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Abstract: Green bonds have gained a significant share in the bond market. However, dynamic risk and
its spillover to other conventional bond investments plays an important role in its understanding. In this
paper, we analyze the volatility and correlation dynamics between conventional bond and green bond
assets under both loose and stringent eligibility green-labeled criteria. We build dynamic conditional
correlation (DCC) model specifications using alternative distributional assumptions. We also assess
risk dynamics expressed by Value-at-Risk (VaR) and its corresponding loss function. We illustrate
risk assessment in within and out-of-sample periods using conventional and green bond returns. The
results show that there is significant spillover between conventional and green bond assets, triggering
significant hedging strategies. However, these spillover effects are subjected to the type of green-labeled
criteria. Finally, a risk assessment using VaR forecasting and its corresponding loss function estimation
also demonstrates significant differentiation between green and conventional bonds.
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1. Introduction

Green bonds (hereafter GBs) have gained a significant and growing share in bonds markets. They
are mostly used by international and local authorities to raise money for ecologically friendly and climate-
friendly projects (ICMA, 2017; OECD, 2017). GBs were first launched in 2007 by the World Bank GBs
program and, in 2008, by the European Investment Bank (EIB). The GBs have similarities to conventional
bonds (hereafter CBs) in terms of the risk-reward equation and structure. However, by issuing GBs rather
than CBs raises somehow the cost because issuers typically need to submit to third-party validation that the
proceeds will be spent on environmentally friendly projects to have the bonds certified as green.
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These GB securities are directly linked to fund-raising strategies in order to promote and implement
investments in mostly renewable energy facilities, green buildings, clean transportation, sustainable
waste management, sustainable land use, bio-diversity and clean water. However, questions are being
raised regarding the risk of investing in GBs in comparison with conventional bonds. Therefore, issues
such as the analysis of volatility dynamics, its effect in forecasting risk and other risk measures such
as the Value-at-Risk (hereafter VaR) should be addressed. Furthermore, one needs to investigate how
green bond risk is transferred to the conventional bond ones by estimating its spillover effect.

The literature data analysis on green and CBs has covered various issues. Recent research has
been devoted to the estimation of the Option-Adjusted spread between these conventional bond and
green bond controlled by various bond specific, macroeconomic and global factors (Zerbib, 2017;
Nanayakkara and Colombage, 2019). Their findings support that there are strong incentives for investors
to raise funds through issuing GBs while providing investors with an opportunity to diversify their
investments. Karpf and Mandel (2018) show that, although returns on conventional bonds are on average
higher than GBs, the differences can largely be explained by the fundamental properties of the bonds.
Also, Flammer (2018) have shown that GBs yield: positive announcement returns, improvements n
long-term value and operating performance, improvements in environmental performance, increases
in green innovations, and an increase in ownership by long-term and green investors. Gianfrate and
Peri (2019) find that, GBs are more financially convenient than non-green ones. The advantage is
larger for corporate issuers, and it persists in the secondary market. Other research works are mostly
focused on testing the hypothesis of pricing difference using yield and index pricing analyses (Zerbib,
2019; Partridge and Medda, 2020). The purpose of these papers is to test the presence of a statistically
significant green premium (“greenium”) in the primary and secondary market. Both yield curve and
index pricing analyses show a greenium presence in the secondary market but not in the primary issue
for some GBs. Broadstock and Cheng (2019) find that the correlations between green and conventional
bonds are time varying and they are sensitive to: changes in financial market volatility; economic policy
uncertainty; daily economic activity; oil prices and; uniquely constructed measures of positive and
negative news-based sentiment towards GBs. Kanamura (2020) by examining the performance of GBs
over conventional bonds, he has demonstrated that the expected returns of green bond premiums are
positive while decreasing and that the risks of green bond premiums are slightly decreasing but almost
flat over time in the recent years, resulting in positive but decreasing information ratios. This implies
that green bond investment performance is superior to conventional bond investment performance but
the superiority is decaying over time. Huynh et al. (2020) have shown that portfolios consisting of GBs
among others exhibit heavy-tail dependence which implies that in the times of economic turbulence,
there will be a high probability of large joint losses. Also, they infer that volatility transmission is higher
in the short term, implying that short-term shocks can cause higher volatility in the assets, but in the
long run, volatility transmission decreases. In Pham and Huynh (2020), the interaction between investor
attention and green bond markets’ performance is investigated.

The authors conclude that there is a time-varying feedback effect between green bond performance
and investor attention. Also, Huynh (2020) has examined co-movements between GBs and triple-A
government bonds during December 2008–November 2019. Using a heavy-tailed Student’s t-copulas
model, the author sees that diversification of GBs with prime government bonds should be done
cautiously because of return oscillations as unexpected losses in the financial markets during financial
turmoil. Additionally, although GBs have been overlooked owing to their low yield, they also have
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potential risks, specifically contagious risk, which should be considered when investing. Recently,
Agliardi and Agliardi (2021) propose a structural model for defaultable bonds incorporating both
uncertainty about corporate earnings and uncertainty due to climate-related risks. They study how bond
pricing is affected by transition risks, such as those coming from an abrupt change of climate policies.
They show how the issuer’s credit quality changes as a result of its engagement in projects funded by
GBs and study the impact of GBs on investors’ portfolio allocation.

Finally, other approaches investigate hedging strategies based on dynamic hedge ratio (hereafter
HR) estimation using conditional volatility models of the GARCH family (Pham, 2016; Jin et al., 2020).
Pham (2016) signifies that a shock in the overall conventional bond market tends to spillover into the
green bond market, where this spillover effect is variable over time. Moreover, he reveals a non-constant
interaction of volatility between the green bond market and the overall broader bond market due to HR
instability. On the other hand, Jin et al. (2020) point out that GBs are strong hedging instruments since
the green bond index produces positive HR values in the volatile period while other market indexes such
as carbon, energy and commodity index fail to do so.

However, the above estimation strategy adopted by Pham (2016), can be made more robust in
the direction of the use of alternative distributional assumptions regarding to the existing competitive
models. Other issues also arise regarding the use of other measures of risk such as the VaR and its
corresponding loss function. In this paper, we will resolve the model selection problems using univariate
and multivariate conditional volatility analysis and the estimation of conditional VaR at various nominal
levels. One of the most popular multivariate volatility models is the dynamic conditional correlation
(hereafter DCC) model (Engle, 2002; Tse and Tsui, 2002). The main advantage of the DCC model is
the positive definiteness of the conditional covariance matrices and its ability to describe time-varying
conditional correlations and covariances in a parsimonious way. Concerning parametric estimation,
the DCC model can be estimated in two stages, which makes this approach relatively simple and
possible to apply even for very large portfolios. Here, we adopt DCC models of alternative distributional
assumptions such as: the Normal, the Student-t and the Laplace. Concerning the VaR, this is a
quantile risk measure used in finance representing the minimum loss for an asset or portfolio over a
pre-specified time horizon for a given probability (confidence level). In our case, time-varying VaR
and its corresponding loss measure is derived from competing DCC models. Another issue that is
addressed in the present paper is the investigation of the existence of differentiation between alternative
GBs indexes and how this is affecting the volatility clustering and volatility spillovers. Within this
context, this paper can give answers to the following questions: Is correlation between conventional and
GBs subjected to the type of green-labeling? Does correlation between conventional and GBs evolve
differently when it comes to adopt either loose or stringent eligibility green-labeled criteria? How does
the last differentiation affects hedging strategies.

The objective of this study is three-fold. First, we assess the conditional variance and other risk
measures of green bond returns in comparison with the corresponding CBs under alternative volatility
specifications. Thus, by using univariate and multivariate conditional volatility specifications of the
GARCH family, we compare alternative model specifications for their ability to estimate volatility,
conditional covariance and conditional correlation. Special reference is given to the forecasting of
the Value-at-Risk and its corresponding loss using the alternative multivariate specifications. Second,
under the bivariate analysis which involves both conventional and GBs, we analyze issues such as
how volatility spills over between conventional and GBs, whether there is any asymmetry in volatility
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transfer and the effect of condition hedging using a Hedge Ratio (HR). Third, we investigate the above
volatility and correlation dynamics when CB interacts with GBs under either loose or stringent eligibility
green-labeled criteria. This can reveal the existence of potential differentiation in the way one invest
when considering GBs of alternative labeling.

The paper is organized as follows. Section 2 reviews the notion of the conditional volatility and the
conditional VaR. In the same section, we approach conditional volatility and VaR under a univariate
and multivariate version using the DCC models. We specify these models under various distributional
assumptions which involves the Normal, the Student-t and the Laplace cases. Special reference is
given to the conditional VaR estimation and its corresponding loss function. In Section 3 we illustrate
our risk assessment results using real data under univariate and multivariate volatility specifications.
Here, a within sample period is used to assess conditional volatility, covariance and the HR between
conventional and GBs. Section 4 presents forecasting evaluation results using conditional covariance,
VaR and its corresponding loss function measure performed for all of the competing DCC models.
Finally, we present our conclusions in Section 5.

2. Conditional volatility models

The time-varying risk of bond returns expressed by volatility needs to be investigated. A widely
used methodology in modeling volatility is through GARCH(p, q) models. Under this framework,
the bond returns at time t, yt is related to a conditional mean component plus an error term, such as
(Bollerslev, 1986):

yt = µt + εt, εt ∼ IID(0, ht) (1)

where the µt ∼ ARMA(p, q) can be an autoregressive moving average process and the εt an independent
and identically distributed error term with mean zero and variance that equals ht. The latter component
then evolves according to the autoregressive moving average structure with ht being the conditional
variance, such as:

ht = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

β jht− j (2)

Estimation is usually based on maximum likelihood where the stationarity condition α1 + · · ·+ αp + β1 +

· · · + βq < 1 need to be considered. Here, high and statistically significant values for αi and β j indicate
the existence of volatility persistence, where periods of high volatility are followed by periods of high
volatility and periods of low volatility are followed by periods of low volatility. Usually, in financial
returns analysis and considering likelihood test criteria, the GARCH(1, 1) model is adopted. This is of
the form:

ht = ω + α1ε
2
t−1 + β1ht−1 (3)

The time-varying volatility comparison between the green bond and the conventional bond returns can
be done using the above equations separately for each series. Therefore, the estimation and testing
procedure of a univariate GARCH(1, 1) model has the following steps:

1. We estimate the mean values µ̂t for each time t based on an ARMA(p, q) model (usually an
ARMA(1, 1) is enough).

2. We derive the estimated errors ε̂t = yt − µ̂t which are then used as component in the GARCH(1, 1)
specification and the likelihood function derivation.
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3. Given the α1 + β1 < 1 stationarity condition, a conditional maximum likelihood method is used to
estimate the ω, α1 and β1 parameters from a GARCH(1, 1) model.

4. The estimated volatility ĥt is derived together with diagnostic testing score functions such as the
AIC and BIC.

However, if we want to consider the interactions between the green bond and the conventional bond
market this cannot be taken into account using a univariate GARCH model. Thus, under a multivariate
GARCH model the volatility of an asset return doesn’t only depend on its past values but also on the
volatility of an other asset expressed by the covariance function.

Thus, to understand how GBs’ risk evolves dynamically in relation with other CBs we need to
investigate its volatility dynamics simultaneously. Engle (2002) has extended the above univariate
conditional volatility model to the so-called dynamic conditional correlation model (DCC). According
to this, let’s suppose a multivariate N × 1 error process ε t which can be written as:

ε t ∼ IID(0, covt) (4)

distributed according to a D distribution with a N×N conditional covariance matrix. Then, its covariance
functions evolves such as:

covt = Dtcort Dt (5)

with the conditional correlation function

cort = Q∗−1
t QtQ

∗−1
t (6)

and

Qt =

1 − Q∑
i=1

ζi −

P∑
j=1

θ j

 S +
∑

ζi(zt−i z
′

t−i) +

P∑
j=1

θ jQt− j (7)

with Dt = diag(h1/2
1t , . . . , h

1/2
Nt ). Here, the zt denotes the standardized IID N × 1 error such as zt = D−1

t ε t,
the cort denotes the N × N conditional correlation function of the zt, the S the unconditional correlation
of the errors and Q∗t the diagonal N×N matrix which consists of the square root of the diagonal elements
of Qt. The above specification represents the so-called DCC(P,Q)-GARCH model. Concerning the
parameters, these should have the following stationary condition:

∑Q
i=1 ζi +

∑P
j=1 θ j < 1.

Here, the green bond returns yt,G and the conventional bond returns yt,C formulate a bivariate
DCC-GARCH model. The estimation of the DCC’s model involves two steps. First, the estimation of
the following univariate models:

ht,G = ωG +

p∑
j=1

α j,Gε
2
t− j,G +

q∑
k=1

βk,Ght−k,G (8)

ht,C = ωC +

p∑
j=1

α j,Cε
2
t− j,C +

q∑
k=1

βk,Cht−k,C (9)

for the green bond and the conventional bond index returns respectively. Here, ωi > 0, α j,i, βk,i ≥ 0
for i = G,C, j = 1, . . . p and k = 1, . . . , q. The covariance stationarity of εt,i requires that

∑p
j=1 α j,i +∑q

k=1 βk,i < 1. After estimating the above parameters, the standardized residuals are estimated for each
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case: ẑt,i = ε̂t,i/

√
ĥt,i where i = G,C. Then, the conditional correlations between the standardized

residuals are calculated. Thus, the conditional covariance function

ĉt,i, j = (1 − a − b) + aẑt,iẑt−1, j + bĉt−1,i, j (10)

is used to produce the conditional correlation function ρ̂t,i, j = ĉt,i, j/
√

ĉt,i,i · ĉt, j, j. At the end, the first
and the second steps are used to estimate the conditional variance-covariance matrix of the errors
of the two univariate errors analyzed (Engle, 2002). The parameters a and b express the magnitude
of volatility spillover between the analyzed returns. Thus, the estimation and testing procedure of a
bivariate DCC(1,1)-GARCH model has the following steps:

1. Steps 1 and 2 of the univariate GARCH(1, 1) are followed here for each individual series.
2. The likelihood function is split into two parts: the pure volatility one which is like a linear

combination of two univariate likelihood functions and the correlation plus volatility part. Here,
volatility for each series is estimated separately using a univariate-likelihood function under the
maximum likelihood method.

3. Given the univariate volatility estimates derived in step 2, the a and b parameters are estimated
using the second part of the likelihood function and applying the maximum likelihood method.
Here, the AIC and BIC diagnostic scores are also estimated (Engle, 2002).

In the past, various authors have used DCC-GARCH models of linear and non-linear
specifications; such as the DCC-APGARCH, DCC-T-GARCH, and DCC-GJR-GARCH models (Pham,
2016; Reboredo, 2018; Jin et al., 2020). Concerning their results, the two first papers show no
systematic evidences for the need for diversification to CBs when buying GBs. However, all of them
used the Normality assumption for the errors. In the present analysis, we will adopt three
DCC-GARCH model specifications: with Normal, Student-t and Laplace errors.∗

After deriving conditional volatility estimates, one can generate another important risk measure:
the VaR. The VaR is a quantile measure that is widely used in finance as an instrument to control
and manage risk. This measure represents the minimum loss for an asset or portfolio for a given
probability α. This is used as a mathematical tool designed to offer optimal asset allocation in financial
management strategies. The VaR estimates the worst expected loss over a specific time period for a
given nominal level α, such as the following: P(yt < −qt,α) = α with qt,α ≡ {r : F(r) ≥ α} ≡ F−1(α),
where F is the conditional distribution function of the yt observed financial return, F−1 the inverse
conditional distribution, and qt,α the α-level quantile of the distribution function of the yt conditional
on the information up until t − 1 given a vector of returns y = (y1, . . . , yt−1). By estimating the worst
risk, risk analysts can make optimal asset allocation. Conditional VaR strategies that account for the
dependence structure of volatility have been modeled using mostly some fully parametric models
such as the GARCH-class (for other approaches in conditional VaR estimation see: Tsiotas, 2018;
Tsiotas, 2020). In such a case, the location-scale class is based on the assumption that returns belong
to a location-scale family of probability distributions. Using the above approach, we can specify the
conditional VaR estimate at the α-level quantile as:

VaRt,α = µt + D−1(α)
√

ĥt, (11)

∗ Here, the probability density function of the Student-t and Laplace errors is given by: f (x) =
Γ( ν+1

2 )
√
νπΓ( ν2 )

(
1 + x2

ν

)− ν+1
2 and f (x | µ, b) =

1
2b exp

(
−
|x−µ|

b

)
respectively.
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where D−1 is the inverse CDF for the distribution D at α nominal level. In the empirical analysis that
follows, we utilize three different assumptions for the innovation distribution: the Normal; the Student-t
with ν degrees of freedom and the Laplace density.

Table 1. Summary statistics for the returns of the AB, GB and GBS index series.

Statistics and Test
mean sd skewness excess kurtosis min. max. Jarque-Bera test

AB 0.0001 0.00193 −0.4482 4.578 −0.0015 0.0011 2283.416(< 2.2e−16)
GB 5.498e−05 0.0037 −0.3622 7.1844 −0.0305 0.0257 5689.947(< 2.2e−16)
GBS 7.848e−05 0.00425 −0.3714 6.9577 −0.0338 0.02713 5341.005(< 2.2e−16)

Table 2. VaR evaluation for the AB, GB and GBS return series using empirical, Gaussian and
Cornish-Fisher (C-F) methods.

AB GB GBS
VaR Empirical Gaussian C-F Empirical Gaussian C-F Empirical Gaussian C-F
1% −0.0046 −0.0044 −0.0015 −0.0110 −0.0085 −0.0179 −0.0119 −0.0097 −0.0180
5% −0.0029 −0.0030 −0.0070 −0.0056 −0.0061 −0.0066 −0.0062 −0.0068 −0.0067

Table 3. Box-Ljung test for squared returns.

AB returns GB returns GBS returns
Q-stat 606.91 47.481 64.816
p-value < 2.2e−16 5.553e−12 7.772e−16

3. Real data analysis

To make a risk analysis comparison between the conventional bond and the green bond market, we
consider the daily time series data from the S&P U.S. Aggregate Bond Index (denoted hereafter as AB),
the S&P Green Bond Index (hereafter GB), and S&P Green Bond Select Index (hereafter GBS). The
AB measures measures the performance of U.S. dollar-dominated investment grade U.S. fixed income
market, including U.S. Treasuries, quasi-governments, supranational non-U.S. goverments and agencies,
corporates, covered bonds, residential mortgage pass-troughs and taxable municipal bonds. Concerning
its credit rating criteria, the AB has as the minimum credit rating for inclusion in investment-grade
indexes with BBB-/Baa3/BBB-. On the other hand, the GB is composed of a variety of global bonds
labeled “green” by Climate Bond Initiative (CBI) and subject to eligibility criteria. This index undergoes
a re-balancing process once a month, with the intend of keeping the index current. The GBS is a
market value-weighted subset of the GB that seeks to measure the performance of green-labeled bonds
issued globally, subject to stringent financial and extra-financial eligibility criteria. In other words, the
GBS includes those issuers have provided accurate information about the use of proceeds, or whose
compliance with the Green Bond Principles around the “Use of Proceeds, Process for Project Evaluation
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and Selection, Management of Proceeds and Reporting” has been independently verified. Under this
procedure, the GBS calls for higher standards of transparency, disclosure and accountability in the green
bond market (S&P, 2021). Whereas, the the credit rating of the GBS requires as the minimum credit
rating for inclusion in investment-grade indexes with BBB-/Baa3/BBB-, the GB includes sub-indexes
of non-rated bonds issued by U.S. government sponsored enterprises.

For these closing price indexes, we derive the daily returns than span between the 2nd of May
2011 and the 21th of May 2021. Figure 1 presents the returns of the AB, GB and GBS indexes. What
we observe is that in all returns the mean values are nearly zero and the GB and the GBS returns have
spikes that are more extreme than those observed in the AB returns.

Figure 1. Plots of the AB, GB and GBS return series (from top to the bottom).

Before we proceed with our analysis, we summarize some descriptive statistics measures of the
AB, GB and GBS return series described in Table 1. These include the mean, standard deviation,
minimum, maximum, skewness, excess kurtosis coefficients, and the Jarque-Bera normality test. The
mean values show that in all series the return is nearly zero a phenomenon that is widely observed in all
stock return series. As regards the standard deviation this indicates an overall variation of the series.
Thus, we observe that the GBS return series exhibits the highest variation followed by the GB one.
Also, the maximum and the minimum values indicate the upper and the lower range of values returns
can take. Again, the GB return indexes show higher risk than the conventional bond return index with
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the GB having the lowest minimum value and the GBS the highest maximum value among the bond
return indexes. The skewness and excess kurtosis measures assess how much the returns deviate from
the Normality assumption. Therefore, we observe that both the AB and GBs have negative skewness.
Concerning the excess kurtosis, they all have leptokutosis with the GB returns having more than the
others. Finally, the Jarque-Bera test is a test that examines the existence or not of Normality. It is based
on a chi-square distribution with two degrees of freedom. In practice the higher its value the more
probable is to reject the Normality assumption. Under this test and using the p-value results for all
return series we have Normality violation with the stronger one being observed for the GB return index.

An important statistical measure that can quantify the bond market risk between the green and the
conventional market is the VaR. VaR is a number that indicates how much a financial institution can
loose with some probability over a given time horizon.

Here, together with the empirical VaR we demonstrated the values under the Normal and Cornish-
Fisher (C-F) VaR estimates. The Normal VaR estimates (VaRN) are generated by:

VaRN = µ + s · qα,N (12)

where µ and s are the empirical mean and standard deviation values of the return series respectively and
qα,N is the α-level percentile under standard Normality (here (P(Z ≤ qN,α) = α)). A robust type of VaR
that can count for Normality violations such as excess kurtosis and skewness can be estimated using
C-F VaR estimates. These are generated by first deriving the C-F α-level percentile as illustrated below:

qCF,α = qN,α +
a1 · (q2

N,α − 1)

6
(13)

+
K · (q3

N,α − 3qN,α)

24

+
a2

1 · (2q3
N,α − 5QN,α)

36

where a1 is the skewness coefficient and K = a2 − 3 is the excess kurtosis coefficient. Therefore, C-F
VaR estimates (VaRCF) are given by:

VaRCF = µ + s · qCF,α (14)

In Table 2, we present the α = 1% and 5% VaR of the AB, GB and GBS return series using: the
empirical VaR, the Normal VaR and Cornish-Fisher VaR. The empirical one is in accordance to the formal
VaR definition. Under all methods the GBs seem riskier to the conventional bond with the GBS showing
the highest risk under all methods of estimation for both α = 1% and 5% nominal levels. In Figure 2 we
present the α = 1% and 5% VaR of the AB, GB and GBS return using the Normal VaR estimates.
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Figure 2. Normal VaR at α = 1% (in green vertical line) and α = 5% (in blue vertical line)
for the AB, GB and GBS returns (from the top to the bottom).
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Figure 3. Rolling covariance and correlation functions between AB and GB and AB and GBS
using a 100-day and 200-day rolling window. The horizontal line represents the zero value.
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An additional statistical measure that reveals the overall return series characteristics is the rolling
conditional covariance and correlation functions. By selecting a 100 and a 200 day window, we estimate
the empirical covariance and the correlation between AB and GB and between AB and GBS index
return series. Figure 3 demonstrates the results for the 100 and 200 day window respectively. The
rolling covariance and correlation are generally very stable with the stability to be increased with the
increase of the rolling window. What we can observe is that the rolling covariance and correlation
between the AB and the GBS are more stable than those between the AB and the GB a phenomenon
that shows that there is more causal relationship between the AB and the GBS than between the AB and
the GB indexes.

3.1. Univariate GARCH modeling

In this subsection we will do conditional volatility estimation for each return series separately. Before
we proceed with a univariate GARCH estimation, we test whether a GARCH model is valid for the
available return series. To do so, we need to test for the existence of correlation in the squared returns
using the Ljung-Box test. The Ljung–Box statistic uses the squared residuals of an ARMA(p, q) model
to check for GARCH model adequacy (for details see Tsay, 2005). Table 3 reports the statistic of this
test using the squared residuals of the ARMA(1, 1) model. Under the p-value results, the null hypothesis
which signifies that there are not GARCH effects is rejected even at the 1% significance level for all
return series. Another, less formal test for the validity or not of GARCH modeling is to assess the absolute
and the squared return values for serial correlation using autocorrelation functions (ACF). In Figure 4,
we report the ACF of the observed, the absolute and the squared AB, GB and GBS return series. These
indicate that these is nearly zero correlation in the returns and significant correlation in both the absolute
and squared returns for all series. This signifies that the series can exhibit significant correlation in their
volatility (volatility clustering). In such a case, periods of high volatility may be followed by periods of
high volatility and periods of low volatility may be followed by periods of low volatility.

After this formal and informal test for the existence of the conditional volatility effect, we run
univariate volatility estimation for the three return series using the whole sample. Initially, we consider
alternative Autoregressive Conditional heteroscedasticity (ARCH) and GARCH models of various p
and q specifications. However, as the extended financial literature suggests, the GARCH(1, 1) process
is the best specification when it comes to estimate volatility dynamics (Tsay, 2005). The parametric
model that is considered here is the GARCH(1, 1) model with Gaussian and Student-t errors. Much of
the literature on conditional volatility estimation and forecasting uses these models as benchmarks. The
models are specified as:

yt = µt + εt, εt ∼ IID(0, ht) (15)

ht = ω + α1ε
2
t−1 + β1ht−1 (16)

for distribution D with Normal and Student-t errors. Table 4 presents the estimated parameters of the
univariate GARCH(1, 1) model for the AB, the GB and the GBS return series under the Normal and
the Student-t distribution assumptions. To perform the models fitness we use the AIC and the BIC
score functions. Under these measures the Student-t GARCH(1, 1) model is the best performer since it
minimizes both scores under all data cases. The reported parametric estimates that correspond to the α1,
β1 and ν have a high level of significance in all data cases. In terms of the measure of persistence in
conditional volatility (α1 +β1), the GB return series have the highest persistence with the GBS following
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and the AB in the third place. This is translated into more volatility clustering for the green bond indexes
compared to the conventional one. Also, using the ln 0.5/(ln(α1 + β1) measure one can count the days
needed to reduce a volatility shock by 50% (see Pham, 2016 for details). This is estimated in 17.7207
days for the AB index, 137.2096 days for the GB index and 132.2114 days for the GBS one. Again,
the volatility impact of the GB index is considered the highest compared to the other two. If we see
the conditional variance estimates using the Student-t model, presented in Figure 5, we can diagnose
that although the GB index has a higher volatility clustering compared to the GBS the latter has higher
minimum and maximum volatility values with a very high volatility spike observed in mid of 2014.
This characteristic comes in accordance to the VaR results where the GBS index has been considered
as the riskiest asset compared to the AB and GB ones. Concerning the kurtosis parameter ν, again the
GB index returns show higher deviation from Normality than the CB. Here, the GBS series show the
highest deviation since the estimated degrees of freedom parameter ν is the lowest one.

Figure 4. Autocorrelation functions of the returns, absolute returns and squared returns of the
AB, GB and GBS series.
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Figure 5. Conditional standard deviation using the univariate GARCH(1,1) model under
Student-t errors and using the AB index returns, the GB index returns and the GBS index
returns (from the top to the bottom).
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Table 4. Univariate GARCH(1, 1) estimation for AB, GB and GBS return series under the
Normal and the Student-t (Std) model.

AB-Normal AB-Std
Parameter Estimate Std. Error t value Pr(> |t|) Estimate Sd t value Pr(> |t|)

µ 1.197e-04 2.870e-05 4.170 3.05e-05 1.114e-04 2.869e-05 3.883 0.000103
ω 1.479e-07 3.384e-08 4.373 1.23e-05 1.384e-07 3.220e-08 4.298 1.72e-05
α1 0.0715 9.845e-03 7.266 3.69e-13 0.06984 9.537e-03 7.323 2.42e-13
β1 0.8875 1.677e-02 52.923 < 2e-16 0.8918 1.610e-02 55.392 < 2e-16
ν 9.0207 0.9812 9.1935 < 2e-16
AIC −9.7446 −9.754
BIC −9.7479 −9.729

GB-Normal GB-Std
Parameter Estimate Sd t value Pr(> |t|) Estimate Sd t value Pr(> |t|)

µ 6.124e-05 4.942e-05 1.239 0.215276 0.000109 0.000054 2.01696 0.043699
ω 8.604e-08 2.285e-08 3.765 0.000167 0.000000 0.000000 0.39728 0.691158
α1 0.0576 5.830e-03 9.890 < 2e-16 0.053898 0.006589 8.17991 0.000000
β1 0.9378 5.930e-03 158.144 < 2e-16 0.941063 0.005748 163.7170 0.000000
ν 6.736408 0.781254 8.62256 0.000000
AIC −8.5107 −8.864
BIC −8.5040 −8.625

GBS-Normal GBS-Std
Parameter Estimate Sd t value Pr(> |t|) Estimate Sd t value Pr(> |t|)

µ 6.752e-05 5.541e-05 1.219 0.223 0.000117 0.000060 1.94982 0.051197
ω 1.239e-07 3.150e-08 3.935 8.33e-05 0.000000 0.000000 0.49532 0.620374
α1 0.0543 5.812e-03 9.349 < 2e-16 0.050485 0.006015 8.39386 0.000000
β1 0.9393 6.243e-03 150.463 < 2e-16 0.944286 0.005254 179.7283 0.000000
ν 6.396175 0.697954 9.16418 0.000000
AIC −8.3067 −8.405
BIC −8.2999 −8.389

Note: Entries in each table represent the estimated parameter (Estimate), the standard deviation (sd), the t-stat under the zero
parameter hypothesis and the p-value Pr(> |t|) of the same test.
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Table 5. AIC and BIC scores for alternative Bivariate DCC(1, 1)-GARCH models on AB-GB
and AB-GBS return series .

scores
AIC BIC

AB-GB MV-Normal −18.323 −18.297
MV-Student-t −18.366 −18.337
MV-Laplace −18.164 −18.144

AB-GBS MV-Normal −18.057 −18.036
MV-Student-t −18.103 −18.083
MV-Laplace −17.954 −17.936

Note: The boxed numbers indicate the favored estimation case.

3.2. Bivariate GARCH modeling

In the univariate GARCH analysis we have captured volatility dynamics for the individual time
series. However, this fails to capture a potential volatility interaction (or spillover) between the time
series especially those between GBs and CBs. As seen on Figure 5, there are periods where the bond
returns’ volatility moves towards the same and in some other periods the opposite direction. In this
subsection, we intend to analyze the volatility movements of the GB and the GBS returns in relation with
those expressed by conventional bond returns such as the AB ones. In practice we will demonstrate the
results of the bivariate DCC(1, 1)-GARCH model applied in two cases: the AB with the GB (hereafter
AB-GB) return series and the AB with the GBS return series (hereafter AB-GBS).

We have specified three DCC-GARCH specifications depending on the distribution assumption
assumed: The Multivariate Normal (hereafter MV-Normal), the Multivariate Student-t (hereafter MV-Std)
and the Multivariate Laplace (hereafter MV-Laplace). Under these specifications, we estimate the Bivariate
models for the AB-GB and AB-GBS index return series. In Table 5 we demonstrate two diagnostic testing
measures such as the AIC and the BIC scores. Results show that the MV-Std is the best performer under
the two multivariate data cases. Here, we need to point out that other DCC-GARCH specifications such as
the asymmetric (DCC-GJR-GARCH), with threshold (DCC-T-GARCH) and the flexible DCC-GARCH
cases do not perform better than the “standard” DCC-GARCH models. More specifically, the asymmetric
DCC-GARCH model aims to count for the leverage effect observed in many financial data. As results have
shown (NB: not demonstrated in the present manuscript), the asymmetric coefficient is very small and
statistically insignificant signifying that the volatility transfer between green and CBs is not affected by the
leverage effect.

In Table 6 we summarize our results under the MV-Std DCC-GARCH model. First, in the AB-GB
case we see that in the p-value results of all important variables that influence volatility estimation are
statistically significant at the 1% significance level (they have p-value < 1%). Again, the GB index exhibit
higher volatility clustering compared to the AB index. Moreover, the positive and statistical significant
value of bAB,GB signifies a volatility spillover between the GB and the AB index. This is translated into a
positive conditional correlation of a small value. In Figure 6, we see how the conditional standard deviation
of the GB return series is larger compared to that of the AB ones. This comes in accordance with the
univariate GARCH results. Also, in Figure 8, we see that the conditional correlation between these two
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return series is unstable. However, on average, the GB is positively correlated with the market benchmark
AB index. This signifies that the use of environmentally friendly projects has sometimes created different
patterns from conventional bonds. Secondly, in the AB-GBS case we see that the p-value results of all
important variables that influence volatility estimation are statistically significant at the 1% significance
level (they have p-value < 1%) with the exception of the α1,GBS which is significant at 10% significance
level (they have p-value < 10%). Here, the AB and the GBS indexes exhibit similar volatility clustering.
The positive and statistical significant value of bAB,GBS also signifies a volatility spillover between the GBS
and the AB indexes. In Figure 7 we see the conditional standard deviation of the GBS return series to
be systematically larger compared to that of the AB ones. This comes in accordance with the univariate
GARCH results.

Table 6. Bivariate Student-t DCC(1, 1)-GARCH model results for AB-GB return series and
AB-GBS return series.

AB-GB
Parameter Estimate Std. Error t value Pr(> |t|)
µAB 0.000137 0.000033 4.119006 0.000038
ωAB 0.000000 0.000000 0.106180 0.915440
α1,AB 0.084308 0.024715 3.411237 0.000647
β1,AB 0.913232 0.020377 44.816288 0.000000
µGB 0.000089 0.000059 1.502241 0.133035
ωGB 0.000000 0.000002 0.036071 0.971226
α1,GB 0.061456 0.059537 1.032232 0.301963
β1,GB 0.935438 0.054711 17.097768 0.000000
aAB,GB 0.008254 0.011714 0.704645 0.481031
bAB,GB 0.841273 0.144074 5.839178 0.000000
ν 9.316885 0.494763 18.830997 0.000000

AB-GBS
Parameter Estimate Std. Error t value Pr(> |t|)
µAB 0.000114 0.000029 3.996301 0.000064
ωAB 0.000000 0.000002 0.028356 0.977378
α1,AB 0.058638 0.115101 0.509447 0.610439
β1,AB 0.924675 0.108233 8.543392 0.000000
µGBS 0.000060 0.000056 1.055131 0.291366
ωGBS 0.000000 0.000002 0.071799 0.942762
α1,GBS 0.053057 0.037221 1.425444 0.154029
β1,GBS 0.941117 0.035894 26.219468 0.000000
aAB,GBS 0.000000 0.000272 0.001721 0.998627
bAB,GB 0.906743 0.106205 8.537646 0.000000
ν 10.351443 1.198938 8.633844 0.000000

Note: Entries in each table represent the estimated parameter (Estimate), the standard deviation (sd), the
t-stat under the zero parameter hypothesis and the p-value Pr(> |t|) of the same test.
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Figure 6. Conditional standard deviation for AB and GB cases computed using the Bivariate
DCC(1, 1)-GARCH model with Student-t errors.

Figure 7. Conditional standard deviation for AB and GBS cases computed using the Bivariate
DCC(1, 1)-GARCH model with Student-t errors.
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Figure 8. Conditional correlation for the AB-GB and the AB-GBS cases computed using the
Bivariate DCC(1, 1)-GARCH model with Student-t errors. The horizontal line represents the
zero value.
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Figure 9. Hedge ratio for the AB-GB and the AB-GBS cases computed using the Bivariate
DCC(1, 1)-GARCH model with Student-t errors. The horizontal line represents the mean
hedge ratio value.
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Moreover, in Figure 8, we see the conditional correlation between these two return series. In
contrary to the AB-GB case, the AB-GBS ones show on average negative conditional correlation which
is less stable than the corresponding in the AB-GB case. Another important finding is that, for the
period after the 2015, positive correlation values between the AB-GB indexes is associated with negative
correlation values between the AB-GBS indexes and vice versa. This signifies an important sign of
differentiation between the GB and GBS.

Using the above conditional estimates of standard deviations and covariance functions, we use
these results to derive HRs. The HR between the AB and a green bond returns is given by (see Kroner
and Sultan, 1993):

γAB, j,t =
σAB, j,t

σ2
AB,t

(17)

with j = GB,GBS where σAB, j,t to denote the covariance between the AB and the green bond return
indexes at time t and σ2

AB,t to denote the variance of the AB index at time t† . Generally, a positive HR
shows the extent to which a long position in a green bond can be hedged by a short position in the
conventional bond. On the other hand, a negative HR shows the extent to which a short position in the
green bond can be hedged by a long position in the conventional bond.

In Figure 9 we show the time-varying HR for the AB-GB and the AB-GBS cases. First, we
observe that on average the HR value of the AB-GB case is positive and the corresponding one for the
AB-GBS case is negative. This indicates that, for the AB-GB case, a long position in the GB should
be hedged by a short position in the AB asset which price is expected to drop. By having an average
HR value of 0.0219, one can say that the optimal quantity of hedge for 1 million dollar of investment
is 0.0219 million dollars. On the other hand, a negative HR value for the AB-GBS case indicates
that, a short position in the GBS can be hedged by a long position in the AB which price is expected
to rise. By having an average HR value of −0.0012, one can say that the optimal quantity of hedge
for 1 million dollar of investment is 0.0012 million dollars. Looking at the dynamics of the HRs, we
observe significant differences in hedging strategies where periods with a positive HR values between
the AB-GB indexes is associated with negative HR values between the AB-GBS indexes and vice versa.
This again signifies the existence of differentiation strategies one should adopt when he/she considers
hedging. Also, the magnitude of the absolute HR value is larger in the AB-GB than in the AB-GBS
case signifying that the level of hedging is stronger in the AB-GB than in the AB-GBS case.

To robustify the above estimation results, we present the AIC and the BIC scores when out total
sample is divided into three sub-samples. Here, we denote as period I the one that than span between
the 2nd of May 2011 and the 22th of August 2014, as period II the one that than span between the
25th of August 2014 and the 15th of January 2018, and as period III the one that than span between
the 16th of January 2018 and the 21th of May 2021. For these periods and for the AB-GB and the
AB-GBS cases, we have estimated the MV-Normal, the MV-Std and MV-Laplace models. In Table 7
we demonstrate two diagnostic testing measures such as the AIC and the BIC scores. Again, results
show that the MV-Std is the best performer under the two multivariate data cases for all three periods.

† As stated by Chen and Sutcliffe (2012), the average position in the hedging instrument, or the average HR, can be considered as a proxy
for the transaction cost.
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3.2.1. Portfolio assessment using a portfolio rebalancing method

In this paragraph, we assess the portfolio weights adopted for both the AB-GB and the AB-GBS
cases using portfolio rebalancing. Portfolio rebalancing is an important part of the portfolio management
process. Usually, once a portfolio manager determines a target portfolio, maintaining this balance of
assets is non-trivial. Therefore, due to changes in portfolio return and risk, a manager must rebalance
actively the portfolio weights in an optimal way. Conventional approaches to portfolio rebalancing
include periodic and tolerance band rebalancing (Masters, 2003). With periodic rebalancing, the
portfolio manager adjusts to the target weights at a consistent time interval (e.g., monthly or quarterly).
The time-varying weights are estimated using an objective function which is usually based on mean and
variance estimates of the portfolio assets.

Here, we use the quadratic utility function, with it expected value being of the form:

Uq(µp, σp) = µp −
φ

2
σ2

p (18)

with µp the portfolio mean, σp the portfolio standard deviation and φ the risk aversion parameter‡.
In practice, from the selected MV-Std DCC-GARCH model, we draw random samples for the mean

return values from each series i based on µ̂i + σ̂t,i

√
ν̂−2
ν̂
· Tν̂(0, 1). Here, Tν̂(0, 1) denotes a Student-t

random variable with mean 0, variance 1 and ν̂ degrees of freedom which are estimated. The µ̂i and σ̂t,i

components represent the corresponding mean and variance estimates of each series. After, we derive
the portfolio mean value µp =

∑2
i=1 wiµi and the portfolio variance value σ̂2

p =
∑2

i=1 wiσ̂
2
i + 2w1w2ĉt,1,2.

Thus, the w1 and w2 weight components are derived optimally under the w1 + w2 = 1 restriction. In
Figure 10, we show the time-varying portfolio weights for both the AB-GB and AB-GBS cases. What
is diagnosed is that the AB dominates both the GB and GBS indexes in most of the observed quarters.
Also, one can observe that the GB weights are more volatile and of marginally higher value than the
corresponding GBS weights. A recent work by Nguyen and Huynh (2019) has used an alternative
approach to derive portfolio weights. Under this paper’s approach, a risk measure based on conditional
value-at-risk (CVaR) is used in order to achieved the maximal expected return for investments.

Table 7. AIC and BIC scores for alternative Bivariate DCC(1, 1)-GARCH models on AB-
GB and AB-GBS return series using three sub-periods (boxed numbers indicate the favored
estimation case).

period I period II period III
AIC BIC AIC BIC AIC BIC

AB-GB MV-Normal −18.025 −17.994 −18.742 −18.690 −18.639 −18.581
MV-Student-t −18.070 −18.031 −18.789 −18.724 −18.680 −18.607
MV-Laplace −17.914 −17.882 −18.646 −18.594 −18.549 −18.490

AB-GBS MV-Normal −17.889 −17.858 −18.451 −18.399 −18.439 −18.302
MV-Student-t −17.943 −17.904 −18.483 −18.418 −18.837 −18.453
MV-Laplace −17.789 −17.757 −18.324 −18.272 −18.038 −17.938

‡ Here, we suppose a risk aversion parameter that equals 0.25.
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Figure 10. Time-varyng portfolio weights for the AB-GB and the AB-GBS cases computed
using the Bivariate DCC(1, 1)-GARCH model with Student-t errors.
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Table 8. Bivariate Student-t DCC(1, 1)-GARCH model mean results for AB-GB return series
and AB-GBS return series using the pro-COVID-19 and COVID-19 periods.

AB-GB
pro-COVID-19 COVID-19

α1,AB 0.035578 0.256625
β1,AB 0.959976 0.663642
α1,GB 0.034632 0.156793
β1,GB 0.961384 0.760333
aAB,GB 0.013729 0.017160
bAB,GB 0.856911 0.931651
Correlation 0.018410 0.01443
HR 0.019897 0.034698

AB-GBS
pro-COVID-19 COVID-19

α1,AB 0.034412 0.249544
β1,AB 0.951625 0.676667
α1,GBS 0.036109 0.144773
β1,GBS 0.959335 0.773899
aAB,GBS 0.0000 0.038845
bAB,GBS 0.856166 0.931651
Correlation -0.000834 -0.00021
HR -0.0013739 -0.000330

3.2.2. Assessing the COVID-19 Pandemic effect

Finally in this section, we investigate the effect of the COVID-19 Pandemic on the Bivariate
GARCH Modeling results. In practice we divide the sample period to two sub-periods: from the 2nd
of May 2011 till the end of December 2019, and from the 2nd of January 2020 till the 21th of May
2021. The first period is called as the pre-COVID-19 period and the second as the COVID-19 period.
Our intention is to assess the COVID-19 Pandemic effect on the volatility clustering, the conditional
covariance-correlation and the HR. Thus, we investigate whether one can observe differences in risk
analysis when comparing the pre-COVID-19 with the COVID-19 period.

In Table 8 we present the mean estimate results under the MV-Std DCC(1,1)-GARCH model for
these two time-periods. Here, we need to point out that for all estimation results we have statistical
significance with p-value < 1%. First, we diagnose that the volatility persistence of the COVID-19
period is lower than the corresponding in the pre-COVID-19 period. More specifically, under the AB-GB
case, the volatility persistence for the AB index equals 0.995554 for the pre-COVID-19 period and
0.920267 for the COVID-19 period which is translated to the corresponding 155.5567 and 8.341981 days
needed to reduce a volatility shock by 50%. For the GB index, we have volatility persistence that equals
0.996037 for the pre-COVID-19 period and 0.988603 for the COVID-19 period. Again, this is translated
to 174.5579 and 60.47115 days needed to reduce a volatility shock by 50% for the pre-COVID-19 and
COVID-19 periods respectively. Now, under the AB-GBS case, the volatility persistence for the AB
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index equals 0.996037 for the pre-COVID-19 period and 0.988603 for the COVID-19 period. This
is translated to the 155.5567 and 8.341981 days needed to reduce a volatility shock by 50% for the
pre-COVID-19 and COVID-19 periods respectively. For the GBS index, we have volatility persistence
that equals 0.995444 for the pre-COVID-19 period and 0.988278 for the COVID-19 period. Again,
this is translated to 151.7926 and 58.78491 days needed to reduce a volatility shock by 50% for the
pre-COVID-19 and COVID-19 periods respectively.

Concerning the volatility spillover, expressed by the a and b parameters, we diagnose that this is
higher for the COVID-19 period when compared with the pre-COVID-19 period. This is observed for
both AB-GB and AB-GBS cases.. Finally, as regards the level of conditional correlation and that of HR,
we see that for both periods we have mean values of the same sign with no significant differences. As it
is more obvious in Figures 8 and 9, where we present the time-varying correlation and HR functions
for the AB-GB and AB-GBS cases, the COVID-19 period is characterized by a period of negative and
a period of positive correlation. The latter signifies non-constant interaction of volatility between the
GBs and the AB within the COVID-19 period. A recent work in Huynh et al. (2021) has analyzed the
effect of the COVID-19 period in the equity market using the predictive power of a newly constructed
“feverish” index on stock returns and volatility.

Table 9. MAFE and MSFE results for alternative Bivariate DCC(1, 1)-GARCH models on
AB-GB and AB-GBS return series.

MAFE MSFE
AB-GB MV-Normal 0.1196 0.1210

MV-Student-t 0.1190 0.1198
MV-Laplace 0.1233 0.1237

AB-GBS MV-Normal 0.1790 0.2264
MV-Student-t 0.1765 0.2219
MV-Laplace 0.1944 0.2364

Note: The boxed numbers indicate the favored estimation case.

4. Forecasting

In this section, we compare the forecasting performance of the three DCC-GARCH models. Based
on a within-sample estimation where parameters are estimated separately for each competing model,
we formulate out-of-sample forecasts for the conditional variance and covariance functions. The
out-of-sample period is derived by extracting the last S = 1000 observations from a period of 2619
observations. Thus, the forecasting period is from the 23th of May 2017 to the 21th of May 2021. The
purpose of this exercise is to investigate the effect of the use of alternative distributional assumptions
in forecasting the covariance and VaR estimates. Also, by estimating the VaR its corresponding loss
function, one can have a view of the tail of the distribution as regards both conventional and GBs.
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4.1. Conditional covariance

For the conditional covariance evaluation, we use the index return products as a proxy. Here, we perform
a one-step ahead conditional covariance function estimation. As evaluation measures, we use the Mean
Absolute Forecast Error (MAFE) and the Mean Squared Forecast Error (MSFE). Compared to the MSFE,
the MAFE measure puts less weight on possible outliers of our forecasts. The forecasting performance
results are presented in Table 9. As the results indicate the DCC-GARCH under the multivariate Student-t
errors outperforms the other two in the AB-GBS conditional covariance estimation, whereas, in the AB-
GB conditional covariance estimation, the DCC-GARCH under the multivariate Normal errors is the best
performer under MAFE measure and the corresponding under the Student-t errors under the MSFE measure.

4.2. Conditional value-at-risk

For the same out-of-sample period, we perform one-step-ahead volatility forecasts for the three
competing models using the two bivariate settings. These forecasts are then used to formulate the
one-step-ahead α-level conditional VaR estimate for each univariate series, such as:

VaRt+1,α = µt+1 + D−1(α)σ̂t+1 (19)

where D−1 is the inverse CDF for the distribution D at α nominal level. In the empirical analysis below,
we utilize three different assumptions for the innovation distribution: the normal; the Student-t with ν
degrees of freedom and the Laplace density. In the case of the Student-t model, the quantile measure is

formulated as µt+1 + D−1(α)σ̂t+1

√
ν−2
ν

for the ν degrees of freedom.
We will evaluate the conditional VaR estimates using three measures: the Violation Rate (hereafter

VRate), the quantile loss function and the two-hypothesis testing methods based on the unconditional
and conditional tests (see Kupiec, 1995; Christoffersen, 1998). First, the VRate is a common non-
test criterion to compare alternative VaR estimates defined as the proportion of days for which the
actual return is more extreme than the forecasted VaR level, over the forecast period. Thus, one
should investigate how these specifications can estimate VaR at a pre-specified nominal level given the
alternative models. Here, we calculate the VRate which takes the following form for an S forecasting
period S −1 ∑S

t=1 I(yt < VaRt,α). This non-statistical validation test estimates the empirical nominal level
â. This becomes the proportion which represents the fraction of days for which the actual return yields
bigger losses than the estimated VaR over a given forecast evaluation period of S . When the estimated
α̂ equals to the given nominal level α this is highly desirable. However, this α̂ = α condition is only
rarely met. In practice, when α̂ < α, the losses are underestimated (conservative), while on the other
hand, when α̂ > α the losses are overestimated and this results in capital allocation with potential losses.
In practice, underestimation is more desirable than overestimation unless α̂/α equals one.

Then, we calculate a quantile criterion function based on the log-transformed loss function

log E[Lα(et)] = log
∑

t

(α − I{et<0}) · et (20)

where et = yt−VaRt,α. The above criterion function should be minimized for the forecasting period adopted.
Finally, we use the unconditional coverage test by Kupiec (1995) and the conditional coverage test

by Christoffersen (1998). The first, is a likelihood ratio test of the hypothesis that the nominal level
equals the estimated VRate when conditional dependence is assumed. According to this, we test whether
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the VRate α̂ obtained by the candidate model is significantly different from the proposed nominal level
α. According to this, the likelihood function of the i.i.d. Bernoulli sequences is defined as:

L(α̂) =

S∏
t=1

(1 − α̂)1−It+1α̂It+1 = (1 − α̂)S 0α̂S 1 (21)

where S 0 and S 1 are the number of 0s and 1s in the sample. Therefore, the VRate is expressed as
α̂ = S 1/S . Under the H0 hypothesis α̂ = α and its likelihood function is defined as: L(α) = (1 − α)S 0αS 1 .
Then, we derive the likelihood ratio unconditional coverage test, such as:

LRuc = −2 ln[L(α)/L(α̂)] ∼ χ2
1 (22)

distributed as a χ2 distribution with one degree of freedom. Under the second test: the conditional
coverage test derived by Christoffersen (1998) this is based on a first-order Markov sequence with a
transition probability matrix such as:

Â =

[
1 − α̂01 α̂01

1 − α̂11 α̂11

]
(23)

Under this matrix, the α̂01 corresponds to the probability given 0 today to have a 1 result the next
day; i.e. Pr(It + 1 = 1, It = 0), whereas the α̂11 corresponds to the probability given 1 today to have a 1
result the next day; i.e. Pr(It + 1 = 1, It = 1). Thus, the probability of a 0 event following a 0 event is
1 − α̂01, and the probability of a 0 event following a 1 event is 1 − α̂11. Then the likelihood function for
the S forecast period is defined as:

L(Â) = (1 − α̂01)S 00α̂S 01
01 (1 − α̂11)S 10α̂S 11

11

Now, under the null hypothesis of the test, the probability of a violation tomorrow does not depend
on today being a violation or not having α01 = α11 = α. Now, the likelihood ratio conditional coverage
test becomes as follows:

LRcc = −2 ln[L(A)/L(Â)] ∼ χ2
1 (24)

In practice, in order for the VRate to be validated, we intend for the forecasting data to show
acceptance of the null hypothesis with p-values at least equal to 5%.

Table 10 reports the one-step-ahead α̂/α ratio for all data series under the bivariate DCC-GARCH models
under MV-Normal, MV-Std and MV-Laplace specifications at the 1% and 5% significance level. Also, for the
same models, we report a quantile criterion function based on the log-loss function log E[Lα(et)] appearing in
(4). Finally, in the same table we report two formal statistical tests: the unconditional coverage test (denoted
as LRuc) and the conditional coverage test appearing in (5) and (6) respectively. Results at α = 1% show
that under the α̂/α ratio criterion, the MV-Std model specification ranked first in three out of four data cases,
whereas the MV-Normal and MV-Laplace specification show similar VRate results in one case. Concerning
the unconditional and the conditional coverage tests the first seems very sensitive with nine rejections out
of twenty four test cases. The conditional coverage test is never rejected. At α = 5% and under the α̂/α
ratio criterion, we have the MV-Normal specification coming first in two out of four cases. Concerning the
unconditional and the conditional coverage tests they both have no rejections. Under the loss function criterion,
we observe that GBs systematically have larger losses than the convectional ones in all model specifications
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and under both nominal levels. Now, concerning the distribution specification, at α = 1% nominal level the
MV-Std specification outperforms the others in all cases whereas for α = 5% the MV-Normal one dominates
the rest as in the case of the α̂/α ratio criterion.

The conditional VaR forecasting results demonstrate a number of general results:

1. Among the DCC(1, 1)-GARCH models with different distribution assumptions, the one selected
under the VRate criterion depends on the nominal level assumed.

2. At α = 1% nominal level the MV-Std model seems to outperform the MV-Normal and MV-Laplace
whereas at α = 5% the MV-Normal model outperforms the MV-Std and the MV-Laplace models.

3. Model selection results under the loss function measure seem to coincide with those of the VRate
one.

4. Under the loss function measure, GBs convey higher risk than CBs.

5. Conclusions

The need for financing the green economy has urged the financial market to issue green bond
products. These have been in the interest of investors who mostly want to promote investments that are
environmentally friendly. However, growing interest in these products has raised questions regarding
whether GBs differ to CBs in terms of their risk and whether there are any systematic patterns between
these two different products. To answer these questions we have collected daily closing prices of green
and conventional bond indexes. For the purposes of analyzing their risk, we took the daily returns of
these series. The preliminary and conditional variance and covariance statistical analysis implemented
using univariate and bivariate GARCH models has revealed the following results:

1. Risk expressed by conditional volatility as well as VaR measures is higher for green bond than for
conventional bond returns.

2. Volatility clustering exists within conventional bond and green bond returns with the GBs
demonstrating a marginally higher level of clustering than the CBs.

3. There are cases where we observe volatility spillover between the green bond and the conventional
bond returns.

4. There are significant differences in conditional correlations when comparing the conventional
bonds with green bonds of either loose or stringent green-labeled criteria.

5. The adoption of loose or stringent eligibility green-labeled criteria can significantly affect hedging
strategies.

6. The COVID-19 Pandemic period is associated with lower volatility persistence for both green
and conventional bonds when compared to the pre-COVID-19 period. Also, we observe a higher
spillover effect between conventional and GBs.

These results have several consequences for investors and decision makers. These are as follows:
First, the estimation of time-varying volatility as well as the VaR measure can help investors to construct
an optimal portfolio where assets of high risk like the GBs can be mixed with assets of lower risk such as
the CBs. Second, the different signs of correlations and HRs observed in the AB-GB and AB-GBS cases
indicate that, the way these indexes are generated has a significant effect in their real diversification.

Finally, the present approach can be easily applied in cases of other sub-indexes of green bonds,
indexes of specific issuers, sectors or geographical areas, stocks, gold, crude oil, cryptocurrencies etc.
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