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metric spray, the geodesic equation as an explicit second order matrix valued ODE is obtained. In addi-
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proofs are included.
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1. Introduction

Numerical computations on the real (compact) Stiefel manifold viewed as the embedded submani-
fold St,; = {X € R™ | XTX = I} of R™* arise in many branches of applied mathematics like numeri-
cal linear algebra and, moreover, in the engineering context, as well. Beside interpolation problems [1],
we mention the following examples which are closely linked to optimization. For instance, the sym-
metric eigenvalue problem can be formulated as an optimization problem on the Stiefel manifold [2].
Moreover, one encounters optimization problems on St,; in connection with machine learning [3],
multivariate data analysis [4] and computer vision [5, 6].

These problems can be tackled by Riemannian optimization methods, see e.g. [2, 7, 8, 9]. An essen-
tial part of their design is the choice of an appropriated Riemannian metric [7, Chap. 1]. The Euclidean
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metric, see e.g. [2], and the so-called canonical metric, see e.g. [10], are well-known, common choices
for the Stiefel manifold. For these two metrics, explicit formulas for Riemannian gradients and Rie-
mannian Hessians of smooth functions are known. Such formulas are desirable for the application of
several Riemannian optimization methods. However, there is no reason to restrict to one of these two
metrics. In principle, the performance of a Riemannian optimization method could be improved by
choosing an alternative metric adapted to the particular function under consideration. For example,
the dependence of the speed of convergence of a Riemannian optimization method on the Riemannian
metric is investigated in [11] on “Riemannian preconditioning”. Moreover, a family of metrics on the
generalized Stiefel manifold is introduced in [11] which differs from the family of metrics on St,
discussed here.

In this paper, we investigate a 2k-parameter family of pseudo-Riemannian metrics on St,; from an
extrinsic point of view. This family does not coincide with the family of metrics considered in [12].
Nevertheless, it contains the Euclidean metric and the so-called canonical metric. In addition, the
whole one-parameter family which has been recently introduced in [13] is included. An emphasize is
put on deriving explicit formulas for gradients and Hessians suitable for applying them in connection
with Riemannian optimization methods. In particular, specific results of the conference paper [14] are
reproduced as special cases.

Next we give an overview of this text which is kept as self-contained as possible. We start with
endowing R™* with a family of covariant 2-tensors depending on 2k parameters, which are invariant
under the O(n)-left action on R”* by matrix multiplication from the left. For suitable choices of these
parameters, the corresponding 2-tensor induces a pseudo-Riemannian metric on an open subset U of
R™* such that St,x € U becomes a pseudo-Riemannian submanifold of U. Hence it makes sense
to consider the normal bundle of St,; and the orthogonal projections onto the tangent spaces of St,
which can be described by explicit formulas.

In order to put this extrinsic approach into context to existing works on families of metrics on the
Stiefel manifold we also consider St,, equipped with our family, as a pseudo-Riemannian reductive
homogeneous S O(n)-space. This point of view shows that, for the Riemannian case, the family of met-
rics which is discussed in this text, is partially contained in the family considered in the work [15] on
Einstein metrics. Nevertheless, at least to our best knowledge, the family of metrics on St,,; considered
in this paper has never been treated before from an extrinsic point of view.

After this short detour, we come back to the extrinsic approach. We derive an explicit expression for
the spray S : TSt — T(T'St, ) associated with the metric. To this end, we exploit a well-known fact,
see e.g. [16, Sec. 7.5] for the Riemannian case. The metric spray of a pseudo-Riemannian manifold
coincides with the Lagrangian vector field on its tangent bundle associated with the kinetic energy
defined by means of the pseudo-Riemannian metric. This allows for computing the metric spray on the
tangent bundle TU, where U C R™* is the open set of which St,,; is a pseudo-Riemannian submanifold.
Eventually, by using a result from [16, Sec. 8.4] on constrained Lagrangian systems, combined with
the explicit expression for the orthogonal projections, the metric spray on 7'St,; is computed. As
a by-product, the geodesic equation is obtained as an explicit second order matrix valued ordinary
differential equation (ODE).

Next we derive expressions for pseudo-Riemannian gradients and pseudo-Riemannian Hessians
of smooth functions on St,; involving only “ordinary” matrix operations. Using the formula for the
orthogonal projection onto tangent spaces, we derive an explicit formula for pseudo-Riemannian gradi-
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ents. Moreover, since we have an expression for the geodesic equation as explicit second order matrix
valued ODE, we obtain an explicit formula for pseudo-Riemannian Hessians, too. The expression
for the pseudo-Riemannian gradient is valid for all metrics in the 2k-parameter family, while, for the
pseudo-Riemannian Hessian, we restrict ourself to a subfamily depending on (k + 1)-parameters in
order to obtain formulas which are not too complicated. This (k + 1)-parameter subfamily still contains
the Euclidean metric and the canonical metric as well as the one-parameter family from [13].

Finally, a formula for the second fundamental form of St, ; considered as pseudo-Riemannian sub-
manifold of an open U C R™* is derived. We give a concrete expression for the second fundamental
form with respect to the metrics in the (k + 1)-parameter subfamily. By means of the Gaul} formula, an
explicit matrix-type formula for the Levi-Civita covariant derivative is obtained.

2. Terminology and notations

Throughout this text, except for Section 3.4, we view the real (compact) Stiefel manifold St, ; as an
embedded submanifold of the real (n x k)-matrices R™* which is given by

Sty ={XeR™|X'X =L} CR™, 1<k<n 2.1)

We point out that St, is a proper subset of R™* although the inclusion is denoted by St,; € R™*.
In the sequel, we often denote proper inclusions by “C”. The symbol “C” is only used if we want to
emphasize that an inclusion is not an equality. The tangent bundle of St is denoted by T'St, , which is
considered as a submanifold of TR™* = R x Rk More generally, for a manifold M, we denote by
TM and T*M its tangent and cotangent bundle, respectively. In the sequel, if not indicated other-wise,
we identify R with its dual space (R*)* via the linear isomorphism

R™ — R™%Y, Vs taw(VT() = (W t(VTW)) (2.2)

induced by the Frobenius scalar product. The following characterization of the tangent space of St,
at X € St,; considered as subspace of R™* is used frequently

TxSt,;x ={V e R™ | X7V = -VTX} c R™, (2.3)

We write
O(n) = St,,, = {R e R™" | R'R=RR" =1,} 2.4)

for the orthogonal group and
SO(n)={ReR" |R"R=RR" =1, and det(R) = 1} (2.5)
for the special orthogonal group. Their Lie algebras coincide and are denoted by
so(n) = {£ e R™" €7 = ¢} (2.6)

Moreover, we write
skew: R™" — so(n) CR™", A 3(A-AT) (2.7)
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for the projection onto so(n) whose kernel is given by the set of symmetric matrices R{71. The O(n)-left
action on R"™* by matrix multiplication from the left is denoted by

¥: O(n) x R"* > R™ (R, X) — RX. (2.8)
By restricting the second argument of ¥ one obtains the O(n)-action
O(n) X Styx — Styx, (R, X)— RX (2.9)

on St,; from the left which we denote by ', as well. It is well-known that this O(n)-action on St ;
is transitive. For fixed R € O(n) we denote the diffeomorphisms induced by the actions from (2.8)
and (2.9)

R™ 35X+ RXeR™ and St > X +— RX € St,; (2.10)

both by Wg.
If U € R™* is some subset, we write

U — Rk (2.11)

for the canonical inclusion of U into R™*. Moreover, the canonical inclusion of St,x into R™* is often
denoted by
t: Sty — Rk (2.12)

for short.

Nextletpr: FF — M be a vector bundle over a manifold M with dual bundle F*. The smooth sections
of F are denoted by I'*(F). Moreover, we denote by F®’, S‘(F) and A‘(F) the ¢-th tensor power, the ¢-
th symmetrized tensor power and the ¢-th antisymmetrized tensor power of F, respectively. In addition,
we write End(F) = F* ® F for the endormorphism bundle of F'. The vertical bundle of F' is denoted by
Ver(F)CTF.

Let f: M — N be a smooth map between manifolds and let @ € I'*((T*N)®’) be a covariant tensor
field on N. The pullback of @ by f is denoted by f*a. If @ is a differential form, i.e. @ € I*(AYT*M)),
the exterior derivative of « is denoted by d @. The tangent map of f is denoted by Tf: TM — TN.
If f is a map between (open subsets of) finite dimensional R-vector spaces, we write D f(X)V for the
derivative of f at X evaluated at V. Sometimes, the tangent map of a smooth map f between arbitrary
manifolds at the point X evaluated at a tangent vector V is denoted by D f(X)V, as well.

Next let M C R™* be a submanifold. A vector field V: M — TM C R™* x R"™* is often implicitly
identified with the map M — R"™* defined by its second component which we denote by V, as well, i.e.
the “foot point” X € M is suppressed in our notation. If § € I'°(T(TM)) is a vector field on TM, we
viewitasamapS: TM — T(TM) C (R”X/‘)4 usually not suppressing the “foot point” (X, V) € TM.

For a smooth function F: R™* — R we write VF(X) for the gradient of F at X € R with respect
to the Frobenius scalar product, i.e. the unique matrix VF(X) € R™* with

dF| (V) = tr (VF(X)"V) (2.13)

for all V € R™*. Furthermore E; i € R™* denotes the matrix whose entries fulfill (E; e = 0i50 ¢ for all
fefl,....,nfand € € {1, ..., k} with 6;; and 6, being Kronecker deltas.

Finally, following the convention in [17, Chap. 2], a scalar product is a non-degenerated symmetric
bilinear form. Moreover, an inner product is a positive definite symmetric bilinear form.

Journal of Geometric Mechanics Volume 15, Issue 1, 147-187



151

3. A family of metrics on the stiefel manifold

We start with investigating a 2k-parameter family of symmetric covariant 2- tensors on R, For
certain choices of these parameters, it defines a pseudo-Riemannian metric on an open subset U C R
such that St,; € U becomes a pseudo-Riemannian submanifold of U.

3.1. A symmetric 2-Tensor on R™* and its pull-back to St,

We introduce a 2k-parameter family of symmetric covariant 2-tensors on R,

Lemma 3.1. Let D = diag(D,, ..., Dy) € R** and E = diag(E,, ..., Ex) € RP* be both diagonal.
Then the point-wise definition

(V, WY2F =t (VITWD) + tr (VT XX WE) (3.1)

with X € R™* and V, W € TxR"™* = R"™* yields a smooth covariant 2-tensor (-, ‘)(L,))’E € I°(S2(T"R™*)
which is invariant under the O(n)-action Y defined in (2.8).

Proof. Obviously, (3.1) defines a smooth covariant 2-tensor. Let R € O(n). Then W(-, ~)(L?)’E = (-, -)f)’E

holds due to

(DYRX)V,DYr(X)W)giy, = (RV.RW )y = (V. W)y"

for X € R™* and V, W € TxR™* = R"™* showing the P-invariance of (-, -)gE )

Remark 3.2. Observe that the diagonal entry E; € R of the diagonal matrix E = diag(Ey, ..., Ex) €
R** shall not be confused with the matrix E; € R introduced at the end of Section 2. In the sequel,
it should be clear by the context how the symbol E;; has to be understood.

Remark 3.3. Let E = 0. Then (-, -)(;* € I*(S*(T*R™*)) becomes independent of X € R"™*. Hence we
may identify (-, ->€;0 with the symmetric bilinear form
(PR X R SR, (VW) o (V,W)P = a(VTWD). (3.2)

D

If we want to emphasize that (-, -)” is a symmetric bilinear form on R"™*, we denote it by (-, V-

Remark 3.4. The pull-back t*(-, )" € T(S*(T*St,.)) of (-, )" with ¢: St,, — R simplifies for
the following values of k:

1. For k = n one has St,,, = O(n). Thus for X € O(n) and V, W € TxR™* = R™* one obtains
(V,W)pt =t (VIW(D + E)) = (V, W)?*F (3.3)

due to XTX = XX = I,,ie. *(,)F = ()P holds.
2. Fork = 1 one has St,; = S"! CR". Using X"V =0forall X € S" ! and V € TxS"! yields

(V,WY2F = (V, WP, (3.4)
ie. ¢, )0 = ()P holds.
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Remark 3.5. The pull-back ¢*(-, -)f)’E € I'™(S*(T*St,)) yields well-known metrics on St for certain
choices of D and E:

1. For D = I} and E = 0 one obtains the Euclidean metric, see e.g. [10], [18, Sec. 23.5] or [2]

2. Setting D = [ and E = —%Ik yields the canonical metric, see e.g. [10] or [18, Sec. 23.5]

3. For D = 2I, and E = vI;, withv = —2;7*11 and @« € R\ {—1} the metric (-, ->8’E reproduces a
one-parameter family which has been introduced in [13], see in particular [13, Eq. (55)].

In order to investigate (-, -)f)’E € I'™(S%(T*R™*)) and its pull-back to St,,; we first list some properties
of (-, -)".

Lemma 3.6. Let D = diag(D,, ..., Dy) € RP* be diagonal. The following assertions are fulfilled:

1. The symmetric bilinear form {-,-YP: R?* x R™* — R is a scalar product iff D is invertible.
2. The bilinear form (-, -Y? : R™*xR"™* — R is an inner product iff D;; > 0 holds foralli € {1, ..., k}.
3. Assume that D is invertible. Then (-,-)P: RP* x R®** — R induces a scalar product on so(k) iff

D; + Djj #0 (35)

holds for all i, j € {1,...,k}. This condition is always satisfied for k = 1.
4. Letk > 2. Then (-, -)DLD(k)XSD(k): so(k) X so(k) — R defines an inner product on so(n) iff

D; + Djj >0 (3.6)
holds for all 1 <i < j < k. For k =1, this bilinear form defines always an inner product.

Proof. Let E;; € R™* denote the matrix whose entries fulfill (E; Ve = 0if0je. Clearly, the set
B={E;|ie{l,....,n}and je(l,... k}}
defines a basis of R™. Thus it suffices to show that for all E; ; € B the associated linear forms
R™ SR, Vi (E;, V)’ (3.7)
are non-zero iff D is invertible. We have
(E;j, V)P =w(E}VD) = V;;D; (3.8)

with V = (V;)) € R™*_ Equation (3.8) implies that D is invertible iff the linear forms in (3.7) are
non-vanishing for all i € {1,...,n} and j € {1, ..., k} showing Claim 1.

Next we prove Claim 2. Let 0 # V = (V})) € R™k_ Then (V,V)? > 0 holds iff D; > 0 for
ie{l,..., k}dueto

k n
(V,V)? = r (VTVD) = Z Z V2D,
=1 j=1
We now prove Claim 3. For k = 1 the assertion is trivial due to dim(so(1)) = 0. For k > 2 the set
{E;j—E;|1<i< j<k}isabasis of so(k). Thus (-, Y induces a scalar product on so(k) iff the linear
forms
sok) > R, A (E;—Ej, AP

jis
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are non-vanishing for all 1 <7 < j < k. Writing A = (A;;) = (-A};) € so(k) we compute

(Ejj — Eji,A>D = <EijaA>D - <EjiaA>D =A;jDjj — A;D; = A;jj(Dj; + D;)

showing that (-, -) defines a scalar product on so(k) iff
D,','+Djj¢0, l,]E{l,,k}

holds. Here we exploited that D;; + D;; # 0 is automatically fulfilled because D is invertible.
It remains to prove Claim 4. The case k = 1 is trivial due to so(1) = {0}. Thus assume k > 2. Let
A = (A;)) € so(k). Exploiting A;; = —Aj; we calculate

k
(A,A)’ = 1tr (ATAD) + L tr (ATAD) = § Z A}(Dji + Dy)). (3.9)

i.j=1

Using A; = 0 we conclude that (A, A)? > 0 holds for all 0 # A € so(k) iff D; + D ;i > 01s fulfilled for
all1 <i< j<k.

The next lemma shows that (-, -)é?)’E induces a pseudo-Riemannian metric on the Stiefel manifold for
certain choices of D and E.

Lemma 3.7. Let D = diag(D;;....,Dy) € R** and E = diag(E,,, ..., Ey) € RP* be both diagonal
and let X € St, . Then the following assertions are fulfilled:

1. Let 1 < k < n. The bilinear form
Gyt TR X TyR™ = R R - R (3.10)

is a scalar product iff D and D + E are both invertible. For k = n the bilinear form in (3.10)
defines a scalar product iff D + E is invertible.

2. Assume that (3.10) defines a scalar product. Then the pull-back ¢*(:, -)f )’E to St, ;. defines a pseudo-
Riemannian metric on St,y, i.e.

(s YF TSty X xSty — R (3.11)
is a scalar product on TxSt, , iff the condition
D”+E”+DJJ+EJJ¢0, l,]E{l,,k} (312)

holds.
3. Assume that (3.10) defines a scalar product. For2 < k < n — 1 the symmetric covariant 2-tensor
(e, ->€)’E € I'™(S*(T*St,)) is a Riemannian metric on St,, i.e.

(s Y2E TxStg X TxStyx — R (3.13)
is an inner product on TxSt,, iff the conditions D;; > 0 for all i € {1,...,k} and
Dii+Eii+Djj+Ejj>O’ 1Sl<]§k (3.14)

are fulfilled. For k = 1 one obtains a Riemannian metric iff Dy > 0 holds. For k = n the tensor
QR ->€)’E defines a Riemannian metric iff D;; + E;; + D;; + E;; > 0 holds forall 1 <i < j<n.
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Proof. Since the O(n)-left action ¥ on R™* defined in (2.8) is isometric with respect to (-, -)f_))’E by
Lemma 3.1 and, moreover, ¥ restricts to a transitive action on St, it suffices to prove the claims for a
single point X, € St .

We first consider the case k = n. Then (-, 2" = (-, )?*F holds for all X € St,, = O(n) by
Remark 3.4, Claim 1. Hence (-, -)?’E is non-degenerated iff D + E is invertible according to Lemma 3.6,
Claim 1. Next we consider the case 1 < k < n. We choose X, = I,,x, where

Ly = [8‘] € Sty z,

and write
v=[y]erR™ and w=[}]|er™

with V;, W; € R®* and V,, W, € R®0*k_ By this notation and identifying TxR™* = R™* we calculate

vowpt =w([u] [ o)+ (][4 8][%E)
= tr (V] Wy(D + E)) + tr (V] W»D).

(3.15)

By (3.15) and Lemma 3.6, Claim 1, the bilinear form (-, ~)2 kE defines a scalar product on TyR™k iff D
and D + E are both invertible.

Next we assume that D and D + E are choosen such that (-, -)?’E defines a scalar product on TxR™*
for each X € St,,x. We now prove Claim 2 for 1 < k < n — 1. To this end, it is sufficient to show that

o0 T Stag X T, Styx — R (3.16)
is a scalar product iff (3.12) holds. The tangent space T, St,x is given by
T, Stos = {[ V]| V1 € 5000 and v, € RO} € 7 R = R, (3.17)
see e.g. [10, Sec. 2.2.1]. Thus we may write V, W € TSt as
v=|1]er™ and w=|}|er™
with V;, W, € so(k) and V,, W, € R"0*k We now obtain
CVWE = w (VIW(D + E)) + tr (V] W,D) (3.18)
analogously to (3.15). Clearly, Equation (3.18) defines a scalar product on 77, St,  iff
so(k) x so(k) = R, (Vi,W)) > tr (V] W(D + E))
yields a scalar product on so(k) and
RO RO S R, (Va, W) > tr(V] WaD)

defines a scalar product on R®~®*k By applying Lemma 3.6, Claim 3 we obtain the desired result.
Next we consider the case k = n. By exploiting the O(n)-invariance of (-, -)(L?)’E and T, St,,, = so(n) as
well as (-, )" = (-, -)P*F for k = n, Claim 2 follows by Lemma 3.6, Claim 3.
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It remains to prove Claim 3. We first consider the case 2 < k < n — 1. Since the bilinear form on
T, St induced by ¢, -)f;E is given by (3.18), the desired result is a consequence of Lemma 3.6, Claim

nk
2 and Lemma 3.6, Claim 4. For k£ = 1, we observe that ¢*(, -)f )E is independent of E due to X'V =0
for all X € St,; and V € TxSt,;, see also Remark 3.4, Claim 2. Hence (3.18) implies that (-, ‘>€)’E is
positive definite iff

RO RO R (Vy, W) > tr(V] WoD)

is positive definite. The desired result follows by Lemma 3.6, Claim 2. For k = n, the assertion holds
due to (-, Y0¥ = (-, )P*E for all X € St,,, = O(n) by Lemma 3.6, Claim 3.

The next lemma generalizing [14, Lem. 2] shows that there is an open neigbourhood U € R™* of
St,« such that St,;, € (U, 0, )?)E) is a pseudo-Riemannian submanifold. This fact is crucial for the
following discussion.

Lemma 3.8. Let D, E € RP* be both diagonal such that for each X € Stk
Gyl TR X TyR™ - R (3.19)

defines a scalar product on TxR™* = R"™* which induces a scalar product on TxSt,x € TxR™. Then
there exists an open neighbourhood U € R™* of St,; such that ¢}, ->€)’E € I'°(S*(T*U)) is a pseudo-
Riemannian metric on U and (St 4, ¢*(-, -)f )’E ) is a pseudo-Riemannian submanifold of (U, 1}, )?)E)

Proof. We identify (-,-)(;" € T*°(S*(T"R™%)) with the continuous map
o R — SH®™), X ()" = (VW) = (VWD)

The bilinear form ¢(X) = (-, ~>§’E € S2((R™*)") is a scalar product for all X € St,x by assumpt~ion.
Hence, by the continuity of ¢, there is an on open neighbourhood Uy of X in R™* such that ¢(X) €
S2((R™*)*) is non-degnerated for all X € Uy. We set

U= U Uy.

XeSt, x

Then U € R™* is open as a union of open sets and fulfills St,; € U by definition. Moreover, go()?) 1S
non-dengenerated for all X € U by construction. Hence ¢, -)f_))’E defines a pseudo-Riemannian metric

on U such that St € (U, -)f)’E ) is a pseudo-Riemannian submanifold.

Obviously, the inclusion St,; € U from Lemma 3.8 is always proper since St, is closed in R
while U is open in R,

Notation 3.9. From now on, unless indicated otherwise, pull-backs of (-, -)g’E to submanifolds of R
are suppressed in the notation.
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3.2. Number of parameters

In the case k = n, the 2k-parameter family of covariant 2-tensors (-, ->5)’E is actually a k-parameter
family by Remark 3.4, Claim 1. Indeed, (-, -)8’E depends only on D + E. Hence one may ask if there
exits always such an over-parameterization.

Lemma 3.10. Let D = diag(Dy, ..., D) € R¥* be some diagonal matrix. Then the following asser-
tions are fulfilled:

1. The bilinear form {-,-)P : R™* x R™* — R vanishes identically iff D = 0 holds.

2. The restriction {-, )P woloeotty | 5000 X 50(k) = R of (., AP RPKk Rk R fulfills the following
assertions:
(a) For k = 1 one has (-, ")’
(b) For k =2 one has (-, ->D|
(c) For k > 3 one has (-, ->D|

=0forallD e R™! =R,
0 l:ﬁDll + Dy = 0 holds.
0iff D = 0 holds.

s0(k)xso(k)
so(k)xsok)
so(k)xso(k) =

Proof. Let Ej; € R™* the matrix whose entries fulfill (E; )fe = 0ir0j¢. Then
<E,’j,V>D: V,'J'Djj, ie{l,..., n}, je{l,...,k}, (3.20)

where V = (V;;) € R™. Since (-, )P = 0 holds iff the linear forms (E;;, -)”: R”* — R vanishes for all
1 <i<nand1 < j <k, the first claim follows by (3.20).

Next, we consider (-, -)”| (oot - S0(K) X s0(k) — R. Clearly, it vanishes for k = 1 forall D € RIX!
due to so(1) = {0}. We now assume k > 2. Then (-, ) solxsoll) - s0(k) X so(k) — R vanishes iff the

linear forms

(Eij— Eji, )P so(k) > R (3.21)
vanish for all 1 <i < j < k. Writing A = (A;;) = (-A};) € so(k) we obtain
(Eij — Eji’A>D = AijDii — A;iDj; = Aij(Dji + Djj).

Thus the linear forms (3.21) are zero iff D; + D;; = 0 holds for all 1 < i < j < k. For k = 2 this is
equivalent to Dy; + Dy, = 0. It remains to consider the case k > 3. The conditions D;; + D;; = 0 for all
1 <i < j < k include the conditions

DW+D;=0 < D =-D; forall 2<i<k (322)

and
D(k—l)(k—l) + Dy = 0. (323)

In particular Dy, = —Dy_; and D;; = —Dy, holds. Plugging these identities into (3.23) yields
-D—-Dy=-2D;; =0 < D =0.

Hence (3.22) implies D;; = 0 for all 2 < i < k. Therefore (-, -)? = 01iff D = 0O as desired.

so(k)xso(k)

The next lemma justifies calling (-, -)f)’E a 2k-parameter family provided that 3 < k < n — 1 holds.
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Lemma 3.11. Let
Rgi;l; = {diag(Dll, R ’Dkk) | Diy,...,Dy € R} - Rka

denote the k-dimensional real vector space of (k X k)-diagonal matrices. Moreover, define

W Ry X RES — T(SX(T*St,0),  (D,E) = (0" (3.24)

diag diag
Then  is a linear map which fulfills the following assertions depending on k and n:

1. Fork =1 = n, one has dim (im(y)) = 0 and ker(y) = R X R.
2. Fork =1 andn > 1 one has dim (im(¥)) = 1 and ker(¢) = {(0,E) | E€ R} CR X R.
3. Fork =2 = none has dim (im(¥)) = 1 and

ker(y) = {((D11, D22), (E11,—Dy1 — Dy — Eny)) | D11, Do, Eyp € R} C Rﬁﬁé X R(Zﬁfé-

4. For2 < k < n one has dim (im()) = 2k and ker(y) = {0} € R&* x Rk

diag diag®
5. Fork =n > 2 one has dim (im(y)) = k and ker(¥) = {(D,-D) | D € Rﬁ;"g} C Rﬁ;’fg X R’d‘;’fg.

Proof. Clearly, the map ¢ is linear. Next we define the linear map

v Ry xRy S(T7 St (D.E) o (o))

diag diag

Obviously, for each (D, E) € RE% x RE% one has (y(D, E)) i) = ()" = ¢(D, E). Since (-, )" is
invariant under the transitive O(n)-action ¥ on St,,; according to Lemma 3.1, this yields

(D,E) € ker(y) & (D, E) € ker(y). (3.25)
Moreover, the equivalence
(D,E) eker(y) < ((V, W>2f =0 forall VW eT,, St,) (3.26)
is clearly fulfilled. We again write
Vv=|W|eT,Stu and W=[}|eT Sty

with V, W, € so(k) and V,, W, € RO-0xk, By this notation and the description of ker(a) from (3.26),
we study each case separately:

1. Obviously, for k = 1 = n the claim ker(¥) = R x R is correct due to T,,St;; = {0} implying
dim (SZ(TI*1 St11)) = 0.
2. Fork =1and n > 1 we have

(D, E))(V, W) = tr (V] Wy(D+E))+tr (V; WaD) = (V;, W;)*| (Vo Wa)2i . (3.27)

so(l)xso(1)+

Clearly, Equation (3.27) vanishes iff D = 0 holds independent of the value of D + E by
Lemma 3.10. Hence the kernel of ¢ is given by ker(y) = {(0,E) | E € R}
3. For k = 2 = n we have
WD, E)(V, W) = (VW)

s0(2)xs0(2) "
Lemma 3.10 yields J(D, E)=0iff (D+ E)|; + (D + E),, = 0is fulfilled. Therefore we obtain

ker(¥) = {(D11, D»), (E11,—Dyy — Dy — E11)) | D11, Dy, Eyy € R},

Journal of Geometric Mechanics Volume 15, Issue 1, 147-187



158

4. We now consider the case 3 < k < n — 1. Then one has

(D, E))(V, W) = tr (V] Wi(D + E)) + tr (V] W,D) = (V;, W)P**

D
so(k)xso(k)+ <V2, W2>R(n—k)><k'

By Lemma 3.10, we have J(D, E)=0iff D =0and D + E = 0 holds. Therefore the kernel of
is given by ker(y) = {(D, E) € Rﬁfﬁ’; X Rﬁé’; | D=0=E}=1{0}.
5. It remains to consider the case k = n > 3. We obtain

WD, E))(V,W) = tr (VTW(D + E)) = (V, W)**F

so(k)xso(k)”

forall V, W € T; St,,, = so(n). Thus J(D, E) = 0 holds iff D + E = 0 is fulfilled by Lemma 3.10.

Hence the kernel of i is given by ker(y) = {(D,-D) | D € R’é;"g ).

The equality ker(y) = ker(@) is satisfied according to (3.25). Moreover, we have

dim (im(y)) = dim (RE* x RP*) — dim (ker(y)) = 2k — dim (ker()))

diag diag
as desired.

Remark 3.12. Lemma 3.7, Claim 3 shows that the set of all parameters

{(D,E) € R’(‘ﬁxakg X Rﬁfa’; | (-, ~)(L?)’E defines a pseudo-Riemannian metric on St,,;}

contains the non-empty subset {(D, E) € Rﬁfﬂ’; X Rﬁ;’; | D;; >0and E;; > O forall i € {1,...,k}} which

is open in Rigs x R . Moreover, the linear map y: Rgt x R — T(S*(T*St,1)) is injective for
2 < k < n according to Lemma 3.11. This point of view justifies calling (-, -)f)’E a 2k-parameter family
at least for 2 < k < n. For other choices of k and n one has rather a (dim(im(y)))-parameter family of

metrics. However, ignoring this over parameterization, we call them 2k-parameter family, nevertheless.

3.3. Orthogonal projections onto tangent spaces

The Stiefel manifold St,; endowed with (., -%E € I'™(S*(T*St,;)) can be viewed as a pseudo-

Riemannian submanifold of (U, (-, -)f)’E) with some suitable open U € R™* by Lemma 3.8. Conse-
quently, for any given point X € St,;, we may consider the orthogonal projection

Px: TxR™* — TySt,, € R,

where TxR™* = R"™* is endowed with the scalar product (-, -)?’E . Moreover, it makes sense to consider
the normal space NxSt,; = (TxSt,;)" € R™ with respect to (-, )2 : TyR™* x TyR™* — R.

Notation 3.13. From now on, unless indicated otherwise, we always assume that D, E € R are both
diagonal matrices such that (-, ->)I?’E defines a scalar product on R™* for each X € St,; and ¢, -)f)’E
induces a pseudo-Riemannian metric on St, . In particular, we may assume that D and D + E are both
invertible. In view of Lemma 3.7, Claim 1 this assumption is of no restriction. For the case k = n, we
replace D by D + E and E by 0, if necessary.

Lemma 3.14. Let D = diag(D,, ..., Dy) € RP* be invertible such that D;; + D;; # 0 holds for all
i,j€{l,...,k}. Then the following assertions are fulfilled:
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1. The orthogonal complement of so(k) in RP* with respect to the scalar product {-,-)? is given by

so(k)*? = {A e R®"| AD = (AD)"} = {AD™" | A € R} € R™. (3.28)
Moreover, so(k) @ so(k)*> = R¥* holds.
2. The orthogonal projection
P R — so(k) SR, A 7P(A) (3.29)
onto so(k) with respect {-,-) is entry-wise given by
n°(A)yj = prip-(AD = DAT); = 5-15-(AiDy; = D), i j € {L,....k} (3.30)

Proof. We first determine so(k)*?. To this end, we calculate

so(k)*> = {A e R¥* | (A, BY? = 0 for all B € so(n)}
= {A e R"* | tr (AD)"B) = 0 for all B € so(n)}
={A e R®| AD = (AD)" € RF* is symmetric }.

sym
Let A € Rf;[’fl Then (AD™)D = A = AT = D(AD™")T showing {AD™' | A € R’S‘yxr’fl} C so(k)*?. The
equality so(k)*> = {AD™' | A € R{} follows by counting dimensions. By Lemma 3.6, Claim 3 the
assumptions on D ensure that (-, -)” induces a scalar product on so(k). Hence so(k) @ so(k)*> = RP*
holds, see e.g. [17, Chap. 2, Lem. 23].

It remains to prove Claim 2. To this end, we show im(r”) = so(k) and ker(x”) = so(k)*? as well as

P |So(k) = idso). We first prove im(7”) C so(n). Let A = (A;;) € R¥*. We compute
(TP = 7P(A); = m(AjiDii - A;iDy;) = DHJ,D ~——(A;;D;; — A;;D;;) = —n"(A);;.
fori, j € {1,...,k} showing im(7”) C so(k). Moreover, for A € so(k), i.e. A;j = —Aj;, we have

7(A);; = #D”(AUDH' — (-A;))Dy;) = DD +D A;i(Dj; + D) = Ajj.

This yields 7°(A) = A for all A € so(k), i.e. n° ol
in fact an equality. Next let A € so(k)*?. Then AD = DA™ holds according to Claim 1 implying

= idsyx). Moreover, the inclusion im(z”) C so(k) is

7P(A)ij = 5o5-(AD — DAT),; =

Dij; +D
Thus 7°|_., = 0 follows.

The formula for #” can be rewritten in terms of the so-called Hadamard or Schur product. For
matrices A, B € R¥¥, it is entry-wise defined by

(A@B)UZA,]BU, l,]E{l,,k} (331)
Remark 3.15. Let u € R®* be defined entry-wise by

_ 1
#lj - D,','+Djj’

i,je{l,... k}. (3.32)
Then the projection 7 : R™* — so(k) from Lemma 3.14 can be rewritten as

m’(A)=puoe(AD - DAT), A eRF* (3.33)
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Corollary 3.16. Let 0 # 8 € R and define D = BI,. Then, for each A € R¥* the map n° from
Lemma 3.14 simplifies to
7 (A) = (A - AT) = skew(A). (3.34)

Proof. The desired result follows by a straightforward calculation exploiting D; = B # 0 for all
iefl,... k}.

We determine the normal spaces of St, ; with respect (-, -)f)’E generalizing [19, Chap. 1, Lem. 3.15]
and [14, Lem. 3].

Lemma 3.17. The normal space NxSt,; = (TxSt, )" € TyR™* = R™* gt X € St,; with respect to
¢, -)?’E is given by
NxSt,; = {XAMD + E)' e R™* | A = AT e R&}. (3.35)

sym

Proof. Clearly, the set {(XA(D+E)™' € R** | A = AT € R} is a linear subspace of R"™* of dimension
(k* + k)/2 being the image of the injective linear map
ROk 5 Rk A XAD + E)7.

Sym

Moreover, every matrix V = XA(D + E)~' with A € R{S; is orthogonal to the tangent space TxSt, .
Indeed, we have for W € TxSt, x

(V, W)2F = tr (XA(D + E)™")"WD) + tr (XA(D + E)™") XX"WE)
=tr (AT(X™W))
=0

due to A = AT and X"W = —WTX. Therefore {XA(D + E)™! € R™ | A = AT € R

sym} c NXStn,k
follows. By counting dimensions, this inclusion is in fact an equality.

Theorem 3.18. Let X € St,;. The orthogonal projection of TxR™* = R"™* onto TxSt,; € Rk with
respect to -, ->§’E is given by
Px: R™ — TySt,, SR, Vs Py(V) =V - XXV + XaP*E(XTV). (3.36)
Proof. We first show im(Pyx) = TxSt,. Let X € St,x and V € R™*, One calculates
XT(Px(V) =X"(V=XX"V+Xa? EX V) =XV -X"V+ 1> 5XTV) = a”*EXTV).
Moreover, using im(n?*£) = so(n), we obtain
(Px(V) X =(V-XX"V+XaP EXTV)' X =V X -V X +(#PEXTV) = 2P EXTV).

Hence X" (Px(V)) = aP*E(XTV) = —(Px(V))" X follows, i.e. im(Pyx) C TxSt, as desired.
We now assume V € TxSt, ;. By using X"V = =V X and n” |So(n) = idsy(s), We calculate

Py(V)=V-XXV+ XX V)=V -XX"V+XX V)=V

proving Py = idzysy,, and implying that im(Px) C TxSt, is indeed an equality.

TXSt,,,k
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It remains to show ker(Py) = (TxSt,;)*. Let V € NxSt,,. We may write V = XA(D + E)~! with
some suitable symmetric matrix A € R’S‘;’,‘] by exploiting Lemma 3.17. Consequently, we have
Px(V) = Px(XA(D + E)™")
= XAMD +E)"' = XX"(XAD + E)™") + Xn”*E(X"XAD + E)™)
= X7P*E(A(D + E)7")
=0,
by using Lemma 3.14, Claim 1 which shows #”*E(A(D + E)™') = 0

Theorem 3.18 reproduces several results known in the literature.

Remark 3.19. Let X € St,;. We obtain the following special cases for Py: R”* — TySt,; by using
Corollary 3.16:

1. For D = I; and E = 0 we get the formula
Px(V)=V -XX"V+Xskew(X'V) = (I, - 3XX")V - 1XV'X (3.37)

that can be found for example in [2, Ex. 3.6.2] or [10, Eq. (2.4)]
2. More generally, for D = 2[; and E = vI, with v € R\ {-2} one obtains

Px(V)=V-XX"V+Xskew(X'V)=V - 1XX'V—-1XV'X (3.38)
reproducing the orthogonal projection from [14, Prop. 2].

Next we determine an orthonormal basis of (7', St,.x, (-, ~)€ )’E ) which allows for computing the sig-
nature of (-, -)é))’E, as well.
Remark 3.20. We define the subsets B;, B, € R™* such that B = B; U B, is an orthonormal basis of

(T}, Stu, €, ->2 f ). To this end, let E;; € R™* denote the matrix whose entries fulfill (E; e = 0ip0je as
usual. We set B; = () for k = 1 and define

= {_\/ll_l(Elj _Eji)|Sij =Di+E;+Djj+E;;, 1 <i<j< k}, 2<k<n. (3.39)
Moreover, we set
By={——E;lk+1<i<n 1<j<kl, 1<k<n (3.40)
VIDjjl J

and B, = 0 for k = n. A straightforward calculation shows (V, W}Z f =Q0forallV,We BwithV # W.
Moreover, for V = W € B one obtains

D.E Sij . .
<\/T(EU jl) \/C(Et/ l)>1n,k = m - il’ l<i< J =< k (341)
and " ;E>DE =Di_ 41 k+l<i<n 1<j<k (3.42)
VD Dyl e 1P sf=mi=s=k '

Hence B is in fact an orthonormal basis. Thus we may compute the signature of (-, -)f;E . The number
of negative signs associated with (-, )() , named index in [17, Chap. 2, Def. 18], is given by

=#{(i.j))|1<i<j<kands; <O} +(n—k)-#{jl1<j<kandDj <0}, (3.43)

where #S denotes the number of elements in the finite set S.
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3.4. Stiefel manifolds as reductive homogeneous spaces

Before we continue with the extrinsic approach, we briefly discuss the metric (-, ~>8’E on St,; viewed
as a pseudo-Riemannian reductive homogeneous S O(n)-space. This point of view allows for relating
¢, -)f)’E to the metrics investigated in [15]. For general properties of reductive homogeneous space we
refer to [17, Chapter 11] as well as [18, Section 23.4].

Throughout this subsection, we assume 1 < k < n — 1 and n > 3. Then the Killing form on S O(n)
given by

&m=m-2)uln), &neso(n)
is negative definite, see e.g. [18, Sec. 21.6]. In addition, St, is diffeomorphic to the reductive homo-
geneous space S O(n)/S O(n — k), where S O(n — k) is realized as a closed subgroup of S O(n) via

som—k ={|% §||Resom -k} csom

and a reductive split is given by so(n) = h & m, where
h= {[8 rf(z)z] & € so(n - k)} and  m = {[21 b ] '511 € so(k), &1 € R("_k)Xk},

see e.g. [18, Sec. 23.5]. In particular, since SO(n) X St,x > (R,X) — RX € St,; is a transitive
S O(n)-left action whose stabilizer subgroup of 7,; coincides with S O(n — k) € S O(n), the map

pr: SO(n) — St = SO(n)/SO(n—k), Rw— Rl (3.44)

is a surjective submersion which induces a S O(n)-equivariant diffeomorphism
pr: SO(n)/SO(n —k) = St,x, R-SO(n—k)— Rl,. (3.45)

Here R-SO(n — k) € SO(n)/S O(n — k) denotes the coset defined by R € S O(n). We refer to [20, Thm.
6.4] and [21, Thm. 21.18] for more details on diffeomorphisms associated with transitive actions.
In the sequel, we construct a scalar product

(-, YPE  so(n) x so(n) — R

on so(n) which induces a left-invariant metric on S O(n) such that (3.44) becomes a pseudo-Riemannian
submersion. In addition, equipping S O(n)/S O(n — k) with this submersion metric turns (3.45) into a
S O(n)-equivariant isometry to (St,z, (-, -)f?)’E ).

Throughout this section we denote by D, E € R¥* diagonal matrices such that D and D + E are both
invertible, see also Notation 3.13.

Lemma 3.21. Let E;; € R™" be the matrix whose entries fulfill (E;;) e = 6,0 jc and let F = D+E € R,

Then
skew(£11(D+E)) -1D&],

1€ D &n

A:so(n) = so(n), E=]9 B A@) = [

& & (3.46)

is linear, where &1, € s0(k), &n € so(n — k) and &, € ROk Moreover, evaluating A at the basis
{(Eij —Ej) | 1 <i< j<k}ofso(n)yields

D L(E - Eg) fl<i<j<k,
A(E;j - Ej;) ={iD;/(E;; - Ej) ifk+1<i<n, 1<j<k, (3.47)
Eij_Eji lfk+1§l<]§l’l

In particular, A: so(n) — so(n) as well as its restriction A|m: m — m are linear isomorphisms.
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Proof. Clearly, A is linear. We show (3.47) by using the definition of A in (3.46). First we consider the
case 1 <i < j<k. ThenE;; - Ej is mapped by A to

B B = [ ) ] [ Bty 1] - 5245, - )

with E;; € R®* defined by (E;), = 6;¢0c. Next assume k+ 1 <i<nand I < j < k. One obtains
A(Eij - Ej;) = 3D, {(E;j — Ej).
The equality A(E;; — E;) = E;; — E;; fork+ 1 <i < j < nis obvious.
Lemma 3.22. Define
(Y PE  so(n) x so(n) = R, (€, m) = (&) PP = (€TAM)), (3.48)

where A: so(n) — so(n) is the linear map from Lemma 3.21. Then the following assertions are fulfilled:

1. (-, Y4B js g scalar product on so(n).
2. The restriction of (-, )™ PE) to m defines a scalar product (-, -Y<*PE: m x m — R on m.
3. Writing
g=|8 Silesom) and nm=|m 7] e son) (3.49)

& & MmN

with é,m1 € so(k) and &n,1m01 € R-k)xk yields

(E P = tr (&, skew(1(D + E))) + tr (£5,721 D) + tr (€,122). (3.50)

4. (-, -yedDE) g Ad(S O(k))-invariant.

5. Declaring T,pr: T,S O(n) = Ty (SOn)/S O(n — k)) as an isometry defines a S O(n)-invariant
pseudo-Riemannian metric on S O(n)/S O(n — k) such that pr: SO(n) — SO(n)/SO(n — k) is a
pseudo-Riemannian submersion, where S O(n) is equipped with the left-invariant metric defined
by <_, .>red(D,E).

Proof. Obviously, (-, -)*-E) ig a bilinear form. Using the notation introduced in (3.49) one calculates

inD 2

= tr (&), (skew(11(D + E))) + tr (€311 D) + tr (£5,1722)
— <77’ §>red(D,E).

red(D,E) _ &n -8 ]T skew(i1(D+E)) —%Dnj,
<§’ 77) - tr([fzn &n

(3.51)

Hence (-, -)*4P-E) js symmetric. Claim 3 follows by (3.51), as well. Moreover, (-, -)¥?£) is a scalar
product since A: so(n) — so(n) is a linear isomorphism by Lemma 3.21 showing Claim 1. Claim 2
follows since A|m: m — m is an isomorphism, too.

In order to show the Ad (S O(n — k))-invariance we calculate

Ady@ =4 & S )ln o] = e ]
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for & = [21 _;2' ] € so(n) and g = [8‘ 2] € SO(n — k) C S O(n) implying

(Ad,(&), Ady (1)) “PE) = tr (¢],(skew(ip11(D + E)))) + tr (REx1) "Rz D) + tr (RERRT) RyyR™)
— <é‘:’ n>red(D,E)

as desired.

It remains to prove Claim 5. By (3.50) the vector spaces m C so(n) and ) C so(n) are orthogonal
complements with respect to (-, -)*®E Moreover, by exploiting the Ad (S O(n — k))-invariance of
(-, -yedPE) "this claim follows by [18, Prop. 23.23] which extends to the pseudo-Riemannian setting
because its proof only relies on the non-degeneracy of the metric.

After this preparation, we are in the position to show that (-, -)*®-E) has indeed the desired property.
To this end, the tangent map of (3.44) at I, € S O(n) is determined as

T, pr: so(n) = T, Styr, & El. (3.52)

Proposition 3.23. Let SO(n)/S O(n — k) be equipped with the pseudo-Riemannian metric constructed
by means of the scalar product (-, -Y**PE) . mxm — R and let St,; be endowed with the metric {-, )f)E .

1. The restriction of (3.52) to m, i.e. the linear map

Typr| :m—T; Sty, & &L (3.53)

m

is an isometry, where T, St is equipped with the scalar product (-, -)Z’kE.
2. The S O(n)-equivariant diffeomorphism (3.45) is an isometry.

Proof. We write £, € m as

e=[2 9] and =[]

with & 1,11, € so(k) as well as &,12; € R®*k and compute
D.E D.E
> _ 6 7] >
(T;, pré&, T, pr n)m,n) =(lar]. ])In’k
= tr (&],(skew(1711(D + E)))) + tr (&5,721 D)
— <€;’ n>red(D,E)’
where the last equality holds by Lemma 3.22, Claim 3. It remains to show Claim 2. Since the metric

on SO(n)/S O(n — k) induced by (-, -)*PE) and the metric (-, '>€)’E on St,; are both S O(n)-invariant,
the map pr: SO(n)/S O(n — k) — St, 1s an isometry by Claim 1 due to its S O(n)-equivariance.

Proposition 3.23 allows for relating the metric (-, -)f)’E € I'™(S*(T*St,;)) to the metrics on St,
defined in [15, Eq. (3.2)]. In order to compare these metrics we introduce some notation following [15].
We choose ki, ..., k; € N with

ki+---+ki=k and k; >2forallie{l,...,s}

and write N N _ N
D= diag(D“Ikl,...,DmIks) and E = diag(E“Ikl,...,EssIks), (354)
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where D;;, E; € R. Using the notation from [15] with p = m and 7 = 1 we rewrite (-, -)<4P-E) gg

S N

d(D.E) _ Diyi+E;;+Dyi+E;; Di+E;i+D;+Ej; Dii
(-, Y _ Z Dusbut Dby, Z DBt DUt Bii ., )y, + Z Tt O S

i=1 1<i<j<s i=1

Here (-, ")y, = (n = 2)tr ((')T('))|p..xp.. denotes the Killing form on so(n) scaled by —1 restricted to p;;.
Hence (-, -)42-E) coincides with the inner product defined in [15, Eq. (3.2)], where x; = x; and
~ 2(n-2)

Dij
2(n-2)

5[i+ai+5jj+ij_/ lf 1 < l < J < s
Xij =

ifj=s+land1 <i<s,
provided that D and E are defined as in (3.54) as well as
D;>0, ief{l,...,s} and Dy+E;+D;+E;>0, ije(l,...,s)

holds. This can be seen by observing that for £ € m = p the unique decomposition of € into sums of
&;; € p;j can be rewritten in terms of block matrices as

[ ‘fll 512 """"" fl,s ‘fl,s+lﬁ
621 §22: """" 'fZ,s §2,s+1
e=| R
é:s,l .............. 'fs,s fs,s+1
§s+1,1 """ fs+1,s—l §s+l,s 0 ]

Finally, we point out that the Einstein metrics discussed in [15, Sec. 6] yield the following equations
for D and E

E, Dii+E;i+D ;+Ej; s _ _Dj
e for 1 <i<j<s, z= )

Dfi:r for 1 <i<sy,

x===t forl<i<s y=
where x, y, z denote the parameters of the metric from [15, Eq. (6.2)]. Thus

D=2n-2zd, = D+E=2zn-2) [+ E=n-2)xI;, = E=0n-2)(x-22I
(n=2)(2z+(x—22)+2z+(x—22))
2(n-2)
by ¢, -)g’E contain only the two S O(n) X S O(k)-invariant Einstein metrics from [15], the so-called

Jensen metrics. However, they do not contain the “new” Einstein metrics from that paper.

and therefore y = = x holds for x, z € R. In particular, the metrics on St,,; defined

Remark 3.24. Although the “new” Einstein metrics form [15] are not contained in the family of
metrics on St,; defined by (-, -)f)’E , we are not able to rule out that the family (-, -)g’E includes Einstein
metrics different from the Jensen metrics. However, searching for Einstein metrics in (-, -)f)’E is out of

the scope of this text.
4. Sprays and geodesic equations

The goal of this section is to derive an explicit expression for the spray S € I'°(T(T'St,.;)) associated
with the metric (-, -)f;E. An expression for S yields an expression for the geodesic equation with respect
to (-, -)f)’E as an explicit second order ODE, as well.
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First we recall the definition of a metric spray, also known as spray associated with a metric,
from [22, Chap. 8, §4] whose existence and uniqueness is proven in [22, Chap. 8, Thm. 4.2]. For
general properties of sprays we refer to [22, Chap. 4, §3-4]. Moreover, a discussion of the relation of
sprays to torsion-free covariant derivatives can be found in [22, Chap. 8 §2].

Definition 4.1. Let (M, (-, -)) be a pseudo-Riemannian manifold. The metric spray S € I'*(T(TM)) is
the unique spray which is associated with the Levi-Civita covariant derivative defined by the pseudo-
Riemannian metric (-, -).

An expression of a metric spray in local coordinates is given in (4.2) below. Next we discuss the
relation of metric sprays to Lagrangian mechanics.
Let (M, {-,-)) be pseudo-Riemannian and let w, € T°(A2T*(T*M)) denote the canonical symplectic
form on 7*M. It is given by
Wy = — d 90

with 6y € T'™(T*(T*M)) being the canonical 1-form on T*M. We refer to [16, Sec. 6.2] for the
definition of wy and 6,. Consider the Lagrange function

L:TM -5 R, v, L) = 3(ve, v
LetFL: TM — T*M denote the fiber derivative of L defined by
(FL)(v))wy) = £ L(vy + tw)) x€M, viwieTM,

see e.g. [16, Eq. (7.2.1)]. The pullback

=0’

w, = (FL)w

is a closed 2-from on T M, the so-called Lagrangian 2-form, see [16, Sec. 7.2]. In addition, w; is
non-degenerated, i.e. symplectic, since FL: TM — T*M is a diffeomorphism due to

FL:TM - T"M, v, FL(v,) ={(v,,*) 4.1)
by [16, Eq. (7.5.3)]. Moreover, the energy
EL: ™ — R’ Vy 5 ((F L)(Vx))(vx) - L(Vx)

associated with L fulfills E; = L, see e.g. [16, Sec. 7.3]. Let Xg, € I'*(T(T'M)) denote the Lagrangian
vector field and write iXEL wy, for the insertion of Xg, into the first argument of w;, as usual. Then Xg, is
uniquely determined by

iXELa)L = dEL — L()L(XEL, V) = dEL(V) forall V e FOO(T(TM))

according to [16, Sec. 7.3]. Moreover, the Lagrangian vector field Xz, coincides with the spray
associated with the metric (:,-), see e.g. [16, Sec. 7.5]. It is exactly the so-called canonical spray
from [22, Chap. 7, §7] which coincides with the metric spray, see [22, Chap. 8, Thm. 4.2]. Finally, we
mention a local expression for sprays, see e.g. [22, Chap. 8, §4]. A metric spray S: TM — T(TM)
can be represented in a chart (7'U, (x, v)) of TM induced by a chart (U, x) of M by

S(x,v) = (x,v,v, =T (v,)). 4.2)

Journal of Geometric Mechanics Volume 15, Issue 1, 147-187



167

Here T', denotes the quadratic map defined by (I',(v, v))k = Fj.‘j(x)v"vf using Einstein summation con-
vention, where Fffj are the Christoffel symbols of the Levi-Civita covariant derivative with respect to
the chart (U, x). In order to apply these general results to our particular situation, we introduce some
notation.

Notation 4.2. Throughout this section U C R"™* denotes an open subset of R™* with the property from
Lemma 3.8. Moreover, we denote by L the Lagrange function

L:TU - R, (X,V)m LX,V) = XV, V)2E, 4.3)

where we identify TU = U x R as usual.
We use the formula for wy € I'**(A2T*(T*U)) on T*U given in the next remark.

Remark 4.3. The canonical symplectic form wy € I (A*T*(T*U)) on T*U is given by

Wo 1 (K VY. 2), (X, V, Y, 2)=tu(Y"Z)-tu(Y'2), (4.4)

for (X,V,Y,2),(X,V,Y,Z) € T(T*U) identifying T(T*U) = U x (R™)* x R x (R™*)* as well as
Rk = (R™*)* via V + tr (VT (-)). Indeed, Equation (4.4) follows by the local formula for the canonical
symplectic form wy on T*U, see e.g. [16, Sec. 6.2], applied to the gobal chart (U, idy) = (U, X;)).

4.1. Lagrangian 2-Form

We now calculate the Lagrangian 2-from w; = (F L)*wy. To this end, we first determine the fiber
derivative FL: TU — T*U and its tangent map.

Lemma 4.4. For (X, V) € TU the fiber derivative FL: TU - T*U on is given by
FL(X,V) = (X, tr (VD + XX"VE)"("))). 4.5)

Proof. Let (X,V),(X,W) € TU. We have (FL(X,V))(X,W) = (V,W)2* by the Definition of L
and (4.1). Using the definition of (-, -)f)’E and exploiting properties of the trace we obtain

(FLX, V)X, W) = (VWD) + tr(VT XX WE) = tr (VD + XX VE)"W)
as desired.
Lemma 4.5. The tangent map T (F Z): T(TU) - T(T*U) is given by
(T(FL))(X,V,Y,Z) = (FL(X,V),Y,tr (ZD + YX"VE + XY'VE + XX " ZE)"()))
for (X, V,Y,Z) € T(TU) = U x (R™*)3, where we identify T(T*U) = U x (R"*)* x R™* x (R™K)*

Proof. Let (X,V,Y,Z) € T(TU). The smooth curve y: (—€,€) 5t — (X +tY,V+1tZ)e TU, fore >0
sufficiently small, fulfills y(0) = (X, V) with ¥(0) = (Y, Z). Then

LFLOyO)|_, = (N (ZD + YXTVE + XY'VE + XX"ZE)"())).

This yields the desired result.
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Lemma 4.6. The Lagrangian 2-form w; = (F L)*wy € T®(AXT*(TU)) is given by

Wzl (X V.Y, 2),(X,V,Y,Z) = tr(Y"(ZD + YX"VE + XY'VE + XX ' ZE))
o (4.6)

—tr (?T(ZD +YX'"VE + XY'VE + XX'ZE))
with (X, V) € TU = U x R and (X, V,Y,Z),(X,V,Y,Z) € Tix, T U.
Proof. Using the formula for w, € [*(A2T*(T*U)) from Remark 4.3, a straightforward calculation
shows that w7 = (F L)*wy 1s given by (4.6). To this~ end, the formulas from Lemma 4.4 and Lemma 4.5
are plugged into the definition of the pull-back (F L)*wy.
4.2. Sprayson TU

Next the spray S e I'*(T(TU)) associated with (., ~)€ )’E is calculated exploiting S = Xg;, where

Xk, is the Lagrangian vector field. A closed form expression for §(X, V) is obtained for all (X, V) €
St,x X R C TU.

Lemma 4.7. For (X,V) € TU and (X, V,Y,Z) € Tixy,TU one has

dEf| (X, VY, Z) = e(V'ZD) + t(Z" XX VE) + tr(V'YX " VE). 4.7)

X.V)
Proof. Let (X,V),(Y,Z) € TU. We calculate
LE[X + 1Y,V +12)|_, = }((Z"VD +V"ZD)
+tr(Z'XX'VE+V'YX'VE+V'XY'VE + VTXXTZE)).
Using properties of the trace yields the desired result.

Next we consider a linear matrix equation of a certain form. We need to solve this equation for
computing the metric spray on 7'U, see Proposition 4.9. Moreover, one encounters this equation in the
proof of Proposition 5.2 on pseudo-Riemannian gradients below.

Lemma 4.8. Let D, E € Rﬁ;;kg such that D and D + E are both invertible and let W € R™*. Moreover;
let U € R™* be open with the property from Lemma 3.8. Then for X € U the linear equation

TD+XX'TE=W (4.8)
has a unique solution in terms of T. Moreover, for X € St,, it is explicitly given by
I'=W-XX"WD+E)'E)D™". (4.9)

Proof. For each X € U the linear map ¢: R I'>TID+XXTE € R™ ig an isomorphism since
the bilinear form
RPXR™ SR, (Y,2) - w(VI (W) = (V, W)™

is non-degenerated by assumption. Hence (4.8) admits a unique solution. Now assume X € St, ;. We
briefly explain how (4.9) can be derived. By exploiting XX = I;, Equation (4.8) implies

XW=XTD+XTE=XT(D+E) < XT=X"WD+E)".
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Plugging X'T = X" W(D + E)" into (4.8) yields
ID+XX"WD+EyYWE=W & T=(W-XX"WD+E)"HE)D".
A straightforward calculation shows that T is indeed a solution of 4.8).
Proposition 4.9. The spray S € I'™(T(T U)) associated with the metric {-, ->8’E is given by
S(X, V)= (X, V,V,-T) = (X. V, V,-Tx(V, V)) (4.10)

forall (X,V) € TU = UXxR™. HereT = I'y(V,V) € R™ depending on (X,V) € TU is the unique
solution of the linear equation

ID+XX'TE =VX'VE +XV'VE - VEV'X 4.11)
in terms off with fixed (X, V) € TU. Moreover, for (X, V) € St x X R™ one has

I'x(V,V)=(VX"VE + XV'VE - VEV'X)D"'

4.12
+(XX"VEV'X - X(X"V)’E - XV'VE)D + E) 'ED™". 12
Proof. Using S = Xg; we compute S via solving iXEsz = d Ej for X, i.e. S = X, fulfills
wp(Xe,(X.V), (X, V.Y.2)) = d Eg , , (X, .Y, 2). (4.13)

for all (X,V,Y,Z) € T(TU). Since wy is non-degenerated, XEz is uniquely determined by (4.13). The
local form of a metric spray, see (4.2), motivates the Ansatz

Xe (X, V) = (X, V,V,-Tx(V,V)) = (X, V, V,-T)

with T = FX(V, V) € R™* depending on (X, V) € TU. Inserting X E; into wy from Lemma 4.6 yields the
1-form
(ixe. 0D 0y X V. X, 2) = w0 ) (X, (X, V), (X, V, Y, 2))
=tr(V'(ZD + YX"VE + XY"VE + XX ZE) (4.14)
—tw(Y"(-TD+VX'VE+XV'VE - XX'TE))
with (X,V) € TU and (X, V,Y,Z) € T(TU). Using (4.14) and the formula for d E; from Lemma 4.7,
the equation ix, W[ = d E7 becomes
t(V'ZD) + tr(Z" XX VE) + tr(V YX"VE)
=tr(V'(ZD + YX"VE + XY"VE + XX"ZE) (4.15)
—tw(Y(-TD+VX'VE+ XV'VE - XX TE))

for all (X,V,Y,Z) € TU. Clearly, Equation (4.15) is equivalent to

(Y (VEV'X)) = tr (Y (-I'D + VX'VE + XV'VE - XX'TE))
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for all Y € R™*, This can be equivalently rewritten as
ID+XX'TE =VX'VE+XV'VE - VEV'X (4.16)

showing the first claim.
We now assume X € St, ;. Writing W = VX'VE + XV'VE — VEV'X and invoking Lemma 4.8 in
order to solve (4.16) for I yields

T=WwD'-XX"W(D+E)"'ED!
= (VX"VE + XV'VE - VEV'X)D™!
+(XX"VEV'X - X(X"V)*E - XV'VE)D + E) 'ED™!
as desired.
Remark 4.10. Obviously, for E = 0, Proposition 4.9 implies fx(V, V)=0forall(X,V)e TU.

Proposition 4.9 admits a relatively simple expression for Se ['*(T(TU)) evaluated at (X, V) € TSt x
for a subfamily of (-, -)%E . Since this subfamily will be discussed several times below, it deserves its
own notation.

Notation 4.11. We write (-, -)(L?)’V for the covariant 2-tensor (-, -)f)’E which is obtained by specifying
E =vI, withv € R, i.e.

(V,W)Y2” = tr (VTWD) + vtr (VIXXTW), X e R™ and V, W € TyR™* = R™,

Unless indicated otherwise, pull-backs of (-, -)f)’v € I'™(S*(T*R™*)) to submanifolds of R"™* are omitted

in the notation. Moreover, we assume that D and v are chosen such that St,,; C (U, (-, -)f_))"’) is a pseudo-
Riemannian submanifold. In particular, we assume that D and D + vI; are both invertible.

Corollary 4.12. The spray S € I™(T(TU)) on TU associated with -, -)f?)’v € I'™(S*(T*U)) evaluated
at (X, V) € TSt, is given by . .
SX, V)= (X, V,V,-T'x(V,V)), (4.17)

where
Tx(V,V) = (2vVXTV +vXVTV(D(D + vI) ™) = 2V X(X"V)2(D + vlk)‘l)D‘l. (4.18)

Proof. Let (X, V) € TSt,; and write r= fX(K V) for short. Plugging E = vI; into Formula (4.12) from
Proposition 4.9 and using X'V = —VTX we obtain

T =(VX'VE+XV'VE - VEV'X)D™'
+(XX"VEVTX - X(X"V)’E - XV'VE)(D + E)'ED™'

v(VXTV +XVTV - VVTX)D-‘ + VZ(XXT VVTX - X(XTV)?2 - XVT v)(D +v[)'D!
v(VXTV +XVTV+VXT V)D—l + vz( —XXTVR - XXV - XVT v)(D +vl)'D!

VXV + XVTV(vL) = 22 X(XTVY(D + vI) ™ = XVTVOAD + vI)™! ))D-1

(2VXTV + XVTV(v = V(D +vI) ™) = 2 X(X V(D + v) " )D™!
(2vVXTV +vXVTV(D(D + vI)™") = 2V X(X"V)A(D + vlk)-‘)D-‘,
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where the last equality holds due to

(Vlk _ VZ(D + Vlk)_l)ii —y— sz — V(Dii-i—V)—v2 — V(D(D " Vlk)_l)l'l'

itV Dji+v

forie{l,... k}.

4.3. Sprays on Stiefel Manifolds

We now determine the spray S € I'°(T(T'St,,)) associated with the metric (-, ‘)([,’)’E. To this end, a
result from [16, Prop. 8.4.1] is exploited which is stated for Riemannian manifolds. The proof works
for pseudo-Riemannian manifolds, as well, since it only exploits the non-degeneracy of the metric. We
reformulate it in the following proposition.

Proposition 4.13. Let M M be a pseudo-Riemannian submanifold of a pseudo-Riemannian manifold
(M, <-,-)) and let S € T°(T(T M)) denote the metric spray on TM. Then the spray S € I'°(T(T M)) on
T M associated with the induced pseudo-Riemannian metric is given by

S =TPoS|,: TM - T(TM), (4.19)

where P: TM y — T'M denotes the vector bundle morphism that is defined fiber-wise by the orthogo-
nal projections P : TXM - T.M C TXM with respect to (-, -), where x € M.

Lemma 4.14. The tangent map TP: T(St,; X R”*) — T(TSt,) of
P: St xR™ = TSt,;, (X,V)+— (X, Px(V)), (4.20)
where Px(V) =V — XXV + XaP+E(XTV) is the orthogonal projection from Theorem 3.18, is given by
TPX,V,Y,Z) = (X,V,Y,Z-XY'V - XX"Z + Xa°*E(Y"V + X" Z))) (4.21)
forall (X, V,Y,Z) € T(St,; X R™*) = TSt,; x (R"™*)2,
Proof. By exploiting ?”*E(XTV) = X"V dueto X'V = —VTX € so(k) for (X, V) € TSt, one calculates

TxvPY,Z)=(Y,Z-YX'V-XY'V-XX"Z+YrP*E(XTV) + Xa"*E(YTV + X" Z))
=Y, Z-XY'V-XX"Z+Xn""E(YV + X" 2)),

where (X, V, Y, Z) € T(St,; x R>),
Theorem 4.15. The spray S € I'°(T(T St,.x)) associated with (-, -)(L?)’E is given by

SX, V)= (X, V,V,-Tx(V,V) = XVTV + XX Tx(V, V) + Xa”*E(VTV = X" Tx(V, V))) (4.22)
forall (X,V) € TSt, ;. Here fX(V, V) € R™* depending on (X, V) € TSt is given by

Tx(V,V)=(VX"VE + XV'VE - VEV'X)D""

4.23
+(XX"VEV'X - X(X"V)’E - XV'VE)D + E) 'ED™". (4:23)
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Proof. One can view St,; equipped with (-, -)f)’E as a pseudo-Riemannian submanifold of (U, (-, ->ij )

according to Lemma 3.8. Let Se (T (TU)) be the metric spray on T U determined in Proposition 4.9.
Then S =TPoS | TSts holds by Proposition 4.13. Using Lemma 4.14 yields

SX,V)=TPoS|. o (X.V)=TPX,V,V,-Tx(V,V))
=X, V,V,-Tx(V,V) = XVTV + XX Tx(V, V) + Xa?*E(VTV = X Tx(V, V)))

for all (X, V) € TSt as desired.

Remark 4.16. We often denote the spray on 7'St,,; associated with (-, -)f)’E from Theorem 4.15 by
SXV) =X V,V,-I) =X V.V.-Ix(V,V)),
i.e. we write —I" or —['x(V, V) for the fourth component of S. For (X, V) € TSt,, it is given by
—Tx(V,V) = -Ix(V, V) = XVTV + XX Tx(V, V) + Xa?*E(VTV = X' Tx(V, V)) (4.24)

according to Theorem 4.15, where fX(M V) is determined by (4.23). Obviously, Equation (4.24) yields
a well-defined expression for all X € R™* and V € R™* which is quadratic in V. Hence, by polariza-
tion, (4.24) can be viewed as the definition of the smooth map

I':U— SHR™HYQR™, X (V,W) = Tx(V, W)). (4.25)

Clearly, Equation (4.25) yields a smooth extension of the fourth component of the metric spray S €
(T (TSt,x)). This extension is used in Proposition 6.5 and Proposition 6.8 below.

Corollary 4.17. The spray S € T°(T(TSt,;)) associated with the metric -, ~)€ )E from Theorem 4.15
has the following properties:

1. The spray S € IT°(T(TSt,;)) is complete.
2. The maximal integral curve R 3 t — @3 ((Xo, Vo)) = (X(2), V(1)) € TSt,x of S through the point
(Xo, Vo) € TSt at t = O fulfills the explicit non-linear first order ODE

X=vVv

) - — Dok — (4.26)
V=-Tx(V,V)=XV'V+ XX Tx(V,V)+ Xz (VTV - X Tx(V,V)),

with initial condition (X(0), V(0)) = (Xo, Vo) € TSt,x writing X = X(t) and V = V(t) for short.

3. Let pr: TSt,x — St,x be the canonical projection. The curve R>t+— proCDf (X0, Vo) =X(2) € St,x
is a geodesic with respect to (-, -)f_))’E through the point X(0) = X, € St,; with initial velocity
X(0) = Vy € Tx, Stz

4. The geodesic equation on St with respect to -, ~)€ )E is given by the non-linear explicit second
order ODE

X = TxX,X) - XXX + XX Tx(X,X) + X7 F(X"X - X' Tx(X, X)) (4.27)
with initial conditions X(0) = Xy € St and X0) =X, e T'x,St, 4.
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Proof. We first show that S is complete. The transitive O(n)-action ¥ acts on (St,, (-, -)f)’E ) by isome-

tries according to Lemma 3.1, i.e. (St,z, (-, ->(D_)’E ) is a compact pseudo-Riemannian homogeneous man-
ifold. Hence completeness follows by [23]. The other statements are well-known consequences of
general properties of sprays associated with a metric, see e.g. [16, Sec. 7.5], combined with the ex-
plicit formula for § € I'*(T(T'St,x)) from Theorem 4.15.

The formula for the metric spray S from Theorem 4.15 admits a simplification for (-, '>(D.)’V-
Corollary 4.18. For (St,, (-, ~)f)’v) the metric spray is given by S (X, V) = (X, V, V,-I'x(V, V)) with
~Tx(V,V) =2vVVTXD™' + 2vX(X"V)’D™' — XVTV + Xa’"(VTV) (4.28)
for (X, V) € TSt x. Moreover, the geodesic equation reads
X =2vXX"XD' + 2vX(X"X)’D™! — XXX + X (X7 X). (4.29)
Proof. Let (X, V) € TSt,. Using the formula for fX(M V) from Corollary 4.12 we calculate
X Ty(V,V) = XT(zvaTv +vXVTV(D(D + vI) ™) = 2V X(X"V)A(D + vlk)_l)D_l
=2vX"VX'VD + wWV((D +vL) ' D)D" = 22 (X V)X (D + vI) ' D!
= 2v(X"VYD = 22X V2D + vI)'D + vWTV((D + vI) )
= X"V (2vD™ = 22D +vI) ' D) + WTV((D + vE) )
= 2v(X" V2D +vI)' + vWTV(D + vI)™!
=v(VTV+2XTV)?)D +vI) ™,

where the identity

(@vD™ = 202D + v ' D), = XD o 22 0y(D + v,

is used. This yields .
XX Tx(V,V) = vX(VTV + 2(XTV)2)(D + L)

kxk
sym

7TV, V) = 2 (VY + 2T VYYD +vI ™) = 0,

Moreover, using the symmetry of V(VTV + 2(XTV)?) € R* we obtain by Lemma 3.14, Claim 1

Therefore I'x(V, V) can be obtained by Theorem 4.15 via calculating
—Tx(V,V) = -Tx(V, V) = XVTV + XX Tx(V, V) + Xz? " (VTV = X Tx(V, v))
— ( —2vVXTVD —vXVTV(D +vI) ™ + 22X(XTV)A(D + vlk)-lD-l) -XV'V
+ (vxvT V(D +vI)™ + 2vX(X"V)2(D + ka)_l) + XnP vV
= 2yVVTXD' + 2X(X"V)2(D + vI) ' (D7 + vI) - XVTV + X2l (vTy)
=20WVTXD ™' + 2vX(X"V)’ D' = XVTV + XaPH(VTV),

where the last equality follows due to

1,21 _ OA/Di)+v _ v(v+Dy) _ -1
(D+vL)"(vD™ + Vlk))ii = T Dy+v  Di(+Di) (D )ii'

This yields the desired result.
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Remark 4.19. Corollary 4.18 generalizes the geodesic equation from [13]. Indeed, setting D = 21,
and v = -2t with @ € R \ {1} yields

—Tx(V,V) =vWVTX +vX(XTV)? = XVTV (4.30)

due to 72™M(VTV) = skew(VTV) = 0 in accordance with [13, Eq. (65)].

Remark 4.20. We are not aware of an explicit solution of the geodesic equation for general diagonal
matrices D and E. To our best knowledge, an explicit solution is only known for the special case
D = 2I, and E = v}, see [13]. Nevertheless, one could exploit that (7'St,, W (1T (TL)*Z) defines a
Hamiltonian system whose Hamiltonian vector field is given by the metric spray S € I'°(T(T'St,x)).
This point of view would allow to study the geodesic equation using the theory of integrable systems.
However, investigating these aspects in detail is out of the scope of this paper. In this context, we only
refer to [24], where geodesic flows on the cotangent bundle 7St, ; and their integrability are studied.

5. Pseudo-Riemannian gradients and pseudo-Riemannian Hessians

We now determine pseudo-Riemannian gradients and pseudo-Riemannian Hessians of smooth func-
tions on St, ;. Specific results from [14] are generalized, where similar ideas were used to obtain the
gradients and Hessians of smooth function on St, ; with respect to the one-parameter family of metrics
from [13]. Moreover, similar formulas for gradients and Hessians on St,; with respect to a family of
metrics corresponding to (-, -)(L?)’E, where D = apl; and E = (a1 — ag)l; with ap, a1 € R, i.e. a scaled
version of the metrics introduced in [13], are independently obtained in [25].

Notation 5.1. From now on, unless indicated otherwise, we denote by U € R™* an open subset with
the property from Lemma 3.8.
5.1. Pseudo-Riemannian Gradients

We first determine the gradient of a smooth function on f: St,; — R with respect to the metric
¢, ~)€)’E € I™(SX(T*St,x)). Let pp: TiStix — TxSt.x denote the sharp map associated with (., -)g’E,
i.e. the inverse of the flat map b: TxSt,x > V  (V, )Q’E € TySt, ;. Then gradf € I'™(T'St,;) is the
unique vector field that fulfills

(grad fOO, VIV =df| (V) e gradf(X) = (d f],()** (5.1)

forall X € St,, and V € TxSt,, see e.g. [26, Sec. 8.1] for the Riemannian case, which clearly extends
to the pseudo-Riemannian case.

Proposition 5.2. Let f: St,; — R be smooth with some smooth extension F: U — R. Then the
gradient of f at X € St, with respect to -, ->8’E is given by

gradf(X) = VF(X)D™' = XX"VF(X)D™! + Xa°*E(X"VF(X)(D™' — (D + E)'ED™)). (5.2)

Proof. We first compute the gradient of F: U — R with respect to (:, ->5)’E . Let X € U. Then
gradF(X) € R™* fulfills

(gradF(X), V)y* = dF| (V) = e (VF(X))"V) (5.3)
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for all V € TxR™* = Rk Using the definition of (-, -)f)’E , Equation (5.3) can be rewritten as
tr (V' (gradF(X)D + XX gradF(X)E)) = tr (VT VF(X)).
Since (-, -)(L?)’E 1s non-degenerated, this is equivalent to the linear equation
gradF(X)D + XX " gradF(X)E = VF(X) (5.4)
in terms of gradF(X). Now assume X € St, ;. Then the unique solution of (5.4) is given by
gradF(X) = VF(X)D™' = XX"VF(X)(D + E) 'ED™!

according to Lemma 4.8. Next, we use the well-known formula gradf(X) = Py(gradF (X)), where
Py: Rk T'xSt, 1s determined in Theorem 3.18. One calculates

gradf(X) = Px(VF(X)D™' = XX"VF(X)(D + E)"'ED™")
= (VF(X)D‘I — XX"VEX)D™" + XﬂD+E(XTVF(X)D‘1))
- (XXTVF(X)(D +E)'ED™' - XXT(XX"VF(X)(D + E)'ED™")
+ XnP E(XTXXTVF(X)(D + E)“ED“))
=VFX)D™' = XX"VFX)D™" + Xa”*E(X"VF(X)(D™' = (D + E)"'ED™))
for X € St as desired.
Next we specialize the formula for the gradient to the subfamily (-, -)f)’v.

Proposition 5.3. Let f: St,; — R be smooth with some smooth extension F: U — R. Then the
gradient of f with respect to (-, -)f)’v is given by

gradf(X) = VE(X)D™' = XX"VF(X)D™' + Xa’*"(X"VF(X)(D + vI,)™") (5.5)
forall X € St, .
Proof. Using Proposition 5.2 we obtain for X € TxSt, x

gradf(X) = VF(X)D™' = XX"VF(X)D™" + X7’ (X"VF(X)(D™' = w(D + vI)"'D™))
= VFX)D™' = XX"VF(X)D™" + Xn"""(X"VF(X)(D + vI))™),

where the identity

(D' =D +vL)'D),; = DL,-,» = Dby = <gf,.’3)_5,-,- =((D+vI)™);
is used to obtain the last equality.
Corollary 5.4. Let @ € Ty St,; be given by
a=tr(V'(): TxStyy = R, Wi u(V'W)eER, (5.6)
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where V € R™* is some matrix. The sharp map #ip k- T3St — TxSt, associated with (-, -)f)’E applied
to « is given by

ar = (r(VT )% = VD' = XXTVD ™ + XaPE(XTV(D™ = (D + EY 'ED™)). (5.7)
Specializing E = vl yields the sharp map with respect to -, -)g’v applied to a, namely
@ = (w(VT))P = VD™ — XXTVD™ + XaPP(XTV(D + v Y. (5.8)

Proof. Consider the smooth function F: R”* 5 X » tr (V'X) e Randset f = F |St ¢ Styr = R. Then

dF |X(W) = tr(V'W) and thus VF(X) = V follows. Applying Proposition 5.2 and Proposition 5.3,
respectively, yields the desired result because of (5.1).

Corollary 5.5. Proposition 5.3 reproduces some results known from the literature as special cases:

1. For D = I, and v = 0 one has
gradf(X) = VF(X) - 1XX"VF(X) - 1X(VF(X))"X. (5.9)

This coincides with the gradient with respect to the Euclidean metric, see e.g. [2].

2. ForD =1, and v = —%, one has

gradf(X) = VF(X) - X(VF(X)) "X (5.10)

reproducing the formula for the gradient from [10, Eq. (2.53)].
3. For D =21 and =2 # v € R the gradient of f simplifies to

grad f(X) = J(VF(X) - ELXXTVF(X) - 5= X(VF(X)) ' X) (5.11)

2+v 2+v
reproducing the expression for the gradient from [14, Thm. 1].

Proof. These formulas follow by straightforward calculations by plugging the particular choices for D
and v into the expression for grad f from Proposition 5.3.

5.2. Pseudo-Riemannian Hessians

Next we determine the pseudo-Riemannian Hessian of a smooth function f: St,;, — R. Here we
only consider the subfamily (-, -)f)” in order to obtain formulas which are not too complicated.

Lemma 5.6. Let X € St,;, V € TxSt,x and let f: St — R be smooth with some smooth extension
F: U — R. The Hessian of f with respect (-, -)f )’V considered as quadratic form is given by

Hess(f)], (V. V) = D* FX)(V. V)

1 2 1 D+vI, (512)
+DFOQvVVTXD ™ + 2vX(XTV! D™ = XVTV + Xl (VTV)),

where X € St and V, W € TxSt, ;.
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Proof. The geodesic y: R — St,; through y(0) = X € St,; with initial velocity ¥(0) = V € TxSt,x
fulfills the explicit second order ODE

(1) = 2vy(y () YD + 2vy()(y (1) ¥ ()’ D!

. . Vg } (5.13)
= y@OYO YO + y O (O 3 (D)
according to Corollary 4.18. Evaluating (5.13) at ¢ = 0 yields
¥(0) = 2vVV'XD™ ' + 2vX(XTV)’D™' — XVTV + XaP i (VTV) (5.14)

due to the initial conditions y(0) = X and y(0) = V. The Hessian of f considered as quadratic form
can be determined as

Hess(f)|,(V, V) = &(f o )@ (5.15)
see e.g. [26, Prop. 8.3] for the Riemannian case, which clearly extends to pseudo-Riemannian mani-
folds. Using f = F | . Formula (5.15) yields

Hess(f)|,(V, V) = D> F(X)(70), 7(0)) + D F(X)¥(0) (5.16)
by the chain rule. Plugging (5.14) into (5.16) yields the desired result.
Theorem 5.7. Let X € St and VW € TxSt,x. Moreover, define D=D+ vli. The Hessian of a
smooth function f: St,; — R with smooth extension F: U — R with respect -, -)f)’v is given by
Hess(f)| (V. W) = tr (D(VF)(X)V)" W)
+vir (XD'(VFX)TV + VF(X)D™'XTV)"W)
+vir (XVTXX'VEX)D™ + XX"VF(X)D™'VTX)"W) (5.17)
— L (VXTVFX) + V(VF(X)) ' X)'W)
+ 1 tr (VAP(XTVF(X)D™")D - VDrP(X"VF(X)D™"))"W).
Proof. Let (X, V), (X, W) € TSt, ;. We obtain for the Hessian of f as symmetric 2-tensor
Hess(/)|, (V. W) = tr (D(VF)(X)V)'W)
+vtr (VF(X)) (VW™ + WVTXD™)
+vir (VFX) ' X(XTVX™W + X WXTV)D™) (5.18)
— L (VFOO) X(VTW + WTV))
+ 2 (VFQO) Xr"Y (VW + WTV))
by applying polarization to the quadratic form obtained in Lemma 5.6 and using the identities

DFX)V =tr(VF(X))'V) and D?FX)(V,W) = tr (D(VF)X)V) W).

Next, we set D = D+vI, which is invertible according to Notation 3.13. Since the orthogonal projection
7P RP* — sp(k) € R¥* is self-adjoint with respect to the scalar product

<., >5 Rka X kak — R, (‘/’ W) — tr(VTWB)
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on R¥*_ we calculate
tr (VFX)) X7P(VTW + WTV)) = tr (X"VECOD™") #2(VTW + WTV)D)
— (X"VE(X)D"', i(VTW + WTV))P
= (FP(XTVE(X)D™), VTW + WTV)P
= tr (Va2(X"VE(X)D™")D — VDrP(X"VF(X)D™))" W)

(5.19)

by exploiting irn(7r5 ) = so(k). The desired result follows by rewriting (5.18) using well-known proper-
ties of the trace and applying (5.19) to the last summand of (5.18).

Corollary 5.8. 5.7: Let D = 2I; and =2 # v € R. Then the Hessian of the smooth function f: St,;, — R
with respect to (-, -)8” reads
Hess(f)] (V. W) = tr (D(VF)(X)V)'W)
+ 2t (X(VF(X)) 'V + VFOOXTV)'W)
+ 2tr (XV'XXTVF(X) + XX"VFX)VTX)'W)
-2 (VXTVFX) + V(VF(X)) X)"W)

(5.20)

with X € Sty and V, W € TxSt, ; reproducing the formula from [14, Thm. 2].

Proof. We set D = 2I; in Theorem 5.7. Obviously, D = (2 + v)I; holds. Hence
2(X"VF(X)D™")D = x°(X"VF(X)) = DaP(X"VF(X)D™")
is fulfilled by the linearity of P Rk s0(k) € R™*. Thus the last summand of (5.17) vanishes.

Theorem 5.7 yields an expression for the Hessian of f: St,x — R as covariant 2-tensor. How-
ever, for applications, see e.g. [2, Chap. 6], an expression for the Hessian of f viewed as section of
End(T'St, ;) 1s desirable. Thus, following [14, Re. 6], we state the next remark and the next corollary.

Remark 5.9. In [2, Eq. (6.3)] the Hessian of a smooth function f: M — R on a Riemannian manifold
(M, (-, -)) endowed with a covariant derivative V is defined as

Hess(f)|,(v) = V., gradf|,

forx e Mandv, € T .M. In particulgz,i ﬁggs( f) € T*(End(T M)) holds. If V is chosen as the Levi-
Civita covariant derivative V-©, then Hess(f) is related to Hess(f) € I'°(S*(T*M)) via

(Hess(f)] (v), w) = (Vs gradf| ,wy) = Hess(f)] (v, wy), (5.21)

where x € M and v, w, € T, M, see e.g. [26, Prop. 8.1] for a proof for the Riemannian case. Clearly,
Equation (5.21) holds in the pseudo-Riemannian case, too. We rewrite (5.21) equivalently as

(Hess()] (o).} = Hess(N), (vas ). (5.22)
Applying the sharp map §: T:M — T, M associated with (-, -) on both sides of (5.22) yields
Hess(f)] (v2) = (Hess(f)] (vi, ). (5.23)
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Corollary 5.10. Let f: St,x — R be smooth with some smooth extension F: U — R. The Hessian of
f with respect to (-, -)f )’V considered as a section of End(T'St, ;) is given by

Hess( N = LQV( D(VE)X)V + v(XD '(VF(X))"V + VE(X)D'X"V)
+v(XV'XX'VF(X)D™' + XX"VF(X)D"'V"X)
- YVXTVF(X) + V(VF(X))"X)
+ 4(va’(X"VF(X)D™")D - VDr”(X"VF(X)D™")))

for X € St and V € TxSt, x, where D=D+ vl and L)[()’V: R™k — TxSt,; C R is the linear map
given by
L2(V)=VD™' = XXTVD™ + Xn""M(XTV(D + vI) ™).

Proof. We have already obtained Hess(f) in Theorem 5.7 in such a form that the formula for the sharp
map from Corollary 5.4 can be applied to Hess(f )| (V) € T St, ,. Now Remark 5.9 yields the desired
result.

6. Second fundamental form and Levi-Civita covariant derivative

In this section, we compute the second fundamental form of St, ; considered as pseudo-Riemannian
submanifold of (U, (-, ->8’E ). Moreover, an expression for the Levi-Civita covariant derivative on St,;
is derived. We first recall Notation 5.1. Unless indicated otherwise, we denote by U € R™* an open
neighbourhood of St, ; with the property from Lemma 3.8.

6.1. Levi-Civita covariant derivative on U

We consider the Levi-Civita covariant derivative V€ on U with respect to (-, ~)8’E . Recall Proposi-
tion 4.9. For (X, V) € TU the spray S € I'*(T(TU)) associated with the metric (-, -)(L?)’E on U is given
by

S, V) = (X, V,V,~Tx(V, V) ©6.1)
where fX(K V) is the unique solution of the linear equation (4.11). We now discuss how fX(M V)eR™*
is related to the Christoffel symbols of the Levi-Civita covariant derivative V€ on (U, (-, -)f?)’E ). To this
end, we view idy: U > X — X € U as the global chart (U,idy) = (U,X;;) of U and identify the

coordinate vector fields aT with the constant functions U 3 X = E;; € R™*. Then (6.1) is a coordinate
ij

expression for the metric spray S with respect to the global chart (T'U, (X;;, V;;)) induced by the chart
(U, X)), see also Proposition 4.9. Thus the local form of metric sprays, see (4.2), implies that the entry
(FX(V V)),; fulfills

(FX(V V))l] Z Z FE;/Z) (e.d)|x abvcd’ (62)
a,c=1 b,d=1
where V = (V, ,) € R™* and the functions FE;JZ) ca’ U3 X - FE;’;) N d)|X € R denote the Christoffel

symbols of VLC with respect to (U, (X;;)). Hence VLC can be expressed with respect to the global chart
(U, Xij) as

VECW|, =D W)V,

o W) (6.3)

Journal of Geometric Mechanics Volume 15, Issue 1, 147-187



180

for vector fields ‘7, W e I'™(TU) and X € U, see e.g. [27, Chap. 4]. A similar “matrix notation” for
Christoffel symbols has already appeared in [10, Sec. 2.2.3], where, in addition, it is mentioned that
(for fixed X € U) the symmetric bilinear map R™* x R™* 5 (V, W) — [x(V, W) € R”* can be obtained
from the quadratic map R”* 5 V Tx(V,V) € R by polarization. Hence the Christoffel symbols
on U can be identified with the smooth map

I: U - AR @R™, X (V,W) > Tx(V, W)). (6.4)

The “Christoffel symbols” from [10, Sec. 2.2.3] will be discussed in Remark 6.11 below.
Next we give an expression for the Levi-Civita covariant derivative V-© on St,,; with respect {-, -)f)’E .
We refer to Proposition 6.8 as well as Corollary 6.9 below for an alternative formula for V1€,

Proposition 6.1. Let V, W € I'°(T'St,.x). The Levi-Civita covariant derivative on (St,, (-, ')%E) is given
by
VW], = Py(DWX)V|, + Tx(V],. W],)) (6.5)

for all X € St,, where V € I™(TU) is a smooth extensions of V. Here Tis defined by (6.4). Moreover,
Py : R"™* — TySt,, is the orthogonal projection with respect to -, -)%E from Theorem 3.18.

Proof. Since St is a pseudo-Riemannian submanifold of (U, (:, ->8E ), the result follows by (6.3) due
to
VW], = Px(ViCW], ).

see e.g. [17, Chap. 4, Lem. 3].

6.2. Second fundamental form

We now consider the second fundamental form, also called shape operator, of St,;, € (U, (-, ~)8’E ).
We refer to [17, Chap. 4] for general properties of pseudo-Riemanian submanifolds and the second
fundamental form, see also [27, Chap. 8] for the Riemannian case. Using these references, we briefly
introduce the notation which is used in the sequel subsections.

Let M be a pseudo-Riemannian submanifold of a pseudo-Riemannian manifold (M, (-,-)). The
corresponding Levi-Civita covariant derivatives on M and M are denoted by V€ and ?LC, respectively.
Moreover, let NM — M be the normal bundle of M and let I € I'™((S*(T*M)) ® NM) be the second
fundamental form of M, see e.g. [17, Chap. 4, Lem. 4], defined by

IV, W)|, = PLVECW]). xe M, V.WeI™(TM), (6.6)

where V, W e F”(TM ) are smooth extensions of V, W € I'*(T M), respectively, and P; : TXM - N.M
denotes the orthogonal projection onto the normal space N.M = (T, M)*. The Levi-Civita covariant
derivative on M fulfills .

ViEW = VECW — TI(V, W) (6.7)

for all VW € I'(T M) by [17, Chap. 4]. Here W is again some smooth extension of W to M. The
identity (6.7) is named GauB} formula in [27, Thm. 8.2], which includes a proof for the Riemannian
case, as well.
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Lemma 6.2. Define V: T™(T M) x T™(TM) — (T M) by
VoW = ViCW - TV, W), V. W e (T M), (6.8)

where 11 € F""((SZT*M Y®TM ) denotes a smooth extension of the second fundamental form 11 on M to
M. Then V is a covariant derivative on M whose restriction to M coincides with V'C, i.e.

ViEW| = VyW|, (6.9)

holds for all x € M and V,W € I'(T M) with smooth extensions V.W € F“(TM). Moreover, the
Christoffel symbols of V with respect to the local chart (U, x) of M are given by

k _ Tk Tk
r =T - 11, (6.10)

~k —~
Here 11;; is defined byﬂ%, %) IIZ i 9@ using Einstein summation convention and Fk denote the

Christoffel symbols of VC with respect to the chart (U, x).

Proof. Obviously, the definition of V yields a covariant derivative on M. Moreover, the Gaul} for-
mula (6.7) implies
LCry| — wiCTy vl Wl = v
V\~/ W|x - V\7 W|x - II|x(V|x’ W|x) - VVWLC

for all x € M and all V, W € I'°(T M) with smooth extensions '17, We F°°(TA7), respectively. N
It remains to show the formula for the Christoffel symbols. Let (U, x) be a local chart of M. Using
Einstein summation convention one obtains
VLC 0 _

Vi OxJ 0 o II( Oxi? 8x/
ox! 6 xl

l—*k

ij oxk - 1II; il\ = (Fk _IIt/)a %

showing the desired result.

Remark 6.3. The definition of the covariant derivative V on M in Lemma 6.2 depends on the choice
of the smooth extension II of II. Nevertheless, Equation (6.9) is independent of the extension II of II.

Reformulating [16, Cor. 8.4.2] yields the next lemma which allows for computing the second
fundamental form of St,;, C (U, (., -)D_’E).

Lemma 6.4. Let M C M be a pseudo-Riemannian submanifold of (M (-,+)). Moreover, we denote by
S eT™(T(TM)) and S € T™(T(T M)) the metric sprays on TM and T M, respectively. Then

(S = $)(vy) = (1] (1), 6.11)

holds for all x € M and v, € T M, where

(.)ver VX: T M — VervX(TM) - TVX(TM)

is the vertical lift and 11 € T®((S*(T*M)) ® NM) is the second fundamental form of M C M.

Proof. This is a direct consequence of [16, Cor. 8.4.2] as well as the definition II recalled in (6.6).
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Lemma 6.4 applied to St,, C (U, (-, -)f)’E ) yields an expression for the second fundamental form.

Proposition 6.5. Consider St,; € (U, (-, )?)E) as pseudo-Riemannian submanifold. Then the following
assertions are fulfilled:

1. The second fundamental form of St,; € (U, <, ‘)f,))’E) is given by
I, (V, W) = Tx(V, W) = Tx(V, W) (6.12)

for all X € St,, and V,W € TxSt,, where I'y and fx denote the symmetric bilinear maps
associated with the quadratic maps defined by the sprays S € T™(T(TSt,;)) and S € T™(T(TU)),
respectively.

2. A smooth extension 11 € >((S*(T*U))® TU) of Il is given

|, (V, W) = Tx(V, W) = Tx(V, W), (6.13)

forall X € U and V,W € TxU = R Here we view I'x(V, W) as in Remark 4.16, i.e. as the
smooth map T': U — S*(R™*)*) @ R defined in (4.25).

Proof. Lemma 6.4 applied to St,, € (U, (:, -%E ) implies that
S(X, V)= S(X, V) =WV, V)™ -
holds for all (X, V) € TSt,x. The vertical lift for fixed (X, V) € TU is the linear isomorphism
Ok = (X, V,0,W),
according to its local expression, see e.g. [20, Sec. 8.12]. Thus

1] (V, V) = -Tx(V. V) = (= Tx(V, V) = Tx(V, V) = Tx(V, V)

(6.14)

an: TU = Ver(TU)y), (X, W)= X, W)™,

follows by (6.14). Since the quadratic map TxSt,x > V FX(M V) — T'x(V, V) € R™* determines
uniquely the associated symmetric billinear map, Claim 1 is shown. Now Claim 2 is obvious.

The second fundamental from can be simplified for all metrics in the subfamily (-, -)f)’v.
Corollary 6.6. The second fundamental form of St C (U, <, -)f)”’) is given by
1 (V, W) = —1X(VTW + WV)D(D + vI,)” + vX(X"VX'W + X WX V)(D + L)~
+ IX7PYR(VTW + WTV)
forall X € St and V, W € TxSt, ;.

(6.15)

Proof. Let X € St and V € TxSt,;. We first compute the quadratic map associated with II. Using
Corollary 4.12 and Corollary 4.18, Proposition 6.5 implies

1], (V, V) =Tx(V, V) = Tx(V. V)
= (2vVXTVD +vXVTV(D +vI) ™ - 2 X(XTV)X(D + vI) "' D)
+(20VVTXD™ + 2vX(XTVY DT = XVTV + X2POR(VTV)) (6.16)
= XV7T V(v(D +vl) " - Ik) +2vX(XTVP(D™ = v(D + v[k)—lD—l) + XaP VTV
= —XVTVD(D + vI,) " + 2vX(X" V(D + vI)"" + Xz (VTV).
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Here we exploited

(VD + i)™ = I); = D 1= V_L()L;SV) - _Dﬁiv = =D+,
as well as
(D' =v(D+vI)'DT),; = 5-(1 - 55) = 52t = (D +vI) ™),

The desired result follows by polarization.

Corollary 6.7. For D = 21, and E = vI the second fundamental form is given by

I (VW) = —sLX(VTW + WTV) + 2= X(XTVXTW + XTWXTV) (6.17)

2+y
for X € St and V, W € TxSt, .

Proof. Plugging D = 2I; into the formula from Corollary 6.6 the claim follows by a straightforward
calculation by exploiting 72" = skew : R®* — so(k).

6.3. Levi-Civita Covariant Derivative on St

Next we derive an alternative expression for the Levi-Civita covariant derivative on (St,x, (-, -)5 )E ).

Proposition 6.8. The covariant derivative V on U from Lemma 6.2 fulfills for V,W € I'™(TU) and
XeU

W) =DWX)V|, +x(V

VoWl = VW], - 10 (V oW, (6.18)

where T denotes the smooth map U — S*(R™*)*) ® R™* defined in (4.25). Ifi;, W € T™(TU) are
smooth extensions of V, W € I'°(T'St,x), respectively, then

VieW|, = DWX)V|, + Tx(V

W) (6.19)
is satisfied for all X € St,.
Proof. Using Lemma 6.2 and Proposition 6.5 we compute
VoWl = VW], - TV, W],)
= (DWOV|, + Tx(V],. W|,)) - (Tx(V
=DWX)V|, + x(V],. W|,)

X’ W|X) - FX(V

X’ W|X))

for VW e I'*(TU) and X € U showing (6.18). If V, W are smooth extensions of V, W € (TSt 1),
respectively, we obtain

VWl = ViW|, = DWX)V|, +Tx(V],. W|,)
for all X € St,, by Lemma 6.2 proving (6.19).

Proposition 6.8 yields a more explicit formula for the subfamily (-, -)[.
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Corollary 6.9. Let V,W € I'(T' St, ;) and let We I'™(TU) be smooth extension of W. The Levi-Civita
covariant derivative on St, ; with respect to the metric (-, -)f_) )’V is given by

ViEW|, = DWX)V]|, + Tx(V

W) (6.20)
for X € St x, where

Tx(V,W)= (VW + WVDXD™' —vX(X"VX"W + X WX V)D™! 6.21)
+IX(VTW + WTV) = IX2”(VTW + WTV) '

writing V = V|X and W = W|Xf0r short.

Proof. The quadratic map I'x: TxSt,; > V i I'x(V,V) € R is determined in Corollary 4.18. The
associated symmetric bilinear map TxSt,x X TxSt,x > (V,W) = I'x(V, W) € R™k can be obtained by
polarization. Now Proposition 6.8 yields the desired result.

Corollary 6.9 yields an expression for the covariant derivative with respect to the family of metrics
introduced in [13].

Corollary 6.10. Using the notation from Corollary 6.9 one obtains for V*© on (St,, (-, -)(L?)’V) with
D=2l,and -2 #veR

VW], =DWX)V = X(VWT + WYX = EX(XTVXTW + X TWXTV) + 1X(VTW + WTV). (6.22)

Proof. Plugging D = 2I; into the formula from Corollary 6.9 yields the desired result by exploiting
I (VTW + WTV) = skew(VTW + WTV) = 0 for all V, W € TxSt,.

By setting D = ayl; and E = (@ — ap)l; for @y, a; € R, Corollary 6.9 reproduces [25, Eq. (5.4)],
where this expression has been obtained independently. Formulas for V'€ of a similar form as in
Proposition 6.8 or Corollary 6.9 have already appeared in the literature in [10, 25], see also [28, Sec. 4].
In the next remark we relate the summand I'x(V, W) in these formulas to the Christoffel symbols of the
covariant derivative V on the open U C R,

Remark 6.11. Consider the smooth map I': U 3 X — ((V,W) = I'x(V,W)) € S*(R™*)*) ® R™>*

from (4.25) in Remark 4.16. The Christoffel symbols of the covariant derivative Vy W = VI‘;C W—ﬁ(V, w)
on U with respect to (U,idy) = (U, X;;) corresponds to the entries of the matrix I'y(V, W) by
Proposition 6.8. More precisely, we again identify the coordinate vector field %ﬁ with the map
U > X - E; € R". Then the (i, j)-entry of I'x(V, W) € R™ is given by a formula similar to
(6.2), namely

n k
(FX(Va W)),‘j = Z Z FEZ’jb))’(C,d)Vachd’ (623)
a,c=1b,d=1
where FEZ”Z)’(C’ o U — Rare the Christoffel symbols of V with respect to the global chart (U, X;;), see

Lemma 6.2 and Proposition 6.8. We point out that the map I in (4.25) corresponds to the Christoffel
symbols of the covariant derivative V on U but it cannot correspond to the Christoffel symbols of V-€
on St,; due to dim(St,;) < nk = dim(U). Nevertheless, if V is applied to vector fields which are
tangent to St,; evaluated at points X € St,, it yields the same result as V'€ by Proposition 6.8.
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A similar expression for “Christoffel symbols™ has already appeared in [10] for the so-called canoni-
cal metric as well as for the Euclidean metric, however, without relating them to the Christoffel symbols
of the covariant derivative V on U. Indeed, by exploiting Corollary 6.9, for D = I; and v = 0 we obtain

Tx(V, W) = 3X(VTW + WTV)
reproducing I, in [10, Sec. 2.2.3]. Analogously, setting D = [; and v = —% in Corollary 6.9 yields
Tx(V,W) = 3(VWT + WVNX + 1XVT(I, - XX)W + 1XWT(I, - XXV

for X € St and V, W € TxSt, ;. This expression coincides with [10, Eq. (2.49)].
7. Conclusions

We investigated a multi-parameter family of metrics on an open U C R™* such that St,; C U
becomes a pseudo-Riemannian submanifold. The corresponding geodesic equation for St,; as explicit
matrix-valued second order ODE was derived by computing the metric spray on 7'St, ;. In principle,
this approach to determine the geodesic equation is not limited to St, . It seems to be applicable to a
pseudo-Riemannian submanifold of an open subset of a vector space as soon as the metric spray on the
open subset and the tangent map of the orthogonal projection are known. Beside the geodesic equa-
tion, several other quantities related to the geometry of the pseudo-Riemannian submanifold St,; € U
were determined in terms of explicit matrix-type formulas. In particular, the expressions for pseudo-
Riemannian gradients and pseudo-Riemannian Hessians could pave the way for designing new opti-
mization methods on St,;. Moreover, we reproduced several well-known results from the literature
putting them into a new perspective.
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