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Abstract:  In this paper,we proposed an enhanced whale migration algorithm (EWMA) that
integrates two novel strategies: Normal cloud model mutation (NCMM) and Fast Random Opposition-
Based Learning. NCMM enables adaptive uncertainty management through expectation-entropy-
hyperentropy mechanisms to balance exploration and exploitation. FROBL improves population
diversity and convergence speed via oscillatory perturbations and nonlinear scaling. EWMA
outperformed eight competing algorithms when evaluated on 23 benchmark functions and the
CEC 2019, achieving optimal results on 18 of the 23 benchmark functions and all 10 CEC 2019
functions. It ranked first overall, significantly surpassing the other algorithms. Statistical analysis
confirmed notable improvements in solution accuracy, convergence speed, and stability, with
standard deviations 2-4 orders of magnitude lower than those of competitors. Engineering
applications, including pressure vessel design, cantilever beams, and reinforced concrete beams,
further demonstrated EWMA'’s practical effectiveness, yielding optimal designs with improved
constraint handling. EWMA offers a robust optimization tool for complex engineering problems
requiring global search capability and precise local refinement.

Keywords: whale migration algorithm; normal cloud model; opposition-based learning; engineering
optimization; metaheuristic algorithms

1. Introduction

Nature-inspired optimization algorithms are widely used to solve complex real-world problems
characterized by nonlinearity, multimodality, and high-dimensional search spaces [1,2]. Traditional
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methods, such as gradient-based methods and linear programming, often struggle with these challenges
due to their reliance on convexity assumptions and vulnerability to local optima [3]. In contrast, bio-
inspired metaheuristics offer robust alternatives by emulating natural phenomena, including swarm
intelligence, evolutionary processes, and animal behavior [4].

Over the past few decades, numerous nature-inspired optimization algorithms have been
developed, each using distinct strategies to balance exploration (global search) and exploitation (local
refinement) [5]. The genetic algorithm (GA) [6], inspired by Darwinian evolution, evolves candidate
solutions via selection, crossover, and mutation but often converges slowly. Particle swarm
optimization (PSO) [7], modeled on bird flocking and fish schooling, updates particle velocities based
on personal and global best positions but may converge prematurely in complex landscapes. The grey
wolf optimizer (GWO) [8], which simulates hierarchical wolf hunting behavior, demonstrates strong
exploitation but limited exploration in high-dimensional spaces. Differential evolution (DE) [9]
generates solutions through mutation and crossover but requires careful parameter tuning. The whale
optimization algorithm (WOA) [10], based on humpback whale migration strategies, struggles with
complex constraints. The dung beetle optimizer (DBO) [11], inspired by dung beetle behavior,
performs well on benchmarks but often requires enhancement for constrained engineering tasks. Last,
the arithmetic optimization algorithm (AOA) [12], which uses arithmetic operators to guide the
search, may lack adaptability in dynamic environments. The snake optimizer (SO) [13] is a new
bio-inspired algorithm that simulates snake mating behavior to efficiently solve
optimization problems.

Recent innovations in metaheuristics have significantly advanced optimization capabilities across
domains. Novel bio-inspired algorithms such as the artificial lemming algorithm (ALA) [14] and the
multi-strategy snow ablation optimizer (MSAQO) [15] have demonstrated improved performance
through their adaptive behavior and enhanced search strategies. These developments have been
complemented by domain-specific breakthroughs. For example, Fu et al’s [16] MOFS-REPLS
algorithm addresses high-dimensional feature selection in multi-objective optimization.  In
engineering design, methods such as the multi-strategy collaborative crayfish optimization
algorithm (MCOA) [17] and Chen et al.’s [18] adaptive many-objective approach effectively solve
complex constrained problems. Collectively, these contributions push the boundaries of optimization
in both methodology and real-world application.

Despite these advances, challenges remain in maintaining an optimal balance between exploration
and exploitation, particularly in constrained and high-dimensional optimization problems [19]. Many
algorithms still suffer from premature convergence, sensitivity to parameter settings, and difficulty
escaping local optima [20]. To address these limitations, recent developments have focused on hybrid
approaches that combine multiple strategies [10]. The normal cloud model, derived from uncertainty
theory, offers a robust framework for handling randomness and fuzziness in optimization
processes [21]. Similarly, opposition-based learning enhances population diversity and accelerates
convergence [22]. Nonetheless, there remains a need for more robust algorithms capable of
consistently delivering high performance across diverse problem domains while preserving
computational efficiency [23].

The whale migration algorithm (WMA) [24] mimics humpback whale migration, where
experienced leaders guide the group to optimal regions. Its main strength lies in its natural balance
between exploration (leaders discovering new regions) and exploitation (followers refining solutions),
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enabling effective handling of high-dimensional problems. This unique leader-follower mechanism
makes WMA particularly suitable for complex optimization tasks requiring both global search and
local refinement. However, like other population-based algorithms, WMA struggles to maintain the
exploration-exploitation ~ balance, particularly in  high-dimensional and  constrained
optimization problems.

To address these limitations, we propose the enhanced whale migration algorithm (EWMA), which
introduces two key innovations: 1) Normal cloud model mutation (NCMM), which employs
expectation-entropy-hyperentropy mechanisms to dynamically manage uncertainty and optimize the
exploration-exploitation balance; and 2) A fast random opposition-based learning (FROBL) strategy,
which enhances population diversity through oscillatory perturbations and nonlinear scaling to avoid
stagnation in local optima. The proposed algorithm is rigorously validated through comprehensive
testing on 23 benchmark functions, the CEC 2019 test suite, and real-world engineering applications,
such as pressure vessel design, demonstrating superior performance in accuracy, stability, and
convergence speed compared to eight other optimization algorithms.

The remainder of this paper is organized as follows: In Section 2,we introduce the original WMA
and the proposed enhancements. In Section 3, we present the experimental setup and results analysis.
In Section 4, we demonstrate practical applications in engineering design. Finally, In Section 5, we
conclude with findings and future research directions.

2. Enhanced whale migration algorithm

2.1. Original whale migration algorithm

The WMA is an innovative bio-inspired optimization method based on the collaborative migration
behavior of humpback whales. It draws inspiration from their long-distance migrations, during which
whales form groups led by experienced individuals who guide others (such as young whales) toward
optimal destinations (such as food-rich areas or breeding grounds). This dynamic leader-follower
structure and group collaboration provide the conceptual foundation for the algorithm. Its workflow
and mathematical formulation are described below [24].

2.1.1. Initialization

A population of whale individuals (candidate solutions) is randomly generated, with each
individual representing a potential solution to the problem. The individuals are ranked based on their
objective function values to identify leaders (experienced whales) and followers (young whales). Let
the population size be N,,, and the problem dimension be D. The position X;;
(i=1,2,--+,Npyp,j=1,2,---, D) of each whale is initialized as follows:

Xij=Lj+rand(1,D)o (U; - Lj) (2.1)
where L; and U; are the lower and upper bounds of the search space, respectively. rand(1, D) is a
D-dimensional random vector with elements in [0, 1], and ® denotes the Hadamard product (element-

wise multiplication).
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2.1.2. Determination of current local position

In each whale pod, experienced individuals with superior positional knowledge and higher objective
function values (leaders) guide the group. Parameter N; represents the number of these leaders, and
Xmean denotes their average position, calculated as

1
XMean = N_ Xj- (2.2)
=1

This formulation represents the collective position of the entire group of migrating whales at a
given moment. Experimental results show that this approach improves WOA’s convergence speed and
its ability to escape local optima.

2.1.3. Leader-follower dynamics

Leader (exploration phase): The leader is responsible for exploring new areas. Its position is
updated using a formula that incorporates both randomness and directionality, simulating whale
navigation based on cues such as the Earth’s magnetic field and celestial patterns:

X' =X, +rnOLi+r0rnoU;-L), (2.3)

where r; and r, are random vectors.
Follower (development phase): Followers are influenced by the leader and neighboring individuals
and move to a better position:

X;lew = XMean + rand(l, D) ©) (Xi—l - Xi) + rand(l, D) ©) (XBest - XMean)a (24)

where Xy, 1S the average leader position and Xg.g is the current optimal solution.

Adaptive balance: The algorithm dynamically adjusts the ratio of leaders to followers to balance
global exploration and local development. New positions are updated only if accepted,
promoting convergence.

While the original WOA effectively mimics the leader-follower dynamics of humpback whale
migration, it has three major limitations:

1) Premature convergence due to excessive reliance on the current best solution, particularly in
multimodal landscapes;

2) Rigid exploration—exploitation balance resulting from fixed leader-follower ratios that do not
adapt to different optimization phases;

3) Poor constraint handling in engineering applications, often generating infeasible solutions.

These limitations underscore the need for enhanced strategies, such as NCMM’s adaptive
uncertainty management and FROBL’s diversity preservation mechanisms.

2.2. Proposed algorithm
2.2.1. Normal cloud model mutation strategy

In real-world scenarios, randomness and fuzziness are the most common manifestations of
uncertainty. The NCMM strategy offers a sophisticated qualitative-quantitative approach by
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integrating probability theory (randomness) and fuzzy mathematics (fuzziness), effectively
overcoming the limitations of traditional approaches in handling uncertain problems. This model
bridges qualitative cognition and quantitative analysis, providing a novel framework for addressing
the inherent uncertainty that traditional methods often struggle to resolve.

The cloud model is defined by three parameters: Expectation (Ex), entropy (En), and
hyperentropy (He). The adaptive normal cloud model is computed as follows:

Entropy (En): Controls the search scope around the expectation value (Ex, the current best
solution); it decreases exponentially with iterations (¢/7,,):

En = eﬁ. (2.5)

Hyper-Entropy (He): Represents the uncertainty in entropy (En’s dispersion), calculated as

E
He = WZ = Enx 10°. (2.6)

Membership function (certainty degree): Evaluates how ra belongs to Ex:

a2
(ra — Ex) )’ 27

mx = exp (— 2B
where Ex ~ Xyests E, ~ N(En, He?) is the random entropy value and ra ~ N(Ex, |E,|*) represents the
generation of cloud droplets.

In optimization problems, the global optimum is typically difficult to obtain directly. Algorithms
must gradually approach it through effective strategies. In the WMA, leader whales, which possess
superior navigation capabilities, are regarded as carriers of the current optimal solution and guide the
population toward better regions of the search space.

To improve the balance between global exploration and local exploitation in WMA, NCMM is
introduced to quantify the uncertainty (randomness and fuzziness) of whale group behavior. The
expected value (Ex) represents the position of the current best whale (i.e., the leader) and is the
central reference point for group movement. Entropy (En) describes the spatial distribution of the
group, controlling the distance between individuals and the optimal whale, thereby affecting the scope
of global exploration. Hyperentropy (He) reflects the dispersion of whale positions and adjusts the
randomness of distribution to prevent premature convergence.

By dynamically adjusting En and He, WOA adaptively balances exploration (broad search) and
exploitation (fine-tuned optimization). In the early stages, larger values of En and He increase
randomness, enabling the whale population to extensively explore the solution space and avoid local
optima. In later stages, smaller values of En and He improve position-update accuracy, enabling the
algorithm to focus on local refinement.

The new whale position X’ is generated using the normal cloud model, which incorporates the
current best position (best) and the group’s distribution characteristics:

X" = CloudTransform(X,, En, He, n). (2.8)

By incorporating NCMM, leader whales in WOA not only guide the group toward optimal
directions but also dynamically adjust search strategies, achieving a more effective balance between
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exploration and exploitation. The cloud parameters (entropy En and hyperentropy He) are adaptively
updated with iterations, eliminating the need for manual parameter tuning. This improves
performance in complex optimization problems, particularly those involving both randomness
and fuzziness.

2.2.2. Fast random opposition-based learning

The FROBL strategy is integrated into WOA to improve population diversity and accelerate
convergence [25]. Opposition-based solutions are generated as follows:

L+U

5

where M is the midpoint between the lower (/b) and upper (ub) bounds of the search space. For each
whale individual i in the population pop:

M =

(2.9)

M + (12 - sinQary) - 22 if |1X;,1] < M|
o - (2.10)
| M= (2 sin@ary) - X2, otherwi
— (2 - sin(27ry) - T),ot erwise

with ry, r, ~ U(0, 1) representing uniform random variables in [0,1].

To improve performance, the algorithm incorporates three key mechanisms. First, the sin(27r;) term
introduces oscillatory perturbations, enabling broader exploration by cyclically repositioning solutions
around promising regions. Second, the nonlinear scaling factor r7 adaptively balances exploration and
exploitation: Larger values favor global searches in early iterations, while smaller values enhance local
refinement later. Third, the FROBL mechanism maintains computational efficiency, adding minimal
overhead while significantly improving both convergence and diversity. These enhancements leverage
the following mathematical principles:

e Cyclic exploration: The combination of 7 and sin(27r,) ensures that solutions dynamically exploit
intervals between candidate positions and beyond, helping prevent stagnation.

e Distance-aware adjustment: The Euclidean norm (| - |) guides perturbations relative to the origin,
while randomized scaling (rf) enables progressive refinement.

e Convergence safeguards: Compared to the original WMA update rules, the revised
rules (Eq (2.10)) mitigate the risk of local optima and accelerate convergence.
Here, M denotes directional movement, r; and r, € [0, 1] are uniform random numbers, and 7
controls the periodicity of oscillations. This combination of stochasticity, cyclic exploration, and
adaptive scaling enables robust global optimization with balanced diversity.

2.2.3. Enhanced WMA

An enhanced WMA is proposed by integrating NCMM and FROBL to improve global search
capability and convergence depth. The normal cloud model is used to dynamically adjust the whales’
position update step size during migration. Its randomness and fuzziness, controlled by
expectation (Ex), entropy (En), and hyperentropy (He), help balance exploration and exploitation
while avoiding local optima. Additionally, FROBL is introduced to generate more diverse initial
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populations by calculating opposite solutions and dynamically adjusting the opposition probability
during iterations, which broadens the search scope and accelerates convergence.

The integration of NCMM and FROBL enables adaptive position updates and intelligent
uncertainty management, enhancing exploration in the early stage and exploitation in the later stage to
prevent premature convergence. Compared with the original WMA, this improved strategy, aligned
with the collaborative behavior of whale migration, significantly improves precision and robustness in
solving complex optimization problems by combining quantitative control with qualitative swarm
behavior modeling.

The pseudocode of EWMA is shown in Algorithm 1, and a flowchart is presented in Figure 1.

Algorithm 1 The pseudocode of EWMA
Require:
1: Npyp: The EWMA swarm population size.
2: Dim: Dimension of the problem.
3: U, L: Upper and lower bounds for all variables.
4: Ty Tterations maximum number.
Ensure:
5: Initialization phase:
6: Scale to search space bounds, and evaluate initial populations using Eq (2.1)
7. fort=1to T,,, do
8: Evaluate f(X;)
9: fori=1:N,do

10: Move the group of more experienced whales (leaders) based on Eq (2.3)
11: Evaluate f(X*")

12: if f(X7V) < f(X) then X; = X[V f(X;) = f(X]")
13: endifr=r+1

14: Apply the NCMM using Equation (2.8)

15: end for

16: fori=N;+1:N,,do

17: Move the less-experienced whales based on Eq (2.4)
18: if f(X7Y) < f(X;) then X; = X[V f(X;) = f(X[")
19: endifr=7r+1

20: Apply NCMM using Eq (2.8)

21: end for

22: Apply FROBL using Eq (2.10)

23: Apply boundary constraints

24: end for

25: return Best member and optimal solution.
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Figure 1. Flowchart of EWMA.
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2.3. Ablation study of EWMA

The radar charts and ranking graphs for the 23 test functions (Figure 2) illustrate the performance
of the algorithms which are EWMA, WMA, WMA with NCMM, and WMA with FROBL. The radar
chart displays the functions F1 to F23, with EWMA showing superior performance on specific
functions, as indicated by its lower average ranking (1.61) in the ranking graph. This suggests that
EWMA outperforms its variants (WMA, NCMM, FROBL) in most scenarios. The red trend line in
the ranking graph further highlights EWMA’s consistent dominance, while WMA'’s higher average
ranking (3.26) reflects its relatively weaker performance. These results underscore EWMA’s
robustness and effectiveness in solving a wide range of optimization problems within the
ablation study.

Average rank
= NS w
Ll (3] N 3] w (3]
T T T T T T
%
l ©

o
o
T

. .
EWMA WMA NCMM FROBL
Algorithm

Figure 2. The ablation study of EWMA for 23 Benchmark functions.
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Figure 3. The ablation study of EWMA for CEC 2019.
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Similarly, the radar charts and ranking graphs for the CEC2019 test functions (Figure 3) show
EWMA'’s strong performance on functions such as F1 and F4. The ranking graph confirms this with
EWMA’s low average ranking (2.00), indicating its superior effectiveness compared to the other
algorithms. In contrast, NCMM’s higher average ranking (2.80) reflects suboptimal performance.
Visual indicators, such as the red trend line, convey the overall trend, reinforcing EWMA’s status as
the top-performing algorithm. These results highlight EWMA’s adaptability and efficiency in tackling
complex optimization problems, making it a reliable choice for both theoretical and
practical applications.

3. Experimental results and discussions

In this section, we present a comprehensive experimental evaluation of the proposed EWMA,
which incorporates two novel strategies: The NCMM and FROBL. The algorithm’s performance is
rigorously tested against nine optimization algorithms using 23 benchmark functions, and the
CEC 2019 functions include WMA, GWO, GA, DBO, PSO, GOOSE, DE, AOA, and SO. All
experiments were conducted in MATLAB 2024a on a Windows 11 system with an Intel® Core™
Ultra 9 185H 2.30 GHz processor. The parameters used were as follows: Population size = 30 and
maximum iterations = 300. Each algorithm was independently executed 30 times to ensure statistical
reliability.  Performance was assessed based on convergence behavior, ANOVA test results,
performance index metrics, and robustness. The results demonstrate that EWMA offers a superior
balance between exploration and exploitation, particularly in complex, constrained optimization
scenarios. Statistical significance was further verified using Wilcoxon rank-sum tests (p < 0.05).

EWMA'’s computational complexity is primarily driven by the NCMM and FROBL strategies. Per
iteration, NCMM requires O (N-D) operations for cloud droplet generation, while FROBL adds
O (N-D) for opposition-based updates. On average, EWMA was 1.3 times slower than WOA but
achieved two to four times higher solution accuracy. The algorithm prioritized solution quality and
robustness over computational speed, aligning with modern engineering demands where hardware
advancements have reduced the emphasis on runtime. Future work may entail hardware
acceleration (e.g., GPU parallelization) to further narrow this performance gap.

3.1. Results and analysis for 23 benchmark functions

Comprehensive experimental results across 23 benchmark functions (F1-F23) demonstrate that the
proposed EWMA algorithm delivers superior optimization performance across multiple evaluation
dimensions. As indicated by three key metrics: Solution accuracy (min), stability (std), and
convergence performance (avg), EWMA, and consistently outperforms competing algorithms in
various problem domains, as shown in Table 1. In particular, for unimodal (F1-F4) and multimodal
functions (F9-F11), EWMA achieves significantly better minimum values (e.g., 2.00063 x 107 vs
GA’s 8.5559 x 10%in F1), validating the efficacy of its novel NCMM for local refinement and FROBL
for global exploration. The algorithm’s robustness was demonstrated by consistently lower standard
deviations (e.g., 1.6617 x 10™° in F3 vs WMA’s 8.2993 x 10'), indicating reduced sensitivity to
initial parameters.
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; 1.4809 x 10! 5482 % 107 426 . 4315x 101 7.6045 x 1073 6.1718 x 107!
min  9.9800 x 101 85128 x 1071 1 2621x 1072 1.1072 1 ’ x 1077 3.0965 1.1820
9.9500 x 10-1 9082x 107 2.72 1072x 10" 3.3102% 10! 27459
Fla S 16219% 1014 9.9800 x 10! 9.9 ~ 7210 2.8572 % 10! 0 1.1655 7.3514 x 102
8130 % 10716 9800101 1.03 x 101 3.0091 x 10! 6.2448 x 107
avg  9.9800 x 10-! 4.0827 1 0391 9.9800 -1 x 10 4.6146 3.4945x 107!
. 9.9800 x 107! 3272107 6.10 9800 x 1071 9.9800 x 10~ 2.8529
min 54716 x 10~ 45275 0.0800x 10! 2. 92x 107 44795 98001071 9.9800 x 107} 78123107
Fis Sid 82540x107 3'(5)123 . }gﬂ: 55185x 1074 13527 i 18—3 g.zzm 4.5213 ?;ﬁ? | e 107! Z'zz?g x1071 99800 x 107!
. 5464 % 107 . 0905 x 107+ 2507 x 10 . 1.7
avg 47057 x 107 9.4957x 1073 8 x 10 3.0749 x 104 1.0974 7060
: 6.5445 x 103 6540% 1073 1.17 : x1074  6.8286x 1074 8.6991
min -1.0316 B 6.6056 x 1073 9.7 B 1780 x 107%  8.4488 . x 10 5.1824 x 104 1.8885
Fle S 44577x 10-3 033316 -1.0316 —Al ?)zzsllx 107 42226 %107 4~3330i 18—3 7.9940x 107 1.1874x 107 2‘3490 x107 50160 x 107
e LoSe ¢ 0(;(;6 STl 105 78045 x 10-2 -1.0316 ~1.0316 5~12Z)l36 10 72142 x 10~ 1'7?33 x :0’2 45179 % 10-3
A —1. _ -0 4.2650 s -1.0316 : x1072 2 -
min 3.9789 x 10-1 1.0316 0% _ x 10 1.2820 x 10716 -1.0316 _ 1628 x 1073
Lo s 24088 x o (3)3(7)2(9; x1071 39789x10! 3 578919;;‘;91 I ;1.0316 ~1.0316 10 3';14;183 x 1071 7.4015% 10717 1 15'23:6 - -1.0316
- o X - -8.6840 x 107! — 56341077 8.8 .
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: 3.9789 x 107! 1087107 1.85 9789 x 107" 3.9789 x 107! -1.0316
min 3.0000 39789 x 10-!  3.97 . 85321075 0.0000 - x 10 3.9789 x 10! -1.0316
e S0 20101x10° 30000 3.0000 T0XI0T A0 e e 10 0.0000 o 107! 397891077
g 30000 w 621015 18173% 10~ 8.3909 3.0001 3.0000 3.9789x 1071 39789 107 4.1 43107 6.4888x 1076
min  -3.8628 '3(;%(;8 3.0002 Ses37 16160 x 1072 1.3486 x 1071 zoooo 3.0000 3'0:)3(7) X107 3789107
. -3. _ oY 3.0161 2448 x 107 : 3.0
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R OU OV OV w2 s -ases o 3.0000 L3I0 33908107
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Statistical verification using Wilcoxon rank-sum tests (p = 0.05) further confirms EWMA'’s
significant advantages, as shown in Table 2. The algorithm achieves statistically superior
performance (p < 1.0 x 1071%) for 18 of 23 test functions, with notable differences (p = 1.0 x 10712)
in multimodal functions (F9—F13). These results confirm that EWMA’s hybrid strategies effectively
balance exploration and exploitation, mitigating premature convergence, an issue prevalent in
conventional algorithms such as GWO and PSO (p < 1.0 x 107! for high-dimensional problems F3
and F11).

Table 2. Wilcoxon rank-sum test results comparing the performance of optimization
algorithms on the 23 benchmark functions.

Func. WMA GWO GA DBO PSO GOOSE DE AOA SO
Fl 81014 x10710  30199x 1071 3.0199x 10711 23657 x10712  3.0199x 1071 3.0199x 10711 3.0199x 10711 3.0199x 1011 3.0199 x 101!
F2 6.6955x 10711 30199x 1071 3.0199x 10711 3.0199x10711  3.0199x 10711 3.0199x 10711 3.0199x 10711 29543x 10711 3.0199 x 10!
F3 3.0199x10711  30199x 101 3.0199x 10711 7.8787x10712  3.0199x 10711 3.0199x 107! 3.0199x 1071 6.6273 x 107! 3.0199 x 1011
F4 3.0199x 10711 8.0727x 107! 3019910711 30199x 1071 3.0199x 1071 30199x10°11 30199 x 10711 37782 x 1072 2.0199 x 1011
ES 8.4848 x 107 4.8011 x 1077 3.0199x10711 21327 x 1075 3019910711 55727x 10710 3.0199x 10711 1.0869x 107! 3.0199 x 10711
F6 1.0407 x 1074 3.0199x 10711 30199x 10711 3.0199x 10711 3.0199x 10711 3.0199x 1071 3.0199x 10711 3.0199x 107! 4.9011 x 1077

F7 30199x10°'1  3.1830x 1073 3.0199x10°11 21540 x 1076 3019910711 30199x 1071 3.0199x 10711 3.0199x10°1  3.0199 x 10~
F8 1.1937 x 10°¢ 67220x 1070 3.0199x 10! 52650 10~5 82919 x 10°6 38202x 10710 45530x 1071 3.0199x 107! 3.0199x 107!
F9 30199 <1071 1.1077 x 10°¢ 30199 <1071 12118x 10712 3.0199x 10711 3.0199x10711  3.0199x 1071 12118x 10712 3.0199 x 101!

F10 3.0199x10711 30199x 1071 3.0199x 10711 12118 x107'2  3.0199x 10711 3.0199x 107! 30199x10°"!  12118x 10712 3.0199 x 10!
Fl1 30199 %1011 7.9581x 1073 30199x10711 12118x 10712 3.0199x 10711 3.0199x10°11  3.0199x 1011 3.0199x 10711 7.6857 x 101!
F12 30199 x 10711 3.0199x 1071 3.0199x 1071 3.0199x 1071 3.0199x 10711 3.0199x 10711 3.0199x 10711 3.0199x 1011 3.0199 x 1011
F13 3.0199x10711  30199x 1071 3.0199x 10711 3.0199x10711  3.0199x 1071 17769 x 1071°  3.0199x 10711 3.0199x 10711 3.0199 x 107!
Fl4 1.0128x 10711 3.0142x 10711 3.0142x10°11  3.0142x 1071 1.8478 x 107! 2.8619x 1071 77386x10°1  3.0142x 107" 3.0199 x 107!
F15 1.3114 x 1072 6.5671 x 1072 4.0330 x 1073 7.1988 x 1075 3.5697 x 1076 2.3985 % 107! 6.3088 x 107! 4.7335x 107! 3.8472x 107!

F16 12118 x 10712 3.0199x 10711 3.8202x 107"  9.9258 x 102 1.0149x 1071 1.1077 x 10~6 1.0149 x 10711 3.0199x 10711 2.1231x 107!

F17 1.2384 x 10~° 3.0199x 10711 3.0199x 10711 3.0199x 10711 12118 x 1072 6.9125x 1074 12118 x 10712 3.0199x 10711 3.0199 x 10711
F18 24887 x10711 20338 x 10~° 2.4386 x 1077 3.0199x 10711 25416 x 1071 1.3732x 107! 31602 x 1072 27086 x 1072 1.8276 x 1077

F19 12118 x 10712 41997 x 1071 30199x10°"1  3.0199x 101" 4.0806x10"'2  1.1143x 1073 4.0806 1072 3.0199x 10" 3.0199 x 10~
F20 4.0736 x 106 7.5059 x 107! 30199x 10711 335201078 7.5319 x 1076 7.6973 x 1074 34742x 1070 1.9568x 10710 3.0199 x 101!
F21 4.7731 x 1075 50723x1071  4.0772x1071" 55727x 10710 5.4945x 1072 8.4848 x 1077 92113 x 1075 38202x1071  30752x 107!

F22 1.4236 x 1072 1.1077 x 10°¢ 3.6897x10°'  1.1077 x10°¢ 6.8327 x 107! 83520 x 1078 42259 x 1073 4.6856 x 1078 3.0199 x 107!
F23 2.4499 x 107! 9.5139 x 1076 1.3289x 10710 95139 x 106 57823 x 107! 1.2860 x 10-¢ 6.5204 x 107! 1.8731x 1077 3.0199 x 1011

An analysis of convergence behavior revealed distinct performance patterns across algorithm
classes, as shown in Figures 4 and 5. EWMA consistently achieves rapid and stable convergence to
near-optimal solutions in both unimodal (F6, F8) and complex multimodal functions (F12, F13, F21),
attributed to its adaptive balance between FROBL’s accelerated convergence and NCMM'’s diversity
preservation. PSO and GWO exhibit moderate performance in some multimodal cases (F12-F14),
and their swarm-based mechanisms occasionally converge to local optima. Notably, EWMA
demonstrates particular strength in constrained optimization problems (F16-F19), where its
constraint-handling mechanism produces solutions closer to theoretical optima (e.g., F16
min=-1.032) compared to SO’s suboptimal results (F21 avg=—9.265vs EWMA’s —1.015 x 10").
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Figure 4. Convergence analysis on a subset of the 23 benchmark functions.
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An ANOVA-based performance distribution analysis using box plots highlightes algorithm-specific
characteristics, as shown in Figures 6 and 7. EWMA exhibites compact interquartile ranges across most
functions (e.g., F17), indicating consistent solution quality, while algorithms such as AOA show erratic
behavior in high-dimensional spaces (e.g., F3, due to parameter sensitivity). These findings collectively
suggest that EWMA'’s architectural innovations successfully address key challenges in evolutionary
computation: Maintaining population diversity through NCMM while accelerating convergence via
FROBL. Overall, EWMA achieves superior performance across diverse problem landscapes. Future
research directions should focus on enhancing EWMA'’s adaptability in specialized scenarios, such as
hybrid composition functions (F15), where all algorithms show potential for improvement.

The radar and ranking charts provide a comprehensive visualization of EWMA’s performance
across the 23 benchmark functions (F1-F23), as shown in Figure 8. The radar plot highlights
EWMA'’s consistent dominance, with its polygon covering the largest area particularly in functions
F1-F5 and F9-F12, where it achieves near-maximal scores (approaching the outermost ring). The
ranking chart quantitatively supports this result, showing EWMA with the best average rank of 3.22,
significantly outperforming second-ranked WMA (5.09) and other competitors like GWO (4.22) and
PSO (5.83). The substantial performance gaps (e.g., EWMA’s 3.22 vs AOA’s 5.91) demonstrate that
EWMA’s innovative NCMM and FROBL mechanisms provide both broad applicability across
function types and advantages in complex optimization scenarios.
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Figure 8. Performance ranking of optimization algorithms on the 23 benchmark functions.

In summary, the evaluation across 23 benchmark functions demonstrates that EWMA consistently
outperforms other optimization algorithms by delivering superior solution accuracy (with lower
minimum values), enhanced stability (with standard deviations 2—4 orders of magnitude lower), and
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faster convergence to near-optimal solutions. Statistical validation confirms these improvements,
particularly in constrained optimization problems, where EWMA reaches theoretical optima.

3.2. Results and analysis for CEC 2019

CEC 2019 is a widely used benchmark test set in the field of computational intelligence and was
specifically designed to evaluate the performance of optimization algorithms in complex
scenarios [26]. It consists of 10 challenging single-objective optimization functions, categorized as
follows: Unimodal (F1-F3), multimodal (F4-F6), hybrid (F7-F9), and composition (F10). CEC 2019
has become a “touchstone” for optimization research, with its ranking offering an objective measure
of each algorithm’s convergence, stability, and generalization ability.

Experimental results on the CEC 2019 functions, shown in Table 3, demonstrate EWMA’s
consistent superiority across multiple evaluation metrics. For solution accuracy (min), EWMA
achieves the optimal value of 1.0000 in F1, outperforming GA’s 1.7531 x 10° by six orders of
magnitude, and shows similar advantages in F2 (4.2768vs 1.2771 x 10?) and F5 (1.0149vs 1.0172).
Stability analysis (std) reveals EWMA'’s remarkable robustness, particularly in complex functions
such as F1 (4.1379 x 10%) and F2 (1.7653 x 10?), where it exhibits significantly lower variability than
GOOSE 1.1118 x 10° and 1.6590 x 10, respectively. Convergence performance (avg) further
confirms EWMA’s efficiency, with F3 (5.4063) and F6 (3.5732) converging faster convergence than
PSO (3.6598 and 3.8238) and GA (1.0606 x 10' and 7.3003). Notably, EWMA maintains this
threefold advantage across function types, with particularly outstanding performance in F1, where it
achieves both the lowest minimum value and lowest standard deviation.

Table 3. Performance comparison of optimization algorithms on the CEC 2019 functions.

Func. Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO
min 10000 4.8302x 10> 1.0000 17531 x 10°  1.0000 12513x10°  1.0000 22994 x10°  1.0000 1.8551 x 103

Fl std 4.1379x10%  2.6031 x 10°  2.4051 x 10° 53741 x107  2.1051 x 10711 32594 x10°  1.1118 x 10°  5.9005x 10°  3.0107 x 107 1.0597 x 10¢
avg  1.3637x10°  2.1619x10°  8.6605x10*  6.1190x 107  1.0000 9.7399 x 105 9.6982x 103 1.4490x 107  1.5423x 107 9.0469 x 10°
min  4.2768 12771 x 10> 7.8403x 101 1.1598 x 103 4.2560 6.4734x 101 4.3475 34759 x 10  4.6214x 10> 5.8826 x 10!

F2 std 17653 x 10 1.5071 x 10> 3.1248 x 10> 2.8765x 10  2.9725x 107! 5.1008 x 10> 1.6590 x 10*  1.0671 x 10> 3.7548 x 10>  5.0458 x 10?
avg  3.6723x 10" 32557 x 10> 6.2610x 10> 7.6565x 103 4.8280 6.0454x 10> 1.5405x 10*  54583x10%  1.2795x 10*  1.0744 x 103
min  2.6286 1.4091 1.0015 7.8488 2.9293 1.4091 45993 7.3655 8.6615 2.0072

F3 std  1.1026 22427 2.6619 9.5199x 107! 1.3026 22772 2.0564 4.8992x 1071 8.3450 x 107" 1.7649
avg 54063 5.1612 3.5510 1.0606 x 101 5.8808 3.6598 9.0245 8.8497 1.0362x 10! 5.8850
min 49798 5.9748 1.0562x 10" 1.3610 x 101 3.9401 x 10" 9.9546 2.6869x 101 1.6215x 101 3.8331x 10"  8.3792

F4 std  7.5660 7.5327 8.6266 1.0996 x 10" 1.0860 x 10! 1.2910x 101 23018 x 10! 3.8013 1.5352x 10" 7.1873
avg 17593 x 100 1.7984 x 101 2.3734x 10" 2.8609 x 10! 5.4787 x 10! 2.6409x 101 7.7012x 101 23767 x 101 6.8186x 101 2.1341 x 10!
min  1.0149 1.0172 1.3095 2.0052 1.2484 x 10" 1.0345 22608 1.1930 1.6621 x 10" 1.5467

F5 std  1.0037x 107! 1.2146 x 107! 7.5020 x 10™"  3.4352x 107! 1.0062 x 10! 1.6707 16118 x 101 7.9026 x 1072 3.2833x 10" 8.5982 x 1072
aveg  1.1338 1.0985 1.9700 2.3599 2.7744 x 10! 1.4274 22224 x 101 1.3440 8.1565x 10 1.7768
min  1.0251 1.1902 1.2528 4.6732 4.1677 1.0720 1.0199 x 10" 2.8050 7.6228 3.0667

F6 std 19713 1.5064 1.0998 1.6202 1.0499 2.0412 1.2990 1.0826 1.3930 9.9955 x 107!
avg  3.5732 2.9232 3.1375 7.3003 7.1180 3.8238 12754 x 10" 45989 1.0410x 10" 5.3601
min  4.8297x 102 23858 x 102 3.7656 x 102 4.1120x 10> 1.1845x 10>  3.6024x 10> 63467 x 10> 6.1738 x 10> 9.1416 X 10> 1.4172 x 10?

F7 std 24864 x 107 3.0769x 10> 4.4337x 10> 46968 x 10> 2.5267 x 10> 3.4049x 10>  3.9697 x 10> 1.2544 x 10> 2.9422x 10>  2.5548 x 10>
avg  1.0167x10°  1.0224x 10> 9.8636 x 10> 1.3024x 10> 1.7183 x 103 1.0238 x 103 1.5425x 10> 9.2862x 10> 1.5276x10°  6.5828 x 10?

min 27708 3.4004 3.2131 4.8037 42533 3.3853 4.8629 3.8629 4.5100 3.1698

F8 std 37218 x 1071 3.0583x 107! 3.7670 x 107" 1.5873x 107! 1.7924 x 107! 3.9259x 1071 2.0062 x 107" 1.9097 x 10~ 2.0375x 107!  2.7825x 10!
avg 39330 3.9842 4.0851 5.1080 4.6799 4.1945 5.4108 43255 4.9212 4.1317
min  1.1113 1.1244 1.1097 1.1858 1.3818 1.0425 1.1505 1.1782 1.2621 1.2252

F9 std 1.1329x 1071 9.1691 x 1072 6.9001 x 1072 1.4970x 10™"  9.8070 x 1072 1.4263 x 10™!  4.4663x 107! 51787 x 1072 73566 x 107! 1.1381 x 10!
avg 13049 1.2617 1.2262 1.4418 1.5665 1.2797 1.5913 1.3137 3.2966 1.3914
min  1.0051 21381 x 10" 1.5516 x 100 2.1355x 10" 2.1211 x 10! 1.0000 2.1000x 101 2.0876 x 10! 2.1054 x 10'  4.1573

FI0  std  3.6933 7.8995x 1072 1.1019 8.0517x 1072 8.6526 x 1072 3.6887 6.4103x 107 8.8418 x 1072 9.8754x 1072 3.1743

avg 20528 x 10" 2.1543x 10" 2.1330x 10" 2.1593x 10! 2.1540 x 10! 2.0505x 10" 2.1001 x 10" 2.1214x 10" 2.1194x 10" 2.0956 x 10
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The Wilcoxon rank-sum test results on the CEC 2019 benchmark (Table 4) provide statistical
validation of EWMA’s superior performance. The algorithm achieves statistically significant
dominance (p < 0.05) on all 10 test functions, with particularly strong evidence in
F1 (p = 1.6132 x 107'° vs WMA) and F4 (p = 5.6921 x 107! vs WMA to p = 6.6955 x 107!! vs
AOA). Key findings include the following: 1) Exceptional performance in unimodal functions (F1
p = 1.6132 x 107'%s WMA); 2) robust results in multimodal cases (F3 p = 1.3367 x 107> vs GWO);
and 3) effective constraint handling (F8 p = 3.9648 x 10=® vs AOA). The consistently low p-values
and large effect sizes confirm that EWMA’s balanced exploration-exploitation mechanism
outperforms conventional approaches. These results demonstrate EWMA’s architectural advantages in
diverse optimization scenarios.

Table 4. Wilcoxon rank-sum test results comparing the performance of optimization
algorithms on the CEC 2019 functions.

Func. WMA GWO GA DBO PSO GOOSE DE AOA SO
Fl 1.6132x 10710 44205x10°°  3.0199x107'1  17203x10712  1.3289x1071° 3.0103x 1077  3.0199x 1071  36459x10°8 54941 x 10"
F2 46159 x1071% 10937 x 10710 3.0199x 1071 59424 x 1075 2.6099x1071"  50723x1071° 30199 x 10711  3.3384x 1071 13289 x 10710
F3 1.0000 13367x1075  33384x10711  1.6238x 107! 2.8389x10™*  1.8567x10~° 89934 x 1071  3.6897x 1011  1.8577x 107!
F4 56921 x 107" 29205x 1072 33681x1075  54941x 10711 47129x10%  6.0658 x 10711 24327 x1075  6.6955x 10711 31466 x 102
F5 1.8090 x 107" 3.0199x 10711 3.0199x10°11  3.0199x 107" 13732x 107" 3.0199x 107 36897 x 10711 3.0199x10°'1  3.0199 x 10~
F6 1.4128 x 107! 5.2978 x 107! 8.1014x1071° 12057 x1071°  9.0000 x 10! 3.0199x 10711 3.0339x1073  3.0199x 107" 1.8682x 1073
F7 35012x 1073 7.7312x 107! 12732x1072  1.0702x10™° 37108 x 107! 14733x1077  1.0233x 107! 1.4294x 108  6.2828x10°°
F8 42039x 107" 50114x 107" 54941x 107" 55329x10% 12967 x 107! 19568 x 10710 86844 %1073 39648 x 108 83146 x 1073
F9 6.2040x 1071 485601073  53221x1073  45726x10°  22360x102  8.6634x1075  8.7663 x 107! 1.4643x 1071 4.8560 x 1073
F10 43531 x107°5 30059 x 1074  2.1540x10°%  23885x10°*  35137x1072  24327x107°  13272x107%2  6.6689x 103  6.5261 x 1077
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Figure 9. Convergence analysis on a subset of the CEC 2019 functions.
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An analysis of the convergence behavior (Figures 9 and 10) and an ANOVA-based performance
distribution analysis (Figures 11 and 12) demonstrate that the EWMA algorithm exhibits significantly
superior performance in both convergence speed and stability in most functions. The radar chart and
ranking plot collectively illustrate EWMA’s superior performance on the CEC 2019 benchmark, as
shown in Figure 13. The radar plot shows EWMA’s polygon covering the largest area, particularly
excelling in functions F1 (unimodal), F6 (multimodal), and F10 (composition), where it reaches the
outermost edge. The ranking plot quantitatively confirms this advantage, with EWMA achieving the
top rank (2.5), significantly outperforming the second-best algorithm (WMA at 3.20) and traditional
methods like PSO (4.10) and GA (8.20).
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Figure 10. Convergence analysis on a subset of the CEC 2019 functions.
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Figure 11. ANOVA test results on a subset of the CEC 2019 functions.
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Figure 12. ANOVA test results on a subset of the CEC 2019 functions.
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Figure 13. Performance ranking of optimization algorithms on the CEC 2019 functions.

In summary, the comparative analysis across performance metrics, statistical tests, and
convergence characteristics strongly supports the conclusion that EWMA offers a comprehensive
advantage in accuracy, stability, and computational efficiency. This is achieved through its unique
combination of NCMM and FROBL, which jointly enhance diversity and accelerate convergence. In
practice, selecting an optimization algorithm requires balancing convergence speed, solution quality,
stability, and computational cost, making EWMA a promising choice for a wide range of tasks.
However, while EWMA shows efficient convergence in static, single-objective problems, its
performance in dynamic or multi-objective problems requires further investigation. In particular,
EWMA’s scalarized design may limit Pareto diversity, suggesting a need for additional mechanisms in
multi-objective applications. Future work could entail hybrid strategies to address these limitations.

4. Engineering application

In the field of engineering optimization, design problems under complex constraints (such as the
design of pressure vessels, cantilever beams, reinforced concrete beam, and Himmelblau function)
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pose severe challenges to the feasibility maintenance ability and computational efficiency of
algorithms. Traditional optimization methods (such as GA and PSO) often have difficulty obtaining
the global optimal solution due to premature convergence or insufficient constraint processing. This
paper systematically verifies through four typical engineering cases, indicating that the EWMA
algorithm, with its collaborative mechanisms of NCMM and FROBL, compare with the other night
algrithms (WMA, GWO, GA, DBO, PSO, GOOSE, DE, AOA, and SO).

4.1. Pressure vessel design

The design problem of pressure vessels is one of the classic engineering optimization problems
in intelligent optimization algorithms, mainly used to test the optimization ability and efficiency of
the algorithm. This problem usually aims to minimize the manufacturing cost of pressure vessels
while meeting a series of geometric, material, and mechanical constraints. This problem contains four
variables: Shell thickness (z;), head thickness (z,), inner radius (x3), and length of the vessel without
including the head (x;), and four constraints [27]. The detailed description of this problem is as follows.

Minimize:

fx) = 1.778112x§ +0.62247 1 x3x4 + 3.1661zfx4 + 19.842%)63 “4.1)
Subject to:
gl()_C) = 000954)C3 < 2o,
g2(x) = 0.0193x; < z3,
g5(X) = x4 < 240, 4-2)
g4(x) = —ﬂx§x4 - %ﬂxg’ < —1296000,
where:
71 = 0.0625x;,
7o = 0.0625x,. 43)
With bounds:
< <
10 < X4, X3 S 200 (44)

1 < x,x1 <99 (integer variables).

Through data analysis (Tables 5 and 6) and convergence curve observation (Figure 14) of the
pressure vessel design optimization problem, the EWMA algorithm performs best in this
optimization. The table data shows that the EWMA algorithm performs best in the objective function
value (f(x) = 6.0597 x 10°) and comprehensive ranking (rank 1), and its standard
deviation (3.0830 x 10%) and average value (6.2207 x 10%) also confirm the stability of the algorithm.
The GWO algorithm shows strong competitiveness with similar performance (f(x) = 6.0637 x 10°,
ranked third). From the convergence curve, the curves of EWMA and GWO should show the
characteristics of rapid decline and stabilization, which is consistent with their excellent performance
in the table; while the GOOSE algorithm shows a large standard deviation (1.0976 x 10*) and the
worst solution fluctuation (3.4850 x 10*) in the table, but its convergence curve may show the
characteristics of early oscillation and late convergence, reflecting the balance between global
exploration and local development of the algorithm. The convergence curve of traditional algorithms
such as GA may show premature convergence or slow decline, which is consistent with its higher
objective function value (f(x) = 6.8752 x 10°, rank 8). Comprehensive data and curve characteristics
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show that the EWMA algorithm performs well in solution accuracy, stability, and convergence
efficiency, and is an effective method for solving such engineering optimization problems.

Table S. Optimization parameter results of the pressure vessel design.

Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO

2 12942x 100 1.3351x 10" 12716 x 10" 1.7824x 10" 1.3127x 10" 1.4032x 10"  1.5125x 10" 1.4140x 10"  1.4222x 10" 1.5077 x 10!
2 7.3180 7.4524 7.3266 9.4220 7.0439 7.4876 17126 x 10" 6.9604 13232x 10" 83454

x3 42097 x 101 42098 x 10" 42098 x 10" 5.8011x 10" 4.0321x 10" 4.5337x 10" 4.2256x 10! 4.4519x 10"  4.4049 x 10" 4.8535x 10!
x4 17666 x 10> 1.7664 x 10> 1.7681 x 10> 4.5998 x 10! 2.0000x 10> 1.4025x 10>  1.7469 x 10> 1.4975x 10>  2.0000 x 10> 1.1110 x 10?
f@  6.0597x10°  6.0599x10°  6.0637x10°  6.8752x10°  6.2888x 10°  6.0905x 10  8.9036x 10°  62117x10°  8.7550x 103  6.3959 x 10°
rank 1 2 3 8 6 4 10 5 9 7

To rigorously validate the pressure vessel design results, we conducted a sensitivity analysis on the
constraint boundaries (e.g., varying g4’s volume limit by +5%) and performed Wilcoxon signed-rank
the best-reported values
significant improvements (p < 0.01) over competitors, with Friedman tests ranking EWMA
first (mean rank = 1.0) in both feasibility rate and objective value minimization.

tests

against

Table 6. Indicator statistical results of the pressure vessel design.

in

literature

[26].

Table 7

shows

statistically

Res EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO
min 6.0599x 10> 6.0597 x 10> 6.0637x 10>  6.8752x 10> 6.2888 x 10> 6.0905x 103> 8.9036x 10°  6.2117x 10>  8.7550x 103  6.3959 x 10°
worst 6.7717x10° 63708 x 10> 7.2848x 10> 8.6729x 10>  6.8963x 10>  6.7716 x 103 34850 x 10*  6.8917x 103  1.8733x10*  7.3625x 10°
std 3.0830x 102 1.6135x 102 52756 x 10> 6.7165x 10> 25626 x 10> 2.8263x 10> 1.0976 x 10*  3.0736 x 10> 4.1112x 10>  4.4679 x 10?
avg 62207 x10°  6.1772x10°  6.3735x 10> 7.7541 x 10> 64573 x 10> 6.3546 x 10> 21618 x 10*  6.6277x10° 13296 x 10*  7.0094 x 10°
median  6.0906 x 10> 6.0597 x 10> 6.0708 x 10> 7.8980x 10> 6.3417x 10> 6.4101 x 103 2.2882x 10*  6.8232x10°  12533x10*  7.2972x 10°
rank 1 2 3 8 6 4 10 5 9 7
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Figure 14. Convergence curve and ANOVA test graph of pressure vessel design
optimization results.

Table 7. Wilcoxon rank sum test of the pressure vessel design.

WMA GWO GA

6.7407 x 10787

Func. DBO PSO GOOSE DE AOA SO

1.0314 x 10781

93536 x 10746 1.5131x 10770 24829x 1078 43058 x 1079 4.8052x 107  1.9214x 10778 1.1958 x 1078
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4.2. Design issues of cantilever beams

The application of intelligent optimization algorithms in cantilever beam design problems aims to
minimize the weight of the structure or the maximum displacement by optimizing the cross-sectional
dimensions (height or width) of the beam while satisfying constraints such as strength and stiffness.
In this problem, the cantilever beam consists of five hollow square sections of equal thickness (fixed
to 2/3), where one end is rigidly fixed, and the free end is subjected to a vertical concentrated load. The
decision variable is the height (or width) of each beam segment, the objective function is usually the
total weight of the structure or the deflection of the free end, and the constraints include the maximum
stress limit, deformation limit, and geometric size range [28]. This problem can be represented through
the following formulation:

f(X) = 0.0624 (Xl + Xy + X3+ X4 + Xs) , (45)
subject to:
61 37 19 7 1
g(X):—3+—3+—3+—3+—3—1S0, (46)

X X5 X3 Xy X5

variable range:

001 <x;<100, i=1,...,5. 4.7)

The comprehensive analysis of cantilever beam optimization reveals that the EWMA algorithm
demonstrates superior performance across all metrics. As shown in Tables 8 and 9, EWMA achieves
the optimal objective value (f(x) = 1.3400) with rank 1 and zero standard deviation, indicating
exceptional stability. GWO and PSO algorithms exhibit comparable performance with f(x) = 1.3401
and 1.3400, respectively, securing ranks 2 and 3. The convergence curves in Figure 15 suggest that
EWMA, GWO, and PSO exhibit rapid and stable convergence characteristics, consistent with their
excellent tabular performance. In contrast, GOOSE and AOA algorithms show inferior performance
in worst-case values (5.7847 and 8.5719 respectively) and high standard deviations (1.7788
and 1.9612), which likely corresponds to oscillatory behavior in their convergence curves. The
conventional GA  demonstrates limitations in average performance (1.4041) and
stability (std = 0.0248), potentially due to premature convergence or slow convergence rates. These
results collectively establish EWMA as the most effective approach for cantilever beam design
optimization, offering outstanding solution accuracy, stability, and convergence efficiency.

Table 8. Optimization parameter results of cantilever beams.

Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO

X 6.0125 6.0342 6.0384 5.6554 6.0368 6.0135 6.0160 6.0290 4.7288 6.1945
X2 5.3141 5.2860 5.3122 6.0908 5.3011 5.3172 5.2780 5.2928 8.7316 5.0446
X3 4.5010 4.5005 4.4524 4.7260 4.5038 4.5068 4.4993 4.4765 5.9791 4.5269
X4 3.5037 3.4972 3.5219 3.3491 3.4832 3.4886 3.5234 3.5231 3.9248 3.7650
X5 2.1426 2.1562 2.1509 2.1857 2.1533 2.1477 2.1577 2.1544 8.2746 3.7650
f(x) 1.3400 1.3500 1.3401 1.3732 1.3402 1.3400 1.3400 1.3401 2.1962 1.3558
rank 1 7 4 9 6 3 2 5 10 8
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Table 9. Indicator statistical results of cantilever beams.

EWMA

WMA GWO GA DBO PSO GOOSE DE AOA e}
min 1.3400 1.3500 1.3401 1.3732 1.3402 1.3400 1.3400 1.3401 1.9743 1.3558
worst 1.3401 1.3506 1.3405 1.4498 1.3431 1.3404 5.7847 1.3414 8.5719 1.3783
std 0.0000 0.0002 0.0001 0.0248 0.0009 0.0001 1.7788 0.0004 1.9612 0.0073
avg 1.3400 1.3502 1.3402 1.4041 1.3409 1.3401 3.0338 1.3406 3.4473 1.3641
median 1.3400 1.3501 1.3402 1.4041 1.3406 1.3400 2.7118 1.3406 2.6737 1.3619
Convergence curve
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Figure 15. Convergence curve and ANOVA test graph of cantilever beams
optimization results.

4.3. Design of reinforced concrete beams

Reinforced concrete beam design is one of the typical engineering applications of intelligent
optimization algorithms [29]. The problem aims to minimize the total cost of the beam (including
concrete and steel costs) while meeting the structural strength requirements of the ACI 318-77
specification as follows.

Aoy

M, = 0940, (0.8h) 1.0 — 0.59——"2
oy (0.8h) 0.8bhyo,

>1.4M,;+ 1.7M, (48)

The variables are defined as follows: M, is the ultimate flexural capacity (in-kip), representing the
resisting moment from concrete compression and steel tension, o, denotes the steel yield
strength (50 ksi), while h(x3) is the effective depth (in), typically & ~ 0.9h,. Ay (x;) is the tensile
reinforcement area (in), a key optimization variable affecting both strength and cost. b (x;) is the
beam width (in), another optimization variable. o is the concrete compressive strength (5 ksi). The
moments are: M, from dead loads (1350 in-kip, including 1000 Ibf self-weight) and M; from live
loads (2700 in-kip, 2000 Ibf). The constraints require M, > 1.4M, + 1.7M, for safety and h/b < 4 to
prevent slender beam instability. The optimization problem can be expressed as minimize:

minimize:

f(X) = 2.9X1 + 0.6X2X3, (49)

subject to:
gi(X)=£-4<0,

2 (4.10)
2:2(X) = 180 +7.3752 — x1x, < 0,
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variable range:
x) €1{6,6.16,6.32,6.6,7,7.11,7.2,7.8,7.9, 8, 8.4},
x; € {28,29,30,...,40}, (4.11)
5 <x; <10.

The Tables 10 and 11 and convergence curves (Figurel6) demonstrate the performance
comparison of EWMA and other optimization algorithms in the reinforced concrete beam design
problem. The results show that EWMA achieves the best performance with the lowest objective
function value (f(x) = 155.3034) and rank 1, indicating its effectiveness in minimizing the
construction cost while satisfying all design constraints. The convergence curves would likely exhibit
EWMA's faster convergence to the optimal solution compared to other methods. Notably, traditional
algorithms like GA show poorer performance (rank 10, f(x) = 165.9168), while metaheuristic
algorithms like PSO and DE perform moderately (ranks 3 and 2 respectively). The convergence plots
would complement these findings by visually demonstrating EWMA’s superior optimization
trajectory, likely showing steeper initial descent and more stable convergence than other algorithms.

Table 10. Optimization parameter results of reinforced concrete beams.

Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO

X 8.0086 8.2086 8.2096 8.0558 8.4000 8.2086 8.2090 8.2086 8.2053 8.2217
X 30.1549 29.8289 29.9301 30.1158 29.8628 29.7530 30.4739 30.0853 30.0180 29.9685
X3 7.2000 7.5000 7.5010 79197 7.5008 7.5000 7.5000 7.5000 7.6151 7.5003
fx) 155.3034 158.8050 158.8256 165.9168 159.3740 158.8050 158.8062 158.8050 160.8665 158.8491
rank 1 4 6 10 8 3 5 2 9 7

Table 11. Indicator statistical results of reinforced concrete beams.

Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO

min 155.3034 158.8050 158.8256 165.9168 159.3740 158.8050 158.8062 158.8050 160.8665 158.8491
worst 166.0810 182.7365 158.9109 191.5908 166.7601 174.0785 174.0804 158.8050 183.1293 174.4698
std 2.3005 7.6773 0.0277 8.4857 3.0981 5.1137 5.6108 0.0000 7.3792 4.3974
avg 156.5338 162.6529 158.8763 174.9650 161.6121 161.0597 165.4985 158.8050 170.2570 161.0242

median 155.8064 158.8050 158.8803 172.5852 159.4547 158.8050 166.0800 158.8050 169.7827 158.9890
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Figure 16. Convergence curve and ANOVA test graph of reinforced concrete beam
optimization results.
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4.4. Himmelblau function

For complex nonlinear functions like the Himmelblau function, which have multiple local extrema,
intelligent optimization algorithms are widely used to test their global search capabilities and their
ability to avoid getting trapped in local optima, in order to verify the effectiveness of the algorithms
when solving multimodal optimization problems [30].

Minimize
f(X) = 5.3578547x3 + 0.8356891x x5 + 37.293239x; — 40792.141 (4.12)
subject to

g1(x)=-G1 <0,
g2(xX) =G1-92<0,
2:3()=90-G2<0,
g4(¥) =G2-110<0, (4.13)
g5(X) =20-G3 <0,
26(X) = G3-25<0.

where

G1 = 85.334407 + 0.0056858x,x5 + 0.0006262x; x4 — 0.0022053x3 x5,
G2 = 80.51249 + 0.0071317x,x5 + 0.0029955x; x + 0.0021813x3, (4.14)
G3 =9.300961 + 0.0047026x3x5 + 0.00125447x,x3 + 0.0019085x3.x4.

with the bounds

78 < x; <102,

33 < x, <45,

27 < x3 <45, 4.15)
27 < x4 < 45,

27 < x5 <45.

The Tables 12 and 13 and convergence curves (Figurel7) present a comprehensive analysis of
optimization results for the Himmelblau function across nine different algorithms. The convergence
curve and fitness value graphs indicate that most algorithms achieve stable convergence, suggesting
effective optimization performance.

From the tables, EWMA and WMA consistently rank among the top performers, with EWMA
achieving the best median score (—30665.7765) and ranking first overall. PSO also performs well,
securing the second rank. In contrast, GA and AOA exhibit the weakest performance, with median
scores of —29527.3777 and —29433.7433, respectively, and rankings of 9 and 10. The standard
deviation (std) values reveal that EWMA and PSO are the most stable (std: 0.0440 and 0.0178), while
GA and AOA show higher variability (std: 222.3245 and 249.3755), indicating less reliability.

The parameter values (e.g., x; to xs) further highlight algorithmic differences. For instance,
EWMA, WMA, and PSO maintain near-optimal values for all parameters, whereas GA and AOA
deviate significantly, aligning with their poorer fitness scores. Overall, the data underscores EWMA
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and PSO as robust choices for this optimization problem, while GA and AOA may require further
tuning to improve consistency and performance.

Table 12. Optimization parameter results of the Himmelblau function.

Algorithm EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO
X 78.0000 78.0000 78.0000 79.3856 78.0000 78.0000 78.0000 78.0000 82.8686 78.0000
x 33.0001 33.0000 33.0000 34.4546 33.0000 33.0000 33.0000 33.0000 33.0000 33.0000
x 29.9956 29.9953 30.0001 31.3733 30.0102 29.9953 29.9978 30.0185 31.8177 30.2731
X 44.9996 45.0000 44.8670 29.8774 45.0000 45,0000 44.7169 45.0000 323610 45.0000
x5 36.7758 36.7758 36.8273 39.9798 36.7481 36.7758 36.8843 36.7313 37.5949 36.1041
f(x) —30665.7765 —30665.5216 —30657.2736 -29527.3777 —30649.2928 —30665.5387 —30506.7313 —30643.7594 —29433.7433 —30619.6054
rank 1 3 4 9 6 2 8 7 10 5
Table 13. Indicator statistical results of the Himmelblau function.
Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO
min  —30665.7356 —30665.5386 —30660.6211 —29905.6131 —30662.5467 —30665.5387 —30757.6468 —30660.9570 —-29674.0458 —30619.6054
worst  —30665.7920 —30662.0976 —30641.5528 —29204.7952 -30226.5285 —30665.4818 —30296.6540 —30600.8845 —-28934.4351 —30533.4840
std 0.0440 1.0816 7.0467 202.3245 1540783  0.0178 135.3187 19.5167 249.3755 29.0240
avg 306657676 —30665.0564 —30653.6396 —29558.5531 —30573.3057 —30665.5323 —30482.5653 —30638.9546 -29340.3876 —30583.6336
median —30665.7765 —30665.5216 —30657.2736 —29527.3777 —-30649.2928 —30665.5387 —30506.7313 —30643.7594 —29433.7433 —30581.9498
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Figure 17.
optimization results.

Different Algorithms

Convergence curve and ANOVA test graph of Himmelblau function

5. Conclusions and prospects

This study has presented the EWMA, which significantly improves upon the original WMA through
two key innovations: NCMM strategy and FROBL. Extensive experiments demonstrate that EWMA
consistently outperforms eight state-of-the-art optimization algorithms in terms of solution accuracy,
convergence speed, and stability across benchmark functions and real-world engineering problems.

EWMA'’s success lies in its effective balance between exploration and exploitation.
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enables adaptive uncertainty control through its expectation-entropy-hyperentropy mechanisms,
enabling dynamic adjustment of search behavior throughout optimization. FROBL enhances
population diversity via oscillatory perturbations and nonlinear scaling, preventing premature
convergence and accelerating convergence toward promising regions. The synergy between these
components has proven particularly effective in managing complex constraints, as shown in the
engineering case studies.

Despite its strengths, EWMA presents several challenges. The integration of NCMM and FROBL
increases computational overhead, potentially impacting runtime when solving high-dimensional
problems. Although designed for single-objective static optimization, EWMA’s core mechanisms
offer theoretical potential for extension: NCMM'’s entropy adaptation could be adapted to dynamic
environments using time-varying He parameters, while FROBL’s opposition-based sampling may
help preserve Pareto diversity when combined with non-dominated sorting. Additionally, although the
algorithm reduces the need for manual tuning, its performance remains sensitive to hyperparameters
such as entropy and hyperentropy. Furthermore, scalability to ultra-large-scale problems has not been
thoroughly tested and may require further refinement.

To address these limitations and extend EWMA’s applicability, the following research directions
are proposed:

e Multi-objective extension: Develop a multi-objective version of EWMA to enable the
simultaneous optimization of competing objectives.

e Dynamic environments: Adapt EWMA for dynamic optimization problems in which objectives or
constraints change over time: For example, in low-altitude unmanned aerial vehicle path planning.

e Hybrid approaches: Combine EWMA with machine learning techniques for surrogate-assisted
optimization to enhance efficiency in computationally expensive problems.

The proposed EWMA represents a significant advancement in nature-inspired optimization,
particularly for engineering problems with complex constraints. Its robust performance and adaptive
design make it a valuable tool for researchers and practitioners tackling challenging optimization
tasks. Researchers should aim to enhance its capabilities while preserving the exploration-exploitation
balance that underpins its current success.
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