ∧ dy

−

(
∂k
∂θ

sin θ + k cos θ
)

dθ ∧ dx.
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Separating the above, we need the following three to vanish:

0 =
∂k
∂x

cos θ +
∂k
∂y

sin θ,

0 =
∂k
∂θ

cos θ − k sin θ +
ma

ma2 + I
cos θ,

0 =
∂k
∂θ

sin θ + k cos θ +
ma

ma2 + I
sin θ.

(7.2)

The second two lines of (7.2) are overdetermined for k in the θ-direction and are inconsistent (unless
a = 0 and we obtain the trivial solution k ≡ 0). Therefore, there does not exist a smooth k such
that ϑC + k · η is closed. We note that this is compatable with the known result that when a = 0, no
asymptotically stable dynamics occur.

7.1.2. The falling rolling disk

The next example is that of the falling rolling disk whose configuration space is Q = SE2 × S 1. Its
Lagrangian is

L =
m
2

[(
ξ − R

(
ϕ̇ sin θ + ψ̇

))2
+ η2 sin2 θ +

(
η cos θ + Rθ̇

)2
]
,

where
ξ = ẋ cosϕ + ẏ sinϕ + Rψ̇, η = −ẋ sinϕ + ẏ cosϕ.

We will consider both the case of the rolling coin on a stationary table (linear constraints) and on a
rotating table (affine constraints).

Stationary Table The case of the disk on a stationary table was studied in [40]. The constraints are
given by the vanishing of the following 1-forms:

η1 = cosϕ · dx + sinϕ · dy + R · dψ,

η2 = − sinϕ · dx + cosϕ · dy.
(7.3)

The corresponding dual vector fields are

W1 =
1
m

cosϕ
∂

∂x
+

1
m

sinϕ
∂

∂y
+

R
I
∂

∂ψ
,

W2 =
J + mR2

Jm + m2R2 sin2 θ

[
− sinϕ

∂

∂x
+ cosϕ

∂

∂y

]
−

R cos θ
Jm + m2R2 sin2 θ

∂

∂θ
.

Computing ϑC , we obtain

ϑC = −
mR2 sin(2θ)

J + mR2 sin2 θ
,

which is exact. The resulting invariant volume is

1
J + mR2 sin2 θ

µC .
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Rotating Table Although the case of the stationary table has been studied, the authors are unaware of
any results for the case of a rotating table. If the falling rolling disk is placed on a table with constant
angular velocity Ω, the constraints become affine with

η1(v) + ξ1 = 0, ξ1 = Ω (y cosϕ − x sinϕ)

η2(v) + ξ2 = 0, ξ2 = −Ω(x cosϕ + y sinϕ)

where ηα are from (7.3). The volume from the stationary table is still preserved as

LW1ξ1 = LW2ξ2 = 0.

7.1.3. The chaplygin sphere

We next consider the case of a non-homogeneous sphere rolling without slipping on a horizontal
plane, both stationary and rotating. The center of mass of the sphere is located at its geometric center
while its principal moments of inertia are distinct. This example has been studied by Chaplygin [41]
and, e.g. [1, 42, 43].

The Lagrangian is the kinetic energy,

L =
1
2

I1

(
θ̇ cosψ + ϕ̇ sinψ sin θ

)2
+

1
2

I2

(
−θ̇ sinψ + ϕ̇ cosψ sin θ

)2

+
1
2

I3

(
ψ̇ + ϕ̇ cos θ

)2
+

1
2

M
(
ẋ2 + ẏ2

)
,

where it is assumed that the radius is 1.

Stationary Table When the table is stationary, the constraints are given by the two 1-forms

η1 = dx − sinϕ · dθ + cosϕ sin θ · dψ,
η2 = dy + cosϕ · dθ + sinϕ sin θ · dψ.

The density form is given by ϑC = A · dθ + B · dψ where

A =
M sin(2θ)

[
J1 + J2 sin2 ψ

]
2
(
J3 + J4 sin2 θ + J5 sin2 θ sin2 ψ

) ,
B =

MJ2 sin(2ψ) sin2 θ

2
(
J3 + J4 sin2 θ + J5 sin2 θ sin2 ψ

) ,
and the constants J j are

J1 = I1I2 − I1I3 + I2M − I3M,

J2 = I1I3 − I2I3 + I1M − I2M,

J3 = I3M2 + I1I2I3 + I1I3M + I2I3M,

J4 = I2M2 − I3M2 + I1I2M − I1I3M,

J5 = I1M2 − I2M2 + I1I3M − I2I3M.
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The density form is exact and the resulting invariant volume is(
1 + β

1 − β

) 1
2

· cos θ ·
(
J3 + (J3 + J4) tan2 θ

) 1
2
µC ,

β =
J5 sin2 θ sin2 ψ

2J3 + 2J4 sin2 θ + J5 sin2 θ sin2 ψ
.

Rotating Table When the table is rotating, the constraints becomes affine

η1(v) + ξ1 = 0, ξ1 = Ωy,

η2(v) + ξ2 = 0, ξ2 = −Ωx.

Notice that,

LW1ξ1 = LW2ξ2 = 0, LW2ξ1 = −LW1ξ2 =
Ω

M
.

As the matrix (mαβ) is symmetric, we have that the product

mαβLWαξβ = 0.

Therefore, the Chaplygin sphere on a rotating table is volume-preserving with the same volume as in
the stationary case.

7.1.4. The möbius strip

Theorem 5.2 does not require that Q be orientable. Consider the Möbius strip immersed in R3 by

x =

(
1 + v · cos

(u
2

))
· cos(u),

y =

(
1 + v · cos

(u
2

))
· sin(u),

z = v · sin
(u
2

)
,

(7.4)

for 0 ≤ u ≤ 2π and −1/2 < v < 1/2. The Euclidean metric pulled back to the Möbius strip is

g =

(
4v cos

(u
2

)
+ 2v2 cos

(u
2

)
+

v2

4
+ 2

)
du ⊗ du + 2dv ⊗ dv.

Notice that the above metric is for the double cover rather than the Möbius strip itself as a consequence
of (7.4) only being an immersion. However, the resulting equations of motion will be well-defined on
the strip. In two-dimensional systems, any single constraint is automatically holonomic which will
make volume-preservation trivial. Let us “thicken” the strip by w with resulting metric

gthick =

(
4v cos

(u
2

)
+ 2v2 cos

(u
2

)
+

v2

4
+ 2

)
du ⊗ du + 2dv ⊗ dv + dw ⊗ dw.

Consider the linear nonholonomic constraint

η = dv + sin(u) · dw, W =
1
2
∂

∂v
+

1
2

sin(u)
∂

∂w
.
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Figure 2. A plot of the density corresponding to the invariant volume for the nonholonomic
system on the Möbius strip.

The density form is

ϑC =
sin(u) cos(u)
1 + sin2(u)

du,

which is exact. This produces the invariant volume√
1 + sin2(u) · µC ,

which is shown in Figure 2.

7.2. Nonlinear constraints

The previous examples consisted of a natural Lagrangian and affine constraints which were describ-
able by Theorem 5.6. The next two examples utilize Theorem 5.2 on systems with natural Lagrangians
but nonlinear constraints. These examples can be found in [31, 44].

7.2.1. Constant kinetic energy

Let L : TR3 → R be the Lagrangian given by

L =
1
2

m
(
ẋ2 + ẏ2 + ż2

)
− mgz,

subject to the nonlinear constraint of constant kinetic energy

Ψ = ẋ2 + ẏ2 + ż2 − c = 0, c > 0.

Transferring to the Hamiltonian side, we have

H =
1

2m

(
p2

x + p2
y + p2

z

)
+ mgz, Φ =

1
2

(
p2

x + p2
y + p2

z

)
− c = 0,
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where Φ is normalized. As the constraints are nonlinear, (4.3) can be used to determine the divergence.
The requisite data to compute the divergence is

C∗dΦ = m
(
pxdx + pydy + pzdy

)
,

C∗dΦ(XΦ) = m
(
p2

x + p2
y + p2

z

)
,

∆CΦ = 3m,

φ =
1

2m
−

c
m(p2

x + p2
y + p2

z )
,

{H, φ} =
2gcpz

(p2
x + p2

y + p2
z )
.

Although C∗dΦ(XΦ) , 0 everywhere, it does in some tubular neighborhood of M. The divergence of the
system is given by

divµC
(XM

H ) = −3 · C∗dΦ
(
[XH, Xφ]

)
− 3{H, φ}M

= −
18mgcpz

(p2
x + p2

y + p2
z )2 −

18mgcpz

(p2
x + p2

y + p2
z )2

= −
9mgpz

c
,

where we used the fact that p2
x + p2

y + p2
z = 2c. The divergence does not vanish so µC is not preserved.

However, there exists an exact 1-form which produces the divergence:

9mg
c

dz
(
XM

H

)
= −divµC

(XM
H ).

Therefore, the following volume-form is preserved

exp
(
9mgz

c

)
· µC .

7.2.2. Appel’s example

The other nonlinear constraint example we will examine is Appel’s example. The Lagrangian is the
same as the constant kinetic energy case,

L =
1
2

m
(
ẋ2 + ẏ2 + ż2

)
− mgz,

while the nonlinear constraint is now

Ψ = a2(ẋ2 + ẏ2) − ż2 = 0.

The data on the Hamiltonian side becomes

H =
1

2m

(
p2

x + p2
y + p2

z

)
+ mgz, Φ =

a2

2

(
p2

x + p2
y

)
−

1
2

p2
z = 0,
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where, again, the constraint is normalized. As before, the constraints are nonlinear so (4.3) can be used.
The requisite data is

C∗dΦ = a2mpxdx + a2mpydy − mpzdz,

C∗dΦ(XΦ) = ma4(p2
x + p2

y) + mp2
z ,

∆CΦ = m(2a2 − 1),

φ =
a2(p2

x + p2
y) − p2

z

2ma4(p2
x + p2

y) + 2mp2
z
,

{H, φ} = −
a2(a2 + 1)gpz(p2

x + p2
y)

(a4 p2
x + a4 p2

y + p2
z )2 .

The constraint is not admissible as C∗dΦ(XΦ) vanishes at px = py = pz = 0 which is in the constraint
manifold. As long as a , 1, this is the only place where this degeneracy occurs. The divergence is

divµC
(XM

H ) = −3 · C∗dΦ
(
[XH, Xφ]

)
− 3{H, φ}M

=
12a2(a2 + 1)mgpz(p2

x + p2
y)(a6 p2

x + a6 p2
y − p2

z )

(a4 p2
x + a4 p2

y + p2
z )3 .

To simplify the divergence, notice that the constraint makes p2
z = a2(p2

x + p2
y). Substituting this, the

divergence becomes

divµC
(XM

H ) =
12(a2 − 1)mg

(a2 + 1)pz
.

The following exact 1-form solves the cohomology equation

12(a2 − 1)
a2 pz

dpz

(
XM

H

)
= −divµC

(XM
H ),

as

ṗz = −
a2mg
1 + a2 .

Therefore, the following form is preserved

pK
z · µC , K =

12(a2 − 1)
a2 .

Unfortunately, this form is not a volume-form as it vanishes when pz = 0.

7.3. Non-Mechanical lagrangians

All of the examples examined so far have been for systems whose Lagrangian is natural. We conclude
this work with two examples whose Lagrangian is not given by a Riemannian metric.
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7.3.1. Higher-Order lagrangian

Consider the Lagrangian

L =
1
4

(
ẋ4 + ẏ4 + ż4

)
,

subject to the nonintegrable constraint ż = xẏ. The Hamiltonian is

H =
3
4

(
p4/3

x + p4/3
y + p4/3

z

)
,

and the constraint becomes
Φ = p1/3

z − xp1/3
y .

Notice that singularities appear when the momentum vanishes. Continuing with the computations, we
have

C∗dΦ = dz − xdy

C∗dΦ(XΦ) =
x2

3p2/3
y

+
1

3p2/3
z

φ = 3pz −
3x2 pz + 3xpy

x2 + ν2/3 , ν =
py

pz

∆CΦ = 0

Applying the constraint, the divergence simplifies to

divµC
(XM

H ) = −3p1/3
x ·

x4 − 2
x(1 + x4)

= −3
x4 − 2

x(1 + x4)
dx(XM

H )

The following form is exact

α =
3x4 − 6

x(1 + x4)
dx,

and an invariant form is
(1 + x4)9/4

x6 µC .

Notice the singularity at x = 0.

7.3.2. Relativistic lagrangian

Suppose we have the relativistic Lagrangian

L = −m0c2

√
1 −

v2

c2 , v2 = ẋ2 + ẏ2 + ż2.

With the same constraints ż = xẏ. The Hamiltonian and constraint are

H = c
√

p2 + m2c2, Φ =
c
(
pz − xpy

)
√

p2 + m2c2
.
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The computation yields

C∗dΦ = dz − xdy

C∗dΦ(XΦ) =
c
(
(m2c2 + p2

x)(1 + x2) + (xpz + py)2
)

(
m2c2 + p2)3/2

φ =
(p2 + m2c2)(pz − xpy)

(m2c2 + p2
x)(1 + x2) + (xpz + py)2

∆CΦ = 0

Applying the constraints, the divergence simplifies to

divµC
(XM

H ) =
3xpx

(1 + x2)
√

m2c2 + p2
x + (1 + x2)p2

y

=
3x

1 + x2 dx(XM
H )

Therefore, an invariant volume is given by

(1 + x2)−3/2µC .
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