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Abstract: This paper was focused on global existence for the stochastic nonlinear Schrödinger equa-
tion with time-dependent loss/gain, which read idu + (∆u + λ|u|αu + ia(t)u)dt = dW. We proved the
global existence and uniqueness of the solution in H1(RN) through the uniform boundedness of the
momentum and energy functionals. The global existence result of the solution for this type of equation
depended on the ranges of time-dependent loss/gain coefficient.
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1. Introduction

The nonlinear Schrödinger equation with time-dependent coefficient, as one of the basic models
for optics and Bose-Einstein condensates (BECs), has gained widespread attention in recent years
(see [1, 2] and references therein). It is logical to account for random effects disturbing the system. A
standard approach in physics involves considering the Gaussian space-time white noise. Nevertheless,
space-time white noise cannot be theoretically handled in mathematics, thus the noise is considered
white in time and colored in space (see [3–5]).

In this paper, we are concerned with the global existence of the solution for the following stochastic
nonlinear Schrödinger equation with time-dependent linear loss/gain

idu + (∆u + λ|u|αu + ia(t)u)dt = dW, (t, x) ∈ [0,∞) × RN (1.1)

with
u(0, x) = u0(x), x ∈ RN ,

where u0(x) ∈ H1(RN), λ = 1, or λ = −1 denotes that the nonlinearity is focusing or defocusing,
0 < α < 4

N−2 if N ≥ 3 or α > 0 if N = 1, 2, W denotes the complex valued Wiener process, a(t) is a real
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valued function defined on the interval [0,∞), and a(t) > 0 or a(t) < 0 describes the strength of loss or
gain. For example, the time-dependent linear loss/gain term is described in the theory of BECs, where
it represents the mechanism of continuously loading external atoms into the BECs (gain) by optical
pumping or continuous depletion (loss) of atoms from the BECs (see [6]). From a phenomenological
perspective, the time-dependent linear loss/gain term is used to explain the interaction of atomic clouds
or thermal clouds (see [7]).

Recently, the global existence for the stochastic nonlinear Schrödinger equation has been exten-
sively studied and many important results have been achieved. For example, in [4], it is proved that
the classical stochastic nonlinear Schrödinger equation with additive or multiplicative noise admits
the global existence in H1(RN), respectively. In [5], it is showed that the defocusing energy-critical
stochastic nonlinear Schrödinger equation with an additive noise admits the global existence by atomic
spaces machinery and probabilistic perturbation argument. The authors in [8] study the global exis-
tence for the stochastic nonlinear Schrödinger equation with nonlinear Stratonovich noise in subcritical
case, based on the deterministic and stochastic Strichartz’s estimates. [9] investigates the defocusing
mass critical nonlinear Schrödinger equation with a small multiplicative noise, it shows the global
space-time bound by the decomposition of the solution. [10] proves that the solution of the stochas-
tic nonlinear Schrödinger equation with linear multiplicative noise is global when defocusing, α = 4

N
(mass-critical), N ≥ 1 or α = 4

N−2 (energy-critical), and N ≥ 3 by rescaling transformation and the
stability results. When a(t) = a > 0, Equation (1.1) reduces to the weakly damped stochastic non-
linear Schrödinger equation. The global existence for this type of stochastic nonlinear Schrödinger
equation driven by an additive noise is obtained (see [11, 12]). [13] is devoted to the global existence
for the stochastic nonlinear Schrödinger equation with weak damping driven by a multiplicative noise
in mass-critical case. [14] uses the conservation of the L2(RN) norm and iteration argument to study
the global existence for the random nonlinear Schrödinger equation with white noise dispersion and
nonlinear time-dependent loss/gain in L2(RN) and H1(RN).

Physically speaking, the nature of the function a(t) will have a significant impact on the behavior
of the solution. [1] and [2] show the global existence result of the solution depending on the ranges
of the time-dependent coefficient a(t). Inspired by the articles above, our main goal in this paper is
to study the global existence of solution for Eq (1.1) with a(t) being time-dependent. Because of the
loss of energy, the energy functional no longer satisfies the conservation law. In order to overcome the
difficulty, setting u(t, x) = e−

∫ t
0 a(s)dsv(t, x) in Eq (1.1), v(t, x) satisfies

idv + (∆v + λe−α
∫ t

0 a(s)ds|v|αv)dt = e
∫ t

0 a(s)dsdW, (t, x) ∈ [0,∞) × RN (1.2)

with
v(0, x) = u0(x), x ∈ RN .

Therefore, in order to obtain the global existence of the solution for Eq (1.1), we only need to study
the global existence of the solution for Eq (1.2). We use the uniform boundedness of the momentum
and energy functionals to obtain the global existence for Eq (1.2). Our main theorem is as follows.

Theorem 1.1. Let 0 < α < 4
N−2 if N ≥ 3 or α > 0 if N = 1, 2, and φ ∈ L0,1

2 and v0 is an F0-measurable
random variable with values in H1(RN). Assume that

(1) either λ = 1, 0 < α < 4
N , a(t) ∈ L1(0,∞), a(t) < 0,

(2) or λ = −1, a(t) ∈ L1
loc(0,∞), a(t) permits sign-changing,

then for every v0, there exists a unique global solution of Eq (1.2) in H1(RN), i.e., τ∗(v0) = +∞.
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According to Theoerm 1.1, we find that the global existence result of the solution depends on the
ranges of the time-dependent loss/gain coefficient. In the absence of the time-dependent loss/gain
term, i.e., a(t) = 0, the conclusion of Theoerm 1.1 reduces to the well-established result presented in
Theorem 3.4 in [4], thereby demonstrating the consistency of our result within the existing theoretical
framework.

This paper is organized as follows. In Section 2, we show the local existence for Eq (1.2) and study
the evolution laws of the momentum and energy. In Section 3, under certain assumptions on λ, α, and
a(t), we prove the global existence for Eq (1.2).

2. Preliminaries

In this section, we first introduce some mathematical spaces and estimates. Then, through using the
method of [4], the local existence for Eq (1.2) is proved. Finally, we give the evolution laws of the
momentum and energy.

Throughout this paper, we use the following notations (see [15]). For p ≥ 1, Lp(RN) denotes the
Lebesgue space of p-integrable complex valued functions on RN . The Hilbert space L2(RN) is endowed
with the norm and inner product

||u||L2(RN ) =

(∫
RN
|u(x)|2dx

) 1
2

,

(u, v) = Re
∫
RN

u(x)v̄(x)dx, u, v ∈ L2(RN).

For s ∈ R, the Sobolev space H s(RN) of tempered distribution u ∈ S ′(RN) whose Fourier transform v̂
satisfies (1 + |ξ|2)

s
2 v̂(ξ) ∈ L2(RN). For a Banach space B, T > 0 and p ≥ 1, and Lp(0,T ; B) denotes the

space of functions from [0,T ] into B with p-integrable over [0,T ].

Definition 2.1. (See [15, 16].) The pair (r, q) is said to be admissible if 2
r = N( 1

2 −
1
q ) and 2 ≤ q ≤ 2N

N−2
when N ≥ 3, or 2 ≤ r ≤ ∞ when N = 1, 2.

Lemma 2.2. (Strichartz’s estimates). (See [15,16].) Let (r, q), (r1, q1), and (r2, q2) be admissible pairs;
S (t) = eit∆ denotes the linear Schrödinger propagator, T > 0, then the following properties hold,

(i) for every g ∈ L2(RN), there exists a constant C such that

||S (·)g||Lr(0,T ;Lq(RN )) ≤ C||g||L2(RN ),

(ii) for every G ∈ Lr′2(0,T ; Lq′2(RN)), there exists a constant C such that∥∥∥∥∥∥
∫ T

0
S (t − s)G(s)ds

∥∥∥∥∥∥
Lr1 (0,T ;Lq1 (RN ))

≤ C||G||
Lr′2 (0,T ;Lq′2 (RN ))

,

where r′2 and q′2 are the conjugates of r2 and q2.

In order to state precisely Eqs (1.1) and (1.2), we consider the probability space (Ω,F ,P, {Ft}t≥0).
Let {βk}k∈N be a sequence of independent real valued Brownian motions associated to {Ft}t≥0, and let
{ek}k∈N be an orthonormal basis of L2(RN). We consider the complex valued Wiener process

W(t, x, ω) =
∑
k∈N

βk(t, ω)φek(x), t ≥ 0, x ∈ RN , ω ∈ Ω,
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where φ ∈ L0,s
2 , which is the space of the Hilbert-Schmidt operator from L2(RN) into H s(RN). The

corresponding norm is then given by

‖φ‖2
L0,s

2
= tr(φ∗φ) =

∑
k∈N

‖φek‖
2
Hs(RN ).

Next, we study the local existence for Eq (1.2).

Theorem 2.3. Let 0 < α < 4
N−2 if N ≥ 3 or α > 0 if N = 1, 2, a(t) ∈ L1(0,∞), φ ∈ L0,1

2 , and the
initial data v0 is an F0-measurable random variable with values in H1(RN). Then, there exists a unique
solution v to Eq (1.2) with continuous H1(RN) valued paths, such that v(0) = v0. This solution is
defined on a random interval [0, τ∗(v0)), where τ∗(v0) is a stopping time such that

τ∗(v0) = +∞ or lim
t→τ∗(v0)

||v(t)||H1(RN ) = +∞.

Proof. We use the mild form of Eq (1.2), that is,

v(t) = S (t)v0 + iλ
∫ t

0
S (t − s)

(
e−α

∫ s
0 a(m)dm|v(s)|αv(s)

)
ds − i

∫ t

0
S (t − s)e

∫ s
0 a(m)dmdW(s). (2.1)

Set

z(t) = i
∫ t

0
S (t − s)e

∫ s
0 a(m)dmdW(s).

By similar analysis to [4], we just need to prove z ∈ Lr(0,T ; W1,α+2(RN)) almost surely for any T > 0,
where (r, α + 2) is an admissible pair and r =

4(α+2)
Nα . Since z is a Gaussian process and r > 2, we have

E

(∫ T

0
||z(s)||rLα+2(RN )ds

)
=

∫ T

0
E

(
||z(s)||rLα+2(RN )

)
ds

≤c1

∫ T

0

(
E(||z(s)||α+2

Lα+2(RN ))
) r
α+2 ds

=c1

∫ T

0

(∫
RN
E(z|s, x|α+2)dx

) r
α+2

ds

≤c2

∫ T

0

(∫
RN

(
E(|z(s, x)|2)

) α+2
2 dx

) r
α+2

ds. (2.2)

Since

E
(
|z(s, x)|2

)
=

∑
k∈N

∫ s

0
|S (s − τ)e

∫ τ
0 a(m)dmφek|

2dτ,

where {ek}k∈N is an orthonormal basis of L2(RN), by Minkowski’s inequality and r > 2, we deduce(∫
RN

(
E(|z(s, x)|2)

) α+2
2 dx

) 2
α+2

≤
∑
k∈N

∫ s

0

(∫
RN
|S (s − τ)e

∫ τ
0 a(m)dmφek|

α+2dx
) 2
α+2

dτ

=
∑
k∈N

||S (·)e
∫ τ

0 a(m)dmφek||
2
L2(0,s;Lα+2(RN ))
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≤c3

∑
k∈N

||S (·)e
∫ τ

0 a(m)dmφek||
2
Lr(0,T ;Lα+2(RN ))

≤c3

∑
k∈N

||e
∫ τ

0 a(m)dmφek||
2
L2(RN ),

where c3 depends only on r, α, and T , and Strichartz’s estimates are used in the last inequality.
Because a(t) ∈ L1(0,∞),(∫

RN

(
E(|z(s, x)|2)

) α+2
2 dx

) 2
α+2

≤ c3e
∫ T

0 a(m)dm
∑
k∈N

||φek||
2
L2(RN ) = c4||φ||

2
L0,0

2
, (2.3)

where c4 depends only on r, α, T , and a(t). Combining (2.2) and (2.3), we get

E
(
||z||r

Lr(0,T ;Lα+2(RN ))

)
≤ c5||φ||

2
L0,0

2
,

where c5 depends only on r, α, T , and a(t). Since the spatial derivatives and S (·) commute, the same
computation shows that

E
(
||z(·)||r

Lr(0,T ;W1,α+2(RN ))

)
≤ c6||φ||L0,1

2
,

which proves the Theorem 2.3. �

Remark 2.4. Suppose that u(t, x) = e−
∫ t

0 a(s)dsv(t, x), and we obtain the local existence for Eq (1.1).

Now, we give the evolution laws of the momentum

M(v) = ‖v‖2L2(RN )

and energy

H(v, t) =
1
2
‖∇v‖2L2(RN ) −

λ

α + 2
e−α

∫ t
0 a(s)ds‖v‖α+2

Lα+2(RN ). (2.4)

Proposition 2.5. Let α, a(t), φ, and v0 be as in Theorem 2.3. Then, for any stopping time τ such that
τ < τ∗(v0) a.s., we have

M (v (τ)) = M (v0) − 2 Im
∑
k∈N

∫ τ

0

∫
RN

ve
∫ s

0 a(m)dmφekdxdβk(s) + ‖φ‖2
L0,0

2

∫ τ

0
e2

∫ s
0 a(m)dmds. (2.5)

Moreover, for any p ∈ R and p ≥ 1, there exist constants Mp ≥ 0, such that

E

(
sup

t∈[0,τ]
Mp(v(t))

)
≤ MpE (Mp (v0)) . (2.6)

Proof. We apply the Itô formula given in [3] to M(v). Since M(v) is Fréchet derivable, the derivatives
of M(v) along directions ϕ and (ϕ, ψ) are as follows,

DM(v)(ϕ) = 2 Re
∫
RN

vϕdx, D2M(v)(ϕ, ψ) = 2 Re
∫
RN
ϕψdx.
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Using the Itô formula yields

dM(v(τ)) = DM(v)(dv) +
1
2

D2M(v)(dv, dv). (2.7)

For the first term of the righthand side of (2.7), we have

DM(v)(dv) = 2 Re
∫
RN

vdvdx = −2 Im
∑
k∈N

∫
RN

ve
∫ s

0 a(m)dmφekdβk(s)dx.

For the second term of the righthand side of (2.7), we have

1
2

D2M(v)(dv, dv) = Re
∫
RN

dvdvdx =
∑
k∈N

∫
RN

e2
∫ s

0 a(m)dm|φek|
2dsdx.

Integrating (2.7) over [0,τ], we get (2.5). We now prove (2.6). Applying the Itô formula to Mp(v)
yields

Mp(v(t)) =Mp(v0) − 2p Im
∑
k∈N

∫ t

0
Mp−1(v)

∫
RN

ve
∫ s

0 a(m)dmφek(x)dxdβk(s)

+p‖φ‖2
L0,0

2

∫ t

0
e2

∫ s
0 a(m)dmMp−1(v)ds

+2p(p − 1)
∫ t

0
e2

∫ s
0 a(m)dmMp−2(v)

∑
k∈N

Re
(∫
RN

vφek(x)dx
)2

ds.

Taking the supremum and using a martingale inequality, it yields

E

(
sup

t∈[0,τ]
Mp (v(t))

)
≤ E (Mp (v0)) + 6pE

(∫ τ

0
M2(p−1)(v)‖φ∗ve

∫ s
0 a(m)dm‖2L2(RN )ds

) 1
2


+ p‖φ‖2
L0,0

2
E

(∫ τ

0
e2

∫ s
0 a(m)dmMp−1(v)ds

)
+ 2p(p − 1)E

(∫ τ

0
Mp−2 (v) ‖φ∗ve

∫ s
0 a(m)dm‖2L2(RN )ds

)
≤ E (Mp (v0)) + 6p

(∫ τ

0
e2

∫ s
0 a(m)dmds

) 1
2

‖φ‖2
L0,0

2
E

(
sup

t∈[0,τ]
Mp− 1

2 (v)
)

+ p(2p − 1)
∫ τ

0
e2

∫ s
0 a(m)dmds‖φ‖2

L0,0
2
E

(
sup

t∈[0,τ]
Mp−1 (v)

)
.

By using Hölder’s and Young’s inequalities in the second term of the righthand side and an induction
argument, (2.6) holds. �

Then, we give the evolution law of the energy.

Proposition 2.6. Let α, a(t), φ, and v0 be as in Theorem 2.3. Then, for any stopping time τ such that
τ < τ∗(v0) a.s., we have

H(v, τ) =H(v0) +
αλ

α + 2

∫ τ

0

∫
RN

a(s)e−α
∫ s

0 a(m)dm|v|α+2dxds
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− Im
∫
RN

∫ τ

0
e
∫ s

0 a(m)dm
(
∆v + λe−α

∫ s
0 a(m)dm|v|αv

)
dWdx

+
1
2

∑
k∈N

∫ τ

0

∫
RN

e2
∫ s

0 a(m)dm |∇φek|
2 dxds

−
λ

2

∑
k∈N

∫ τ

0

∫
RN

e(2−α)
∫ s

0 a(m)dm
(
|v|α |φek|

2 + α|v|α−2 (Im (v̄φek))2
)

dxds. (2.8)

Proof. The proof is similar to Proposition 2.5. Since H(v, t) is Fréchet derivable, the derivatives of
H(v, t) along directions ϕ and (ϕ, ψ) are as follows,

DH(v, t)(ϕ) = Re
∫
RN
∇v∇ϕdx − λe−α

∫ t
0 a(m)dm Re

∫
RN
|v|αvϕdx,

D2H(v, t)(ϕ, ψ) = Re
∫
RN
∇ψ∇ϕdx−λe−α

∫ t
0 a(m)dm

(
Re

∫
RN
|v|αψϕdx + α

∫
RN
|v|α−2 Re(vψ) Re(vϕ)

)
dx.

Using the Itô formula yields

dH(v, t) =
∂H(v, t)
∂t

dt + DH(v, t)(dv) +
1
2

D2H(v, t)(dv, dv). (2.9)

For the first term of the righthand side of (2.9), we have

∂H(v, t)
∂t

=
αλ

α + 2
a(s)e−α

∫ t
0 a(m)dm

∫
RN
|v|α+2dx.

For the second term of the righthand side of (2.9), we have

DH(v, t)(dv) = Re
∫
RN
∇v∇dvdx − λe−α

∫ t
0 a(m)dm Re

∫
RN
|v|αvdvdx

= − Im
∫
RN

e−α
∫ t

0 a(m)dm∆vdWdx − λe(1−α)
∫ t

0 a(m)dm Im
∫
RN
|v|αvdWdx.

For the last term of the righthand side of (2.9), we have

1
2

D2H(v, t)(dv, dv) =
1
2

(
Re

∫
RN
∇dv∇dvdx − λe−α

∫ t
0 a(m)dm

(
Re

∫
RN
|v|αdvdvdx

+α

∫
RN
|v|α−2 Re(vdv) Re(vdv)

)
dx

)
=

1
2

∑
k∈N

∫
RN

e2
∫ t

0 a(m)dm|∇φek|
2dsdx −

λ

2
e(2−α)

∫ t
0 a(m)dm

∑
k∈N

∫
RN
|v|α|φek|

2dsdx

−
λα

2
e(2−α)

∫ t
0 a(m)dm

∑
k∈N

∫
RN
|v|α−2 (Im (vφek))

2 dsdx.

Integrating (2.9) over [0,τ], we get (2.8). �
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3. Global existence

In this section, our purpose is to prove the global existence for Eq (1.2), i.e., Theorem 1.1, via the
uniform boundedness of the momentum and energy functionals. First, we have the following lemma.

Lemma 3.1. Assume 0 < α < 4
N−2 if N ≥ 3 or α > 0 if N = 1, 2, and we have

(1) λ = 1, 0 < α < 4
N , then

‖∇v‖2L2(RN ) ≤
8
3

H(v, t) + C||v||2+ 4α
4−Nα

L2(RN ) ,

(2) λ = −1, then

‖∇v‖2L2(RN ) ≤ 2H(v, t).

Proof. Case (2) is obvious, so we only need to prove case (1). When λ = 1,

H(v, t) =
1
2
‖∇v‖2L2(RN ) −

1
α + 2

e−α
∫ t

0 a(s)ds‖v‖α+2
Lα+2(RN ).

Using the Gagliardo-Nirenberg inequality and Young’s inequality, the following estimation is obtained

1
α + 2

e−α
∫ t

0 a(s)ds‖v‖α+2
Lα+2(RN ) ≤ C||v||α+2− Nα

2
L2(RN ) ||∇v||

Nα
2

L2(RN ) ≤
1
8
||∇v||2L2(RN ) + C||v||2+ 4α

4−Nα

L2(RN ) . (3.1)

Substituting (3.1) into H(v, t), we get

1
2
||∇v||2L2(RN ) ≤ H(v, t) +

1
8
||∇v||2L2(RN ) + C||v||2+ 4α

4−Nα

L2(RN ) .

Then, case (1) holds. �

Next, we begin to estimate E
(
sup0≤t≤τ ‖v(t)‖2H1(RN )

)
.

Lemma 3.2. Let α, φ, and v0 be as in Theorem 2.3, and assume that
(1) either λ = 1, 0 < α < 4

N , a(t) ∈ L1(0,∞), a(t) < 0,
(2) or λ = −1, a(t) ∈ L1

loc(0,∞), a(t) permits sign-changing,
then for any given T0 > 0 and any stopping time τ with τ < inf(T0, τ

∗(v0)) a.s., we have

E

(
sup
0≤t≤τ
‖v(t)‖2H1(RN )

)
≤ C

(
T0, φ, a(t),E(H(v0)),E

(
‖v0‖

2+ 4α
4−Nα

L2(RN )

))
. (3.2)

Proof. Supported by Proposition 2.5 and Lemma 3.1, we only need to prove the uniform boundedness
of (2.8). Assume that v0 ∈ L2+ 4α

4−Nα (Ω; L2(RN)) ∩ L2(Ω; H1(RN)) and that E(H(v0)) is finite.
Case (1): If λ = 1, we neglect the last term in (2.8) since they are nonpositive. Taking the expecta-

tion and using a martingale inequality to (2.8), we have

E

(
sup
0≤t≤τ

H(v, t)
)
≤E(H(v0)) +

α

α + 2
E

(∫ τ

0

∫
RN
|a(s)|e−α

∫ s
0 a(m)dm|v|α+2dxds

)
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+3E

(∫ τ

0

∥∥∥∥e
∫ s

0 a(m)dmφ∗(∆v̄ + e−α
∫ s

0 a(m)dm|v|αv̄)
∥∥∥∥2

L2(RN )
ds

) 1
2


+
1
2
‖φ‖2

L0,1
2

∫ τ

0
e2

∫ s
0 a(m)dmds. (3.3)

For the second term of the righthand side of (3.3), using Hölder’s inequality, we have

α

α + 2
E

(∫ τ

0

∫
RN
|a(s)|e−α

∫ s
0 a(m)dm|v|α+2dxds

)
≤

α

α + 2
E

(∫ τ

0
|a(s)|e−α

∫ s
0 a(m)dmds sup

0≤t≤τ
‖v‖α+2

Lα+2(RN )

)
≤

α

α + 2

∫ T0

0
|a(s)|e−α

∫ ∞
0 a(m)dmdsE

(
sup
0≤t≤τ
‖v‖α+2

Lα+2(RN )

)
.

(3.4)

The validity of the last inequality in (3.4) depends critically on the condition a(t) < 0. Using the
Gagliardo-Nirenberg inequality and Young’s inequality, we have

α

α + 2

∫ T0

0
|a(s)|e−α

∫ ∞
0 a(m)dmds‖v‖α+2

Lα+2(RN ) ≤ C||v||α+2− Nα
2

L2(RN ) ||∇v||
Nα
2

L2(RN ) ≤
1
8
||∇v||2L2(RN ) + C||v||2+ 4α

4−Nα

L2(RN ) . (3.5)

Note that in the last inequality of (3.5), it is crucial that 0 < α < 4
N . Substituting (3.5) into (3.4), and

by Proposition 2.5, we get

α

α + 2
E

(∫ τ

0

∫
RN
|a(s)|e−α

∫ s
0 a(m)dm|v|α+2dxds

)
≤ C

(
E

(
||v0||

2+ 4α
4−Nα

L2(RN )

))
+

1
8
E

(
sup
0≤t≤τ
‖∇v‖2L2(RN )

)
. (3.6)

For the third term of the righthand side of (3.3), the operator φ∗ is bounded from H−1(RN) into L2(RN)
with the norm majorized by ‖φ‖L0,1

2
. Furthermore, H1(RN) is embedded into Lα+2(RN) and φ∗ is also

bounded from L
α+2
α+1 (RN) into L2(RN). We obtain,∥∥∥∥e

∫ s
0 a(m)dmφ∗(∆v̄ + e−α

∫ s
0 a(m)dm|v|αv̄)

∥∥∥∥
L2(RN )

≤ ‖φ‖L0,1
2

e
∫ s

0 a(m)dm
(
‖∇v‖L2(RN ) + e−α

∫ s
0 a(m)dm‖v‖α+1

Lα+2(RN )

)
.

It follows that

3E

(∫ τ

0

∥∥∥∥e
∫ s

0 a(m)dmφ∗(∆v̄ + e−α
∫ s

0 a(m)dm|v|αv̄)
∥∥∥∥2

L2(RN )
ds

) 1
2


≤3‖φ‖L0,1
2
E

(∫ τ

0
e2

∫ s
0 a(m)dm‖∇v‖2L2(RN )ds

) 1
2
 + 3‖φ‖L0,1

2
E

(∫ τ

0
e(2−2α)

∫ s
0 a(m)dm‖v‖2α+2

Lα+2(RN )ds
) 1

2
 . (3.7)

For the first term of the righthand side of (3.7), using Hölder’s and Young’s inequalities, we have

3‖φ‖L0,1
2
E

(∫ τ

0
e2

∫ s
0 a(m)dm‖∇v‖2L2(RN )ds

) 1
2
 ≤3‖φ‖L0,1

2

(∫ T0

0
e2

∫ s
0 a(m)dmds

) 1
2

E

(
sup
0≤t≤τ
‖∇v‖L2(RN )

)
≤

1
32
E

(
sup
0≤t≤τ
‖∇v‖2L2(RN )

)
+ C(T0, φ, a(t)). (3.8)
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For the second term of the righthand side of (3.7), using Hölder’s inequality, Young’s inequality and
the Gagliardo-Nirenberg inequality, we have

3‖φ‖L0,1
2
E

(∫ τ

0
e(2−2α)

∫ s
0 a(m)dm‖v‖2α+2

Lα+2(RN )ds
) 1

2


≤3‖φ‖L0,1
2

(∫ T0

0
e(2−2α)

∫ s
0 a(m)dmds

) 1
2

E

(
sup
0≤t≤τ
‖v‖α+1

Lα+2(RN )

)
≤

1
4(α + 2)

E

(
sup
0≤t≤τ
‖v‖α+2

Lα+2(RN )

)
+ C(T0, φ, a(t))

≤
1

32
E

(
sup
0≤t≤τ
‖∇v‖2L2(RN )

)
+ C

(
T0, φ, a(t),E

(
||v0||

2+ 4α
4−Nα

L2(RN )

))
. (3.9)

Combining (3.7)–(3.9), we get

3E

(∫ τ

0

∥∥∥∥e
∫ s

0 a(m)dmφ∗(∆v̄ + e−α
∫ s

0 a(m)dm|v|αv̄)
∥∥∥∥2

L2(RN )
ds

) 1
2


≤
1

16
E

(
sup
0≤t≤τ
‖∇v‖2L2(RN )

)
+ C

(
T0, φ, a(t),E

(
||v0||

2+ 4α
4−Nα

L2(RN )

))
. (3.10)

Therefore, together with Lemma 3.1, we finally obtain

E

(
sup
0≤t≤τ

H(v, t)
)
≤E(H(v0)) + C

(
T0, φ, a(t),E

(
||v0||

2+ 4α
4−Nα

L2(RN )

))
+

1
2
E

(
sup
0≤t≤τ

H(v, t)
)
. (3.11)

Then, case (1) holds.
Case (2): If λ = −1, taking the expectation and using a martingale inequality to (2.8), we have

E

(
sup
0≤t≤τ

H(v, t)
)
≤E(H(v0)) +

α

α + 2
E

(∫ τ

0

∫
RN
|a(s)|e−α

∫ s
0 a(m)dm|v|α+2dxds

)
+3E

(∫ τ

0

∥∥∥∥e
∫ s

0 a(m)dmφ∗(∆v̄ + e−α
∫ s

0 a(m)dm|v|αv̄)
∥∥∥∥2

L2(RN )
ds

) 1
2


+
1
2
‖φ‖2

L0,1
2

∫ τ

0
e2

∫ s
0 a(m)dmds

+
1
2

∑
k∈N

E

(∫ τ

0

∫
RN

e(2−α)
∫ s

0 a(m)dm
(
|v|α |φek|

2 + α|v|α−2 (Im (v̄φek))2
)

dxds
)
. (3.12)

From (2.4), we obtain that

1
α + 2

e−α
∫ t

0 a(s)ds‖v‖α+2
Lα+2(RN ) ≤ H(v, t). (3.13)

Note that the condition a(t) ∈ L1
loc(0,∞) ensures that the term e−α

∫ t
0 a(s)ds in (3.13) remains nonnegative

and bounded regardless of the sign of a(t) (positive or negative). It follows, for the second term of the
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righthand side of (3.12), that we have

α

α + 2
E

(∫ τ

0

∫
RN
|a(s)|e−α

∫ s
0 a(m)dm|v|α+2dxds

)
≤αE

(∫ τ

0
|a(s)|H(v, s)ds

)
≤ αE

(∫ τ

0
|a(s)| sup

0≤s≤τ
H(v, s)ds

)
.

(3.14)

For the third term of the righthand side of (3.12), using Hölder’s inequality and Young’s inequality, we
have

3E

(∫ τ

0

∥∥∥∥e
∫ s

0 a(m)dmφ∗(∆v̄ + e−α
∫ s

0 a(m)dm|v|αv̄)
∥∥∥∥2

L2(RN )
ds

) 1
2


≤3‖φ‖L0,1
2
E

(∫ τ

0
e2

∫ s
0 a(m)dm‖∇v‖2L2(RN )ds

) 1
2
 + 3‖φ‖L0,1

2
E

(∫ τ

0
e(2−2α)

∫ s
0 a(m)dm‖v‖2α+2

Lα+2(RN )ds
) 1

2


≤
1

32
E

(
sup
0≤t≤τ
‖∇v‖2L2(RN )

)
+ C(T0, φ, a(t)) +

1
16(α + 2)

E

(
sup
0≤t≤τ

e−α
∫ t

0 a(m)dm‖v‖α+2
Lα+2(RN )

)
≤

1
8
E

(
sup
0≤t≤τ

H(v, t)
)

+ C(T0, φ, a(t)). (3.15)

For the last term in (3.12), using Hölder’s inequality, we have

1
2

∑
k∈N

E

(∫ τ

0

∫
RN

e(2−α)
∫ s

0 a(m)dm
(
|v|α |φek|

2 + α|v|α−2 (Im (v̄φek))2
)

dxds
)

≤
1 + α

2

∑
k∈N

E

(∫ τ

0

∫
RN

e(2−α)
∫ s

0 a(m)dm|v|α |φek|
2 dxds

)
≤

1 + α

2

∑
k∈N

E

(∫ τ

0
e(2−α)

∫ s
0 a(m)dm‖v‖αLα+2(RN )‖φek‖

2
Lα+2(RN )ds

)
≤

1
8(α + 2)

E

(
sup
0≤t≤τ

e−α
∫ t

0 a(m)dm‖v‖α+2
Lα+2(RN )

)
+ C(T0, φ, a(t))

≤
1
8
E

(
sup
0≤t≤τ

H(v, t)
)

+ C(T0, φ, a(t)). (3.16)

Combining (3.14)–(3.16), and Gronwall’s inequality, we finally have

E

(
sup
0≤t≤τ

H(v, t)
)
≤C (T0, φ, a(t),E(H(v0))) . (3.17)

Then, case (2) holds. In conclusion, we finish the proof of Lemma 3.2. �

Remark 3.3. Suppose that u(t, x) = e−
∫ t

0 a(s)dsv(t, x), and we obtain the global existence for Eq (1.1).
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