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Abstract: The real (compact) Stiefel manifold realized as set of orthonormal frames is considered
as a pseudo-Riemannian submanifold of an open subset of a vector space equipped with a multi-
parameter family of pseudo-Riemannian metrics. This family contains several well-known metrics
from the literature. Explicit matrix-type formulas for various differential geometric quantities are de-
rived. The orthogonal projections onto tangent spaces are determined. Moreover, by computing the
metric spray, the geodesic equation as an explicit second order matrix valued ODE is obtained. In addi-
tion, for a multi-parameter subfamily, explicit matrix-type formulas for pseudo-Riemannian gradients
and pseudo-Riemannian Hessians are derived. Furthermore, an explicit expression for the second fun-
damental form and an explicit formula for the Levi-Civita covariant derivative are obtained. Detailed
proofs are included.
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1. Introduction

Numerical computations on the real (compact) Stiefel manifold viewed as the embedded submani-
fold Stn,k = {X ∈ Rn×k | X>X = Ik} of Rn×k arise in many branches of applied mathematics like numeri-
cal linear algebra and, moreover, in the engineering context, as well. Beside interpolation problems [1],
we mention the following examples which are closely linked to optimization. For instance, the sym-
metric eigenvalue problem can be formulated as an optimization problem on the Stiefel manifold [2].
Moreover, one encounters optimization problems on Stn,k in connection with machine learning [3],
multivariate data analysis [4] and computer vision [5, 6].

These problems can be tackled by Riemannian optimization methods, see e.g. [2, 7, 8, 9]. An essen-
tial part of their design is the choice of an appropriated Riemannian metric [7, Chap. 1]. The Euclidean
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metric, see e.g. [2], and the so-called canonical metric, see e.g. [10], are well-known, common choices
for the Stiefel manifold. For these two metrics, explicit formulas for Riemannian gradients and Rie-
mannian Hessians of smooth functions are known. Such formulas are desirable for the application of
several Riemannian optimization methods. However, there is no reason to restrict to one of these two
metrics. In principle, the performance of a Riemannian optimization method could be improved by
choosing an alternative metric adapted to the particular function under consideration. For example,
the dependence of the speed of convergence of a Riemannian optimization method on the Riemannian
metric is investigated in [11] on “Riemannian preconditioning”. Moreover, a family of metrics on the
generalized Stiefel manifold is introduced in [11] which differs from the family of metrics on Stn,k

discussed here.
In this paper, we investigate a 2k-parameter family of pseudo-Riemannian metrics on Stn,k from an

extrinsic point of view. This family does not coincide with the family of metrics considered in [12].
Nevertheless, it contains the Euclidean metric and the so-called canonical metric. In addition, the
whole one-parameter family which has been recently introduced in [13] is included. An emphasize is
put on deriving explicit formulas for gradients and Hessians suitable for applying them in connection
with Riemannian optimization methods. In particular, specific results of the conference paper [14] are
reproduced as special cases.

Next we give an overview of this text which is kept as self-contained as possible. We start with
endowing Rn×k with a family of covariant 2-tensors depending on 2k parameters, which are invariant
under the O(n)-left action on Rn×k by matrix multiplication from the left. For suitable choices of these
parameters, the corresponding 2-tensor induces a pseudo-Riemannian metric on an open subset U of
Rn×k such that Stn,k ⊆ U becomes a pseudo-Riemannian submanifold of U. Hence it makes sense
to consider the normal bundle of Stn,k and the orthogonal projections onto the tangent spaces of Stn,k

which can be described by explicit formulas.
In order to put this extrinsic approach into context to existing works on families of metrics on the

Stiefel manifold we also consider Stn,k, equipped with our family, as a pseudo-Riemannian reductive
homogeneous S O(n)-space. This point of view shows that, for the Riemannian case, the family of met-
rics which is discussed in this text, is partially contained in the family considered in the work [15] on
Einstein metrics. Nevertheless, at least to our best knowledge, the family of metrics on Stn,k considered
in this paper has never been treated before from an extrinsic point of view.

After this short detour, we come back to the extrinsic approach. We derive an explicit expression for
the spray S : TStn,k → T (TStn,k) associated with the metric. To this end, we exploit a well-known fact,
see e.g. [16, Sec. 7.5] for the Riemannian case. The metric spray of a pseudo-Riemannian manifold
coincides with the Lagrangian vector field on its tangent bundle associated with the kinetic energy
defined by means of the pseudo-Riemannian metric. This allows for computing the metric spray on the
tangent bundle TU, where U ⊆ Rn×k is the open set of which Stn,k is a pseudo-Riemannian submanifold.
Eventually, by using a result from [16, Sec. 8.4] on constrained Lagrangian systems, combined with
the explicit expression for the orthogonal projections, the metric spray on TStn,k is computed. As
a by-product, the geodesic equation is obtained as an explicit second order matrix valued ordinary
differential equation (ODE).

Next we derive expressions for pseudo-Riemannian gradients and pseudo-Riemannian Hessians
of smooth functions on Stn,k involving only “ordinary” matrix operations. Using the formula for the
orthogonal projection onto tangent spaces, we derive an explicit formula for pseudo-Riemannian gradi-
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ents. Moreover, since we have an expression for the geodesic equation as explicit second order matrix
valued ODE, we obtain an explicit formula for pseudo-Riemannian Hessians, too. The expression
for the pseudo-Riemannian gradient is valid for all metrics in the 2k-parameter family, while, for the
pseudo-Riemannian Hessian, we restrict ourself to a subfamily depending on (k + 1)-parameters in
order to obtain formulas which are not too complicated. This (k + 1)-parameter subfamily still contains
the Euclidean metric and the canonical metric as well as the one-parameter family from [13].

Finally, a formula for the second fundamental form of Stn,k considered as pseudo-Riemannian sub-
manifold of an open U ⊆ Rn×k is derived. We give a concrete expression for the second fundamental
form with respect to the metrics in the (k + 1)-parameter subfamily. By means of the Gauß formula, an
explicit matrix-type formula for the Levi-Civita covariant derivative is obtained.

2. Terminology and notations

Throughout this text, except for Section 3.4, we view the real (compact) Stiefel manifold Stn,k as an
embedded submanifold of the real (n × k)-matrices Rn×k which is given by

Stn,k = {X ∈ Rn×k | X>X = Ik} ⊆ R
n×k, 1 ≤ k ≤ n. (2.1)

We point out that Stn,k is a proper subset of Rn×k although the inclusion is denoted by Stn,k ⊆ R
n×k.

In the sequel, we often denote proper inclusions by “⊆”. The symbol “⊂” is only used if we want to
emphasize that an inclusion is not an equality. The tangent bundle of Stn,k is denoted by TStn,k which is
considered as a submanifold of TRn×k � Rn×k × Rn×k. More generally, for a manifold M, we denote by
T M and T ∗M its tangent and cotangent bundle, respectively. In the sequel, if not indicated other-wise,
we identify Rn×k with its dual space (Rn×k)∗ via the linear isomorphism

Rn×k → (Rn×k)∗, V 7→ tr
(
V>(·)

)
=

(
W 7→ tr(V>W)

)
(2.2)

induced by the Frobenius scalar product. The following characterization of the tangent space of Stn,k

at X ∈ Stn,k considered as subspace of Rn×k is used frequently

TXStn,k = {V ∈ Rn×k | X>V = −V>X} ⊆ Rn×k. (2.3)

We write
O(n) = Stn,n = {R ∈ Rn×n | R>R = RR> = In} (2.4)

for the orthogonal group and

S O(n) = {R ∈ Rn×k | R>R = RR> = In and det(R) = 1} (2.5)

for the special orthogonal group. Their Lie algebras coincide and are denoted by

so(n) = {ξ ∈ Rn×n | ξ> = −ξ}. (2.6)

Moreover, we write
skew: Rn×n → so(n) ⊆ Rn×n, A 7→ 1

2

(
A − A>

)
(2.7)
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for the projection onto so(n) whose kernel is given by the set of symmetric matrices Rn×n
sym. The O(n)-left

action on Rn×k by matrix multiplication from the left is denoted by

Ψ : O(n) × Rn×k → Rn×k, (R, X) 7→ RX. (2.8)

By restricting the second argument of Ψ one obtains the O(n)-action

O(n) × Stn,k → Stn,k, (R, X) 7→ RX (2.9)

on Stn,k from the left which we denote by Ψ, as well. It is well-known that this O(n)-action on Stn,k

is transitive. For fixed R ∈ O(n) we denote the diffeomorphisms induced by the actions from (2.8)
and (2.9)

Rn×k 3 X 7→ RX ∈ Rn×k and Stn,k 3 X 7→ RX ∈ Stn,k (2.10)

both by ΨR.
If U ⊆ Rn×k is some subset, we write

ιU : U → Rn×k (2.11)

for the canonical inclusion of U into Rn×k. Moreover, the canonical inclusion of Stn,k into Rn×k is often
denoted by

ι : Stn,k → R
n×k (2.12)

for short.
Next let pr : F → M be a vector bundle over a manifold M with dual bundle F∗. The smooth sections

of F are denoted by Γ∞(F). Moreover, we denote by F⊗`, S`(F) and Λ`(F) the `-th tensor power, the `-
th symmetrized tensor power and the `-th antisymmetrized tensor power of F, respectively. In addition,
we write End(F) � F∗ ⊗ F for the endormorphism bundle of F. The vertical bundle of F is denoted by
Ver(F) ⊆ T F.

Let f : M → N be a smooth map between manifolds and let α ∈ Γ∞
(
(T ∗N)⊗`

)
be a covariant tensor

field on N. The pullback of α by f is denoted by f ∗α. If α is a differential form, i.e. α ∈ Γ∞
(
Λ`(T ∗M)

)
,

the exterior derivative of α is denoted by dα. The tangent map of f is denoted by T f : T M → T N.
If f is a map between (open subsets of) finite dimensional R-vector spaces, we write D f (X)V for the
derivative of f at X evaluated at V . Sometimes, the tangent map of a smooth map f between arbitrary
manifolds at the point X evaluated at a tangent vector V is denoted by D f (X)V , as well.

Next let M ⊆ Rn×k be a submanifold. A vector field V : M → T M ⊆ Rn×k × Rn×k is often implicitly
identified with the map M → Rn×k defined by its second component which we denote by V , as well, i.e.
the “foot point” X ∈ M is suppressed in our notation. If S ∈ Γ∞

(
T (T M)

)
is a vector field on T M, we

view it as a map S : T M → T (T M) ⊆
(
Rn×k)4 usually not suppressing the “foot point” (X,V) ∈ T M.

For a smooth function F : Rn×k → R we write ∇F(X) for the gradient of F at X ∈ Rn×k with respect
to the Frobenius scalar product, i.e. the unique matrix ∇F(X) ∈ Rn×k with

d F
∣∣∣
X
(V) = tr

(
(∇F(X))>V

)
(2.13)

for all V ∈ Rn×k. Furthermore Ei j ∈ R
n×k denotes the matrix whose entries fulfill (Ei j) f ` = δi fδ j` for all

f ∈ {1, . . . , n} and ` ∈ {1, . . . , k} with δi f and δ j` being Kronecker deltas.
Finally, following the convention in [17, Chap. 2], a scalar product is a non-degenerated symmetric

bilinear form. Moreover, an inner product is a positive definite symmetric bilinear form.
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3. A family of metrics on the stiefel manifold

We start with investigating a 2k-parameter family of symmetric covariant 2- tensors on Rn×k. For
certain choices of these parameters, it defines a pseudo-Riemannian metric on an open subset U ⊆ Rn×k

such that Stn,k ⊆ U becomes a pseudo-Riemannian submanifold of U.

3.1. A symmetric 2-Tensor on Rn×k and its pull-back to Stn,k

We introduce a 2k-parameter family of symmetric covariant 2-tensors on Rn×k.

Lemma 3.1. Let D = diag(D11, . . . ,Dkk) ∈ Rk×k and E = diag(E11, . . . , Ekk) ∈ Rk×k be both diagonal.
Then the point-wise definition

〈V,W〉D,EX = tr
(
V>WD

)
+ tr

(
V>XX>WE

)
(3.1)

with X ∈ Rn×k and V,W ∈ TXR
n×k � Rn×k yields a smooth covariant 2-tensor 〈·, ·〉D,E(·) ∈ Γ∞

(
S2(T ∗Rn×k)

)
which is invariant under the O(n)-action Ψ defined in (2.8).

Proof. Obviously, (3.1) defines a smooth covariant 2-tensor. Let R ∈ O(n). Then Ψ∗R〈·, ·〉
D,E
(·) = 〈·, ·〉D,E(·)

holds due to 〈
D ΨR(X)V,D ΨR(X)W

〉D,E
ΨR(X) =

〈
RV,RW

〉D,E
RX =

〈
V,W

〉D,E
X

for X ∈ Rn×k and V,W ∈ TXR
n×k � Rn×k showing the Ψ-invariance of 〈·, ·〉D,E(·) .

Remark 3.2. Observe that the diagonal entry Eii ∈ R of the diagonal matrix E = diag(E11, . . . , Ekk) ∈
Rk×k shall not be confused with the matrix Eii ∈ R

n×k introduced at the end of Section 2. In the sequel,
it should be clear by the context how the symbol Eii has to be understood.

Remark 3.3. Let E = 0. Then 〈·, ·〉D,E(·) ∈ Γ∞
(
S2(T ∗Rn×k)

)
becomes independent of X ∈ Rn×k. Hence we

may identify 〈·, ·〉D,0(·) with the symmetric bilinear form

〈·, ·〉D : Rn×k × Rn×k → R, (V,W) 7→ 〈V,W〉D = tr(V>WD). (3.2)

If we want to emphasize that 〈·, ·〉D is a symmetric bilinear form on Rn×k, we denote it by 〈·, ·〉D
Rn×k .

Remark 3.4. The pull-back ι∗〈·, ·〉D,E(·) ∈ Γ∞
(
S2(T ∗Stn,k)

)
of 〈·, ·〉D,E(·) with ι : Stn,k → R

n×k simplifies for
the following values of k:

1. For k = n one has Stn,n = O(n). Thus for X ∈ O(n) and V,W ∈ TXR
n×k � Rn×k one obtains

〈V,W〉D,EX = tr
(
V>W(D + E)

)
= 〈V,W〉D+E (3.3)

due to X>X = XX> = In, i.e. ι∗〈·, ·〉D,E(·) = 〈·, ·〉D+E holds.
2. For k = 1 one has Stn,1 = S n−1 ⊆ Rn. Using X>V = 0 for all X ∈ S n−1 and V ∈ TXS n−1 yields

〈V,W〉D,EX = 〈V,W〉D, (3.4)

i.e. ι∗〈·, ·〉D,E(·) = 〈·, ·〉D holds.
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Remark 3.5. The pull-back ι∗〈·, ·〉D,E(·) ∈ Γ∞
(
S2(T ∗Stn,k)

)
yields well-known metrics on Stn,k for certain

choices of D and E:

1. For D = Ik and E = 0 one obtains the Euclidean metric, see e.g. [10], [18, Sec. 23.5] or [2]
2. Setting D = Ik and E = −1

2 Ik yields the canonical metric, see e.g. [10] or [18, Sec. 23.5]
3. For D = 2Ik and E = νIk with ν = −2α+1

α+1 and α ∈ R \ {−1} the metric 〈·, ·〉D,E(·) reproduces a
one-parameter family which has been introduced in [13], see in particular [13, Eq. (55)].

In order to investigate 〈·, ·〉D,E(·) ∈ Γ∞
(
S2(T ∗Rn×k)

)
and its pull-back to Stn,k we first list some properties

of 〈·, ·〉D.

Lemma 3.6. Let D = diag(D11, . . . ,Dkk) ∈ Rk×k be diagonal. The following assertions are fulfilled:

1. The symmetric bilinear form 〈·, ·〉D : Rn×k × Rn×k → R is a scalar product iff D is invertible.
2. The bilinear form 〈·, ·〉D : Rn×k×Rn×k → R is an inner product iff Dii > 0 holds for all i ∈ {1, . . . , k}.
3. Assume that D is invertible. Then 〈·, ·〉D : Rk×k × Rk×k → R induces a scalar product on so(k) iff

Dii + D j j , 0 (3.5)

holds for all i, j ∈ {1, . . . , k}. This condition is always satisfied for k = 1.
4. Let k ≥ 2. Then 〈·, ·〉D

∣∣∣
so(k)×so(k)

: so(k) × so(k)→ R defines an inner product on so(n) iff

Dii + D j j > 0 (3.6)

holds for all 1 ≤ i < j ≤ k. For k = 1, this bilinear form defines always an inner product.

Proof. Let Ei j ∈ R
n×k denote the matrix whose entries fulfill (Ei j) f ` = δi fδ j`. Clearly, the set

B =
{
Ei j | i ∈ {1, . . . , n} and j ∈ {1, . . . , k}

}
defines a basis of Rn×k. Thus it suffices to show that for all Ei j ∈ B the associated linear forms

Rn×k → R, V 7→ 〈Ei j,V〉D (3.7)

are non-zero iff D is invertible. We have

〈Ei j,V〉D = tr
(
E>i jVD

)
= Vi jD j j (3.8)

with V = (Vi j) ∈ Rn×k. Equation (3.8) implies that D is invertible iff the linear forms in (3.7) are
non-vanishing for all i ∈ {1, . . . , n} and j ∈ {1, . . . , k} showing Claim 1.

Next we prove Claim 2. Let 0 , V = (Vi j) ∈ Rn×k. Then 〈V,V〉D > 0 holds iff Dii > 0 for
i ∈ {1, . . . , k} due to

〈V,V〉D = tr
(
V>VD

)
=

k∑
i=1

n∑
j=1

V2
jiDii.

We now prove Claim 3. For k = 1 the assertion is trivial due to dim(so(1)) = 0. For k ≥ 2 the set{
Ei j − E ji | 1 ≤ i < j ≤ k

}
is a basis of so(k). Thus 〈·, ·〉D induces a scalar product on so(k) iff the linear

forms
so(k)→ R, A 7→ 〈Ei j − E ji, A〉D
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are non-vanishing for all 1 ≤ i < j ≤ k. Writing A = (Ai j) = (−A ji) ∈ so(k) we compute

〈Ei j − E ji, A〉D = 〈Ei j, A〉D − 〈E ji, A〉D = Ai jD j j − A jiDii = Ai j(D j j + Dii)

showing that 〈·, ·〉D defines a scalar product on so(k) iff

Dii + D j j , 0, i, j ∈ {1, . . . , k}

holds. Here we exploited that Dii + Dii , 0 is automatically fulfilled because D is invertible.
It remains to prove Claim 4. The case k = 1 is trivial due to so(1) = {0}. Thus assume k ≥ 2. Let

A = (Ai j) ∈ so(k). Exploiting Ai j = −A ji we calculate

〈A, A〉D = 1
2 tr

(
A>AD

)
+ 1

2 tr
(
A>AD

)
= 1

2

k∑
i, j=1

A2
i j(Dii + D j j). (3.9)

Using Aii = 0 we conclude that 〈A, A〉D > 0 holds for all 0 , A ∈ so(k) iff Dii + D j j > 0 is fulfilled for
all 1 ≤ i < j ≤ k.

The next lemma shows that 〈·, ·〉D,E(·) induces a pseudo-Riemannian metric on the Stiefel manifold for
certain choices of D and E.

Lemma 3.7. Let D = diag(D11. . . . ,Dkk) ∈ Rk×k and E = diag(E11, . . . , Ekk) ∈ Rk×k be both diagonal
and let X ∈ Stn,k. Then the following assertions are fulfilled:

1. Let 1 ≤ k < n. The bilinear form

〈·, ·〉D,EX : TXR
n×k × TXR

n×k � Rn×k × Rn×k → R (3.10)

is a scalar product iff D and D + E are both invertible. For k = n the bilinear form in (3.10)
defines a scalar product iff D + E is invertible.

2. Assume that (3.10) defines a scalar product. Then the pull-back ι∗〈·, ·〉D,E(·) to Stn,k defines a pseudo-
Riemannian metric on Stn,k, i.e.

〈·, ·〉D,EX : TXStn,k × TXStn,k → R (3.11)

is a scalar product on TXStn,k, iff the condition

Dii + Eii + D j j + E j j , 0, i, j ∈ {1, . . . , k} (3.12)

holds.
3. Assume that (3.10) defines a scalar product. For 2 ≤ k ≤ n − 1 the symmetric covariant 2-tensor
ι∗〈·, ·〉D,E(·) ∈ Γ∞

(
S2(T ∗Stn,k)

)
is a Riemannian metric on Stn,k, i.e.

〈·, ·〉D,EX : TXStn,k × TXStn,k → R (3.13)

is an inner product on TXStn,k, iff the conditions Dii > 0 for all i ∈ {1, . . . , k} and

Dii + Eii + D j j + E j j > 0, 1 ≤ i < j ≤ k (3.14)

are fulfilled. For k = 1 one obtains a Riemannian metric iff D11 > 0 holds. For k = n the tensor
ι∗〈·, ·〉D,E(·) defines a Riemannian metric iff Dii + Eii + D j j + E j j > 0 holds for all 1 ≤ i < j ≤ n.
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Proof. Since the O(n)-left action Ψ on Rn×k defined in (2.8) is isometric with respect to 〈·, ·〉D,E(·) by
Lemma 3.1 and, moreover, Ψ restricts to a transitive action on Stn,k it suffices to prove the claims for a
single point X0 ∈ Stn,k.

We first consider the case k = n. Then 〈·, ·〉D,EX = 〈·, ·〉D+E holds for all X ∈ Stn,n = O(n) by
Remark 3.4, Claim 1. Hence 〈·, ·〉D,EX is non-degenerated iff D+E is invertible according to Lemma 3.6,
Claim 1. Next we consider the case 1 ≤ k < n. We choose X0 = In,k, where

In,k =
[

Ik
0

]
∈ Stn,k,

and write
V =

[
V1
V2

]
∈ Rn×k and W =

[
W1
W2

]
∈ Rn×k

with V1,W1 ∈ R
k×k and V2,W2 ∈ R

(n−k)×k. By this notation and identifying TXR
n×k � Rn×k we calculate

〈V,W〉D,EIn,k
= tr

([
V1
V2

]>[ W1
W2

]
D
)

+ tr
([

V1
V2

]>[ Ik 0
0 0

][
W1
W2

]
E
)

= tr
(
V>1 W1(D + E)

)
+ tr

(
V>2 W2D

)
.

(3.15)

By (3.15) and Lemma 3.6, Claim 1, the bilinear form 〈·, ·〉D,EIn,k
defines a scalar product on TXR

n×k iff D
and D + E are both invertible.

Next we assume that D and D + E are choosen such that 〈·, ·〉D,EX defines a scalar product on TXR
n×k

for each X ∈ Stn,k. We now prove Claim 2 for 1 ≤ k ≤ n − 1. To this end, it is sufficient to show that

〈·, ·〉D,EIn,k
: TIn,kStn,k × TIn,kStn,k → R (3.16)

is a scalar product iff (3.12) holds. The tangent space TIn,kStn,k is given by

TIn,kStn,k =
{[

V1
V2

]∣∣∣∣V1 ∈ so(k) and V2 ∈ R
(n−k)×k

}
⊆ TIn,kR

n×k � Rn×k, (3.17)

see e.g. [10, Sec. 2.2.1]. Thus we may write V,W ∈ TXStn,k as

V =
[

V1
V2

]
∈ Rn×k and W =

[
W1
W2

]
∈ Rn×k

with V1,W1 ∈ so(k) and V2,W2 ∈ R
(n−k)×k. We now obtain

ι∗〈V,W〉D,EIn,k
= tr

(
V>1 W1(D + E)

)
+ tr

(
V>2 W2D

)
(3.18)

analogously to (3.15). Clearly, Equation (3.18) defines a scalar product on TIn,kStn,k iff

so(k) × so(k)→ R, (V1,W1) 7→ tr
(
V>1 W1(D + E)

)
yields a scalar product on so(k) and

R(n−k)×k × R(n−k)×k → R, (V2,W2) 7→ tr(V>2 W2D)

defines a scalar product on R(n−k)×k. By applying Lemma 3.6, Claim 3 we obtain the desired result.
Next we consider the case k = n. By exploiting the O(n)-invariance of 〈·, ·〉D,E(·) and TInStn,n = so(n) as
well as 〈·, ·〉D,E(·) = 〈·, ·〉D+E for k = n, Claim 2 follows by Lemma 3.6, Claim 3.
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It remains to prove Claim 3. We first consider the case 2 ≤ k ≤ n − 1. Since the bilinear form on
TIn,kStn,k induced by 〈·, ·〉D,E(·) is given by (3.18), the desired result is a consequence of Lemma 3.6, Claim
2 and Lemma 3.6, Claim 4. For k = 1, we observe that ι∗〈·, ·〉D,E(·) is independent of E due to X>V = 0
for all X ∈ Stn,1 and V ∈ TXStn,1, see also Remark 3.4, Claim 2. Hence (3.18) implies that 〈·, ·〉D,E(·) is
positive definite iff

R(n−k)×k × R(n−k)×k → R, (V2,W2) 7→ tr(V>2 W2D)

is positive definite. The desired result follows by Lemma 3.6, Claim 2. For k = n, the assertion holds
due to 〈·, ·〉D,EX = 〈·, ·〉D+E for all X ∈ Stn,n = O(n) by Lemma 3.6, Claim 3.

The next lemma generalizing [14, Lem. 2] shows that there is an open neigbourhood U ⊆ Rn×k of
Stn,k such that Stn,k ⊆

(
U, ι∗U〈·, ·〉

D,E
(·)

)
is a pseudo-Riemannian submanifold. This fact is crucial for the

following discussion.

Lemma 3.8. Let D, E ∈ Rk×k be both diagonal such that for each X ∈ Stn,k

〈·, ·〉D,EX : TXR
n×k × TXR

n×k → R (3.19)

defines a scalar product on TXR
n×k � Rn×k which induces a scalar product on TXStn,k ⊆ TXR

n×k. Then
there exists an open neighbourhood U ⊆ Rn×k of Stn,k such that ι∗U〈·, ·〉

D,E
(·) ∈ Γ∞

(
S2(T ∗U)

)
is a pseudo-

Riemannian metric on U and
(
Stn,k, ι

∗〈·, ·〉D,E(·)
)

is a pseudo-Riemannian submanifold of
(
U, ι∗U〈·, ·〉

D,E
(·)

)
.

Proof. We identify 〈·, ·〉D,E(·) ∈ Γ∞
(
S2(T ∗Rn×k)

)
with the continuous map

ϕ : Rn×k → S2((Rn×k)∗
)
, X 7→ 〈·, ·〉D,EX =

(
(V,W) 7→ 〈V,W〉D,EX

)
.

The bilinear form ϕ(X) = 〈·, ·〉D,EX ∈ S2((Rn×k)∗
)

is a scalar product for all X ∈ Stn,k by assumption.
Hence, by the continuity of ϕ, there is an on open neighbourhood UX of X in Rn×k such that ϕ(X̃) ∈
S2((Rn×k)∗

)
is non-degnerated for all X̃ ∈ UX. We set

U =
⋃

X∈Stn,k

UX.

Then U ⊆ Rn×k is open as a union of open sets and fulfills Stn,k ⊆ U by definition. Moreover, ϕ(X̃) is
non-dengenerated for all X̃ ∈ U by construction. Hence ι∗U〈·, ·〉

D,E
(·) defines a pseudo-Riemannian metric

on U such that Stn,k ⊆
(
U, ι∗U〈·, ·〉

D,E
(·)

)
is a pseudo-Riemannian submanifold.

Obviously, the inclusion Stn,k ⊆ U from Lemma 3.8 is always proper since Stn,k is closed in Rn×k

while U is open in Rn×k.

Notation 3.9. From now on, unless indicated otherwise, pull-backs of 〈·, ·〉D,E(·) to submanifolds of Rn×k

are suppressed in the notation.
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3.2. Number of parameters

In the case k = n, the 2k-parameter family of covariant 2-tensors 〈·, ·〉D,E(·) is actually a k-parameter
family by Remark 3.4, Claim 1. Indeed, 〈·, ·〉D,E(·) depends only on D + E. Hence one may ask if there
exits always such an over-parameterization.

Lemma 3.10. Let D = diag(D11, . . . ,Dkk) ∈ Rk×k be some diagonal matrix. Then the following asser-
tions are fulfilled:

1. The bilinear form 〈·, ·〉D : Rn×k × Rn×k → R vanishes identically iff D = 0 holds.
2. The restriction 〈·, ·〉D

∣∣∣
so(k)×so(k)

: so(k) × so(k)→ R of 〈·, ·〉D : Rk×k × Rk×k → R fulfills the following
assertions:

(a) For k = 1 one has 〈·, ·〉D
∣∣∣
so(k)×so(k)

= 0 for all D ∈ R1×1 � R .
(b) For k = 2 one has 〈·, ·〉D

∣∣∣
so(k)×so(k)

= 0 iff D11 + D22 = 0 holds.
(c) For k ≥ 3 one has 〈·, ·〉D

∣∣∣
so(k)×so(k)

= 0 iff D = 0 holds.

Proof. Let Ei j ∈ R
n×k the matrix whose entries fulfill (Ei j) f ` = δi fδ j`. Then

〈Ei j,V〉D = Vi jD j j, i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, (3.20)

where V = (Vi j) ∈ Rn×k. Since 〈·, ·〉D = 0 holds iff the linear forms 〈Ei j, ·〉
D : Rn×k → R vanishes for all

1 ≤ i ≤ n and 1 ≤ j ≤ k, the first claim follows by (3.20).
Next, we consider 〈·, ·〉D

∣∣∣
so(k)×so(k)

: so(k) × so(k)→ R. Clearly, it vanishes for k = 1 for all D ∈ R1×1

due to so(1) = {0}. We now assume k ≥ 2. Then 〈·, ·〉D
∣∣∣
so(k)×so(k)

: so(k) × so(k) → R vanishes iff the
linear forms

〈Ei j − E ji, ·〉
D : so(k)→ R (3.21)

vanish for all 1 ≤ i < j ≤ k. Writing A = (Ai j) = (−A ji) ∈ so(k) we obtain

〈Ei j − E ji, A〉D = Ai jDii − A jiD j j = Ai j(Dii + D j j).

Thus the linear forms (3.21) are zero iff Dii + D j j = 0 holds for all 1 ≤ i < j ≤ k. For k = 2 this is
equivalent to D11 + D22 = 0. It remains to consider the case k ≥ 3. The conditions Dii + D j j = 0 for all
1 ≤ i < j ≤ k include the conditions

D11 + Dii = 0 ⇐⇒ D11 = −Dii for all 2 ≤ i ≤ k (3.22)

and
D(k−1)(k−1) + Dkk = 0. (3.23)

In particular D11 = −Dk−1 and D11 = −Dkk holds. Plugging these identities into (3.23) yields

−D11 − D11 = −2D11 = 0 ⇐⇒ D11 = 0.

Hence (3.22) implies Dii = 0 for all 2 ≤ i ≤ k. Therefore 〈·, ·〉D
∣∣∣
so(k)×so(k)

= 0 iff D = 0 as desired.

The next lemma justifies calling 〈·, ·〉D,E(·) a 2k-parameter family provided that 3 ≤ k ≤ n − 1 holds.
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Lemma 3.11. Let
Rk×k

diag =
{
diag(D11, . . . ,Dkk) | D11, . . . ,Dkk ∈ R

}
⊆ Rk×k

denote the k-dimensional real vector space of (k × k)-diagonal matrices. Moreover, define

ψ : Rk×k
diag × R

k×k
diag → Γ∞

(
S2(T ∗Stn,k)

)
, (D, E) 7→ 〈·, ·〉D,E(·) . (3.24)

Then ψ is a linear map which fulfills the following assertions depending on k and n:

1. For k = 1 = n, one has dim
(

im(ψ)
)

= 0 and ker(ψ) = R × R.
2. For k = 1 and n > 1 one has dim

(
im(ψ)

)
= 1 and ker(ψ) = {(0, E) | E ∈ R} ⊆ R × R.

3. For k = 2 = n one has dim
(

im(ψ)
)

= 1 and

ker(ψ) = {((D11,D22), (E11,−D11 − D22 − E11)) | D11,D22, E11 ∈ R} ⊆ R
2×2
diag × R

2×2
diag.

4. For 2 < k < n one has dim
(

im(ψ)
)

= 2k and ker(ψ) = {0} ⊆ Rk×k
diag × R

k×k
diag.

5. For k = n > 2 one has dim
(

im(ψ)
)

= k and ker(ψ) = {(D,−D) | D ∈ Rk×k
diag} ⊆ R

k×k
diag × R

k×k
diag.

Proof. Clearly, the map ψ is linear. Next we define the linear map

ψ̃ : Rk×k
diag × R

k×k
diag → S2(T ∗In,k

Stn,k
)
, (D, E) 7→ 〈·, ·〉D,EIn,k

.

Obviously, for each (D, E) ∈ Rk×k
diag × R

k×k
diag one has

(
ψ(D, E)

)
(In,k) = 〈·, ·〉D,EIn,k

= ψ̃(D, E). Since 〈·, ·〉D,E(·) is
invariant under the transitive O(n)-action Ψ on Stn,k according to Lemma 3.1, this yields

(D, E) ∈ ker(ψ) ⇐⇒ (D, E) ∈ ker(ψ̃). (3.25)

Moreover, the equivalence

(D, E) ∈ ker(ψ̃) ⇐⇒
(
〈V,W〉D,EIn,k

= 0 for all V,W ∈ TIn,kStn,k
)

(3.26)

is clearly fulfilled. We again write

V =
[

V1
V2

]
∈ TIn,kStn,k and W =

[
W1
W2

]
∈ TIn,kStn,k

with V1,W1 ∈ so(k) and V2,W2 ∈ R
(n−k)×k. By this notation and the description of ker(ψ̃) from (3.26),

we study each case separately:

1. Obviously, for k = 1 = n the claim ker(ψ̃) = R × R is correct due to TI1St1,1 = {0} implying
dim

(
S 2(T ∗I1

St1,1)
)

= 0.
2. For k = 1 and n > 1 we have(

ψ̃(D, E)
)
(V,W) = tr

(
V>1 W1(D+E)

)
+tr

(
V>2 W2D

)
=

〈
V1,W1

〉D+E ∣∣∣
so(1)×so(1)

+
〈
V2,W2

〉D
R(n−1)×1 . (3.27)

Clearly, Equation (3.27) vanishes iff D = 0 holds independent of the value of D + E by
Lemma 3.10. Hence the kernel of ψ is given by ker(ψ̃) = {(0, E) | E ∈ R}

3. For k = 2 = n we have (
ψ̃(D, E)

)
(V,W) = 〈V,W〉D+E

∣∣∣
so(2)×so(2)

.

Lemma 3.10 yields ψ̃(D, E) = 0 iff (D + E)11 + (D + E)22 = 0 is fulfilled. Therefore we obtain

ker(ψ̃) =
{(

(D11,D22), (E11,−D11 − D22 − E11)
)
| D11,D22, E11 ∈ R

}
.

Journal of Geometric Mechanics Volume 15, Issue 1, 147–187



158

4. We now consider the case 3 ≤ k ≤ n − 1. Then one has(
ψ̃(D, E)

)
(V,W) = tr

(
V>1 W1(D + E)

)
+ tr

(
V>2 W2D

)
= 〈V1,W1〉

D+E
∣∣∣
so(k)×so(k)

+ 〈V2,W2〉
D
R(n−k)×k .

By Lemma 3.10, we have ψ̃(D, E) = 0 iff D = 0 and D + E = 0 holds. Therefore the kernel of ψ
is given by ker(ψ̃) =

{
(D, E) ∈ Rk×k

diag × R
k×k
diag | D = 0 = E

}
= {0}.

5. It remains to consider the case k = n ≥ 3. We obtain(
ψ̃(D, E)

)
(V,W) = tr

(
V>W(D + E)

)
= 〈V,W〉D+E

∣∣∣
so(k)×so(k)

.

for all V,W ∈ TInStn,n = so(n). Thus ψ̃(D, E) = 0 holds iff D + E = 0 is fulfilled by Lemma 3.10.
Hence the kernel of ψ̃ is given by ker(ψ̃) =

{
(D,−D) | D ∈ Rk×k

diag

}
.

The equality ker(ψ) = ker(ψ̃) is satisfied according to (3.25). Moreover, we have

dim
(

im(ψ)
)

= dim
(
Rk×k

diag × R
k×k
diag

)
− dim

(
ker(ψ)

)
= 2k − dim

(
ker(ψ̃)

)
as desired.

Remark 3.12. Lemma 3.7, Claim 3 shows that the set of all parameters{
(D, E) ∈ Rk×k

diag × R
k×k
diag | 〈·, ·〉

D,E
(·) defines a pseudo-Riemannian metric on Stn,k

}
contains the non-empty subset

{
(D, E) ∈ Rk×k

diag × R
k×k
diag | Dii > 0 and Eii > 0 for all i ∈ {1, . . . , k}

}
which

is open in Rk×k
diag × R

k×k
diag. Moreover, the linear map ψ : Rk×k

diag × R
k×k
diag → Γ∞

(
S2(T ∗Stn,k)

)
is injective for

2 < k < n according to Lemma 3.11. This point of view justifies calling 〈·, ·〉D,E(·) a 2k-parameter family
at least for 2 < k < n. For other choices of k and n one has rather a

(
dim

(
im(ψ)

))
-parameter family of

metrics. However, ignoring this over parameterization, we call them 2k-parameter family, nevertheless.

3.3. Orthogonal projections onto tangent spaces

The Stiefel manifold Stn,k endowed with 〈·, ·〉D,E(·) ∈ Γ∞
(
S2(T ∗Stn,k)

)
can be viewed as a pseudo-

Riemannian submanifold of
(
U, 〈·, ·〉D,E(·)

)
with some suitable open U ⊆ Rn×k by Lemma 3.8. Conse-

quently, for any given point X ∈ Stn,k, we may consider the orthogonal projection

PX : TXR
n×k → TXStn,k ⊆ R

n×k,

where TXR
n×k � Rn×k is endowed with the scalar product 〈·, ·〉D,EX . Moreover, it makes sense to consider

the normal space NXStn,k =
(
TXStn,k

)⊥
⊆ Rn×k with respect to 〈·, ·〉D,EX : TXR

n×k × TXR
n×k → R.

Notation 3.13. From now on, unless indicated otherwise, we always assume that D, E ∈ Rk×k are both
diagonal matrices such that 〈·, ·〉D,EX defines a scalar product on Rn×k for each X ∈ Stn,k and 〈·, ·〉D,E(·)
induces a pseudo-Riemannian metric on Stn,k. In particular, we may assume that D and D + E are both
invertible. In view of Lemma 3.7, Claim 1 this assumption is of no restriction. For the case k = n, we
replace D by D + E and E by 0, if necessary.

Lemma 3.14. Let D = diag(D11, . . . ,Dkk) ∈ Rk×k be invertible such that Dii + D j j , 0 holds for all
i, j ∈ {1, . . . , k}. Then the following assertions are fulfilled:
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1. The orthogonal complement of so(k) in Rk×k with respect to the scalar product 〈·, ·〉D is given by

so(k)⊥D =
{
A ∈ Rk×k | AD = (AD)>

}
=

{
ΛD−1 | Λ ∈ Rk×k

sym
}
⊆ Rk×k. (3.28)

Moreover, so(k) ⊕ so(k)⊥D = Rk×k holds.
2. The orthogonal projection

πD : Rk×k → so(k) ⊆ Rk×k, A 7→ πD(A) (3.29)

onto so(k) with respect 〈·, ·〉D is entry-wise given by

πD(A)i j = 1
Dii+D j j

(
AD − DA>

)
i j = 1

Dii+D j j

(
Ai jD j j − A jiDii

)
, i, j ∈ {1, . . . , k}. (3.30)

Proof. We first determine so(k)⊥D . To this end, we calculate

so(k)⊥D =
{
A ∈ Rk×k | 〈A, B〉D = 0 for all B ∈ so(n)

}
=

{
A ∈ Rk×k | tr

(
(AD)>B

)
= 0 for all B ∈ so(n)

}
=

{
A ∈ Rk×k | AD = (AD)> ∈ Rk×k

sym is symmetric
}
.

Let Λ ∈ Rk×k
sym. Then (ΛD−1)D = Λ = Λ> = D(ΛD−1)> showing {ΛD−1 | Λ ∈ Rk×k

sym} ⊆ so(k)⊥D . The
equality so(k)⊥D =

{
ΛD−1 | Λ ∈ Rk×k

sym
}

follows by counting dimensions. By Lemma 3.6, Claim 3 the
assumptions on D ensure that 〈·, ·〉D induces a scalar product on so(k). Hence so(k) ⊕ so(k)⊥D = Rk×k

holds, see e.g. [17, Chap. 2, Lem. 23].
It remains to prove Claim 2. To this end, we show im(πD) = so(k) and ker(πD) = so(k)⊥D as well as

πD
∣∣∣
so(k)

= idso(k). We first prove im(πD) ⊆ so(n). Let A = (Ai j) ∈ Rk×k. We compute

((πD(A))>)i j = πD(A) ji = 1
D j j+Dii

(
A jiDii − Ai jD j j

)
= − 1

Dii+D j j

(
Ai jD j j − A jiDii

)
= −πD(A)i j.

for i, j ∈ {1, . . . , k} showing im(πD) ⊆ so(k). Moreover, for A ∈ so(k), i.e. Ai j = −A ji, we have

πD(A)i j = 1
Dii+D j j

(
Ai jD j j − (−Ai j)Dii

)
= 1

Dii+D j j
Ai j

(
D j j + Dii

)
= Ai j.

This yields πD(A) = A for all A ∈ so(k), i.e. πD
∣∣∣
so(k)

= idso(k). Moreover, the inclusion im(πD) ⊆ so(k) is
in fact an equality. Next let A ∈ so(k)⊥D . Then AD = DA> holds according to Claim 1 implying

πD(A)i j = 1
Dii+D j j

(
AD − DA>

)
i j = 0.

Thus πD
∣∣∣
so⊥D

= 0 follows.

The formula for πD can be rewritten in terms of the so-called Hadamard or Schur product. For
matrices A, B ∈ Rk×k, it is entry-wise defined by

(A } B)i j = Ai jBi j, i, j ∈ {1, . . . , k}. (3.31)

Remark 3.15. Let µ ∈ Rk×k be defined entry-wise by

µi j = 1
Dii+D j j

, i, j ∈ {1, . . . , k}. (3.32)

Then the projection πD : Rn×k → so(k) from Lemma 3.14 can be rewritten as

πD(A) = µ }
(
AD − DA>

)
, A ∈ Rk×k. (3.33)
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Corollary 3.16. Let 0 , β ∈ R and define D = βIk. Then, for each A ∈ Rk×k the map πD from
Lemma 3.14 simplifies to

πβIk(A) = 1
2

(
A − A>

)
= skew(A). (3.34)

Proof. The desired result follows by a straightforward calculation exploiting Dii = β , 0 for all
i ∈ {1, . . . , k}.

We determine the normal spaces of Stn,k with respect 〈·, ·〉D,E(·) generalizing [19, Chap. 1, Lem. 3.15]
and [14, Lem. 3].

Lemma 3.17. The normal space NXStn,k =
(
TXStn,k

)⊥
⊆ TXR

n×k � Rn×k at X ∈ Stn,k with respect to
〈·, ·〉D,EX is given by

NXStn,k =
{
XΛ(D + E)−1 ∈ Rn×k | Λ = Λ> ∈ Rk×k

sym
}
. (3.35)

Proof. Clearly, the set
{
XΛ(D+E)−1 ∈ Rn×k | Λ = Λ> ∈ Rk×k

sym
}

is a linear subspace of Rn×k of dimension
(k2 + k)/2 being the image of the injective linear map

Rk×k
sym → R

n×k, Λ 7→ XΛ(D + E)−1.

Moreover, every matrix V = XΛ(D + E)−1 with Λ ∈ Rk×k
sym is orthogonal to the tangent space TXStn,k.

Indeed, we have for W ∈ TXStn,k

〈V,W〉D,EX = tr
((

XΛ(D + E)−1)>WD
)

+ tr
((

XΛ(D + E)−1)>XX>WE
)

= tr
(
Λ>(X>W)

)
= 0

due to Λ = Λ> and X>W = −W>X. Therefore
{
XΛ(D + E)−1 ∈ Rn×k | Λ = Λ> ∈ Rk×k

sym
}
⊆ NXStn,k

follows. By counting dimensions, this inclusion is in fact an equality.

Theorem 3.18. Let X ∈ Stn,k. The orthogonal projection of TXR
n×k � Rn×k onto TXStn,k ⊆ R

n×k with
respect to 〈·, ·〉D,EX is given by

PX : Rn×k → TXStn,k ⊆ R
n×k, V 7→ PX(V) = V − XX>V + XπD+E(X>V). (3.36)

Proof. We first show im(PX) = TXStn,k. Let X ∈ Stn,k and V ∈ Rn×k. One calculates

X>
(
PX(V)

)
= X>

(
V − XX>V + XπD+E(X>V)

)
= X>V − X>V + πD+E(X>V) = πD+E(X>V).

Moreover, using im(πD+E) = so(n), we obtain(
PX(V)

)>X =
(
V − XX>V + XπD+E(X>V)

)>X = V>X − V>X +
(
πD+E(X>V)

)>
= −πD+E(X>V).

Hence X>
(
PX(V)

)
= πD+E(X>V) = −

(
PX(V)

)>X follows, i.e. im(PX) ⊆ TXStn,k as desired.
We now assume V ∈ TXStn,k. By using X>V = −V>X and πD

∣∣∣
so(n)

= idso(n), we calculate

PX(V) = V − XX>V + XπD(X>V) = V − XX>V + X(X>V) = V

proving PX

∣∣∣
TXStn,k

= idTXStn,k and implying that im(PX) ⊆ TXStn,k is indeed an equality.
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It remains to show ker(PX) = (TXStn,k)⊥. Let V ∈ NXStn,k. We may write V = XΛ(D + E)−1 with
some suitable symmetric matrix Λ ∈ Rk×k

sym by exploiting Lemma 3.17. Consequently, we have

PX(V) = PX
(
XΛ(D + E)−1)

= XΛ(D + E)−1 − XX>
(
XΛ(D + E)−1) + XπD+E(X>XΛ(D + E)−1)

= XπD+E(Λ(D + E)−1)
= 0,

by using Lemma 3.14, Claim 1 which shows πD+E(Λ(D + E)−1) = 0.

Theorem 3.18 reproduces several results known in the literature.

Remark 3.19. Let X ∈ Stn,k. We obtain the following special cases for PX : Rn×k → TXStn,k by using
Corollary 3.16:

1. For D = Ik and E = 0 we get the formula

PX(V) = V − XX>V + X skew(X>V) = (In −
1
2 XX>)V − 1

2 XV>X (3.37)

that can be found for example in [2, Ex. 3.6.2] or [10, Eq. (2.4)]
2. More generally, for D = 2Ik and E = νIn with ν ∈ R \ {−2} one obtains

PX(V) = V − XX>V + X skew(X>V) = V − 1
2 XX>V − 1

2 XV>X (3.38)

reproducing the orthogonal projection from [14, Prop. 2].

Next we determine an orthonormal basis of
(
TIn,kStn,k, 〈·, ·〉

D,E
(·)

)
which allows for computing the sig-

nature of 〈·, ·〉D,E(·) , as well.

Remark 3.20. We define the subsets B1, B2 ⊆ R
n×k such that B = B1 ∪ B2 is an orthonormal basis of(

TIn,kStn,k, 〈·, ·〉
D,E
In,k

)
. To this end, let Ei j ∈ R

n×k denote the matrix whose entries fulfill (Ei j) f ` = δi fδ j` as
usual. We set B1 = ∅ for k = 1 and define

B1 =
{

1√
|si j |

(
Ei j − E ji

) ∣∣∣ si j = Dii + Eii + D j j + E j j, 1 ≤ i < j ≤ k
}
, 2 ≤ k ≤ n. (3.39)

Moreover, we set
B2 =

{
1√
|D j j |

Ei j

∣∣∣ k + 1 ≤ i ≤ n, 1 ≤ j ≤ k
}
, 1 ≤ k < n. (3.40)

and B2 = ∅ for k = n. A straightforward calculation shows 〈V,W〉D,EIn,k
= 0 for all V,W ∈ B with V , W.

Moreover, for V = W ∈ B one obtains〈
1√
|si j |

(
Ei j − E ji

)
, 1√

|si j |

(
Ei j − E ji

)〉D,E

In,k
=

si j

|si j |
= ±1, 1 ≤ i < j ≤ k (3.41)

and 〈
1√
|D j j |

Ei j,
1√
|D j j |

Ei j

〉D,E

In,k
=

D j j

|D j j |
= ±1, k + 1 ≤ i ≤ n, 1 ≤ j ≤ k. (3.42)

Hence B is in fact an orthonormal basis. Thus we may compute the signature of 〈·, ·〉D,E(·) . The number
of negative signs associated with 〈·, ·〉D,E(·) , named index in [17, Chap. 2, Def. 18], is given by

s = ]
{
(i, j) | 1 ≤ i < j ≤ k and si j < 0

}
+ (n − k) · ]

{
j | 1 ≤ j ≤ k and D j j < 0

}
, (3.43)

where ]S denotes the number of elements in the finite set S .
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3.4. Stiefel manifolds as reductive homogeneous spaces

Before we continue with the extrinsic approach, we briefly discuss the metric 〈·, ·〉D,E(·) on Stn,k viewed
as a pseudo-Riemannian reductive homogeneous S O(n)-space. This point of view allows for relating
〈·, ·〉D,E(·) to the metrics investigated in [15]. For general properties of reductive homogeneous space we
refer to [17, Chapter 11] as well as [18, Section 23.4].

Throughout this subsection, we assume 1 ≤ k ≤ n − 1 and n ≥ 3. Then the Killing form on S O(n)
given by

〈ξ, η〉 = (n − 2) tr(ξη), ξ, η ∈ so(n)

is negative definite, see e.g. [18, Sec. 21.6]. In addition, Stn,k is diffeomorphic to the reductive homo-
geneous space S O(n)/S O(n − k), where S O(n − k) is realized as a closed subgroup of S O(n) via

S O(n − k) �
{[

Ik 0
0 R

]∣∣∣R ∈ S O(n − k)
}
⊆ S O(n)

and a reductive split is given by so(n) = h ⊕m, where

h =
{[

0 0
0 ξ22

] ∣∣∣∣ ξ22 ∈ so(n − k)
}

and m =
{[

ξ11 −ξ>21
ξ21 0

] ∣∣∣∣ ξ11 ∈ so(k), ξ21 ∈ R
(n−k)×k

}
,

see e.g. [18, Sec. 23.5]. In particular, since S O(n) × Stn,k 3 (R, X) 7→ RX ∈ Stn,k is a transitive
S O(n)-left action whose stabilizer subgroup of In,k coincides with S O(n − k) ⊆ S O(n), the map

pr : S O(n)→ Stn,k � S O(n)/S O(n − k), R 7→ RIn,k (3.44)

is a surjective submersion which induces a S O(n)-equivariant diffeomorphism

p̌r : S O(n)/S O(n − k)→ Stn,k, R · S O(n − k) 7→ RIn,k. (3.45)

Here R · S O(n − k) ∈ S O(n)/S O(n − k) denotes the coset defined by R ∈ S O(n). We refer to [20, Thm.
6.4] and [21, Thm. 21.18] for more details on diffeomorphisms associated with transitive actions.

In the sequel, we construct a scalar product

〈·, ·〉red(D,E) : so(n) × so(n)→ R

on so(n) which induces a left-invariant metric on S O(n) such that (3.44) becomes a pseudo-Riemannian
submersion. In addition, equipping S O(n)/S O(n − k) with this submersion metric turns (3.45) into a
S O(n)-equivariant isometry to

(
Stn,k, 〈·, ·〉

D,E
(·)

)
.

Throughout this section we denote by D, E ∈ Rk×k diagonal matrices such that D and D+ E are both
invertible, see also Notation 3.13.

Lemma 3.21. Let Ei j ∈ R
n×n be the matrix whose entries fulfill (Ei j) f ` = δi fδ j` and let F = D+E ∈ Rk×k.

Then
A : so(n)→ so(n), ξ =

[
ξ11 −ξ>21
ξ21 ξ22

]
7→ A(ξ) =

[
skew(ξ11(D+E)) − 1

2 Dξ>21
1
2 ξ21D ξ22

]
(3.46)

is linear, where ξ11 ∈ so(k), ξ22 ∈ so(n − k) and ξ21 ∈ R
(n−k)×k. Moreover, evaluating A at the basis{

(Ei j − E ji) | 1 ≤ i < j ≤ k
}

of so(n) yields

A
(
Ei j − E ji

)
=


Fii+F j j

2 (Ei j − E ji) if 1 ≤ i < j ≤ k,
1
2 D j j(Ei j − E ji) if k + 1 ≤ i ≤ n, 1 ≤ j ≤ k,

Ei j − E ji if k + 1 ≤ i < j ≤ n.

(3.47)

In particular, A : so(n)→ so(n) as well as its restriction A
∣∣∣
m

: m→ m are linear isomorphisms.
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Proof. Clearly, A is linear. We show (3.47) by using the definition of A in (3.46). First we consider the
case 1 ≤ i < j ≤ k. Then Ei j − E ji is mapped by A to

A
(
Ei j − E ji

)
=

[
skew

(
(Êi j−Ê ji)F

)
0

0 0

]
=

[
skew

(
Êi jF j j−Ê jiFii

)
0

0 0

]
=

Fii+F j j

2

(
Ei j − E ji

)
,

with Êi j ∈ R
k×k defined by

(
Êi j

)
f ` = δi fδ j`. Next assume k + 1 ≤ i ≤ n and 1 ≤ j ≤ k. One obtains

A
(
Ei j − E ji

)
= 1

2 D j j(Ei j − E ji).

The equality A
(
Ei j − E ji

)
= Ei j − E ji for k + 1 ≤ i < j ≤ n is obvious.

Lemma 3.22. Define

〈·, ·〉red(D,E) : so(n) × so(n)→ R, (ξ, η) 7→ 〈ξ, η〉red(D,E) = tr
(
ξ>A(η)

)
, (3.48)

where A : so(n)→ so(n) is the linear map from Lemma 3.21. Then the following assertions are fulfilled:

1. 〈·, ·〉red(D,E) is a scalar product on so(n).
2. The restriction of 〈·, ·〉red(D,E) to m defines a scalar product 〈·, ·〉red(D,E) : m ×m→ R on m.
3. Writing

ξ =
[
ξ11 −ξ>21
ξ21 ξ22

]
∈ so(n) and η =

[
η11 −η>21
η21 η22

]
∈ so(n) (3.49)

with ξ11, η11 ∈ so(k) and ξ21, η21 ∈ R
(n−k)×k yields

〈ξ, η〉red(D,E) = tr
(
ξ>11 skew(η11(D + E)

))
+ tr

(
ξ>21η21D

)
+ tr

(
ξ>22η22

)
. (3.50)

4. 〈·, ·〉red(D,E) is Ad(S O(k))-invariant.
5. Declaring Te pr : TeS O(n) → Tpr(e)

(
S O(n)/S O(n − k)

)
as an isometry defines a S O(n)-invariant

pseudo-Riemannian metric on S O(n)/S O(n − k) such that pr : S O(n) → S O(n)/S O(n − k) is a
pseudo-Riemannian submersion, where S O(n) is equipped with the left-invariant metric defined
by 〈·, ·〉red(D,E).

Proof. Obviously, 〈·, ·〉red(D,E) is a bilinear form. Using the notation introduced in (3.49) one calculates

〈ξ, η〉red(D,E) = tr
([

ξ11 −ξ>21
ξ21 ξ22

]>[ skew(η11(D+E)) − 1
2 Dη>21

1
2 η21D η22

])
= tr

(
ξ>11

(
skew(η11(D + E)

))
+ tr

(
ξ>21η21D

)
+ tr

(
ξ>22η22

)
= 〈η, ξ〉red(D,E).

(3.51)

Hence 〈·, ·〉red(D,E) is symmetric. Claim 3 follows by (3.51), as well. Moreover, 〈·, ·〉red(D,E) is a scalar
product since A : so(n) → so(n) is a linear isomorphism by Lemma 3.21 showing Claim 1. Claim 2
follows since A

∣∣∣
m

: m→ m is an isomorphism, too.
In order to show the Ad

(
S O(n − k)

)
-invariance we calculate

Adg(ξ) =
[

Ik 0
0 R

][
ξ11 −ξ21
ξ21 ξ22

][
Ik 0
0 R

]>
=

[
ξ11 −(Rξ21)>

Rξ21 Rξ22R>

]
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for ξ =
[

x11 −ξ>21
ξ21 ξ22

]
∈ so(n) and g =

[
Ik 0
0 R

]
∈ S O(n − k) ⊆ S O(n) implying

〈Adg(ξ),Adg(η)〉red(D,E) = tr
(
ξ>11

(
skew(η11(D + E))

))
+ tr

((
(Rξ21

)>Rη21D
)

+ tr
((

Rξ22R>
)>Rη22R>

)
= 〈ξ, η〉red(D,E)

as desired.
It remains to prove Claim 5. By (3.50) the vector spaces m ⊆ so(n) and h ⊆ so(n) are orthogonal

complements with respect to 〈·, ·〉red(D,E). Moreover, by exploiting the Ad
(
S O(n − k)

)
-invariance of

〈·, ·〉red(D,E), this claim follows by [18, Prop. 23.23] which extends to the pseudo-Riemannian setting
because its proof only relies on the non-degeneracy of the metric.

After this preparation, we are in the position to show that 〈·, ·〉red(D,E) has indeed the desired property.
To this end, the tangent map of (3.44) at In ∈ S O(n) is determined as

TIn pr : so(n)→ TIn,kStn,k, ξ 7→ ξIn,k. (3.52)

Proposition 3.23. Let S O(n)/S O(n − k) be equipped with the pseudo-Riemannian metric constructed
by means of the scalar product 〈·, ·〉red(D,E) : m×m→ R and let Stn,k be endowed with the metric 〈·, ·〉D,E(·) .

1. The restriction of (3.52) to m, i.e. the linear map

TIn pr
∣∣∣
m

: m→ TIn,kStn,k, ξ 7→ ξIn,k (3.53)

is an isometry, where TIn,kStn,k is equipped with the scalar product 〈·, ·〉D,EIn,k
.

2. The S O(n)-equivariant diffeomorphism (3.45) is an isometry.

Proof. We write ξ, η ∈ m as

ξ =
[
ξ11 −ξ>21
ξ21 0

]
and η =

[
η11 −η>21
η21 0

]
with ξ11, η11 ∈ so(k) as well as ξ21, η21 ∈ R

(n−k)×k and compute〈
TIn pr ξ,TIn pr η

〉D,E

pr(In)
=

〈[
ξ11
ξ21

]
,
[ η11
η21

]〉D,E

In,k

= tr
(
ξ>11

(
skew(η11(D + E))

))
+ tr

(
ξ>21η21D

)
= 〈ξ, η〉red(D,E),

where the last equality holds by Lemma 3.22, Claim 3. It remains to show Claim 2. Since the metric
on S O(n)/S O(n − k) induced by 〈·, ·〉red(D,E) and the metric 〈·, ·〉D,E(·) on Stn,k are both S O(n)-invariant,
the map p̌r : S O(n)/S O(n − k)→ Stn,k is an isometry by Claim 1 due to its S O(n)-equivariance.

Proposition 3.23 allows for relating the metric 〈·, ·〉D,E(·) ∈ Γ∞
(
S2(T ∗Stn,k)

)
to the metrics on Stn,k

defined in [15, Eq. (3.2)]. In order to compare these metrics we introduce some notation following [15].
We choose k1, . . . , ks ∈ N with

k1 + · · · + ks = k and ki ≥ 2 for all i ∈ {1, . . . , s}

and write
D = diag(D̃11Ik1 , . . . , D̃ssIks) and E = diag(Ẽ11Ik1 , . . . , ẼssIks), (3.54)
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where D̃ii, Ẽii ∈ R. Using the notation from [15] with p = m and t = 1 we rewrite 〈·, ·〉red(D,E) as

〈·, ·〉red(D,E) =

s∑
i=1

D̃ii+Ẽii+D̃ii+Ẽii
2(n−2) 〈·, ·〉pi +

∑
1≤i< j≤s

D̃ii+Ẽii+D̃ j j+Ẽ j j

2(n−2) 〈·, ·〉pi j +

s∑
i=1

D̃ii
2(n−2)〈·, ·〉pi,s+1 .

Here 〈·, ·〉pi j = (n − 2) tr
(
(·)>(·)

)∣∣∣
pi j×pi j

denotes the Killing form on so(n) scaled by −1 restricted to pi j.

Hence 〈·, ·〉red(D,E) coincides with the inner product defined in [15, Eq. (3.2)], where xi = xii and

xi j =

 D̃ii+Ẽii+D̃ j j+Ẽ j j

2(n−2) if 1 ≤ i ≤ j ≤ s
D̃ii

2(n−2) if j = s + 1 and 1 ≤ i ≤ s,

provided that D and E are defined as in (3.54) as well as

D̃ii > 0, i ∈ {1, . . . , s} and D̃ii + Ẽii + D̃ j j + Ẽ j j > 0, i, j ∈ {1, . . . , s}

holds. This can be seen by observing that for ξ ∈ m = p the unique decomposition of ξ into sums of
ξi j ∈ pi j can be rewritten in terms of block matrices as

ξ =



ξ11 ξ12 ξ1,s ξ1,s+1

ξ21 ξ22 ξ2,s ξ2,s+1

ξs,1 ξs,s ξs,s+1

ξs+1,1 ξs+1,s−1 ξs+1,s 0


.

Finally, we point out that the Einstein metrics discussed in [15, Sec. 6] yield the following equations
for D and E

x = D̃ii+Ẽii
n−2 for 1 ≤ i ≤ s y =

D̃ii+Ẽii+D̃ j j+Ẽ j j

2(n−2) for 1 ≤ i < j ≤ s, z = D̃ii
2(n−2) for 1 ≤ i ≤ s,

where x, y, z denote the parameters of the metric from [15, Eq. (6.2)]. Thus

D = 2(n − 2)zIk =⇒ D + E = 2z(n − 2)Ik + E = (n − 2)xIk =⇒ E = (n − 2)(x − 2z)Ik

and therefore y =
(n−2)(2z+(x−2z)+2z+(x−2z))

2(n−2) = x holds for x, z ∈ R. In particular, the metrics on Stn,k defined
by 〈·, ·〉D,E(·) contain only the two S O(n) × S O(k)-invariant Einstein metrics from [15], the so-called
Jensen metrics. However, they do not contain the “new” Einstein metrics from that paper.

Remark 3.24. Although the “new” Einstein metrics form [15] are not contained in the family of
metrics on Stn,k defined by 〈·, ·〉D,E(·) , we are not able to rule out that the family 〈·, ·〉D,E(·) includes Einstein
metrics different from the Jensen metrics. However, searching for Einstein metrics in 〈·, ·〉D,E(·) is out of
the scope of this text.

4. Sprays and geodesic equations

The goal of this section is to derive an explicit expression for the spray S ∈ Γ∞
(
T (TStn,k)

)
associated

with the metric 〈·, ·〉D,E(·) . An expression for S yields an expression for the geodesic equation with respect
to 〈·, ·〉D,E(·) as an explicit second order ODE, as well.
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First we recall the definition of a metric spray, also known as spray associated with a metric,
from [22, Chap. 8, §4] whose existence and uniqueness is proven in [22, Chap. 8, Thm. 4.2]. For
general properties of sprays we refer to [22, Chap. 4, §3-4]. Moreover, a discussion of the relation of
sprays to torsion-free covariant derivatives can be found in [22, Chap. 8 §2].

Definition 4.1. Let
(
M, 〈·, ·〉

)
be a pseudo-Riemannian manifold. The metric spray S ∈ Γ∞

(
T (T M)

)
is

the unique spray which is associated with the Levi-Civita covariant derivative defined by the pseudo-
Riemannian metric 〈·, ·〉.

An expression of a metric spray in local coordinates is given in (4.2) below. Next we discuss the
relation of metric sprays to Lagrangian mechanics.

Let
(
M, 〈·, ·〉

)
be pseudo-Riemannian and let ω0 ∈ Γ∞

(
Λ2T ∗(T ∗M)

)
denote the canonical symplectic

form on T ∗M. It is given by
ω0 = − d θ0

with θ0 ∈ Γ∞
(
T ∗(T ∗M)

)
being the canonical 1-form on T ∗M. We refer to [16, Sec. 6.2] for the

definition of ω0 and θ0. Consider the Lagrange function

L : T M → R, vx 7→ L(vx) = 1
2〈vx, vx〉x.

Let F L : T M → T ∗M denote the fiber derivative of L defined by(
(F L)(vx)

)
(wx) = d

d t L(vx + twx)
∣∣∣
t=0
, x ∈ M, vx,wx ∈ TxM,

see e.g. [16, Eq. (7.2.1)]. The pullback
ωL = (F L)∗ω0

is a closed 2-from on T M, the so-called Lagrangian 2-form, see [16, Sec. 7.2]. In addition, ωL is
non-degenerated, i.e. symplectic, since F L : T M → T ∗M is a diffeomorphism due to

F L : T M → T ∗M, vx 7→ F L(vx) = 〈vx, ·〉 (4.1)

by [16, Eq. (7.5.3)]. Moreover, the energy

EL : T M → R, vx 7→
(
(F L)(vx)

)
(vx) − L(vx)

associated with L fulfills EL = L, see e.g. [16, Sec. 7.3]. Let XEL ∈ Γ∞
(
T (T M)

)
denote the Lagrangian

vector field and write iXEL
ωL for the insertion of XEL into the first argument of ωL as usual. Then XEL is

uniquely determined by

iXEL
ωL = d EL ⇐⇒ ωL

(
XEL ,V

)
= d EL(V) for all V ∈ Γ∞

(
T (T M)

)
.

according to [16, Sec. 7.3]. Moreover, the Lagrangian vector field XEL coincides with the spray
associated with the metric 〈·, ·〉, see e.g. [16, Sec. 7.5]. It is exactly the so-called canonical spray
from [22, Chap. 7, §7] which coincides with the metric spray, see [22, Chap. 8, Thm. 4.2]. Finally, we
mention a local expression for sprays, see e.g. [22, Chap. 8, §4]. A metric spray S : T M → T (T M)
can be represented in a chart

(
TU, (x, v)

)
of T M induced by a chart (U, x) of M by

S (x, v) =
(
x, v, v,−Γx(v, v)

)
. (4.2)
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Here Γx denotes the quadratic map defined by
(
Γx(v, v)

)k
= Γk

i j(x)viv j using Einstein summation con-
vention, where Γk

i j are the Christoffel symbols of the Levi-Civita covariant derivative with respect to
the chart (U, x). In order to apply these general results to our particular situation, we introduce some
notation.

Notation 4.2. Throughout this section U ⊆ Rn×k denotes an open subset of Rn×k with the property from
Lemma 3.8. Moreover, we denote by L̃ the Lagrange function

L̃ : TU → R, (X,V) 7→ L̃(X,V) = 1
2〈V,V〉

D,E
X , (4.3)

where we identify TU � U × Rn×k as usual.

We use the formula for ω0 ∈ Γ∞
(
Λ2T ∗(T ∗U)

)
on T ∗U given in the next remark.

Remark 4.3. The canonical symplectic form ω0 ∈ Γ∞
(
Λ2T ∗(T ∗U)

)
on T ∗U is given by

ω0

∣∣∣
(X,V)

(
(X,V,Y,Z), (X,V, Ỹ , Z̃)

)
= tr

(
Y>Z̃

)
− tr

(
Ỹ>Z

)
, (4.4)

for (X,V,Y,Z), (X,V, Ỹ , Z̃) ∈ T (T ∗U) identifying T (T ∗U) � U × (Rn×k)∗ × Rn×k × (Rn×k)∗ as well as
Rn×k � (Rn×k)∗ via V 7→ tr

(
V>(·)

)
. Indeed, Equation (4.4) follows by the local formula for the canonical

symplectic form ω0 on T ∗U, see e.g. [16, Sec. 6.2], applied to the gobal chart (U, idU) = (U, Xi j).

4.1. Lagrangian 2-Form

We now calculate the Lagrangian 2-from ωL̃ = (F L̃)∗ω0. To this end, we first determine the fiber
derivative F L̃ : TU → T ∗U and its tangent map.

Lemma 4.4. For (X,V) ∈ TU the fiber derivative F L̃ : TU → T ∗U of L̃ is given by

F L̃(X,V) =
(
X, tr

(
(VD + XX>VE)>(·)

))
. (4.5)

Proof. Let (X,V), (X,W) ∈ TU. We have
(

F L̃(X,V)
)
(X,W) = 〈V,W〉D,EX by the Definition of L̃

and (4.1). Using the definition of 〈·, ·〉D,E(·) and exploiting properties of the trace we obtain

(F L̃(X,V))(X,W) = tr(V>WD) + tr(V>XX>WE) = tr
(
(VD + XX>VE)>W

)
as desired.

Lemma 4.5. The tangent map T (F L̃) : T (TU)→ T (T ∗U) is given by(
T (F L̃)

)
(X,V,Y,Z) =

(
F L̃(X,V),Y, tr

(
(ZD + YX>VE + XY>VE + XX>ZE)>(·)

))
for (X,V,Y,Z) ∈ T (TU) � U × (Rn×k)3, where we identify T (T ∗U) � U × (Rn×k)∗ × Rn×k × (Rn×k)∗ .

Proof. Let (X,V,Y,Z) ∈ T (TU). The smooth curve γ : (−ε, ε) 3 t 7→ (X + tY,V + tZ) ∈ TU, for ε > 0
sufficiently small, fulfills γ(0) = (X,V) with γ̇(0) = (Y,Z). Then

d
d t F L̃(γ(t))

∣∣∣
t=0

=
(
Y, tr

(
(ZD + YX>VE + XY>VE + XX>ZE)>(·)

))
.

This yields the desired result.
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Lemma 4.6. The Lagrangian 2-form ωL̃ = (F L̃)∗ω0 ∈ Γ∞
(
Λ2T ∗(TU)

)
is given by

ωL̃

∣∣∣
(X,V)

(
(X,V,Y,Z), (X,V, Ỹ , Z̃

)
= tr

(
Y>(Z̃D + ỸX>VE + XỸ>VE + XX>Z̃E)

)
− tr

(
Ỹ>(ZD + YX>VE + XY>VE + XX>ZE)

) (4.6)

with (X,V) ∈ TU � U × Rn×k and (X,V,Y,Z), (X,V, Ỹ , Z̃) ∈ T(X,V)TU.

Proof. Using the formula for ω0 ∈ Γ∞
(
Λ2T ∗(T ∗U)

)
from Remark 4.3, a straightforward calculation

shows that ωL̃ = (F L̃)∗ω0 is given by (4.6). To this end, the formulas from Lemma 4.4 and Lemma 4.5
are plugged into the definition of the pull-back (F L̃)∗ω0.

4.2. Sprays on TU

Next the spray S̃ ∈ Γ∞
(
T (TU)

)
associated with 〈·, ·〉D,E(·) is calculated exploiting S̃ = XEL̃

, where
XEL̃

is the Lagrangian vector field. A closed form expression for S̃ (X,V) is obtained for all (X,V) ∈
Stn,k × R

n×k ⊆ TU.

Lemma 4.7. For (X,V) ∈ TU and (X,V,Y,Z) ∈ T(X,V)TU one has

d EL̃

∣∣∣
(X,V)

(X,V,Y,Z) = tr(V>ZD) + tr(Z>XX>VE) + tr(V>YX>VE). (4.7)

Proof. Let (X,V), (Y,Z) ∈ TU. We calculate

d
d t EL̃(X + tY,V + tZ)

∣∣∣
t=0

= 1
2

(
tr

(
Z>VD + V>ZD

)
+ tr

(
Z>XX>VE + V>YX>VE + V>XY>VE + V>XX>ZE

))
.

Using properties of the trace yields the desired result.

Next we consider a linear matrix equation of a certain form. We need to solve this equation for
computing the metric spray on TU, see Proposition 4.9. Moreover, one encounters this equation in the
proof of Proposition 5.2 on pseudo-Riemannian gradients below.

Lemma 4.8. Let D, E ∈ Rk×k
diag such that D and D + E are both invertible and let W ∈ Rn×k. Moreover,

let U ⊆ Rn×k be open with the property from Lemma 3.8. Then for X ∈ U the linear equation

Γ̃D + XX>Γ̃E = W (4.8)

has a unique solution in terms of Γ̃. Moreover, for X ∈ Stn,k, it is explicitly given by

Γ̃ =
(
W − XX>W(D + E)−1E

)
D−1. (4.9)

Proof. For each X ∈ U the linear map φ : Rn×k 3 Γ̃ 7→ Γ̃D + XX>Γ̃E ∈ Rn×k is an isomorphism since
the bilinear form

Rn×k × Rn×k → R, (Y,Z) 7→ tr(V>φ(W)) = 〈V,W〉D,EX

is non-degenerated by assumption. Hence (4.8) admits a unique solution. Now assume X ∈ Stn,k. We
briefly explain how (4.9) can be derived. By exploiting X>X = Ik, Equation (4.8) implies

X>W = X>Γ̃D + X>Γ̃E = X>Γ̃(D + E) ⇐⇒ X>Γ̃ = X>W(D + E)−1.
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Plugging X>Γ̃ = X>W(D + E)−1 into (4.8) yields

Γ̃D + X(X>W(D + E)−1)E = W ⇐⇒ Γ̃ =
(
W − X(X>W(D + E)−1)E

)
D−1.

A straightforward calculation shows that Γ̃ is indeed a solution of (4.8).

Proposition 4.9. The spray S̃ ∈ Γ∞
(
T (TU)

)
associated with the metric 〈·, ·〉D,E(·) is given by

S̃ (X,V) =
(
X,V,V,−Γ̃) =

(
X,V,V,−Γ̃X(V,V)

)
(4.10)

for all (X,V) ∈ TU � U × Rn×k. Here Γ̃ = Γ̃X(V,V) ∈ Rn×k depending on (X,V) ∈ TU is the unique
solution of the linear equation

Γ̃D + XX>Γ̃E = VX>VE + XV>VE − VEV>X (4.11)

in terms of Γ̃ with fixed (X,V) ∈ TU. Moreover, for (X,V) ∈ Stn,k × R
n×k one has

Γ̃X(V,V) =
(
VX>VE + XV>VE − VEV>X

)
D−1

+
(
XX>VEV>X − X(X>V)2E − XV>VE

)
(D + E)−1ED−1.

(4.12)

Proof. Using S̃ = XEL̃
we compute S̃ via solving iXEL̃

ωL̃ = d EL̃ for XEL̃
, i.e. S̃ = XEL̃

fulfills

ωL̃
(
XEL̃

(X,V), (X,V,Y,Z)
)

= d EL̃

∣∣∣
(X,V)

(X,V,Y,Z). (4.13)

for all (X,V,Y,Z) ∈ T (TU). Since ωL̃ is non-degenerated, XEL̃
is uniquely determined by (4.13). The

local form of a metric spray, see (4.2), motivates the Ansatz

XEL̃
(X,V) =

(
X,V,V,−Γ̃X(V,V)

)
=

(
X,V,V,−Γ̃

)
with Γ̃ = Γ̃X(V,V) ∈ Rn×k depending on (X,V) ∈ TU. Inserting XEL̃

into ωL̃ from Lemma 4.6 yields the
1-form

(iXEL̃
ωL̃)

∣∣∣
(X,V)

(X,V,Y,Z) = ωL̃

∣∣∣
(X,V)

(
XEL̃

(X,V), (X,V,Y,Z)
)

= tr
(
V>

(
ZD + YX>VE + XY>VE + XX>ZE

)
− tr

(
Y>

(
− Γ̃D + VX>VE + XV>VE − XX>Γ̃E

)) (4.14)

with (X,V) ∈ TU and (X,V,Y,Z) ∈ T (TU). Using (4.14) and the formula for d EL̃ from Lemma 4.7,
the equation iXEL̃

ωL̃ = d EL̃ becomes

tr(V>ZD) + tr(Z>XX>VE) + tr(V>YX>VE)

= tr
(
V>

(
ZD + YX>VE + XY>VE + XX>ZE

)
− tr

(
Y>

(
− Γ̃D + VX>VE + XV>VE − XX>Γ̃E

)) (4.15)

for all (X,V,Y,Z) ∈ TU. Clearly, Equation (4.15) is equivalent to

tr(Y>(VEV>X)) = tr
(
Y>(−Γ̃D + VX>VE + XV>VE − XX>Γ̃E)

)
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for all Y ∈ Rn×k. This can be equivalently rewritten as

Γ̃D + XX>Γ̃E = VX>VE + XV>VE − VEV>X (4.16)

showing the first claim.
We now assume X ∈ Stn,k. Writing W = VX>VE + XV>VE − VEV>X and invoking Lemma 4.8 in

order to solve (4.16) for Γ̃ yields

Γ̃ = WD−1 − XX>W(D + E)−1ED−1

=
(
VX>VE + XV>VE − VEV>X

)
D−1

+
(
XX>VEV>X − X(X>V)2E − XV>VE

)
(D + E)−1ED−1

as desired.

Remark 4.10. Obviously, for E = 0, Proposition 4.9 implies Γ̃X(V,V) = 0 for all (X,V) ∈ TU.

Proposition 4.9 admits a relatively simple expression for S̃ ∈ Γ∞
(
T (TU)

)
evaluated at (X,V) ∈ TStn,k

for a subfamily of 〈·, ·〉D,E(·) . Since this subfamily will be discussed several times below, it deserves its
own notation.

Notation 4.11. We write 〈·, ·〉D,ν(·) for the covariant 2-tensor 〈·, ·〉D,E(·) which is obtained by specifying
E = νIk with ν ∈ R, i.e.〈

V,W
〉D,ν

X = tr
(
V>WD

)
+ ν tr

(
V>XX>W

)
, X ∈ Rn×k and V,W ∈ TXR

n×k � Rn×k.

Unless indicated otherwise, pull-backs of 〈·, ·〉D,ν(·) ∈ Γ∞
(
S2(T ∗Rn×k)

)
to submanifolds ofRn×k are omitted

in the notation. Moreover, we assume that D and ν are chosen such that Stn,k ⊆
(
U, 〈·, ·〉D,ν(·)

)
is a pseudo-

Riemannian submanifold. In particular, we assume that D and D + νIk are both invertible.

Corollary 4.12. The spray S̃ ∈ Γ∞
(
T (TU)

)
on TU associated with 〈·, ·〉D,ν(·) ∈ Γ∞

(
S2(T ∗U)

)
evaluated

at (X,V) ∈ TStn,k is given by
S̃ (X,V) =

(
X,V,V,−Γ̃X(V,V)

)
, (4.17)

where
Γ̃X(V,V) =

(
2νVX>V + νXV>V

(
D
(
D + νIk

)−1)
− 2ν2X(X>V)2(D + νIk)−1

)
D−1. (4.18)

Proof. Let (X,V) ∈ TStn,k and write Γ̃ = Γ̃X(V,V) for short. Plugging E = νIk into Formula (4.12) from
Proposition 4.9 and using X>V = −V>X we obtain

Γ̃ =
(
VX>VE + XV>VE − VEV>X

)
D−1

+
(
XX>VEV>X − X(X>V)2E − XV>VE

)
(D + E)−1ED−1

= ν
(
VX>V + XV>V − VV>X

)
D−1 + ν2

(
XX>VV>X − X(X>V)2 − XV>V

)
(D + νIk)−1D−1

= ν
(
VX>V + XV>V + VX>V

)
D−1 + ν2

(
− X(X>V)2 − X(X>V)2 − XV>V

)
(D + νIk)−1D−1

=
(
2νVX>V + XV>V

(
νIk

)
− 2ν2X(X>V)2(D + νIk

)−1
− XV>V

(
ν2(D + νIk)−1))D−1

=
(
2νVX>V + XV>V

(
νIk − ν

2(D + νIk)−1) − 2ν2X(X>V)2(D + νIk)−1
)
D−1

=
(
2νVX>V + νXV>V

(
D
(
D + νIk

)−1)
− 2ν2X(X>V)2(D + νIk)−1

)
D−1,
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where the last equality holds due to(
νIk − ν

2(D + νIk)−1)
ii = ν − ν2

Dii+ν
=

ν(Dii+ν)−ν2

Dii+ν
= ν(D

(
D + νIk

)−1)ii

for i ∈ {1, . . . , k}.

4.3. Sprays on Stiefel Manifolds

We now determine the spray S ∈ Γ∞
(
T (TStn,k)

)
associated with the metric 〈·, ·〉D,E(·) . To this end, a

result from [16, Prop. 8.4.1] is exploited which is stated for Riemannian manifolds. The proof works
for pseudo-Riemannian manifolds, as well, since it only exploits the non-degeneracy of the metric. We
reformulate it in the following proposition.

Proposition 4.13. Let M ⊆ M̃ be a pseudo-Riemannian submanifold of a pseudo-Riemannian manifold(
M̃, 〈·, ·〉

)
and let S̃ ∈ Γ∞

(
T (T M̃)

)
denote the metric spray on T M̃. Then the spray S ∈ Γ∞

(
T (T M)

)
on

T M associated with the induced pseudo-Riemannian metric is given by

S = T P ◦ S̃
∣∣∣
T M

: T M → T (T M), (4.19)

where P : T M̃
∣∣∣
M
→ T M denotes the vector bundle morphism that is defined fiber-wise by the orthogo-

nal projections Px : TxM̃ → TxM ⊆ TxM̃ with respect to 〈·, ·〉, where x ∈ M.

Lemma 4.14. The tangent map T P : T (Stn,k × R
n×k)→ T (TStn,k) of

P : Stn,k × R
n×k → TStn,k, (X,V) 7→ (X, PX(V)), (4.20)

where PX(V) = V − XX>V + XπD+E(X>V) is the orthogonal projection from Theorem 3.18, is given by

T P(X,V,Y,Z) =
(
X,V,Y,Z − XY>V − XX>Z + XπD+E(Y>V + X>Z))

)
(4.21)

for all (X,V,Y,Z) ∈ T (Stn,k × R
n×k) � TStn,k × (Rn×k)2.

Proof. By exploiting πD+E(X>V) = X>V due to X>V = −V>X ∈ so(k) for (X,V) ∈ TStn,k one calculates

T(X,V)P(Y,Z) =
(
Y,Z − YX>V − XY>V − XX>Z + YπD+E(X>V) + XπD+E(Y>V + X>Z)

)
=

(
Y,Z − XY>V − XX>Z + XπD+E(Y>V + X>Z)

)
,

where (X,V,Y,Z) ∈ T (Stn,k × R
n×k).

Theorem 4.15. The spray S ∈ Γ∞
(
T (TStn,k)

)
associated with 〈·, ·〉D,E(·) is given by

S (X,V) =
(
X,V,V,−Γ̃X(V,V) − XV>V + XX>Γ̃X(V,V) + XπD+E(V>V − X>Γ̃X(V,V)

))
(4.22)

for all (X,V) ∈ TStn,k. Here Γ̃X(V,V) ∈ Rn×k depending on (X,V) ∈ TStn,k is given by

Γ̃X(V,V) =
(
VX>VE + XV>VE − VEV>X

)
D−1

+
(
XX>VEV>X − X(X>V)2E − XV>VE

)
(D + E)−1ED−1.

(4.23)
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Proof. One can view Stn,k equipped with 〈·, ·〉D,E(·) as a pseudo-Riemannian submanifold of
(
U, 〈·, ·〉D,E(·)

)
according to Lemma 3.8. Let S̃ ∈ Γ∞

(
T (TU)

)
be the metric spray on TU determined in Proposition 4.9.

Then S = T P ◦ S̃
∣∣∣
TStn,k

holds by Proposition 4.13. Using Lemma 4.14 yields

S (X,V) = T P ◦ S̃
∣∣∣
TStn,k

(X,V) = T P
(
X,V,V,−Γ̃X(V,V)

)
=

(
X,V,V,−Γ̃X(V,V) − XV>V + XX>Γ̃X(V,V) + XπD+E(V>V − X>Γ̃X(V,V)

))
for all (X,V) ∈ TStn,k as desired.

Remark 4.16. We often denote the spray on TStn,k associated with 〈·, ·〉D,E(·) from Theorem 4.15 by

S (X,V) =
(
X,V,V,−Γ

)
=

(
X,V,V,−ΓX(V,V)

)
,

i.e. we write −Γ or −ΓX(V,V) for the fourth component of S . For (X,V) ∈ TStn,k it is given by

− ΓX(V,V) = −Γ̃X(V,V) − XV>V + XX>Γ̃X(V,V) + XπD+E(V>V − X>Γ̃X(V,V)
)

(4.24)

according to Theorem 4.15, where Γ̃X(V,V) is determined by (4.23). Obviously, Equation (4.24) yields
a well-defined expression for all X ∈ Rn×k and V ∈ Rn×k which is quadratic in V . Hence, by polariza-
tion, (4.24) can be viewed as the definition of the smooth map

Γ : U → S2((Rn×k)∗
)
⊗ Rn×k, X 7→

(
(V,W) 7→ ΓX(V,W)

)
. (4.25)

Clearly, Equation (4.25) yields a smooth extension of the fourth component of the metric spray S ∈
Γ∞

(
T (TStn,k)

)
. This extension is used in Proposition 6.5 and Proposition 6.8 below.

Corollary 4.17. The spray S ∈ Γ∞
(
T (TStn,k)

)
associated with the metric 〈·, ·〉D,E(·) from Theorem 4.15

has the following properties:

1. The spray S ∈ Γ∞
(
T (TStn,k)

)
is complete.

2. The maximal integral curve R 3 t 7→ ΦS
t
(
(X0,V0)

)
=

(
X(t),V(t)

)
∈ TStn,k of S through the point

(X0,V0) ∈ TStn,k at t = 0 fulfills the explicit non-linear first order ODE

Ẋ = V

V̇ = −Γ̃X(V,V) − XV>V + XX>Γ̃X(V,V) + XπD+E(V>V − X>Γ̃X(V,V)
)
,

(4.26)

with initial condition
(
X(0),V(0)

)
=

(
X0,V0

)
∈ TStn,k writing X = X(t) and V = V(t) for short.

3. Let pr : TStn,k → Stn,k be the canonical projection. The curve R3 t 7→pr◦ΦS
t (X0,V0) = X(t)∈ Stn,k

is a geodesic with respect to 〈·, ·〉D,E(·) through the point X(0) = X0 ∈ Stn,k with initial velocity
Ẋ(0) = V0 ∈ TX0Stn,k.

4. The geodesic equation on Stn,k with respect to 〈·, ·〉D,E(·) is given by the non-linear explicit second
order ODE

Ẍ = −Γ̃X(Ẋ, Ẋ) − XẊ>Ẋ + XX>Γ̃X(Ẋ, Ẋ) + XπD+E(Ẋ>Ẋ − X>Γ̃X(Ẋ, Ẋ)
)

(4.27)

with initial conditions X(0) = X0 ∈ Stn,k and Ẋ(0) = Ẋ0 ∈ TX0Stn,k.
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Proof. We first show that S is complete. The transitive O(n)-action Ψ acts on
(
Stn,k, 〈·, ·〉

D,E
(·)

)
by isome-

tries according to Lemma 3.1, i.e.
(
Stn,k, 〈·, ·〉

D,E
(·)

)
is a compact pseudo-Riemannian homogeneous man-

ifold. Hence completeness follows by [23]. The other statements are well-known consequences of
general properties of sprays associated with a metric, see e.g. [16, Sec. 7.5], combined with the ex-
plicit formula for S ∈ Γ∞

(
T (TStn,k)

)
from Theorem 4.15.

The formula for the metric spray S from Theorem 4.15 admits a simplification for 〈·, ·〉D,ν(·) .

Corollary 4.18. For
(
Stn,k, 〈·, ·〉

D,ν
(·)

)
the metric spray is given by S (X,V) =

(
X,V,V,−ΓX(V,V)

)
with

− ΓX(V,V) = 2νVV>XD−1 + 2νX(X>V)2D−1 − XV>V + XπD+νIk(V>V) (4.28)

for (X,V) ∈ TStn,k. Moreover, the geodesic equation reads

Ẍ = 2νẊẊ>XD−1 + 2νX(X>Ẋ)2D−1 − XẊ>Ẋ + XπD+νIk(Ẋ>Ẋ). (4.29)

Proof. Let (X,V) ∈ TStn,k. Using the formula for Γ̃X(V,V) from Corollary 4.12 we calculate

X>Γ̃X(V,V) = X>
(
2νVX>V + νXV>V

(
D
(
D + νIk

)−1)
− 2ν2X(X>V)2(D + νIk)−1

)
D−1

= 2νX>VX>VD−1 + νV>V
((

D + νIk
)−1D

)
D−1 − 2ν2(X>V)2(D + νIk)−1D−1

= 2ν(X>V)2D−1 − 2ν2(X>V)2(D + νIk)−1D−1 + νV>V
((

D + νIk
)−1)

= (X>V)2
(
2νD−1 − 2ν2(D + νIk)−1D−1

)
+ νV>V

((
D + νIk

)−1)
= 2ν(X>V)2(D + νIk)−1 + νV>V(D + νIk)−1

= ν
(
V>V + 2(X>V)2

)
(D + νIk)−1,

where the identity(
2νD−1 − 2ν2(D + νIk)−1D−1)

ii =
2(νDii+ν

2)−2ν2

(Dii+ν)Dii
= 2ν

Dii+ν
= 2ν

(
(D + νIk)−1)

ii

is used. This yields
XX>Γ̃X(V,V) = νX

(
V>V + 2(X>V)2

)
(D + νIk)−1.

Moreover, using the symmetry of ν
(
V>V + 2(X>V)2) ∈ Rk×k

sym we obtain by Lemma 3.14, Claim 1

πD+νIk
(
X>Γ̃X(V,V)

)
= πD+νIk

(
ν
(
V>V + 2(X>V)2)(D + νIk)−1) = 0.

Therefore ΓX(V,V) can be obtained by Theorem 4.15 via calculating

−ΓX(V,V) = −Γ̃X(V,V) − XV>V + XX>Γ̃X(V,V) + XπD+νIk
(
V>V − X>Γ̃X(V, v)

)
=

(
− 2νVX>VD−1 − νXV>V

(
D + νIk

)−1
+ 2ν2X(X>V)2(D + νIk)−1D−1

)
− XV>V

+
(
νXV>V(D + νIk)−1 + 2νX(X>V)2(D + νIk)−1

)
+ XπD+νIk(V>V)

= 2νVV>XD−1 + 2X(X>V)2(D + νIk)−1(ν2D−1 + νIk) − XV>V + XπD+νIk(V>V)
= 2νVV>XD−1 + 2νX(X>V)2D−1 − XV>V + XπD+νIk(V>V),

where the last equality follows due to(
(D + νIk)−1(ν2D−1 + νIk)

)
ii =

(ν2/Dii)+ν
Dii+ν

=
ν(ν+Dii)

Dii(ν+Dii)
= ν

(
D−1)

ii.

This yields the desired result.
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Remark 4.19. Corollary 4.18 generalizes the geodesic equation from [13]. Indeed, setting D = 2Ik

and ν = −2α+1
α+1 with α ∈ R \ {−1} yields

− ΓX(V,V) = νVV>X + νX(X>V)2 − XV>V (4.30)

due to π(2+ν)Ik(V>V) = skew(V>V) = 0 in accordance with [13, Eq. (65)].

Remark 4.20. We are not aware of an explicit solution of the geodesic equation for general diagonal
matrices D and E. To our best knowledge, an explicit solution is only known for the special case
D = 2Ik and E = νIk, see [13]. Nevertheless, one could exploit that

(
TStn,k, ω(T ι)∗ L̃, (T ι)

∗L̃
)

defines a
Hamiltonian system whose Hamiltonian vector field is given by the metric spray S ∈ Γ∞

(
T (TStn,k)

)
.

This point of view would allow to study the geodesic equation using the theory of integrable systems.
However, investigating these aspects in detail is out of the scope of this paper. In this context, we only
refer to [24], where geodesic flows on the cotangent bundle T ∗Stn,k and their integrability are studied.

5. Pseudo-Riemannian gradients and pseudo-Riemannian Hessians

We now determine pseudo-Riemannian gradients and pseudo-Riemannian Hessians of smooth func-
tions on Stn,k. Specific results from [14] are generalized, where similar ideas were used to obtain the
gradients and Hessians of smooth function on Stn,k with respect to the one-parameter family of metrics
from [13]. Moreover, similar formulas for gradients and Hessians on Stn,k with respect to a family of
metrics corresponding to 〈·, ·〉D,E(·) , where D = α0Ik and E = (α1 − α0)Ik with α0, α1 ∈ R, i.e. a scaled
version of the metrics introduced in [13], are independently obtained in [25].

Notation 5.1. From now on, unless indicated otherwise, we denote by U ⊆ Rn×k an open subset with
the property from Lemma 3.8.

5.1. Pseudo-Riemannian Gradients

We first determine the gradient of a smooth function on f : Stn,k → R with respect to the metric
〈·, ·〉D,E(·) ∈ Γ∞

(
S2(T ∗Stn,k)

)
. Let ]D,E : T ∗XStn,k → TXStn,k denote the sharp map associated with 〈·, ·〉D,E(·) ,

i.e. the inverse of the flat map [ : TXStn,k 3 V 7→ 〈V, ·〉D,EX ∈ T ∗XStn,k. Then grad f ∈ Γ∞(TStn,k) is the
unique vector field that fulfills〈

grad f (X),V
〉D,E

X = d f
∣∣∣
X
(V) ⇐⇒ grad f (X) =

(
d f

∣∣∣
X
(·)

)]D,E (5.1)

for all X ∈ Stn,k and V ∈ TXStn,k, see e.g. [26, Sec. 8.1] for the Riemannian case, which clearly extends
to the pseudo-Riemannian case.

Proposition 5.2. Let f : Stn,k → R be smooth with some smooth extension F : U → R. Then the
gradient of f at X ∈ Stn,k with respect to 〈·, ·〉D,E(·) is given by

grad f (X) = ∇F(X)D−1 − XX>∇F(X)D−1 + XπD+E(X>∇F(X)
(
D−1 − (D + E)−1ED−1)). (5.2)

Proof. We first compute the gradient of F : U → R with respect to 〈·, ·〉D,E(·) . Let X ∈ U. Then
gradF(X) ∈ Rn×k fulfills 〈

gradF(X),V
〉D,E

X = d F
∣∣∣
X
(V) = tr

((
∇F(X)

)>V
)

(5.3)
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for all V ∈ TXR
n×k � Rn×k. Using the definition of 〈·, ·〉D,E(·) , Equation (5.3) can be rewritten as

tr
(
V>

(
gradF(X)D + XX>gradF(X)E

))
= tr

(
V>∇F(X)

)
.

Since 〈·, ·〉D,E(·) is non-degenerated, this is equivalent to the linear equation

gradF(X)D + XX>gradF(X)E = ∇F(X) (5.4)

in terms of gradF(X). Now assume X ∈ Stn,k. Then the unique solution of (5.4) is given by

gradF(X) = ∇F(X)D−1 − XX>∇F(X)(D + E)−1ED−1

according to Lemma 4.8. Next, we use the well-known formula grad f (X) = PX
(
gradF(X)

)
, where

PX : Rn×k → TXStn,k is determined in Theorem 3.18. One calculates

grad f (X) = PX
(
∇F(X)D−1 − XX>∇F(X)(D + E)−1ED−1)

=
(
∇F(X)D−1 − XX>∇F(X)D−1 + XπD+E(X>∇F(X)D−1))
−

(
XX>∇F(X)(D + E)−1ED−1 − XX>

(
XX>∇F(X)(D + E)−1ED−1)

+ XπD+E(X>XX>∇F(X)(D + E)−1ED−1))
= ∇F(X)D−1 − XX>∇F(X)D−1 + XπD+E(X>∇F(X)

(
D−1 − (D + E)−1ED−1))

for X ∈ Stn,k as desired.

Next we specialize the formula for the gradient to the subfamily 〈·, ·〉D,ν(·) .

Proposition 5.3. Let f : Stn,k → R be smooth with some smooth extension F : U → R. Then the
gradient of f with respect to 〈·, ·〉D,ν(·) is given by

grad f (X) = ∇F(X)D−1 − XX>∇F(X)D−1 + XπD+νIk
(
X>∇F(X)(D + νIk)−1) (5.5)

for all X ∈ Stn,k.

Proof. Using Proposition 5.2 we obtain for X ∈ TXStn,k

grad f (X) = ∇F(X)D−1 − XX>∇F(X)D−1 + XπD+νIk
(
X>∇F(X)

(
D−1 − ν(D + νIk)−1D−1))

= ∇F(X)D−1 − XX>∇F(X)D−1 + XπD+νIk
(
X>∇F(X)(D + νIk)−1),

where the identity(
D−1 − ν(D + νIk)−1D−1)

ii = 1
Dii
− ν

(Dii+ν)Dii
= Dii+ν−ν

(Dii+ν)Dii
=

(
(D + νIk)−1)

ii

is used to obtain the last equality.

Corollary 5.4. Let α ∈ T ∗XStn,k be given by

α = tr
(
V>(·)

)
: TXStn,k → R, W 7→ tr(V>W) ∈ R, (5.6)
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where V ∈ Rn×k is some matrix. The sharp map ]D,E : T ∗XStn,k → TXStn,k associated with 〈·, ·〉D,E(·) applied
to α is given by

α]D,E =
(

tr
(
V>(·)

))]D,νIk = VD−1 − XX>VD−1 + XπD+E(X>V
(
D−1 − (D + E)−1ED−1)). (5.7)

Specializing E = νIk yields the sharp map with respect to 〈·, ·〉D,ν(·) applied to α, namely

α]D,νIk =
(

tr
(
V>(·)

))]D,νIk = VD−1 − XX>VD−1 + XπD+νIk
(
X>V(D + νIk)−1). (5.8)

Proof. Consider the smooth function F : Rn×k 3 X 7→ tr
(
V>X

)
∈ R and set f = F

∣∣∣
Stn,k

: Stn,k → R. Then

d F
∣∣∣
X
(W) = tr(V>W) and thus ∇F(X) = V follows. Applying Proposition 5.2 and Proposition 5.3,

respectively, yields the desired result because of (5.1).

Corollary 5.5. Proposition 5.3 reproduces some results known from the literature as special cases:

1. For D = Ik and ν = 0 one has

grad f (X) = ∇F(X) − 1
2 XX>∇F(X) − 1

2 X
(
∇F(X)

)>X. (5.9)

This coincides with the gradient with respect to the Euclidean metric, see e.g. [2].
2. For D = Ik and ν = −1

2 , one has

grad f (X) = ∇ f (X) − X
(
∇F(X)

)>X (5.10)

reproducing the formula for the gradient from [10, Eq. (2.53)].
3. For D = 2Ik and −2 , ν ∈ R the gradient of f simplifies to

grad f (X) = 1
2

(
∇ f (X) − ν+1

2+ν
XX>∇F(X) − 1

2+ν
X
(
∇F(X)

)>X
)

(5.11)

reproducing the expression for the gradient from [14, Thm. 1].

Proof. These formulas follow by straightforward calculations by plugging the particular choices for D
and ν into the expression for grad f from Proposition 5.3.

5.2. Pseudo-Riemannian Hessians

Next we determine the pseudo-Riemannian Hessian of a smooth function f : Stn,k → R. Here we
only consider the subfamily 〈·, ·〉D,ν(·) in order to obtain formulas which are not too complicated.

Lemma 5.6. Let X ∈ Stn,k, V ∈ TXStn,k and let f : Stn,k → R be smooth with some smooth extension
F : U → R. The Hessian of f with respect 〈·, ·〉D,ν(·) considered as quadratic form is given by

Hess( f )
∣∣∣
X
(V,V) = D2 F(X)(V,V)

+ D F(X)
(
2νVV>XD−1 + 2νX(X>V)2D−1 − XV>V + XπD+νIk

(
V>V

))
,

(5.12)

where X ∈ Stn,k and V,W ∈ TXStn,k.
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Proof. The geodesic γ : R → Stn,k through γ(0) = X ∈ Stn,k with initial velocity γ̇(0) = V ∈ TXStn,k

fulfills the explicit second order ODE

γ̈(t) = 2νγ̇(t)γ̇(t)>γ(t)D−1 + 2νγ(t)
(
γ(t)>γ̇(t)

)2D−1

− γ(t)γ̇(t)>γ̇(t) + γ(t)πD+νIk
(
γ̇(t)>γ̇(t)

) (5.13)

according to Corollary 4.18. Evaluating (5.13) at t = 0 yields

γ̈(0) = 2νVV>XD−1 + 2νX(X>V)2D−1 − XV>V + XπD+νIk
(
V>V

)
(5.14)

due to the initial conditions γ(0) = X and γ̇(0) = V . The Hessian of f considered as quadratic form
can be determined as

Hess( f )
∣∣∣
X
(V,V) = d2

d t2 ( f ◦ γ)(t)
∣∣∣
t=0
, (5.15)

see e.g. [26, Prop. 8.3] for the Riemannian case, which clearly extends to pseudo-Riemannian mani-
folds. Using f = F

∣∣∣
Stn,k

, Formula (5.15) yields

Hess( f )
∣∣∣
X
(V,V) = D2 F(X)

(
γ̇(0), γ̇(0)

)
+ D F(X)γ̈(0) (5.16)

by the chain rule. Plugging (5.14) into (5.16) yields the desired result.

Theorem 5.7. Let X ∈ Stn,k and V,W ∈ TXStn,k. Moreover, define D̃ = D + νIk. The Hessian of a
smooth function f : Stn,k → R with smooth extension F : U → R with respect 〈·, ·〉D,ν(·) is given by

Hess( f )
∣∣∣
X
(V,W) = tr

((
D(∇F)(X)V

)>W
)

+ ν tr
((

XD−1(∇F(X))>V + ∇F(X)D−1X>V
)>W

)
+ ν tr

((
XV>XX>∇F(X)D−1 + XX>∇F(X)D−1V>X

)>W
)

− 1
2 tr

((
VX>∇F(X) + V

(
∇F(X)

)>X
)>W

)
+ 1

2 tr
((

VπD̃(X>∇F(X)D̃−1)D̃ − VD̃πD̃(X>∇F(X)D̃−1)
)>W

)
.

(5.17)

Proof. Let (X,V), (X,W) ∈ TStn,k. We obtain for the Hessian of f as symmetric 2-tensor

Hess( f )
∣∣∣
X
(V,W) = tr

((
D(∇F)(X)V

)>W
)

+ ν tr
((
∇F(X)

)>(VW> + WV>
)
XD−1)

+ ν tr
((
∇F(X)

)>X
(
X>VX>W + X>WX>V

)
D−1)

− 1
2 tr

((
∇F(X)

)>X
(
V>W + W>V

))
+ 1

2 tr
((
∇F(X)

)>XπD+νIk(V>W + W>V)
)

(5.18)

by applying polarization to the quadratic form obtained in Lemma 5.6 and using the identities

D F(X)V = tr
((
∇F(X))>V

)
and D2 F(X)(V,W) = tr

((
D(∇F)(X)V

)>W
)
.

Next, we set D̃ = D+νIk which is invertible according to Notation 3.13. Since the orthogonal projection
πD̃ : Rk×k → so(k) ⊆ Rk×k is self-adjoint with respect to the scalar product

〈·, ·〉D̃ : Rk×k × Rk×k → R, (V,W) 7→ tr
(
V>WD̃

)
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on Rk×k, we calculate

tr
((
∇F(X)

)>XπD̃(
V>W + W>V

))
= tr

((
X>∇F(X)D̃−1)>πD̃(

V>W + W>V
)
D̃
)

=
〈
X>∇F(X)D̃−1, πD̃(

V>W + W>V
)〉D̃

=
〈
πD̃(

X>∇F(X)D̃−1),V>W + W>V
〉D̃

= tr
((

VπD̃(
X>∇F(X)D̃−1)D̃ − VD̃πD̃(

X>∇F(X)D̃−1))>W
)

(5.19)

by exploiting im(πD̃) = so(k). The desired result follows by rewriting (5.18) using well-known proper-
ties of the trace and applying (5.19) to the last summand of (5.18).

Corollary 5.8. 5.7: Let D = 2Ik and −2 , ν ∈ R. Then the Hessian of the smooth function f : Stn,k → R

with respect to 〈·, ·〉D,ν(·) reads

Hess( f )
∣∣∣
X
(V,W) = tr

((
D(∇F)(X)V

)>W
)

+ ν
2 tr

((
X
(
∇F(X)

)>V + ∇F(X)X>V
)>W

)
+ ν

2 tr
((

XV>XX>∇F(X) + XX>∇F(X)V>X
)>W

)
− 1

2 tr
((

VX>∇F(X) + V
(
∇F(X)

)>X
)>W

) (5.20)

with X ∈ Stn,k and V,W ∈ TXStn,k reproducing the formula from [14, Thm. 2].

Proof. We set D = 2Ik in Theorem 5.7. Obviously, D̃ = (2 + ν)Ik holds. Hence

πD̃(
X>∇F(X)D̃−1)D̃ = πD̃(

X>∇F(X)
)

= D̃πD̃(
X>∇F(X)D̃−1)

is fulfilled by the linearity of πD̃ : Rn×k → so(k) ⊆ Rn×k. Thus the last summand of (5.17) vanishes.

Theorem 5.7 yields an expression for the Hessian of f : Stn,k → R as covariant 2-tensor. How-
ever, for applications, see e.g. [2, Chap. 6], an expression for the Hessian of f viewed as section of
End(TStn,k) is desirable. Thus, following [14, Re. 6], we state the next remark and the next corollary.

Remark 5.9. In [2, Eq. (6.3)] the Hessian of a smooth function f : M → R on a Riemannian manifold(
M, 〈·, ·〉

)
endowed with a covariant derivative ∇ is defined as

H̃ess( f )
∣∣∣
x
(vx) = ∇vxgrad f

∣∣∣
x

for x ∈ M and vx ∈ TxM. In particular, H̃ess( f ) ∈ Γ∞
(
End(T M)

)
holds. If ∇ is chosen as the Levi-

Civita covariant derivative ∇LC, then H̃ess( f ) is related to Hess( f ) ∈ Γ∞
(
S2(T ∗M)

)
via〈

H̃ess( f )
∣∣∣
x
(v),w

〉
=

〈
∇LC

vx
grad f

∣∣∣
x
,wx

〉
= Hess( f )

∣∣∣
x
(vx,wx), (5.21)

where x ∈ M and vx,wx ∈ TxM, see e.g. [26, Prop. 8.1] for a proof for the Riemannian case. Clearly,
Equation (5.21) holds in the pseudo-Riemannian case, too. We rewrite (5.21) equivalently as〈

H̃ess( f )
∣∣∣
x
(vx), ·

〉
= Hess( f )

∣∣∣
x
(vx, ·). (5.22)

Applying the sharp map ] : T ∗x M → TxM associated with 〈·, ·〉 on both sides of (5.22) yields

H̃ess( f )
∣∣∣
x
(vx) =

(
Hess( f )

∣∣∣
x
(vx, ·)

)]
. (5.23)

Journal of Geometric Mechanics Volume 15, Issue 1, 147–187



179

Corollary 5.10. Let f : Stn,k → R be smooth with some smooth extension F : U → R. The Hessian of
f with respect to 〈·, ·〉D,ν(·) considered as a section of End(TStn,k) is given by

H̃ess( f )
∣∣∣
X
(V) = LD,ν

X

(
D(∇F)(X)V + ν

(
XD−1(∇F(X))>V + ∇F(X)D−1X>V

)
+ ν

(
XV>XX>∇F(X)D−1 + XX>∇F(X)D−1V>X

)
− 1

2

(
VX>∇F(X) + V

(
∇F(X)

)>X
)

+ 1
2

(
VπD̃(

X>∇F(X)D̃−1)D̃ − VD̃πD̃(
X>∇F(X)D̃−1)))

for X ∈ Stn,k and V ∈ TXStn,k, where D̃ = D + νIk and LD,ν
X : Rn×k → TXStn,k ⊆ R

n×k is the linear map
given by

LD,ν
X (V) = VD−1 − XX>VD−1 + XπD+νIk

(
X>V(D + νIk)−1).

Proof. We have already obtained Hess( f ) in Theorem 5.7 in such a form that the formula for the sharp
map from Corollary 5.4 can be applied to Hess( f )

∣∣∣
X
(V, ·) ∈ T ∗XStn,k. Now Remark 5.9 yields the desired

result.

6. Second fundamental form and Levi-Civita covariant derivative

In this section, we compute the second fundamental form of Stn,k considered as pseudo-Riemannian
submanifold of

(
U, 〈·, ·〉D,E(·)

)
. Moreover, an expression for the Levi-Civita covariant derivative on Stn,k

is derived. We first recall Notation 5.1. Unless indicated otherwise, we denote by U ⊆ Rn×k an open
neighbourhood of Stn,k with the property from Lemma 3.8.

6.1. Levi-Civita covariant derivative on U

We consider the Levi-Civita covariant derivative ∇̃LC on U with respect to 〈·, ·〉D,E(·) . Recall Proposi-
tion 4.9. For (X,V) ∈ TU the spray S̃ ∈ Γ∞

(
T (TU)

)
associated with the metric 〈·, ·〉D,E(·) on U is given

by
S̃ (X,V) =

(
X,V,V,−Γ̃X(V,V)

)
(6.1)

where Γ̃X(V,V) is the unique solution of the linear equation (4.11). We now discuss how Γ̃X(V,V)∈Rn×k

is related to the Christoffel symbols of the Levi-Civita covariant derivative ∇̃LC on
(
U, 〈·, ·〉D,E(·)

)
. To this

end, we view idU : U 3 X 7→ X ∈ U as the global chart
(
U, idU

)
=

(
U, Xi j

)
of U and identify the

coordinate vector fields ∂
∂Xi j

with the constant functions U 3 X 7→ Ei j ∈ R
n×k. Then (6.1) is a coordinate

expression for the metric spray S̃ with respect to the global chart
(
TU, (Xi j,Vi j)

)
induced by the chart

(U, Xi j), see also Proposition 4.9. Thus the local form of metric sprays, see (4.2), implies that the entry(̃
ΓX(V,V)

)
i j fulfills (̃

ΓX(V,V)
)

i j =

n∑
a,c=1

k∑
b,d=1

Γ̃
(i, j)
(a,b),(c,d)

∣∣∣
X
VabVcd, (6.2)

where V = (Vi j) ∈ Rn×k and the functions Γ̃
(i, j)
(a,b),(c,d) : U 3 X 7→ Γ̃

(i, j)
(a,b),(c,d)

∣∣∣
X
∈ R denote the Christoffel

symbols of ∇̃LC with respect to
(
U, (Xi j)

)
. Hence ∇̃LC can be expressed with respect to the global chart

(U, Xi j) as
∇̃LC

Ṽ
W̃

∣∣∣
X

= D W̃(X)Ṽ
∣∣∣
X

+ Γ̃X
(
Ṽ
∣∣∣
X
, W̃

∣∣∣
X

)
, (6.3)
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for vector fields Ṽ , W̃ ∈ Γ∞(TU) and X ∈ U, see e.g. [27, Chap. 4]. A similar “matrix notation” for
Christoffel symbols has already appeared in [10, Sec. 2.2.3], where, in addition, it is mentioned that
(for fixed X ∈ U) the symmetric bilinear map Rn×k ×Rn×k 3 (V,W) 7→ Γ̃X(V,W) ∈ Rn×k can be obtained
from the quadratic map Rn×k 3 V 7→ Γ̃X(V,V) ∈ Rn×k by polarization. Hence the Christoffel symbols
on U can be identified with the smooth map

Γ̃ : U → S2((Rn×k)∗
)
⊗ Rn×k, X 7→

(
(V,W) 7→ Γ̃X(V,W)

)
. (6.4)

The “Christoffel symbols” from [10, Sec. 2.2.3] will be discussed in Remark 6.11 below.
Next we give an expression for the Levi-Civita covariant derivative ∇LC on Stn,k with respect 〈·, ·〉D,E(·) .

We refer to Proposition 6.8 as well as Corollary 6.9 below for an alternative formula for ∇LC.

Proposition 6.1. Let V,W ∈ Γ∞(TStn,k). The Levi-Civita covariant derivative on
(
Stn,k, 〈·, ·〉

D,E
(·)

)
is given

by
∇LC

V W
∣∣∣
X

= PX

(
D W̃(X)V

∣∣∣
X

+ Γ̃X
(
V
∣∣∣
X
,W

∣∣∣
X

))
(6.5)

for all X ∈ Stn,k, where Ṽ ∈ Γ∞(TU) is a smooth extensions of V. Here Γ̃ is defined by (6.4). Moreover,
PX : Rn×k → TXStn,k is the orthogonal projection with respect to 〈·, ·〉D,E(·) from Theorem 3.18.

Proof. Since Stn,k is a pseudo-Riemannian submanifold of
(
U, 〈·, ·〉D,E(·)

)
, the result follows by (6.3) due

to
∇LC

V W
∣∣∣
X

= PX

(
∇̃LC

V W̃
∣∣∣
X

)
,

see e.g. [17, Chap. 4, Lem. 3].

6.2. Second fundamental form

We now consider the second fundamental form, also called shape operator, of Stn,k ⊆
(
U, 〈·, ·〉D,E(·)

)
.

We refer to [17, Chap. 4] for general properties of pseudo-Riemanian submanifolds and the second
fundamental form, see also [27, Chap. 8] for the Riemannian case. Using these references, we briefly
introduce the notation which is used in the sequel subsections.

Let M be a pseudo-Riemannian submanifold of a pseudo-Riemannian manifold
(
M̃, 〈·, ·〉

)
. The

corresponding Levi-Civita covariant derivatives on M and M̃ are denoted by ∇LC and ∇̃LC, respectively.
Moreover, let NM → M be the normal bundle of M and let II ∈ Γ∞

(
(S2(T ∗M)) ⊗ NM

)
be the second

fundamental form of M, see e.g. [17, Chap. 4, Lem. 4], defined by

II(V,W)
∣∣∣
x

= P⊥x
(
∇̃LC

Ṽ
W̃

∣∣∣
x

)
, x ∈ M, V,W ∈ Γ∞(T M), (6.6)

where Ṽ , W̃ ∈ Γ∞(T M̃) are smooth extensions of V,W ∈ Γ∞(T M), respectively, and P⊥x : TxM̃ → NxM
denotes the orthogonal projection onto the normal space NxM = (TxM)⊥. The Levi-Civita covariant
derivative on M fulfills

∇LC
V W = ∇̃LC

V W̃ − II(V,W) (6.7)

for all V,W ∈ Γ∞(T M) by [17, Chap. 4]. Here W̃ is again some smooth extension of W to M̃. The
identity (6.7) is named Gauß formula in [27, Thm. 8.2], which includes a proof for the Riemannian
case, as well.
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Lemma 6.2. Define ∇ : Γ∞(T M̃) × Γ∞(T M̃)→ Γ∞(T M̃) by

∇ṼW̃ = ∇̃LC
Ṽ

W̃ − ĨI(Ṽ , W̃), Ṽ , W̃ ∈ Γ∞(T M̃), (6.8)

where ĨI ∈ Γ∞
(
(S2T ∗M̃)⊗ T M̃

)
denotes a smooth extension of the second fundamental form II on M to

M̃. Then ∇ is a covariant derivative on M̃ whose restriction to M coincides with ∇LC, i.e.

∇LC
V W

∣∣∣
x

= ∇ṼW̃
∣∣∣
x

(6.9)

holds for all x ∈ M and V,W ∈ Γ∞(T M) with smooth extensions Ṽ , W̃ ∈ Γ∞(T M̃). Moreover, the
Christoffel symbols of ∇ with respect to the local chart (U, x) of M̃ are given by

Γk
i j = Γ̃k

i j − ĨI
k
i j. (6.10)

Here ĨI
k
i j is defined by ĨI

( ∂
∂xi ,

∂
∂x j

)
= ĨI

k
i j

∂
∂xk using Einstein summation convention and Γ̃k

i j denote the

Christoffel symbols of ∇̃LC with respect to the chart (U, x).

Proof. Obviously, the definition of ∇ yields a covariant derivative on M. Moreover, the Gauß for-
mula (6.7) implies

∇LC
Ṽ

W̃
∣∣∣
x

= ∇̃LC
Ṽ

W̃
∣∣∣
x
− II

∣∣∣
x

(
Ṽ
∣∣∣
x
, W̃

∣∣∣
x

)
= ∇ṼW̃

∣∣∣
x

for all x ∈ M and all V,W ∈ Γ∞(T M) with smooth extensions Ṽ , W̃ ∈ Γ∞(T M̃), respectively.
It remains to show the formula for the Christoffel symbols. Let (U, x) be a local chart of M̃. Using

Einstein summation convention one obtains

∇ ∂
∂xi

∂
∂x j = ∇̃LC

∂
∂xi

∂
∂x j − ĨI

( ∂
∂xi ,

∂
∂x j

)
= Γ̃k

i j
∂
∂xk − ĨI

k
i j

∂
∂xk =

(̃
Γk

i j − ĨI
k
i j
) ∂
∂xk

showing the desired result.

Remark 6.3. The definition of the covariant derivative ∇ on M̃ in Lemma 6.2 depends on the choice
of the smooth extension ĨI of II. Nevertheless, Equation (6.9) is independent of the extension ĨI of II.

Reformulating [16, Cor. 8.4.2] yields the next lemma which allows for computing the second
fundamental form of Stn,k ⊆

(
U, 〈·, ·〉D,E(·)

)
.

Lemma 6.4. Let M ⊆ M̃ be a pseudo-Riemannian submanifold of
(
M̃, 〈·, ·〉

)
. Moreover, we denote by

S̃ ∈ Γ∞
(
T (T M̃)

)
and S ∈ Γ∞

(
T (T M)

)
the metric sprays on T M and T M̃, respectively. Then(

S − S̃
)
(vx) =

(
II
∣∣∣
x
(vx, vx)

)ver∣∣∣
vx
, (6.11)

holds for all x ∈ M and vx ∈ TxM, where

(·)ver
∣∣∣
vx

: TxM → Vervx(T M) ⊆ Tvx(T M)

is the vertical lift and II ∈ Γ∞
(
(S2(T ∗M)) ⊗ NM

)
is the second fundamental form of M ⊆ M̃.

Proof. This is a direct consequence of [16, Cor. 8.4.2] as well as the definition II recalled in (6.6).
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Lemma 6.4 applied to Stn,k ⊆
(
U, 〈·, ·〉D,E(·)

)
yields an expression for the second fundamental form.

Proposition 6.5. Consider Stn,k ⊆
(
U, 〈·, ·〉D,E(·)

)
as pseudo-Riemannian submanifold. Then the following

assertions are fulfilled:

1. The second fundamental form of Stn,k ⊆
(
U, 〈·, ·〉D,E(·)

)
is given by

II
∣∣∣
X
(V,W) = Γ̃X(V,W) − ΓX(V,W) (6.12)

for all X ∈ Stn,k and V,W ∈ TXStn,k, where ΓX and Γ̃X denote the symmetric bilinear maps
associated with the quadratic maps defined by the sprays S ∈ Γ∞

(
T (TStn,k)

)
and S̃ ∈ Γ∞

(
T (TU)

)
,

respectively.
2. A smooth extension ĨI ∈ Γ∞

(
(S2(T ∗U)) ⊗ TU

)
of II is given

ĨI
∣∣∣
X
(V,W) = Γ̃X(V,W) − ΓX(V,W), (6.13)

for all X ∈ U and V,W ∈ TXU � Rn×k, Here we view ΓX(V,W) as in Remark 4.16, i.e. as the
smooth map Γ : U → S2((Rn×k)∗

)
⊗ Rn×k defined in (4.25).

Proof. Lemma 6.4 applied to Stn,k ⊆ (U, 〈·, ·〉D,E(·) ) implies that

S (X,V) − S̃ (X,V) =
(
II
∣∣∣
X
(V,V)

)ver∣∣∣
(X,V)

(6.14)

holds for all (X,V) ∈ TStn,k. The vertical lift for fixed (X,V) ∈ TU is the linear isomorphism

(·)ver
∣∣∣
(X,V)

: TU → Ver(TU)(X,V), (X,W) 7→ (X,W)ver
∣∣∣
(X,V)

= (X,V, 0,W),

according to its local expression, see e.g. [20, Sec. 8.12]. Thus

II
∣∣∣
X
(V,V) = −ΓX(V,V) −

(
− Γ̃X(V,V)

)
= Γ̃X(V,V) − ΓX(V,V)

follows by (6.14). Since the quadratic map TXStn,k 3 V 7→ Γ̃X(V,V) − ΓX(V,V) ∈ Rn×k determines
uniquely the associated symmetric billinear map, Claim 1 is shown. Now Claim 2 is obvious.

The second fundamental from can be simplified for all metrics in the subfamily 〈·, ·〉D,ν(·) .

Corollary 6.6. The second fundamental form of Stn,k ⊆
(
U, 〈·, ·〉D,ν(·)

)
is given by

II
∣∣∣
X
(V,W) = −1

2 X
(
V>W + W>V

)
D
(
D + νIk

)−1
+ νX

(
X>VX>W + X>WX>V

)(
D + νIk

)−1

+ 1
2 XπD+νIk

(
V>W + W>V

) (6.15)

for all X ∈ Stn,k and V,W ∈ TXStn,k.

Proof. Let X ∈ Stn,k and V ∈ TXStn,k. We first compute the quadratic map associated with II. Using
Corollary 4.12 and Corollary 4.18, Proposition 6.5 implies

II
∣∣∣
X
(V,V) = Γ̃X(V,V) − ΓX(V,V)

=
(
2νVX>VD−1 + νXV>V

(
D + νIk

)−1
− 2ν2X(X>V)2(D + νIk)−1D−1

)
+

(
2νVV>XD−1 + 2νX(X>V)2D−1 − XV>V + XπD+νIk(V>V)

)
= XV>V

(
ν
(
D + νIk

)−1
− Ik

)
+ 2νX(X>V)2

(
D−1 − ν(D + νIk)−1D−1

)
+ XπD+νIk(V>V)

= −XV>VD
(
D + νIk

)−1
+ 2νX(X>V)2(D + νIk

)−1
+ XπD+νIk(V>V).

(6.16)
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Here we exploited(
ν(D + νIk)−1 − Ik

)
ii = ν

Dii+ν
− 1 =

ν−(Dii+ν)
Dii+ν

= − Dii
Dii+ν

= −
(
D(D + ν)−1)

ii

as well as (
D−1 − ν(D + νIk)−1D−1)

ii = 1
Dii

(
1 − ν

Dii+ν

)
= 1

Dii

Dii+ν−ν
Dii+ν

=
(
(D + νIk)−1)

ii.

The desired result follows by polarization.

Corollary 6.7. For D = 2Ik and E = νIk the second fundamental form is given by

II
∣∣∣
X
(V,W) = − 1

2+ν
X
(
V>W + W>V

)
+ ν

2+ν
X
(
X>VX>W + X>WX>V

)
(6.17)

for X ∈ Stn,k and V,W ∈ TXStn,k.

Proof. Plugging D = 2Ik into the formula from Corollary 6.6 the claim follows by a straightforward
calculation by exploiting π2Ik+νIk = skew: Rk×k → so(k).

6.3. Levi-Civita Covariant Derivative on Stn,k

Next we derive an alternative expression for the Levi-Civita covariant derivative on
(
Stn,k, 〈·, ·〉

D,E
(·)

)
.

Proposition 6.8. The covariant derivative ∇ on U from Lemma 6.2 fulfills for Ṽ , W̃ ∈ Γ∞(TU) and
X ∈ U

∇ṼW̃
∣∣∣
X

= ∇̃LC
Ṽ

W̃
∣∣∣
X
− ĨI

∣∣∣
X

(
Ṽ
∣∣∣
X
, W̃

∣∣∣
X

)
= D W̃(X)Ṽ

∣∣∣
X

+ ΓX
(
Ṽ
∣∣∣
X
, W̃

∣∣∣
X

)
, (6.18)

where Γ denotes the smooth map U → S2((Rn×k)∗
)
⊗ Rn×k defined in (4.25). If Ṽ , W̃ ∈ Γ∞(TU) are

smooth extensions of V,W ∈ Γ∞(TStn,k), respectively, then

∇LC
V W

∣∣∣
X

= D W̃(X)V
∣∣∣
X

+ ΓX
(
V
∣∣∣
X
,W

∣∣∣
X

)
(6.19)

is satisfied for all X ∈ Stn,k.

Proof. Using Lemma 6.2 and Proposition 6.5 we compute

∇ṼW̃
∣∣∣
X

= ∇̃LC
Ṽ

W̃
∣∣∣
X
− ĨI

∣∣∣
X

(
Ṽ
∣∣∣
X
, W̃

∣∣∣
X

)
=

(
D W̃(X)Ṽ

∣∣∣
X

+ Γ̃X
(
Ṽ
∣∣∣
X
, W̃

∣∣∣
X

))
−

(̃
ΓX

(
Ṽ
∣∣∣
X
, W̃

∣∣∣
X

)
− ΓX

(
Ṽ
∣∣∣
X
, W̃

∣∣∣
X

))
= D W̃(X)Ṽ

∣∣∣
X

+ ΓX
(
Ṽ
∣∣∣
X
, W̃

∣∣∣
X

)
for V,W ∈ Γ∞(TU) and X ∈ U showing (6.18). If Ṽ , W̃ are smooth extensions of V,W ∈ Γ∞(TStn,k),
respectively, we obtain

∇ṼW̃
∣∣∣
X

= ∇LC
V W

∣∣∣
X

= D W̃(X)V
∣∣∣
X

+ ΓX
(
V
∣∣∣
X
,W

∣∣∣
X

)
for all X ∈ Stn,k by Lemma 6.2 proving (6.19).

Proposition 6.8 yields a more explicit formula for the subfamily 〈·, ·〉ν(·).

Journal of Geometric Mechanics Volume 15, Issue 1, 147–187



184

Corollary 6.9. Let V,W ∈ Γ∞(TStn,k) and let W̃ ∈ Γ∞(TU) be smooth extension of W. The Levi-Civita
covariant derivative on Stn,k with respect to the metric 〈·, ·〉D,ν(·) is given by

∇LC
V W

∣∣∣
X

= D W̃(X)V
∣∣∣
X

+ ΓX
(
V
∣∣∣
X
,W

∣∣∣
X

)
(6.20)

for X ∈ Stn,k, where

ΓX(V,W) = −ν
(
VW> + WV>

)
XD−1 − νX

(
X>VX>W + X>WX>V

)
D−1

+ 1
2 X

(
V>W + W>V

)
− 1

2 XπD+νIk
(
V>W + W>V

) (6.21)

writing V = V
∣∣∣
X

and W = W
∣∣∣
X

for short.

Proof. The quadratic map ΓX : TXStn,k 3 V 7→ ΓX(V,V) ∈ Rn×k is determined in Corollary 4.18. The
associated symmetric bilinear map TXStn,k × TXStn,k 3 (V,W) 7→ ΓX(V,W) ∈ Rn×k can be obtained by
polarization. Now Proposition 6.8 yields the desired result.

Corollary 6.9 yields an expression for the covariant derivative with respect to the family of metrics
introduced in [13].

Corollary 6.10. Using the notation from Corollary 6.9 one obtains for ∇LC on
(
Stn,k, 〈·, ·〉

D,ν
(·)

)
with

D = 2Ik and −2 , ν ∈ R

∇LC
V W

∣∣∣
X

= D W̃(X)V − ν
2

(
VW> + WV>

)
X − ν

2 X
(
X>VX>W + X>WX>V

)
+ 1

2 X
(
V>W + W>V

)
. (6.22)

Proof. Plugging D = 2Ik into the formula from Corollary 6.9 yields the desired result by exploiting
π2Ik+νIk(V>W + W>V) = skew(V>W + W>V) = 0 for all V,W ∈ TXStn,k.

By setting D = α0Ik and E = (α1 − α0)Ik for α0, α1 ∈ R, Corollary 6.9 reproduces [25, Eq. (5.4)],
where this expression has been obtained independently. Formulas for ∇LC of a similar form as in
Proposition 6.8 or Corollary 6.9 have already appeared in the literature in [10, 25], see also [28, Sec. 4].
In the next remark we relate the summand ΓX(V,W) in these formulas to the Christoffel symbols of the
covariant derivative ∇ on the open U ⊆ Rn×k.

Remark 6.11. Consider the smooth map Γ : U 3 X 7→
(
(V,W) 7→ ΓX(V,W)

)
∈ S2((Rn×k)∗

)
⊗ Rn×k

from (4.25) in Remark 4.16. The Christoffel symbols of the covariant derivative∇VW = ∇̃LC
V W−ĨI(V,W)

on U with respect to (U, idU) = (U, Xi j) corresponds to the entries of the matrix ΓX(V,W) by
Proposition 6.8. More precisely, we again identify the coordinate vector field ∂

∂Xi j
with the map

U 3 X 7→ Ei j ∈ R
n×k. Then the (i, j)-entry of ΓX(V,W) ∈ Rn×k is given by a formula similar to

(6.2), namely (
ΓX(V,W)

)
i j =

n∑
a,c=1

k∑
b,d=1

Γ
(i, j)
(a,b),(c,d)VabWcd, (6.23)

where Γ
(i, j)
(a,b),(c,d) : U → R are the Christoffel symbols of ∇ with respect to the global chart (U, Xi j), see

Lemma 6.2 and Proposition 6.8. We point out that the map Γ in (4.25) corresponds to the Christoffel
symbols of the covariant derivative ∇ on U but it cannot correspond to the Christoffel symbols of ∇LC

on Stn,k due to dim(Stn,k) < nk = dim(U). Nevertheless, if ∇ is applied to vector fields which are
tangent to Stn,k evaluated at points X ∈ Stn,k, it yields the same result as ∇LC by Proposition 6.8.
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A similar expression for “Christoffel symbols” has already appeared in [10] for the so-called canoni-
cal metric as well as for the Euclidean metric, however, without relating them to the Christoffel symbols
of the covariant derivative ∇ on U. Indeed, by exploiting Corollary 6.9, for D = Ik and ν = 0 we obtain

ΓX(V,W) = 1
2 X(V>W + W>V)

reproducing Γe in [10, Sec. 2.2.3]. Analogously, setting D = Ik and ν = −1
2 in Corollary 6.9 yields

ΓX(V,W) = 1
2

(
VW> + WV>

)
X + 1

2 XV>(In − XX>)W + 1
2 XW>(In − XX>)V

for X ∈ Stn,k and V,W ∈ TXStn,k. This expression coincides with [10, Eq. (2.49)].

7. Conclusions

We investigated a multi-parameter family of metrics on an open U ⊆ Rn×k such that Stn,k ⊆ U
becomes a pseudo-Riemannian submanifold. The corresponding geodesic equation for Stn,k as explicit
matrix-valued second order ODE was derived by computing the metric spray on TStn,k. In principle,
this approach to determine the geodesic equation is not limited to Stn,k. It seems to be applicable to a
pseudo-Riemannian submanifold of an open subset of a vector space as soon as the metric spray on the
open subset and the tangent map of the orthogonal projection are known. Beside the geodesic equa-
tion, several other quantities related to the geometry of the pseudo-Riemannian submanifold Stn,k ⊆ U
were determined in terms of explicit matrix-type formulas. In particular, the expressions for pseudo-
Riemannian gradients and pseudo-Riemannian Hessians could pave the way for designing new opti-
mization methods on Stn,k. Moreover, we reproduced several well-known results from the literature
putting them into a new perspective.
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