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Abstract: In this paper,we proposed an enhanced whale migration algorithm (EWMA) that
integrates two novel strategies: Normal cloud model mutation (NCMM) and Fast Random Opposition-
Based Learning. NCMM enables adaptive uncertainty management through expectation-entropy-
hyperentropy mechanisms to balance exploration and exploitation. FROBL improves population
diversity and convergence speed via oscillatory perturbations and nonlinear scaling. EWMA
outperformed eight competing algorithms when evaluated on 23 benchmark functions and the
CEC 2019, achieving optimal results on 18 of the 23 benchmark functions and all 10 CEC 2019
functions. It ranked first overall, significantly surpassing the other algorithms. Statistical analysis
confirmed notable improvements in solution accuracy, convergence speed, and stability, with
standard deviations 2–4 orders of magnitude lower than those of competitors. Engineering
applications, including pressure vessel design, cantilever beams, and reinforced concrete beams,
further demonstrated EWMA’s practical effectiveness, yielding optimal designs with improved
constraint handling. EWMA offers a robust optimization tool for complex engineering problems
requiring global search capability and precise local refinement.

Keywords: whale migration algorithm; normal cloud model; opposition-based learning; engineering
optimization; metaheuristic algorithms

1. Introduction

Nature-inspired optimization algorithms are widely used to solve complex real-world problems
characterized by nonlinearity, multimodality, and high-dimensional search spaces [1, 2]. Traditional
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methods, such as gradient-based methods and linear programming, often struggle with these challenges
due to their reliance on convexity assumptions and vulnerability to local optima [3]. In contrast, bio-
inspired metaheuristics offer robust alternatives by emulating natural phenomena, including swarm
intelligence, evolutionary processes, and animal behavior [4].

Over the past few decades, numerous nature-inspired optimization algorithms have been
developed, each using distinct strategies to balance exploration (global search) and exploitation (local
refinement) [5]. The genetic algorithm (GA) [6], inspired by Darwinian evolution, evolves candidate
solutions via selection, crossover, and mutation but often converges slowly. Particle swarm
optimization (PSO) [7], modeled on bird flocking and fish schooling, updates particle velocities based
on personal and global best positions but may converge prematurely in complex landscapes. The grey
wolf optimizer (GWO) [8], which simulates hierarchical wolf hunting behavior, demonstrates strong
exploitation but limited exploration in high-dimensional spaces. Differential evolution (DE) [9]
generates solutions through mutation and crossover but requires careful parameter tuning. The whale
optimization algorithm (WOA) [10], based on humpback whale migration strategies, struggles with
complex constraints. The dung beetle optimizer (DBO) [11], inspired by dung beetle behavior,
performs well on benchmarks but often requires enhancement for constrained engineering tasks. Last,
the arithmetic optimization algorithm (AOA) [12], which uses arithmetic operators to guide the
search, may lack adaptability in dynamic environments. The snake optimizer (SO) [13] is a new
bio-inspired algorithm that simulates snake mating behavior to efficiently solve
optimization problems.

Recent innovations in metaheuristics have significantly advanced optimization capabilities across
domains. Novel bio-inspired algorithms such as the artificial lemming algorithm (ALA) [14] and the
multi-strategy snow ablation optimizer (MSAO) [15] have demonstrated improved performance
through their adaptive behavior and enhanced search strategies. These developments have been
complemented by domain-specific breakthroughs. For example, Fu et al.’s [16] MOFS-REPLS
algorithm addresses high-dimensional feature selection in multi-objective optimization. In
engineering design, methods such as the multi-strategy collaborative crayfish optimization
algorithm (MCOA) [17] and Chen et al.’s [18] adaptive many-objective approach effectively solve
complex constrained problems. Collectively, these contributions push the boundaries of optimization
in both methodology and real-world application.

Despite these advances, challenges remain in maintaining an optimal balance between exploration
and exploitation, particularly in constrained and high-dimensional optimization problems [19]. Many
algorithms still suffer from premature convergence, sensitivity to parameter settings, and difficulty
escaping local optima [20]. To address these limitations, recent developments have focused on hybrid
approaches that combine multiple strategies [10]. The normal cloud model, derived from uncertainty
theory, offers a robust framework for handling randomness and fuzziness in optimization
processes [21]. Similarly, opposition-based learning enhances population diversity and accelerates
convergence [22]. Nonetheless, there remains a need for more robust algorithms capable of
consistently delivering high performance across diverse problem domains while preserving
computational efficiency [23].

The whale migration algorithm (WMA) [24] mimics humpback whale migration, where
experienced leaders guide the group to optimal regions. Its main strength lies in its natural balance
between exploration (leaders discovering new regions) and exploitation (followers refining solutions),
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enabling effective handling of high-dimensional problems. This unique leader-follower mechanism
makes WMA particularly suitable for complex optimization tasks requiring both global search and
local refinement. However, like other population-based algorithms, WMA struggles to maintain the
exploration-exploitation balance, particularly in high-dimensional and constrained
optimization problems.

To address these limitations, we propose the enhanced whale migration algorithm (EWMA), which
introduces two key innovations: 1) Normal cloud model mutation (NCMM), which employs
expectation-entropy-hyperentropy mechanisms to dynamically manage uncertainty and optimize the
exploration-exploitation balance; and 2) A fast random opposition-based learning (FROBL) strategy,
which enhances population diversity through oscillatory perturbations and nonlinear scaling to avoid
stagnation in local optima. The proposed algorithm is rigorously validated through comprehensive
testing on 23 benchmark functions, the CEC 2019 test suite, and real-world engineering applications,
such as pressure vessel design, demonstrating superior performance in accuracy, stability, and
convergence speed compared to eight other optimization algorithms.

The remainder of this paper is organized as follows: In Section 2,we introduce the original WMA
and the proposed enhancements. In Section 3, we present the experimental setup and results analysis.
In Section 4, we demonstrate practical applications in engineering design. Finally, In Section 5, we
conclude with findings and future research directions.

2. Enhanced whale migration algorithm

2.1. Original whale migration algorithm

The WMA is an innovative bio-inspired optimization method based on the collaborative migration
behavior of humpback whales. It draws inspiration from their long-distance migrations, during which
whales form groups led by experienced individuals who guide others (such as young whales) toward
optimal destinations (such as food-rich areas or breeding grounds). This dynamic leader-follower
structure and group collaboration provide the conceptual foundation for the algorithm. Its workflow
and mathematical formulation are described below [24].

2.1.1. Initialization

A population of whale individuals (candidate solutions) is randomly generated, with each
individual representing a potential solution to the problem. The individuals are ranked based on their
objective function values to identify leaders (experienced whales) and followers (young whales). Let
the population size be Npop and the problem dimension be D. The position Xi, j

(i = 1, 2, · · · ,Npop, j = 1, 2, · · · ,D) of each whale is initialized as follows:

Xi, j = L j + rand(1,D) ⊙ (U j − L j) (2.1)

where L j and U j are the lower and upper bounds of the search space, respectively. rand(1,D) is a
D-dimensional random vector with elements in [0, 1], and ⊙ denotes the Hadamard product (element-
wise multiplication).
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2.1.2. Determination of current local position

In each whale pod, experienced individuals with superior positional knowledge and higher objective
function values (leaders) guide the group. Parameter NL represents the number of these leaders, and
XMean denotes their average position, calculated as

XMean =
1

NL

NL∑
j=1

X j. (2.2)

This formulation represents the collective position of the entire group of migrating whales at a
given moment. Experimental results show that this approach improves WOA’s convergence speed and
its ability to escape local optima.

2.1.3. Leader-follower dynamics

Leader (exploration phase): The leader is responsible for exploring new areas. Its position is
updated using a formula that incorporates both randomness and directionality, simulating whale
navigation based on cues such as the Earth’s magnetic field and celestial patterns:

Xnew
i = Xi + r1 ⊙ L j + r1 ⊙ r2 ⊙ (U j − L j), (2.3)

where r1 and r2 are random vectors.
Follower (development phase): Followers are influenced by the leader and neighboring individuals

and move to a better position:

Xnew
i = XMean + rand(1,D) ⊙ (Xi−1 − Xi) + rand(1,D) ⊙ (XBest − XMean), (2.4)

where XMean is the average leader position and XBest is the current optimal solution.
Adaptive balance: The algorithm dynamically adjusts the ratio of leaders to followers to balance

global exploration and local development. New positions are updated only if accepted,
promoting convergence.

While the original WOA effectively mimics the leader-follower dynamics of humpback whale
migration, it has three major limitations:

1) Premature convergence due to excessive reliance on the current best solution, particularly in
multimodal landscapes;

2) Rigid exploration–exploitation balance resulting from fixed leader-follower ratios that do not
adapt to different optimization phases;

3) Poor constraint handling in engineering applications, often generating infeasible solutions.
These limitations underscore the need for enhanced strategies, such as NCMM’s adaptive

uncertainty management and FROBL’s diversity preservation mechanisms.

2.2. Proposed algorithm

2.2.1. Normal cloud model mutation strategy

In real-world scenarios, randomness and fuzziness are the most common manifestations of
uncertainty. The NCMM strategy offers a sophisticated qualitative-quantitative approach by
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integrating probability theory (randomness) and fuzzy mathematics (fuzziness), effectively
overcoming the limitations of traditional approaches in handling uncertain problems. This model
bridges qualitative cognition and quantitative analysis, providing a novel framework for addressing
the inherent uncertainty that traditional methods often struggle to resolve.

The cloud model is defined by three parameters: Expectation (Ex), entropy (En), and
hyperentropy (He). The adaptive normal cloud model is computed as follows:

Entropy (En): Controls the search scope around the expectation value (Ex, the current best
solution); it decreases exponentially with iterations (t/Tmax):

En = e
t

Tmax . (2.5)

Hyper-Entropy (He): Represents the uncertainty in entropy (En’s dispersion), calculated as

He =
En

10−3 = En × 103. (2.6)

Membership function (certainty degree): Evaluates how ra belongs to Ex:

mx = exp
(
−

(ra − Ex)2

2E2
n

)
, (2.7)

where Ex ∼ Xbest, En ∼ N(En,He2) is the random entropy value and ra ∼ N(Ex, |En|
2) represents the

generation of cloud droplets.
In optimization problems, the global optimum is typically difficult to obtain directly. Algorithms

must gradually approach it through effective strategies. In the WMA, leader whales, which possess
superior navigation capabilities, are regarded as carriers of the current optimal solution and guide the
population toward better regions of the search space.

To improve the balance between global exploration and local exploitation in WMA, NCMM is
introduced to quantify the uncertainty (randomness and fuzziness) of whale group behavior. The
expected value (Ex) represents the position of the current best whale (i.e., the leader) and is the
central reference point for group movement. Entropy (En) describes the spatial distribution of the
group, controlling the distance between individuals and the optimal whale, thereby affecting the scope
of global exploration. Hyperentropy (He) reflects the dispersion of whale positions and adjusts the
randomness of distribution to prevent premature convergence.

By dynamically adjusting En and He, WOA adaptively balances exploration (broad search) and
exploitation (fine-tuned optimization). In the early stages, larger values of En and He increase
randomness, enabling the whale population to extensively explore the solution space and avoid local
optima. In later stages, smaller values of En and He improve position-update accuracy, enabling the
algorithm to focus on local refinement.

The new whale position X′ is generated using the normal cloud model, which incorporates the
current best position (best) and the group’s distribution characteristics:

X′ = CloudTransform(Xbest, En,He, n). (2.8)

By incorporating NCMM, leader whales in WOA not only guide the group toward optimal
directions but also dynamically adjust search strategies, achieving a more effective balance between
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exploration and exploitation. The cloud parameters (entropy En and hyperentropy He) are adaptively
updated with iterations, eliminating the need for manual parameter tuning. This improves
performance in complex optimization problems, particularly those involving both randomness
and fuzziness.

2.2.2. Fast random opposition-based learning

The FROBL strategy is integrated into WOA to improve population diversity and accelerate
convergence [25]. Opposition-based solutions are generated as follows:

M =
L + U

2
, (2.9)

where M is the midpoint between the lower (lb) and upper (ub) bounds of the search space. For each
whale individual i in the population pop:

Xnew
i, j =


M +

(
r2

1 · sin(2πr2) · Xi, j

2

)
, if ∥Xi, j∥ < ∥M∥

M −
(
r2

1 · sin(2πr2) · Xi, j

2

)
, otherwise

(2.10)

with r1, r2 ∼ U(0, 1) representing uniform random variables in [0,1].
To improve performance, the algorithm incorporates three key mechanisms. First, the sin(2πr2) term

introduces oscillatory perturbations, enabling broader exploration by cyclically repositioning solutions
around promising regions. Second, the nonlinear scaling factor r2

1 adaptively balances exploration and
exploitation: Larger values favor global searches in early iterations, while smaller values enhance local
refinement later. Third, the FROBL mechanism maintains computational efficiency, adding minimal
overhead while significantly improving both convergence and diversity. These enhancements leverage
the following mathematical principles:

• Cyclic exploration: The combination of π and sin(2πr2) ensures that solutions dynamically exploit
intervals between candidate positions and beyond, helping prevent stagnation.
• Distance-aware adjustment: The Euclidean norm (| · |) guides perturbations relative to the origin,

while randomized scaling (r2
1) enables progressive refinement.

• Convergence safeguards: Compared to the original WMA update rules, the revised
rules (Eq (2.10)) mitigate the risk of local optima and accelerate convergence.
Here, M denotes directional movement, r1 and r2 ∈ [0, 1] are uniform random numbers, and π
controls the periodicity of oscillations. This combination of stochasticity, cyclic exploration, and
adaptive scaling enables robust global optimization with balanced diversity.

2.2.3. Enhanced WMA

An enhanced WMA is proposed by integrating NCMM and FROBL to improve global search
capability and convergence depth. The normal cloud model is used to dynamically adjust the whales’
position update step size during migration. Its randomness and fuzziness, controlled by
expectation (Ex), entropy (En), and hyperentropy (He), help balance exploration and exploitation
while avoiding local optima. Additionally, FROBL is introduced to generate more diverse initial
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populations by calculating opposite solutions and dynamically adjusting the opposition probability
during iterations, which broadens the search scope and accelerates convergence.

The integration of NCMM and FROBL enables adaptive position updates and intelligent
uncertainty management, enhancing exploration in the early stage and exploitation in the later stage to
prevent premature convergence. Compared with the original WMA, this improved strategy, aligned
with the collaborative behavior of whale migration, significantly improves precision and robustness in
solving complex optimization problems by combining quantitative control with qualitative swarm
behavior modeling.

The pseudocode of EWMA is shown in Algorithm 1, and a flowchart is presented in Figure 1.

Algorithm 1 The pseudocode of EWMA
Require:

1: Npop: The EWMA swarm population size.
2: Dim: Dimension of the problem.
3: U, L: Upper and lower bounds for all variables.
4: Tmax: Iterations maximum number.

Ensure:
5: Initialization phase:
6: Scale to search space bounds, and evaluate initial populations using Eq (2.1)
7: for t = 1 to Tmax do
8: Evaluate f (Xi)
9: for i = 1 : NL do

10: Move the group of more experienced whales (leaders) based on Eq (2.3)
11: Evaluate f (Xnew

i )
12: if f (Xnew

i ) ≤ f (Xi) then Xi = Xnew
i ; f (Xi) = f (Xnew

i )
13: end if t = t + 1
14: Apply the NCMM using Equation (2.8)
15: end for
16: for i = NL + 1 : Npop do
17: Move the less-experienced whales based on Eq (2.4)
18: if f (Xnew

i ) ≤ f (Xi) then Xi = Xnew
i ; f (Xi) = f (Xnew

i )
19: end if t = t + 1
20: Apply NCMM using Eq (2.8)
21: end for
22: Apply FROBL using Eq (2.10)
23: Apply boundary constraints
24: end for
25: return Best member and optimal solution.
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Figure 1. Flowchart of EWMA.
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2.3. Ablation study of EWMA

The radar charts and ranking graphs for the 23 test functions (Figure 2) illustrate the performance
of the algorithms which are EWMA, WMA, WMA with NCMM, and WMA with FROBL. The radar
chart displays the functions F1 to F23, with EWMA showing superior performance on specific
functions, as indicated by its lower average ranking (1.61) in the ranking graph. This suggests that
EWMA outperforms its variants (WMA, NCMM, FROBL) in most scenarios. The red trend line in
the ranking graph further highlights EWMA’s consistent dominance, while WMA’s higher average
ranking (3.26) reflects its relatively weaker performance. These results underscore EWMA’s
robustness and effectiveness in solving a wide range of optimization problems within the
ablation study.
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Figure 2. The ablation study of EWMA for 23 Benchmark functions.
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Figure 3. The ablation study of EWMA for CEC 2019.
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Similarly, the radar charts and ranking graphs for the CEC2019 test functions (Figure 3) show
EWMA’s strong performance on functions such as F1 and F4. The ranking graph confirms this with
EWMA’s low average ranking (2.00), indicating its superior effectiveness compared to the other
algorithms. In contrast, NCMM’s higher average ranking (2.80) reflects suboptimal performance.
Visual indicators, such as the red trend line, convey the overall trend, reinforcing EWMA’s status as
the top-performing algorithm. These results highlight EWMA’s adaptability and efficiency in tackling
complex optimization problems, making it a reliable choice for both theoretical and
practical applications.

3. Experimental results and discussions

In this section, we present a comprehensive experimental evaluation of the proposed EWMA,
which incorporates two novel strategies: The NCMM and FROBL. The algorithm’s performance is
rigorously tested against nine optimization algorithms using 23 benchmark functions, and the
CEC 2019 functions include WMA, GWO, GA, DBO, PSO, GOOSE, DE, AOA, and SO. All
experiments were conducted in MATLAB 2024a on a Windows 11 system with an Intel® Core™
Ultra 9 185H 2.30 GHz processor. The parameters used were as follows: Population size = 30 and
maximum iterations = 300. Each algorithm was independently executed 30 times to ensure statistical
reliability. Performance was assessed based on convergence behavior, ANOVA test results,
performance index metrics, and robustness. The results demonstrate that EWMA offers a superior
balance between exploration and exploitation, particularly in complex, constrained optimization
scenarios. Statistical significance was further verified using Wilcoxon rank-sum tests (p < 0.05).

EWMA’s computational complexity is primarily driven by the NCMM and FROBL strategies. Per
iteration, NCMM requires O (N·D) operations for cloud droplet generation, while FROBL adds
O (N·D) for opposition-based updates. On average, EWMA was 1.3 times slower than WOA but
achieved two to four times higher solution accuracy. The algorithm prioritized solution quality and
robustness over computational speed, aligning with modern engineering demands where hardware
advancements have reduced the emphasis on runtime. Future work may entail hardware
acceleration (e.g., GPU parallelization) to further narrow this performance gap.

3.1. Results and analysis for 23 benchmark functions

Comprehensive experimental results across 23 benchmark functions (F1–F23) demonstrate that the
proposed EWMA algorithm delivers superior optimization performance across multiple evaluation
dimensions. As indicated by three key metrics: Solution accuracy (min), stability (std), and
convergence performance (avg), EWMA, and consistently outperforms competing algorithms in
various problem domains, as shown in Table 1. In particular, for unimodal (F1–F4) and multimodal
functions (F9–F11), EWMA achieves significantly better minimum values (e.g., 2.00063 × 10−6 vs
GA’s 8.5559 × 103in F1), validating the efficacy of its novel NCMM for local refinement and FROBL
for global exploration. The algorithm’s robustness was demonstrated by consistently lower standard
deviations (e.g., 1.6617 × 10−6 in F3 vs WMA’s 8.2993 × 101), indicating reduced sensitivity to
initial parameters.

Electronic Research Archive Volume 33, Issue 9, 5865–5896.



5875

Table 1. Performance comparative of optimization algorithms on 23 benchmark functions.
Func. Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO

F1

min 2.0063 × 10−6 3.4180 × 10−5 8.3479 × 10−17 8.5559 × 103 0.0000 6.4616 × 10−1 2.1363 × 10−2 5.8483 3.2647 × 10−90 1.4110 × 10−9

std 2.7954 × 10−6 4.4892 × 10−2 1.8682 × 10−15 4.4968 × 103 0.0000 2.1764 × 101 3.9988 × 103 1.5839 2.7146 × 10−32 8.7043 × 10−9

avg 6.1381 × 10−6 1.5026 × 10−2 2.3357 × 10−15 1.3349 × 104 7.8569 × 10−172 2.3179 × 101 2.8097 × 103 8.9354 8.5844 × 10−33 8.7698 × 10−9

F2

min 5.1983 × 10−3 2.7460 × 10−2 3.7175 × 10−10 2.7244 × 101 2.3927 × 10−208 1.2852 1.5936 5.4275 × 10−1 0.0000 2.1979 × 10−4

std 3.3066 × 10−3 1.9854 × 10−1 8.7975 × 10−10 9.5296 0.0000 4.2675 3.8470 × 101 1.3697 × 10−1 0.0000 1.9597 × 10−4

avg 1.0676 × 10−2 1.4570 × 10−1 1.4508 × 10−9 4.4626 × 101 6.0921 × 10−190 4.8205 1.0009 × 102 7.3442 × 10−1 5.3589 × 10−229 4.8357 × 10−4

F3

min 1.6617 × 10−6 8.2993 × 101 3.0515 × 10−3 2.8999 × 104 0.0000 7.2420 × 102 4.6970 3.3397 × 104 1.6680 × 10−54 8.8452 × 10−4

std 3.7353 × 10−5 9.4522 × 101 4.3993 × 10−2 7.0948 × 103 0.0000 1.4014 × 103 8.4842 × 103 4.8610 × 103 1.3107 × 10−2 1.1168
avg 3.4265 × 10−5 1.9961 × 102 4.0229 × 10−2 4.1301 × 104 0.0000 1.8734 × 103 1.1448 × 104 4.1256 × 104 4.1449 × 10−3 3.9524 × 10−1

F4

min 3.6020 × 10−4 6.4794 3.6200 × 10−4 5.8317 × 101 1.7077 × 10−208 9.1410 2.5238 × 10−1 3.4328 × 101 2.8338 × 10−11 5.9323 × 10−4

std 4.5309 × 10−4 2.2387 8.0429 × 10−4 6.4723 9.7606 × 10−39 2.8472 2.7504 × 101 3.7424 2.0891 × 10−2 2.7101 × 10−3

avg 8.2293 × 10−4 1.0852 × 101 1.1879 × 10−3 7.1286 × 101 3.1182 × 10−39 1.6189 × 101 2.7075 × 101 3.7914 × 101 2.7956 × 10−2 4.7454 × 10−3

F5

min 2.7994 × 101 3.3045 × 101 2.6953 × 101 6.1718 × 105 2.8691 × 101 8.2834 × 101 8.0563 × 101 1.0566 × 103 2.8087 × 101 2.8854 × 101

std 4.1096 × 10−1 6.8147 × 101 7.3722 × 10−1 1.4256 × 107 1.1129 × 10−1 5.1265 × 102 1.1096 × 103 5.6510 × 102 2.8242 × 10−1 3.5605 × 10−2

avg 2.8470 × 101 1.0660 × 102 2.7729 × 101 1.1468 × 107 2.8826 × 101 5.6780 × 102 1.0167 × 103 1.9265 × 103 2.8480 × 101 2.8903 × 101

F6

min 5.4427 × 10−4 1.5076 × 10−5 7.5651 × 10−1 1.4234 × 104 3.8349 3.1979 4.0132 × 10−2 6.5102 3.1197 6.8275 × 10−1

std 4.4966 × 10−4 2.4133 × 10−2 3.1781 × 10−1 8.3816 × 103 1.9796 × 10−1 5.9376 × 101 4.6174 × 103 3.4624 2.8300 × 10−1 1.1416
avg 1.3200 × 10−3 9.0246 × 10−3 1.1309 2.0931 × 104 4.2439 3.3345 × 101 6.4182 × 103 1.0229 × 101 3.4529 3.3518

F7

min 7.1959 × 10−4 5.7347 × 10−2 1.6936 × 10−3 4.1914 × 10−1 1.4548 × 10−4 4.5817 × 10−2 1.0901 × 10−1 5.8838 × 10−2 1.1431 × 10−5 4.6589 × 10−4

std 1.3017 × 10−3 1.0496 × 10−1 1.4544 × 10−3 3.2899 9.3149 × 10−4 7.8924 × 10−2 6.1732 × 10−2 4.3831 × 10−2 1.5551 × 10−4 4.2258 × 10−3

avg 3.1338 × 10−3 1.7383 × 10−1 3.2140 × 10−3 5.1025 1.1805 × 10−3 1.8364 × 10−1 1.9357 × 10−1 1.3033 × 10−1 1.3186 × 10−4 3.6524 × 10−3

F8

min −8.6411 × 103 −9.0169 × 103 −7.9424 × 103 −3.3353 × 103 −8.1078 × 103 −7.4202 × 103 −6.8766 × 103 −8.8642 × 103 −5.5732 × 103 −1.2568 × 104

std 7.5214 × 102 1.6079 × 103 8.2027 × 102 7.0947 × 102 8.2752 × 102 5.3049 × 102 4.3696 × 102 3.6594 × 102 4.5124 × 102 1.4376 × 103

avg −7.4117 × 103 −6.2507 × 103 −6.5233 × 103 −2.0442 × 103 −6.6557 × 103 −6.3652 × 103 −6.0197 × 103 −7.9321 × 103 −4.9540 × 103 −1.1106 × 104

F9

min 3.6796 × 10−4 4.1792 × 101 7.1753 × 10−10 2.3727 × 102 0.0000 3.3896 × 101 1.2376 × 102 9.4965 × 101 0.0000 3.9205 × 10−1

std 5.1774 × 10−4 4.7627 × 101 7.0428 3.2595 × 101 0.0000 1.1599 × 101 3.9928 × 101 1.2172 × 101 0.0000 2.9852 × 101

avg 1.2196 × 10−3 7.4853 × 101 9.4245 2.6585 × 102 0.0000 4.8006 × 101 1.7744 × 102 1.2122 × 102 0.0000 3.8228 × 101

F10

min 6.7272 × 10−4 3.3450 6.2836 × 10−9 1.8938 × 101 4.4409 × 10−16 3.5782 1.0074 1.6452 4.4409 × 10−16 1.2685 × 10−4

std 5.0262 × 10−4 1.4904 3.5580 × 10−9 4.0948 × 10−1 0.0000 1.8720 5.7384 3.0257 × 10−1 0.0000 3.3895 × 10−05

avg 1.6018 × 10−3 4.9431 1.2013 × 10−8 1.9841 × 101 4.4409 × 10−16 5.0021 1.7322 × 101 2.1371 4.4409 × 10−16 1.7981 × 10−4

F11

min 4.5790 × 10−8 1.0131 × 10−4 2.2204 × 10−15 6.5985 × 101 0.0000 1.8366 × 10−1 3.6936 × 10−3 1.0556 5.3812 × 10−3 4.0641 × 10−10

std 1.0726 × 10−7 7.6945 × 10−2 8.1836 × 10−3 6.5456 × 101 0.0000 6.0418 × 10−1 2.4970 × 102 3.8144 × 10−2 2.3847 × 10−1 4.1706 × 10−8

avg 2.0511 × 10−7 5.5789 × 10−2 2.5879 × 10−3 1.5169 × 102 0.0000 1.2733 2.3267 × 102 1.0938 2.1907 × 10−1 4.6351 × 10−8

F12

min 8.9340 × 10−6 5.1961 × 10−1 1.8012 × 10−2 1.1696 × 101 3.7059 × 10−1 3.1771 6.8485 × 10−1 1.2518 5.5120 × 10−1 1.3005 × 10−4

std 7.0838 × 10−6 2.6733 1.5281 × 10−2 3.0816 × 106 7.4718 × 10−2 3.4088 1.4051 × 101 4.2477 × 10−1 5.1928 × 10−2 5.4741 × 10−1

avg 2.0002 × 10−5 3.7766 3.9292 × 10−2 1.8794 × 106 4.5894 × 10−1 9.0530 1.5783 × 101 1.8156 6.1718 × 10−1 1.1820

F13

min 1.7355 × 10−4 8.7578 × 10−1 5.1561 × 10−1 4.4004 × 105 2.6557 1.4315 × 101 7.6045 × 10−3 3.0965 2.7459 7.3514 × 10−2

std 4.6356 × 10−3 1.0403 × 101 2.7153 × 10−1 3.5482 × 107 4.2621 × 10−2 1.1072 × 101 3.3102 × 101 1.1655 6.2448 × 10−2 3.4945 × 10−1

avg 2.4890 × 10−3 1.4809 × 101 8.5128 × 10−1 1.9082 × 107 2.7210 2.8572 × 101 3.0091 × 101 4.6146 2.8529 7.8123 × 10−1

F14

min 9.9800 × 10−1 9.9800 × 10−1 9.9800 × 10−1 9.9800 × 10−1 1.0391 9.9800 × 10−1 9.9800 × 10−1 9.9800 × 10−1 9.9800 × 10−1 9.9800 × 10−1

std 1.6219 × 10−14 1.8130 × 10−16 4.0827 1.3272 × 10−9 6.1092 × 10−1 4.4795 6.1142 3.1434 × 10−1 4.9813 1.7060
avg 9.9800 × 10−1 9.9800 × 10−1 4.5275 9.9800 × 10−1 2.2201 4.5213 1.2507 × 101 1.0974 8.6991 1.8885

F15

min 5.4716 × 10−4 3.0749 × 10−4 5.5185 × 10−4 1.3527 × 10−3 3.0905 × 10−4 3.0749 × 10−4 6.8286 × 10−4 5.1824 × 10−4 4.4490 × 10−4 5.0160 × 10−4

std 8.2540 × 10−3 9.5464 × 10−3 9.4957 × 10−3 8.6540 × 10−3 1.1780 × 10−4 8.4488 × 10−3 7.9940 × 10−3 1.1874 × 10−4 2.9889 × 10−2 4.5179 × 10−3

avg 4.7057 × 10−3 6.5445 × 10−3 6.6056 × 10−3 9.7325 × 10−3 4.2226 × 10−4 4.3330 × 10−3 5.2716 × 10−3 7.2142 × 10−4 1.7199 × 10−2 2.1628 × 10−3

F16

min −1.0316 −1.0316 −1.0316 −1.0311 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
std 4.4577 × 10−5 0.0000 5.6171 × 10−8 7.8045 × 10−2 4.2650 × 10−5 1.2820 × 10−16 3.4413 × 10−1 7.4015 × 10−17 1.5634 × 10−7 8.8186 × 10−6

avg −1.0316 −1.0316 −1.0316 −9.8219 × 10−1 −1.0316 −1.0316 −8.6840 × 10−1 −1.0316 −1.0316 −1.0316

F17

min 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9837 × 10−1 3.9789 × 10−1

std 2.4088 × 10−8 0.0000 4.9353 × 10−6 1.1087 × 10−5 1.8532 × 10−5 0.0000 2.5501 × 10−9 0.0000 9.8444 × 10−3 6.4888 × 10−6

avg 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9790 × 10−1 3.9790 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1 4.1147 × 10−1 3.9789 × 10−1

F18

min 3.0000 3.0000 3.0000 3.0000 3.0001 3.0000 3.0000 3.0000 3.0000 3.0000
std 2.0101 × 10−6 1.0362 × 10−15 1.8173 × 10−4 8.3909 1.6160 × 10−2 1.3486 × 10−15 5.2448 × 10−7 0.0000 1.3042 × 101 5.5908 × 10−5

avg 3.0000 3.0000 3.0002 5.6537 3.0161 3.0000 3.0000 3.0000 1.1100 × 101 3.0001

F19

min −3.8628 −3.8628 −3.8628 −3.8192 −3.8627 −3.8628 −3.8628 −3.8628 −3.8544 −3.8628
std 6.6351 × 10−7 9.3622 × 10−16 1.9347 × 10−3 3.4717 × 10−1 3.2575 × 10−3 9.0043 × 10−16 2.1918 × 10−5 9.3622 × 10−16 6.1718 × 10−3 7.1926 × 10−6

avg −3.8628 −3.8628 −3.8621 −3.3821 −3.8603 −3.8628 −3.8628 −3.8628 −3.8492 −3.8628

F20

min −3.3220 −3.3220 −3.3220 −2.6036 −3.1357 −3.3220 −3.3219 −3.3220 −3.2309 −3.3215
std 6.1397 × 10−2 6.2662 × 10−2 9.8039 × 10−2 6.5377 × 10−1 1.4854 × 10−1 6.1396 × 10−2 7.4167 × 10−2 1.4919 × 10−5 1.1697 × 10−1 3.7750 × 10−2

avg −3.2744 −3.2625 −3.2158 −1.3857 −3.0365 −3.2744 −3.2531 −3.3220 −3.0677 −3.3092

F21

min −1.0153 × 101 −1.0153 × 101 −1.0152 × 101 −2.3756 −7.5957 −1.0153 × 101 −1.0153 × 101 −1.0153 × 101 −6.0076 −1.0119 × 101

std 1.9965 × 10−5 2.5114 2.9163 4.8341 × 10−1 8.0484 × 10−1 3.2955 2.4048 2.6835 × 10−1 1.3045 1.7323
avg −1.0153 × 101 −5.6408 −8.3864 −1.4046 −5.3053 −8.1487 −4.1350 −9.9979 −3.3279 −9.2648

F22

min −1.0403 × 101 −1.0403 × 101 −1.0401 × 101 −2.4156 −1.0358 × 101 −1.0403 × 101 −1.0403 × 101 −1.0403 × 101 −4.5758 −1.0392 × 101

std 2.4150 2.9247 2.7491 × 10−3 4.8045 × 10−1 1.6666 4.0310 2.3393 4.2185 × 10−1 9.2366 × 10−1 2.7528
avg −9.6392 −5.0820 −1.0399 × 101 −1.3967 −5.6144 −6.5788 −4.4232 −1.0239 × 101 −3.4031 −9.0305

F23

min −1.0536 × 101 −1.0536 × 101 −1.0536 × 101 −1.8854 −1.0517 × 101 −1.0536 × 101 −1.0536 × 101 −1.0536 × 101 −5.0436 −1.0517 × 101

std 1.9543 × 10−5 3.7301 3.7122 × 10−3 2.5723 × 10−1 1.7040 3.5682 3.6711 5.7804 × 10−2 1.1322 2.5818
avg −1.0536 × 101 −6.3144 −1.0530 × 101 −1.2818 −5.6672 −8.3268 −5.3574 −1.0506 × 101 −3.1501 −8.1503
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Statistical verification using Wilcoxon rank-sum tests (p = 0.05) further confirms EWMA’s
significant advantages, as shown in Table 2. The algorithm achieves statistically superior
performance (p < 1.0 × 10−10) for 18 of 23 test functions, with notable differences (p = 1.0 × 10−12)
in multimodal functions (F9–F13). These results confirm that EWMA’s hybrid strategies effectively
balance exploration and exploitation, mitigating premature convergence, an issue prevalent in
conventional algorithms such as GWO and PSO (p < 1.0 × 10−11 for high-dimensional problems F3
and F11).

Table 2. Wilcoxon rank-sum test results comparing the performance of optimization
algorithms on the 23 benchmark functions.

Func. WMA GWO GA DBO PSO GOOSE DE AOA SO

F1 8.1014 × 10−10 3.0199 × 10−11 3.0199 × 10−11 2.3657 × 10−12 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11

F2 6.6955 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 2.9543 × 10−11 3.0199 × 10−11

F3 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 7.8787 × 10−12 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 6.6273 × 10−1 3.0199 × 10−11

F4 3.0199 × 10−11 8.0727 × 10−1 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.7782 × 10−2 2.0199 × 10−11

F5 8.4848 × 10−9 4.8011 × 10−7 3.0199 × 10−11 2.1327 × 10−5 3.0199 × 10−11 5.5727 × 10−10 3.0199 × 10−11 1.0869 × 10−11 3.0199 × 10−11

F6 1.0407 × 10−4 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 4.9011 × 10−7

F7 3.0199 × 10−11 3.1830 × 10−3 3.0199 × 10−11 2.1540 × 10−6 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11

F8 1.1937 × 10−6 6.7220 × 10−10 3.0199 × 10−11 5.2650 × 10−5 8.2919 × 10−6 3.8202 × 10−10 4.5530 × 10−11 3.0199 × 10−11 3.0199 × 10−11

F9 3.0199 × 10−11 1.1077 × 10−6 3.0199 × 10−11 1.2118 × 10−12 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.2118 × 10−12 3.0199 × 10−11

F10 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.2118 × 10−12 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.2118 × 10−12 3.0199 × 10−11

F11 3.0199 × 10−11 7.9581 × 10−3 3.0199 × 10−11 1.2118 × 10−12 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 7.6857 × 10−11

F12 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11

F13 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.7769 × 10−10 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11

F14 1.0128 × 10−11 3.0142 × 10−11 3.0142 × 10−11 3.0142 × 10−11 1.8478 × 10−1 2.8619 × 10−10 7.7386 × 10−11 3.0142 × 10−11 3.0199 × 10−11

F15 1.3114 × 10−2 6.5671 × 10−2 4.0330 × 10−3 7.1988 × 10−5 3.5697 × 10−6 2.3985 × 10−1 6.3088 × 10−1 4.7335 × 10−1 3.8472 × 10−1

F16 1.2118 × 10−12 3.0199 × 10−11 3.8202 × 10−10 9.9258 × 10−2 1.0149 × 10−11 1.1077 × 10−6 1.0149 × 10−11 3.0199 × 10−11 2.1231 × 10−1

F17 1.2384 × 10−9 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.2118 × 10−12 6.9125 × 10−4 1.2118 × 10−12 3.0199 × 10−11 3.0199 × 10−11

F18 2.4887 × 10−11 2.0338 × 10−9 2.4386 × 10−9 3.0199 × 10−11 2.5416 × 10−11 1.3732 × 10−1 3.1602 × 10−12 2.7086 × 10−2 1.8276 × 10−7

F19 1.2118 × 10−12 4.1997 × 10−10 3.0199 × 10−11 3.0199 × 10−11 4.0806 × 10−12 1.1143 × 10−3 4.0806 × 10−12 3.0199 × 10−11 3.0199 × 10−11

F20 4.0736 × 10−6 7.5059 × 10−1 3.0199 × 10−11 3.3520 × 10−8 7.5319 × 10−6 7.6973 × 10−4 3.4742 × 10−10 1.9568 × 10−10 3.0199 × 10−11

F21 4.7731 × 10−5 5.0723 × 10−10 4.0772 × 10−11 5.5727 × 10−10 5.4945 × 10−2 8.4848 × 10−9 9.2113 × 10−5 3.8202 × 10−10 3.0752 × 10−1

F22 1.4236 × 10−2 1.1077 × 10−6 3.6897 × 10−11 1.1077 × 10−6 6.8327 × 10−1 8.3520 × 10−8 4.2259 × 10−3 4.6856 × 10−8 3.0199 × 10−11

F23 2.4499 × 10−1 9.5139 × 10−6 1.3289 × 10−10 9.5139 × 10−6 5.7823 × 10−1 1.2860 × 10−6 6.5204 × 10−1 1.8731 × 10−7 3.0199 × 10−11

An analysis of convergence behavior revealed distinct performance patterns across algorithm
classes, as shown in Figures 4 and 5. EWMA consistently achieves rapid and stable convergence to
near-optimal solutions in both unimodal (F6, F8) and complex multimodal functions (F12, F13, F21),
attributed to its adaptive balance between FROBL’s accelerated convergence and NCMM’s diversity
preservation. PSO and GWO exhibit moderate performance in some multimodal cases (F12–F14),
and their swarm-based mechanisms occasionally converge to local optima. Notably, EWMA
demonstrates particular strength in constrained optimization problems (F16–F19), where its
constraint-handling mechanism produces solutions closer to theoretical optima (e.g., F16
min=−1.032) compared to SO’s suboptimal results (F21 avg=−9.265vs EWMA’s −1.015 × 101).
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Figure 4. Convergence analysis on a subset of the 23 benchmark functions.
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Figure 5. Convergence analysis on a subset of the 23 benchmark functions.

An ANOVA-based performance distribution analysis using box plots highlightes algorithm-specific
characteristics, as shown in Figures 6 and 7. EWMA exhibites compact interquartile ranges across most
functions (e.g., F17), indicating consistent solution quality, while algorithms such as AOA show erratic
behavior in high-dimensional spaces (e.g., F3, due to parameter sensitivity). These findings collectively
suggest that EWMA’s architectural innovations successfully address key challenges in evolutionary
computation: Maintaining population diversity through NCMM while accelerating convergence via
FROBL. Overall, EWMA achieves superior performance across diverse problem landscapes. Future
research directions should focus on enhancing EWMA’s adaptability in specialized scenarios, such as
hybrid composition functions (F15), where all algorithms show potential for improvement.

The radar and ranking charts provide a comprehensive visualization of EWMA’s performance
across the 23 benchmark functions (F1–F23), as shown in Figure 8. The radar plot highlights
EWMA’s consistent dominance, with its polygon covering the largest area particularly in functions
F1–F5 and F9–F12, where it achieves near-maximal scores (approaching the outermost ring). The
ranking chart quantitatively supports this result, showing EWMA with the best average rank of 3.22,
significantly outperforming second-ranked WMA (5.09) and other competitors like GWO (4.22) and
PSO (5.83). The substantial performance gaps (e.g., EWMA’s 3.22 vs AOA’s 5.91) demonstrate that
EWMA’s innovative NCMM and FROBL mechanisms provide both broad applicability across
function types and advantages in complex optimization scenarios.
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Figure 6. ANOVA test results on a subset of the 23 benchmark functions.
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Figure 7. ANOVA test results on a subset of the 23 benchmark functions.
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Figure 8. Performance ranking of optimization algorithms on the 23 benchmark functions.

In summary, the evaluation across 23 benchmark functions demonstrates that EWMA consistently
outperforms other optimization algorithms by delivering superior solution accuracy (with lower
minimum values), enhanced stability (with standard deviations 2–4 orders of magnitude lower), and
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faster convergence to near-optimal solutions. Statistical validation confirms these improvements,
particularly in constrained optimization problems, where EWMA reaches theoretical optima.

3.2. Results and analysis for CEC 2019

CEC 2019 is a widely used benchmark test set in the field of computational intelligence and was
specifically designed to evaluate the performance of optimization algorithms in complex
scenarios [26]. It consists of 10 challenging single-objective optimization functions, categorized as
follows: Unimodal (F1–F3), multimodal (F4–F6), hybrid (F7–F9), and composition (F10). CEC 2019
has become a ”touchstone” for optimization research, with its ranking offering an objective measure
of each algorithm’s convergence, stability, and generalization ability.

Experimental results on the CEC 2019 functions, shown in Table 3, demonstrate EWMA’s
consistent superiority across multiple evaluation metrics. For solution accuracy (min), EWMA
achieves the optimal value of 1.0000 in F1, outperforming GA’s 1.7531 × 106 by six orders of
magnitude, and shows similar advantages in F2 (4.2768vs 1.2771 × 102) and F5 (1.0149vs 1.0172).
Stability analysis (std) reveals EWMA’s remarkable robustness, particularly in complex functions
such as F1 (4.1379 × 103) and F2 (1.7653 × 102), where it exhibits significantly lower variability than
GOOSE 1.1118 × 109 and 1.6590 × 104, respectively. Convergence performance (avg) further
confirms EWMA’s efficiency, with F3 (5.4063) and F6 (3.5732) converging faster convergence than
PSO (3.6598 and 3.8238) and GA (1.0606 × 101 and 7.3003). Notably, EWMA maintains this
threefold advantage across function types, with particularly outstanding performance in F1, where it
achieves both the lowest minimum value and lowest standard deviation.

Table 3. Performance comparison of optimization algorithms on the CEC 2019 functions.
Func. Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO

F1
min 1.0000 4.8302 × 102 1.0000 1.7531 × 106 1.0000 1.2513 × 103 1.0000 2.2994 × 106 1.0000 1.8551 × 103

std 4.1379 × 103 2.6031 × 105 2.4051 × 105 5.3741 × 107 2.1051 × 10−11 3.2594 × 106 1.1118 × 109 5.9005 × 106 3.0107 × 107 1.0597 × 106

avg 1.3637 × 103 2.1619 × 105 8.6605 × 104 6.1190 × 107 1.0000 9.7399 × 105 9.6982 × 108 1.4490 × 107 1.5423 × 107 9.0469 × 105

F2
min 4.2768 1.2771 × 102 7.8403 × 101 1.1598 × 103 4.2560 6.4734 × 101 4.3475 3.4759 × 103 4.6214 × 103 5.8826 × 101

std 1.7653 × 102 1.5071 × 102 3.1248 × 102 2.8765 × 103 2.9725 × 10−1 5.1008 × 102 1.6590 × 104 1.0671 × 103 3.7548 × 103 5.0458 × 102

avg 3.6723 × 101 3.2557 × 102 6.2610 × 102 7.6565 × 103 4.8280 6.0454 × 102 1.5405 × 104 5.4583 × 103 1.2795 × 104 1.0744 × 103

F3
min 2.6286 1.4091 1.0015 7.8488 2.9293 1.4091 4.5993 7.3655 8.6615 2.0072
std 1.1026 2.2427 2.6619 9.5199 × 10−1 1.3026 2.2772 2.0564 4.8992 × 10−1 8.3450 × 10−1 1.7649
avg 5.4063 5.1612 3.5510 1.0606 × 101 5.8808 3.6598 9.0245 8.8497 1.0362 × 101 5.8850

F4
min 4.9798 5.9748 1.0562 × 101 1.3610 × 101 3.9401 × 101 9.9546 2.6869 × 101 1.6215 × 101 3.8331 × 101 8.3792
std 7.5660 7.5327 8.6266 1.0996 × 101 1.0860 × 101 1.2910 × 101 2.3018 × 101 3.8013 1.5352 × 101 7.1873
avg 1.7593 × 101 1.7984 × 101 2.3734 × 101 2.8609 × 101 5.4787 × 101 2.6409 × 101 7.7012 × 101 2.3767 × 101 6.8186 × 101 2.1341 × 101

F5
min 1.0149 1.0172 1.3095 2.0052 1.2484 × 101 1.0345 2.2608 1.1930 1.6621 × 101 1.5467
std 1.0037 × 10−1 1.2146 × 10−1 7.5020 × 10−1 3.4352 × 10−1 1.0062 × 101 1.6707 1.6118 × 101 7.9026 × 10−2 3.2833 × 101 8.5982 × 10−2

avg 1.1338 1.0985 1.9700 2.3599 2.7744 × 101 1.4274 2.2224 × 101 1.3440 8.1565 × 101 1.7768

F6
min 1.0251 1.1902 1.2528 4.6732 4.1677 1.0720 1.0199 × 101 2.8050 7.6228 3.0667
std 1.9713 1.5064 1.0998 1.6202 1.0499 2.0412 1.2990 1.0826 1.3930 9.9955 × 10−1

avg 3.5732 2.9232 3.1375 7.3003 7.1180 3.8238 1.2754 × 101 4.5989 1.0410 × 101 5.3601

F7
min 4.8297 × 102 2.3858 × 102 3.7656 × 102 4.1120 × 102 1.1845 × 103 3.6024 × 102 6.3467 × 102 6.1738 × 102 9.1416 × 102 1.4172 × 102

std 2.4864 × 102 3.0769 × 102 4.4337 × 102 4.6968 × 102 2.5267 × 102 3.4049 × 102 3.9697 × 102 1.2544 × 102 2.9422 × 102 2.5548 × 102

avg 1.0167 × 103 1.0224 × 103 9.8636 × 102 1.3024 × 103 1.7183 × 103 1.0238 × 103 1.5425 × 103 9.2862 × 102 1.5276 × 103 6.5828 × 102

F8
min 2.7708 3.4004 3.2131 4.8037 4.2533 3.3853 4.8629 3.8629 4.5100 3.1698
std 3.7218 × 10−1 3.0583 × 10−1 3.7670 × 10−1 1.5873 × 10−1 1.7924 × 10−1 3.9259 × 10−1 2.0062 × 10−1 1.9097 × 10−1 2.0375 × 10−1 2.7825 × 10−1

avg 3.9330 3.9842 4.0851 5.1080 4.6799 4.1945 5.4108 4.3255 4.9212 4.1317

F9
min 1.1113 1.1244 1.1097 1.1858 1.3818 1.0425 1.1505 1.1782 1.2621 1.2252
std 1.1329 × 10−1 9.1691 × 10−2 6.9001 × 10−2 1.4970 × 10−1 9.8070 × 10−2 1.4263 × 10−1 4.4663 × 10−1 5.1787 × 10−2 7.3566 × 10−1 1.1381 × 10−1

avg 1.3049 1.2617 1.2262 1.4418 1.5665 1.2797 1.5913 1.3137 3.2966 1.3914

F10
min 1.0051 2.1381 × 101 1.5516 × 101 2.1355 × 101 2.1211 × 101 1.0000 2.1000 × 101 2.0876 × 101 2.1054 × 101 4.1573
std 3.6933 7.8995 × 10−2 1.1019 8.0517 × 10−2 8.6526 × 10−2 3.6887 6.4103 × 10−4 8.8418 × 10−2 9.8754 × 10−2 3.1743
avg 2.0528 × 101 2.1543 × 101 2.1330 × 101 2.1593 × 101 2.1540 × 101 2.0505 × 101 2.1001 × 101 2.1214 × 101 2.1194 × 101 2.0956 × 101
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The Wilcoxon rank-sum test results on the CEC 2019 benchmark (Table 4) provide statistical
validation of EWMA’s superior performance. The algorithm achieves statistically significant
dominance (p < 0.05) on all 10 test functions, with particularly strong evidence in
F1 (p = 1.6132 × 10−10 vs WMA) and F4 (p = 5.6921 × 10−1 vs WMA to p = 6.6955 × 10−11 vs
AOA). Key findings include the following: 1) Exceptional performance in unimodal functions (F1
p = 1.6132 × 10−10vs WMA); 2) robust results in multimodal cases (F3 p = 1.3367 × 10−5 vs GWO);
and 3) effective constraint handling (F8 p = 3.9648 × 10−8 vs AOA). The consistently low p-values
and large effect sizes confirm that EWMA’s balanced exploration-exploitation mechanism
outperforms conventional approaches. These results demonstrate EWMA’s architectural advantages in
diverse optimization scenarios.

Table 4. Wilcoxon rank-sum test results comparing the performance of optimization
algorithms on the CEC 2019 functions.

Func. WMA GWO GA DBO PSO GOOSE DE AOA SO

F1 1.6132 × 10−10 4.4205 × 10−6 3.0199 × 10−11 1.7203 × 10−12 1.3289 × 10−10 3.0103 × 10−7 3.0199 × 10−11 3.6459 × 10−8 5.4941 × 10−11

F2 4.6159 × 10−10 1.0937 × 10−10 3.0199 × 10−11 5.9424 × 10−5 2.6099 × 10−10 5.0723 × 10−10 3.0199 × 10−11 3.3384 × 10−11 1.3289 × 10−10

F3 1.0000 1.3367 × 10−5 3.3384 × 10−11 1.6238 × 10−1 2.8389 × 10−4 1.8567 × 10−9 8.9934 × 10−11 3.6897 × 10−11 1.8577 × 10−1

F4 5.6921 × 10−1 2.9205 × 10−2 3.3681 × 10−5 5.4941 × 10−11 4.7129 × 10−4 6.0658 × 10−11 2.4327 × 10−5 6.6955 × 10−11 3.1466 × 10−2

F5 1.8090 × 10−1 3.0199 × 10−11 3.0199 × 10−11 3.0199 × 10−11 1.3732 × 10−1 3.0199 × 10−11 3.6897 × 10−11 3.0199 × 10−11 3.0199 × 10−11

F6 1.4128 × 10−1 5.2978 × 10−1 8.1014 × 10−10 1.2057 × 10−10 9.0000 × 10−1 3.0199 × 10−11 3.0339 × 10−3 3.0199 × 10−11 1.8682 × 10−5

F7 3.5012 × 10−3 7.7312 × 10−1 1.2732 × 10−2 1.0702 × 10−9 3.7108 × 10−1 1.4733 × 10−7 1.0233 × 10−1 1.4294 × 10−8 6.2828 × 10−6

F8 4.2039 × 10−1 5.0114 × 10−1 5.4941 × 10−11 5.5329 × 10−8 1.2967 × 10−1 1.9568 × 10−10 8.6844 × 10−3 3.9648 × 10−8 8.3146 × 10−3

F9 6.2040 × 10−1 4.8560 × 10−3 5.3221 × 10−3 4.5726 × 10−9 2.2360 × 10−2 8.6634 × 10−5 8.7663 × 10−1 1.4643 × 10−10 4.8560 × 10−3

F10 4.3531 × 10−5 3.0059 × 10−4 2.1540 × 10−6 2.3885 × 10−4 3.5137 × 10−2 2.4327 × 10−5 1.3272 × 10−2 6.6689 × 10−3 6.5261 × 10−7
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Figure 9. Convergence analysis on a subset of the CEC 2019 functions.
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An analysis of the convergence behavior (Figures 9 and 10) and an ANOVA-based performance
distribution analysis (Figures 11 and 12) demonstrate that the EWMA algorithm exhibits significantly
superior performance in both convergence speed and stability in most functions. The radar chart and
ranking plot collectively illustrate EWMA’s superior performance on the CEC 2019 benchmark, as
shown in Figure 13. The radar plot shows EWMA’s polygon covering the largest area, particularly
excelling in functions F1 (unimodal), F6 (multimodal), and F10 (composition), where it reaches the
outermost edge. The ranking plot quantitatively confirms this advantage, with EWMA achieving the
top rank (2.5), significantly outperforming the second-best algorithm (WMA at 3.20) and traditional
methods like PSO (4.10) and GA (8.20).
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Figure 10. Convergence analysis on a subset of the CEC 2019 functions.
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Figure 11. ANOVA test results on a subset of the CEC 2019 functions.
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Figure 12. ANOVA test results on a subset of the CEC 2019 functions.
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Figure 13. Performance ranking of optimization algorithms on the CEC 2019 functions.

In summary, the comparative analysis across performance metrics, statistical tests, and
convergence characteristics strongly supports the conclusion that EWMA offers a comprehensive
advantage in accuracy, stability, and computational efficiency. This is achieved through its unique
combination of NCMM and FROBL, which jointly enhance diversity and accelerate convergence. In
practice, selecting an optimization algorithm requires balancing convergence speed, solution quality,
stability, and computational cost, making EWMA a promising choice for a wide range of tasks.
However, while EWMA shows efficient convergence in static, single-objective problems, its
performance in dynamic or multi-objective problems requires further investigation. In particular,
EWMA’s scalarized design may limit Pareto diversity, suggesting a need for additional mechanisms in
multi-objective applications. Future work could entail hybrid strategies to address these limitations.

4. Engineering application

In the field of engineering optimization, design problems under complex constraints (such as the
design of pressure vessels, cantilever beams, reinforced concrete beam, and Himmelblau function)
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pose severe challenges to the feasibility maintenance ability and computational efficiency of
algorithms. Traditional optimization methods (such as GA and PSO) often have difficulty obtaining
the global optimal solution due to premature convergence or insufficient constraint processing. This
paper systematically verifies through four typical engineering cases, indicating that the EWMA
algorithm, with its collaborative mechanisms of NCMM and FROBL, compare with the other night
algrithms (WMA, GWO, GA, DBO, PSO, GOOSE, DE, AOA, and SO).

4.1. Pressure vessel design

The design problem of pressure vessels is one of the classic engineering optimization problems
in intelligent optimization algorithms, mainly used to test the optimization ability and efficiency of
the algorithm. This problem usually aims to minimize the manufacturing cost of pressure vessels
while meeting a series of geometric, material, and mechanical constraints. This problem contains four
variables: Shell thickness (z1), head thickness (z2), inner radius (x3), and length of the vessel without
including the head (x4), and four constraints [27]. The detailed description of this problem is as follows.

Minimize:
f (x) = 1.7781z2x2

3 + 0.6224z1x3x4 + 3.1661z2
1x4 + 19.84z2

1x3 (4.1)

Subject to:
g1(x) = 0.00954x3 ≤ z2,

g2(x) = 0.0193x3 ≤ z1,

g3(x) = x4 ≤ 240,
g4(x) = −πx2

3x4 −
4
3πx3

3 ≤ −1296000,

(4.2)

where:
z1 = 0.0625x1,

z2 = 0.0625x2.
(4.3)

With bounds:
10 ≤ x4, x3 ≤ 200
1 ≤ x2, x1 ≤ 99 (integer variables).

(4.4)

Through data analysis (Tables 5 and 6) and convergence curve observation (Figure 14) of the
pressure vessel design optimization problem, the EWMA algorithm performs best in this
optimization. The table data shows that the EWMA algorithm performs best in the objective function
value ( f (x) = 6.0597 × 103) and comprehensive ranking (rank 1), and its standard
deviation (3.0830 × 102) and average value (6.2207 × 103) also confirm the stability of the algorithm.
The GWO algorithm shows strong competitiveness with similar performance ( f (x) = 6.0637 × 103,
ranked third). From the convergence curve, the curves of EWMA and GWO should show the
characteristics of rapid decline and stabilization, which is consistent with their excellent performance
in the table; while the GOOSE algorithm shows a large standard deviation (1.0976 × 104) and the
worst solution fluctuation (3.4850 × 104) in the table, but its convergence curve may show the
characteristics of early oscillation and late convergence, reflecting the balance between global
exploration and local development of the algorithm. The convergence curve of traditional algorithms
such as GA may show premature convergence or slow decline, which is consistent with its higher
objective function value ( f (x) = 6.8752 × 103, rank 8). Comprehensive data and curve characteristics

Electronic Research Archive Volume 33, Issue 9, 5865–5896.



5887

show that the EWMA algorithm performs well in solution accuracy, stability, and convergence
efficiency, and is an effective method for solving such engineering optimization problems.

Table 5. Optimization parameter results of the pressure vessel design.
Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO

z1 1.2942 × 101 1.3351 × 101 1.2716 × 101 1.7824 × 101 1.3127 × 101 1.4032 × 101 1.5125 × 101 1.4140 × 101 1.4222 × 101 1.5077 × 101

z2 7.3180 7.4524 7.3266 9.4220 7.0439 7.4876 1.7126 × 101 6.9604 1.3232 × 101 8.3454

x3 4.2097 × 101 4.2098 × 101 4.2098 × 101 5.8011 × 101 4.0321 × 101 4.5337 × 101 4.2256 × 101 4.4519 × 101 4.4049 × 101 4.8535 × 101

x4 1.7666 × 102 1.7664 × 102 1.7681 × 102 4.5998 × 101 2.0000 × 102 1.4025 × 102 1.7469 × 102 1.4975 × 102 2.0000 × 102 1.1110 × 102

f (x) 6.0597 × 103 6.0599 × 103 6.0637 × 103 6.8752 × 103 6.2888 × 103 6.0905 × 103 8.9036 × 103 6.2117 × 103 8.7550 × 103 6.3959 × 103

rank 1 2 3 8 6 4 10 5 9 7

To rigorously validate the pressure vessel design results, we conducted a sensitivity analysis on the
constraint boundaries (e.g., varying g4’s volume limit by ±5%) and performed Wilcoxon signed-rank
tests against the best-reported values in literature [26]. Table 7 shows statistically
significant improvements (p < 0.01) over competitors, with Friedman tests ranking EWMA
first (mean rank = 1.0) in both feasibility rate and objective value minimization.

Table 6. Indicator statistical results of the pressure vessel design.
Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO

min 6.0599 × 103 6.0597 × 103 6.0637 × 103 6.8752 × 103 6.2888 × 103 6.0905 × 103 8.9036 × 103 6.2117 × 103 8.7550 × 103 6.3959 × 103

worst 6.7717 × 103 6.3708 × 103 7.2848 × 103 8.6729 × 103 6.8963 × 103 6.7716 × 103 3.4850 × 104 6.8917 × 103 1.8733 × 104 7.3625 × 103

std 3.0830 × 102 1.6135 × 102 5.2756 × 102 6.7165 × 102 2.5626 × 102 2.8263 × 102 1.0976 × 104 3.0736 × 102 4.1112 × 103 4.4679 × 102

avg 6.2207 × 103 6.1772 × 103 6.3735 × 103 7.7541 × 103 6.4573 × 103 6.3546 × 103 2.1618 × 104 6.6277 × 103 1.3296 × 104 7.0094 × 103

median 6.0906 × 103 6.0597 × 103 6.0708 × 103 7.8980 × 103 6.3417 × 103 6.4101 × 103 2.2882 × 104 6.8232 × 103 1.2533 × 104 7.2972 × 103

rank 1 2 3 8 6 4 10 5 9 7
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Figure 14. Convergence curve and ANOVA test graph of pressure vessel design
optimization results.

Table 7. Wilcoxon rank sum test of the pressure vessel design.
Func. WMA GWO GA DBO PSO GOOSE DE AOA SO

9.3536 × 10−46 1.5131 × 10−76 6.7407 × 10−87 2.4829 × 10−84 4.3058 × 10−69 4.8052 × 10−96 1.9214 × 10−78 1.1958 × 10−98 1.0314 × 10−81
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4.2. Design issues of cantilever beams

The application of intelligent optimization algorithms in cantilever beam design problems aims to
minimize the weight of the structure or the maximum displacement by optimizing the cross-sectional
dimensions (height or width) of the beam while satisfying constraints such as strength and stiffness.
In this problem, the cantilever beam consists of five hollow square sections of equal thickness (fixed
to 2/3), where one end is rigidly fixed, and the free end is subjected to a vertical concentrated load. The
decision variable is the height (or width) of each beam segment, the objective function is usually the
total weight of the structure or the deflection of the free end, and the constraints include the maximum
stress limit, deformation limit, and geometric size range [28]. This problem can be represented through
the following formulation:

f (X) = 0.0624 (x1 + x2 + x3 + x4 + x5) , (4.5)

subject to:

g(X) =
61
x3

1

+
37
x3

2

+
19
x3

3

+
7
x3

4

+
1
x3

5

− 1 ≤ 0, (4.6)

variable range:

0.01 ≤ xi ≤ 100, i = 1, . . . , 5. (4.7)

The comprehensive analysis of cantilever beam optimization reveals that the EWMA algorithm
demonstrates superior performance across all metrics. As shown in Tables 8 and 9, EWMA achieves
the optimal objective value ( f (x) = 1.3400) with rank 1 and zero standard deviation, indicating
exceptional stability. GWO and PSO algorithms exhibit comparable performance with f (x) = 1.3401
and 1.3400, respectively, securing ranks 2 and 3. The convergence curves in Figure 15 suggest that
EWMA, GWO, and PSO exhibit rapid and stable convergence characteristics, consistent with their
excellent tabular performance. In contrast, GOOSE and AOA algorithms show inferior performance
in worst-case values (5.7847 and 8.5719 respectively) and high standard deviations (1.7788
and 1.9612), which likely corresponds to oscillatory behavior in their convergence curves. The
conventional GA demonstrates limitations in average performance (1.4041) and
stability (std = 0.0248), potentially due to premature convergence or slow convergence rates. These
results collectively establish EWMA as the most effective approach for cantilever beam design
optimization, offering outstanding solution accuracy, stability, and convergence efficiency.

Table 8. Optimization parameter results of cantilever beams.
Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO

x1 6.0125 6.0342 6.0384 5.6554 6.0368 6.0135 6.0160 6.0290 4.7288 6.1945

x2 5.3141 5.2860 5.3122 6.0908 5.3011 5.3172 5.2780 5.2928 8.7316 5.0446

x3 4.5010 4.5005 4.4524 4.7260 4.5038 4.5068 4.4993 4.4765 5.9791 4.5269

x4 3.5037 3.4972 3.5219 3.3491 3.4832 3.4886 3.5234 3.5231 3.9248 3.7650

x5 2.1426 2.1562 2.1509 2.1857 2.1533 2.1477 2.1577 2.1544 8.2746 3.7650

f (x) 1.3400 1.3500 1.3401 1.3732 1.3402 1.3400 1.3400 1.3401 2.1962 1.3558

rank 1 7 4 9 6 3 2 5 10 8
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Table 9. Indicator statistical results of cantilever beams.
Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO

min 1.3400 1.3500 1.3401 1.3732 1.3402 1.3400 1.3400 1.3401 1.9743 1.3558

worst 1.3401 1.3506 1.3405 1.4498 1.3431 1.3404 5.7847 1.3414 8.5719 1.3783

std 0.0000 0.0002 0.0001 0.0248 0.0009 0.0001 1.7788 0.0004 1.9612 0.0073

avg 1.3400 1.3502 1.3402 1.4041 1.3409 1.3401 3.0338 1.3406 3.4473 1.3641

median 1.3400 1.3501 1.3402 1.4041 1.3406 1.3400 2.7118 1.3406 2.6737 1.3619
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Figure 15. Convergence curve and ANOVA test graph of cantilever beams
optimization results.

4.3. Design of reinforced concrete beams

Reinforced concrete beam design is one of the typical engineering applications of intelligent
optimization algorithms [29]. The problem aims to minimize the total cost of the beam (including
concrete and steel costs) while meeting the structural strength requirements of the ACI 318-77
specification as follows.

Mu = 0.9Asσy (0.8h)
[
1.0 − 0.59

Asσy

0.8bh0σc

]
> 1.4Md + 1.7Ml (4.8)

The variables are defined as follows: Mu is the ultimate flexural capacity (in·kip), representing the
resisting moment from concrete compression and steel tension, σy denotes the steel yield
strength (50 ksi), while h(x3) is the effective depth (in), typically h ≈ 0.9h0. As (x1) is the tensile
reinforcement area (in2), a key optimization variable affecting both strength and cost. b (x2) is the
beam width (in), another optimization variable. σc is the concrete compressive strength (5 ksi). The
moments are: Md from dead loads (1350 in·kip, including 1000 lbf self-weight) and Ml from live
loads (2700 in·kip, 2000 lbf). The constraints require Mu ≥ 1.4Md + 1.7Ml for safety and h/b ≤ 4 to
prevent slender beam instability. The optimization problem can be expressed as minimize:

minimize:
f (X) = 2.9x1 + 0.6x2x3, (4.9)

subject to:
g1(X) = x2

x3
− 4 ≤ 0,

g2(X) = 180 + 7.375 x2
1

x3
− x1x2 ≤ 0,

(4.10)
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variable range:
x1 ∈ {6, 6.16, 6.32, 6.6, 7, 7.11, 7.2, 7.8, 7.9, 8, 8.4},
x2 ∈ {28, 29, 30, . . . , 40},
5 ≤ x3 ≤ 10.

(4.11)

The Tables 10 and 11 and convergence curves (Figure16) demonstrate the performance
comparison of EWMA and other optimization algorithms in the reinforced concrete beam design
problem. The results show that EWMA achieves the best performance with the lowest objective
function value ( f (x) = 155.3034) and rank 1, indicating its effectiveness in minimizing the
construction cost while satisfying all design constraints. The convergence curves would likely exhibit
EWMA’s faster convergence to the optimal solution compared to other methods. Notably, traditional
algorithms like GA show poorer performance (rank 10, f (x) = 165.9168), while metaheuristic
algorithms like PSO and DE perform moderately (ranks 3 and 2 respectively). The convergence plots
would complement these findings by visually demonstrating EWMA’s superior optimization
trajectory, likely showing steeper initial descent and more stable convergence than other algorithms.

Table 10. Optimization parameter results of reinforced concrete beams.
Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO
x1 8.0086 8.2086 8.2096 8.0558 8.4000 8.2086 8.2090 8.2086 8.2053 8.2217

x2 30.1549 29.8289 29.9301 30.1158 29.8628 29.7530 30.4739 30.0853 30.0180 29.9685

x3 7.2000 7.5000 7.5010 7.9197 7.5008 7.5000 7.5000 7.5000 7.6151 7.5003

f (x) 155.3034 158.8050 158.8256 165.9168 159.3740 158.8050 158.8062 158.8050 160.8665 158.8491

rank 1 4 6 10 8 3 5 2 9 7

Table 11. Indicator statistical results of reinforced concrete beams.
Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO

min 155.3034 158.8050 158.8256 165.9168 159.3740 158.8050 158.8062 158.8050 160.8665 158.8491

worst 166.0810 182.7365 158.9109 191.5908 166.7601 174.0785 174.0804 158.8050 183.1293 174.4698

std 2.3005 7.6773 0.0277 8.4857 3.0981 5.1137 5.6108 0.0000 7.3792 4.3974

avg 156.5338 162.6529 158.8763 174.9650 161.6121 161.0597 165.4985 158.8050 170.2570 161.0242

median 155.8064 158.8050 158.8803 172.5852 159.4547 158.8050 166.0800 158.8050 169.7827 158.9890
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Figure 16. Convergence curve and ANOVA test graph of reinforced concrete beam
optimization results.
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4.4. Himmelblau function

For complex nonlinear functions like the Himmelblau function, which have multiple local extrema,
intelligent optimization algorithms are widely used to test their global search capabilities and their
ability to avoid getting trapped in local optima, in order to verify the effectiveness of the algorithms
when solving multimodal optimization problems [30].

Minimize

f (x̄) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141 (4.12)

subject to

g1(x̄) = −G1 ≤ 0,
g2(x̄) = G1 − 92 ≤ 0,
g3(x̄) = 90 −G2 ≤ 0,
g4(x̄) = G2 − 110 ≤ 0,
g5(x̄) = 20 −G3 ≤ 0,
g6(x̄) = G3 − 25 ≤ 0.

(4.13)

where

G1 = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5,

G2 = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3,

G3 = 9.300961 + 0.0047026x3x5 + 0.00125447x1x3 + 0.0019085x3x4.

(4.14)

with the bounds

78 ≤ x1 ≤ 102,
33 ≤ x2 ≤ 45,
27 ≤ x3 ≤ 45,
27 ≤ x4 ≤ 45,
27 ≤ x5 ≤ 45.

(4.15)

The Tables 12 and 13 and convergence curves (Figure17) present a comprehensive analysis of
optimization results for the Himmelblau function across nine different algorithms. The convergence
curve and fitness value graphs indicate that most algorithms achieve stable convergence, suggesting
effective optimization performance.

From the tables, EWMA and WMA consistently rank among the top performers, with EWMA
achieving the best median score (−30665.7765) and ranking first overall. PSO also performs well,
securing the second rank. In contrast, GA and AOA exhibit the weakest performance, with median
scores of −29527.3777 and −29433.7433, respectively, and rankings of 9 and 10. The standard
deviation (std) values reveal that EWMA and PSO are the most stable (std: 0.0440 and 0.0178), while
GA and AOA show higher variability (std: 222.3245 and 249.3755), indicating less reliability.

The parameter values (e.g., x1 to x5) further highlight algorithmic differences. For instance,
EWMA, WMA, and PSO maintain near-optimal values for all parameters, whereas GA and AOA
deviate significantly, aligning with their poorer fitness scores. Overall, the data underscores EWMA
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and PSO as robust choices for this optimization problem, while GA and AOA may require further
tuning to improve consistency and performance.

Table 12. Optimization parameter results of the Himmelblau function.

Algorithm EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO

x1 78.0000 78.0000 78.0000 79.3856 78.0000 78.0000 78.0000 78.0000 82.8686 78.0000

x2 33.0001 33.0000 33.0000 34.4546 33.0000 33.0000 33.0000 33.0000 33.0000 33.0000

x3 29.9956 29.9953 30.0001 31.3733 30.0102 29.9953 29.9978 30.0185 31.8177 30.2731

x4 44.9996 45.0000 44.8670 29.8774 45.0000 45.0000 44.7169 45.0000 32.3610 45.0000

x5 36.7758 36.7758 36.8273 39.9798 36.7481 36.7758 36.8843 36.7313 37.5949 36.1041

f (x) −30665.7765 −30665.5216 −30657.2736 -29527.3777 −30649.2928 −30665.5387 −30506.7313 −30643.7594 −29433.7433 −30619.6054

rank 1 3 4 9 6 2 8 7 10 5

Table 13. Indicator statistical results of the Himmelblau function.

Res. EWMA WMA GWO GA DBO PSO GOOSE DE AOA SO

min −30665.7356 −30665.5386 −30660.6211 −29905.6131 −30662.5467 −30665.5387 −30757.6468 −30660.9570 −29674.0458 −30619.6054

worst −30665.7920 −30662.0976 −30641.5528 −29204.7952 -30226.5285 −30665.4818 −30296.6540 −30600.8845 −28934.4351 −30533.4840

std 0.0440 1.0816 7.0467 222.3245 154.0783 0.0178 135.3187 19.5167 249.3755 29.0240

avg −30665.7676 −30665.0564 −30653.6396 −29558.5531 −30573.3057 −30665.5323 −30482.5653 −30638.9546 −29340.3876 −30583.6336

median −30665.7765 −30665.5216 −30657.2736 −29527.3777 −30649.2928 −30665.5387 −30506.7313 −30643.7594 −29433.7433 −30581.9498
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Figure 17. Convergence curve and ANOVA test graph of Himmelblau function
optimization results.

5. Conclusions and prospects

This study has presented the EWMA, which significantly improves upon the original WMA through
two key innovations: NCMM strategy and FROBL. Extensive experiments demonstrate that EWMA
consistently outperforms eight state-of-the-art optimization algorithms in terms of solution accuracy,
convergence speed, and stability across benchmark functions and real-world engineering problems.

EWMA’s success lies in its effective balance between exploration and exploitation. NCMM
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enables adaptive uncertainty control through its expectation-entropy-hyperentropy mechanisms,
enabling dynamic adjustment of search behavior throughout optimization. FROBL enhances
population diversity via oscillatory perturbations and nonlinear scaling, preventing premature
convergence and accelerating convergence toward promising regions. The synergy between these
components has proven particularly effective in managing complex constraints, as shown in the
engineering case studies.

Despite its strengths, EWMA presents several challenges. The integration of NCMM and FROBL
increases computational overhead, potentially impacting runtime when solving high-dimensional
problems. Although designed for single-objective static optimization, EWMA’s core mechanisms
offer theoretical potential for extension: NCMM’s entropy adaptation could be adapted to dynamic
environments using time-varying He parameters, while FROBL’s opposition-based sampling may
help preserve Pareto diversity when combined with non-dominated sorting. Additionally, although the
algorithm reduces the need for manual tuning, its performance remains sensitive to hyperparameters
such as entropy and hyperentropy. Furthermore, scalability to ultra-large-scale problems has not been
thoroughly tested and may require further refinement.

To address these limitations and extend EWMA’s applicability, the following research directions
are proposed:

• Multi-objective extension: Develop a multi-objective version of EWMA to enable the
simultaneous optimization of competing objectives.
• Dynamic environments: Adapt EWMA for dynamic optimization problems in which objectives or

constraints change over time: For example, in low-altitude unmanned aerial vehicle path planning.
• Hybrid approaches: Combine EWMA with machine learning techniques for surrogate-assisted

optimization to enhance efficiency in computationally expensive problems.

The proposed EWMA represents a significant advancement in nature-inspired optimization,
particularly for engineering problems with complex constraints. Its robust performance and adaptive
design make it a valuable tool for researchers and practitioners tackling challenging optimization
tasks. Researchers should aim to enhance its capabilities while preserving the exploration-exploitation
balance that underpins its current success.
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