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Abstract: This paper was focused on global existence for the stochastic nonlinear Schrédinger equa-
tion with time-dependent loss/gain, which read idu + (Au + Alu|*u + ia(t)u)dt = dW. We proved the
global existence and uniqueness of the solution in H'(R") through the uniform boundedness of the
momentum and energy functionals. The global existence result of the solution for this type of equation
depended on the ranges of time-dependent loss/gain coeflicient.
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1. Introduction

The nonlinear Schrodinger equation with time-dependent coefficient, as one of the basic models
for optics and Bose-Einstein condensates (BECs), has gained widespread attention in recent years
(see [1,2] and references therein). It is logical to account for random effects disturbing the system. A
standard approach in physics involves considering the Gaussian space-time white noise. Nevertheless,
space-time white noise cannot be theoretically handled in mathematics, thus the noise is considered
white in time and colored in space (see [3-5]).

In this paper, we are concerned with the global existence of the solution for the following stochastic
nonlinear Schrédinger equation with time-dependent linear loss/gain

idu + (Au + Au|®u + ia(Hu)dt = dW, (1, x) € [0, 00) x RY (1.1)
with
M(O’ x) = M()(.X), X € RN’
where ug(x) € H'(RY), A = 1, or 4 = —1 denotes that the nonlinearity is focusing or defocusing,

O<ax< ﬁ if N>3ora>0if N =1,2, W denotes the complex valued Wiener process, a(t) is a real
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valued function defined on the interval [0, o), and a(#) > O or a(¢) < 0 describes the strength of loss or
gain. For example, the time-dependent linear loss/gain term is described in the theory of BECs, where
it represents the mechanism of continuously loading external atoms into the BECs (gain) by optical
pumping or continuous depletion (loss) of atoms from the BECs (see [6]). From a phenomenological
perspective, the time-dependent linear loss/gain term is used to explain the interaction of atomic clouds
or thermal clouds (see [7]).

Recently, the global existence for the stochastic nonlinear Schrodinger equation has been exten-
sively studied and many important results have been achieved. For example, in [4], it is proved that
the classical stochastic nonlinear Schrodinger equation with additive or multiplicative noise admits
the global existence in H'(RY), respectively. In [5], it is showed that the defocusing energy-critical
stochastic nonlinear Schrédinger equation with an additive noise admits the global existence by atomic
spaces machinery and probabilistic perturbation argument. The authors in [8] study the global exis-
tence for the stochastic nonlinear Schrodinger equation with nonlinear Stratonovich noise in subcritical
case, based on the deterministic and stochastic Strichartz’s estimates. [9] investigates the defocusing
mass critical nonlinear Schrodinger equation with a small multiplicative noise, it shows the global
space-time bound by the decomposition of the solution. [10] proves that the solution of the stochas-
tic nonlinear Schrodinger equation with linear multiplicative noise is global when defocusing, a = %
(mass-critical), N > 1 or @ = ﬁ (energy-critical), and N > 3 by rescaling transformation and the
stability results. When a(t) = a > 0, Equation (1.1) reduces to the weakly damped stochastic non-
linear Schrodinger equation. The global existence for this type of stochastic nonlinear Schrodinger
equation driven by an additive noise is obtained (see [11, 12]). [13] is devoted to the global existence
for the stochastic nonlinear Schrodinger equation with weak damping driven by a multiplicative noise
in mass-critical case. [14] uses the conservation of the L>(R") norm and iteration argument to study
the global existence for the random nonlinear Schrodinger equation with white noise dispersion and
nonlinear time-dependent loss/gain in L*(R") and H'(R™).

Physically speaking, the nature of the function a(¢) will have a significant impact on the behavior
of the solution. [1] and [2] show the global existence result of the solution depending on the ranges
of the time-dependent coeflicient a(z). Inspired by the articles above, our main goal in this paper is
to study the global existence of solution for Eq (1.1) with a(#) being time-dependent. Because of the
loss of energy, the energy functional no longer satisfies the conservation law. In order to overcome the

difficulty, setting u(t, x) = e h aMdsyt, x) in Bq (1.1), v(t, x) satisfies
idv + (Av + e b OBy dr = eh OBaw, (1, x) € [0, 00) x RY (12)
with
w0, x) = up(x), xeRV.
Therefore, in order to obtain the global existence of the solution for Eq (1.1), we only need to study

the global existence of the solution for Eq (1.2). We use the uniform boundedness of the momentum
and energy functionals to obtain the global existence for Eq (1.2). Our main theorem is as follows.

Theorem 1.1. Let 0 < a < ﬁ ifN>3ora>0ifN=1,2,and ¢ € L(z)’1 and vy is an Fy-measurable
random variable with values in H' (RY). Assume that

(1) either 1 =1, 0 < a < %, a(t) € L'(0, ), a(r) < 0,

2)ord=-1,a(t) € L}OC(O, 00), a(t) permits sign-changing,

then for every vy, there exists a unique global solution of Eq (1.2) in H'(RY), i.e., T*(vo) = +o0.
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According to Theoerm 1.1, we find that the global existence result of the solution depends on the
ranges of the time-dependent loss/gain coefficient. In the absence of the time-dependent loss/gain
term, i.e., a(t) = 0, the conclusion of Theoerm 1.1 reduces to the well-established result presented in
Theorem 3.4 in [4], thereby demonstrating the consistency of our result within the existing theoretical
framework.

This paper is organized as follows. In Section 2, we show the local existence for Eq (1.2) and study
the evolution laws of the momentum and energy. In Section 3, under certain assumptions on 4, @, and
a(t), we prove the global existence for Eq (1.2).

2. Preliminaries

In this section, we first introduce some mathematical spaces and estimates. Then, through using the
method of [4], the local existence for Eq (1.2) is proved. Finally, we give the evolution laws of the
momentum and energy.

Throughout this paper, we use the following notations (see [15]). For p > 1, L?(R") denotes the
Lebesgue space of p-integrable complex valued functions on RY. The Hilbert space L2(R") is endowed

with the norm and inner product
1
) 2
[ ( f Ju(x) dx) :
RN

(u,v) = Ref u(x)v(x)dx, u,ve L*[RM).
RN

For s € R, the Sobolev space H*(R") of tempered distribution u € S’(R") whose Fourier transform ¥
satisfies (1 + [£%)29(&) € L*(RY). For a Banach space B, T > 0 and p > 1, and L?(0, T; B) denotes the
space of functions from [0, 7] into B with p-integrable over [0, T'].

Definition 2.1. (See [15, 16].) The pair (r, ¢) is said to be admissible if = N(; — ;) and 2 < ¢ < 5
when N > 3,or2<r<oowhenN =1,2.
Lemma 2.2. (Strichartz’s estimates). (See [15,16].) Let (r, q), (r1,q1), and (r2, q2) be admissible pairs;

S (t) = €™ denotes the linear Schrodinger propagator, T > 0, then the following properties hold,
(i) for every g € L*(RY), there exists a constant C such that

IS (gllzro,7:9mny < Cligllzwn,

(i) for every G € L'2(0, T; L%2(RM)), there exists a constant C such that

< |Gl

L20,T:L% RV))
L'1(0,T;L91(RN))

T
f S(t—95)G(s)ds
0

where 1, and q), are the conjugates of r, and q».

In order to state precisely Eqs (1.1) and (1.2), we consider the probability space (Q, 7, P, {F;}1>0).
Let {8 }ienv be a sequence of independent real valued Brownian motions associated to {¥,},»9, and let
{ex}xen be an orthonormal basis of L*(RY). We consider the complex valued Wiener process

Witxw) = ) pltwide. 120, xeR', weQ,
keN
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where ¢ € L%, which is the space of the Hilbert-Schmidt operator from L*(R") into H*(R"). The
corresponding norm is then given by

191530, = 1r6°8) = ) Iderllen:

keN
Next, we study the local existence for Eq (1.2).

Theorem 2.3. Let 0 < @ < 35 if N > 3ora > 0if N = 1,2, a(t) € L'(0,), ¢ € L)', and the

initial data v, is an Fo-measurable random variable with values in H'(RY). Then, there exists a unique
solution v to Eq (1.2) with continuous H'(RN) valued paths, such that v(0) = vo. This solution is
defined on a random interval [0, T*(vy)), where T*(vy) is a stopping time such that

T'(vo) = +o0  or lim |v(@)||mgy) = +o0.
t—1*(v)

Proof. We use the mild form of Eq (1.2), that is,

(1) = S(f)vo + id f S(t—s) (e_"fox“(m)dmlv(s)r’v(s)) ds—i f S(t — s)eh amdm gy (s). 2.1
0 0
Set t
W) =i f S(t — s)eb “mdm ().
0

By similar analysis to [4], we just need to prove z € L"(0, T; W-*2(RY)) almost surely for any 7 > 0,

where (7, @ + 2) is an admissible pair and r = %. Since z is a Gaussian process and r > 2, we have

( f ||z(s>||La+z(RN)ds) f E (I 0o, ds

(
T r
<ci fo (BUI()Ig2an)) ™ ds

1f f E(zls, x|*")d x)a+2 ds
0o \Jrv
T a+2 ﬁ
f (f E(z(s, x)| ) x) ds. 2.2)
0o \Jrv

Since

E(1e(s, ) = > f 1S (s — T)ek “minge, Par,

keN

where {e;}zc is an orthonormal basis of L2(R"), by Minkowski’s inequality and r > 2, we deduce

2
ar+2 - a+2
(f (E(Iz(s x)? ) x) <Zf (f IS (s —T)efo amdm e 1°*2dx|  drt
RN keN
= Z ”S ()e 0 a(m)dm¢ek||12(0,S;La+2(RN))
keN
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" a(m)d 2
SC} Z ”S ()ef() atm) ’n¢ek||Lr(O’T;La+2(RN))
keN

<c3 ) lleh eyt

keN

where c3 depends only on r, @, and T, and Strichartz’s estimates are used in the last inequality.
Because a(t) € L'(0, o),

2
a+2 a+2 T
2\) 2 a(m)dm 2 _ 2
( fR (Blets.0P) * dx) < cseb ) ligen iy, = callplon (2.3)

keN

where ¢4 depends only on r, @, T, and a(¢). Combining (2.2) and (2.3), we get

2
Bl ey ) < €510,

where c¢5 depends only on r, @, T, and a(f). Since the spatial derivatives and S () commute, the same
computation shows that

E (||Z(')||2’(O,T;W1*’”2(RN))) S C6||¢”Lg,l N
which proves the Theorem 2.3. O

Remark 2.4. Suppose that u(z, x) = e~ b adsy (¢ x), and we obtain the local existence for Eq (1.1).

Now, we give the evolution laws of the momentum

M(V) = ”v“iZ(RN)
and energy
1) = 2IVVRs gy — e b0y 22 24
b - 2 L2(RN) a + 2 L‘HZ(RN)' .

Proposition 2.5. Let a, a(t), ¢, and vy be as in Theorem 2.3. Then, for any stopping time T such that
T < 7(vp) a.s., we have

M (v (1) = M (v) - 2Tm )~ f f vebh g e dxdpi(s) + 1120 f b amingg —(2.5)
oy Jo Jry > Jo
Moreover, for any p € R and p > 1, there exist constants M, > 0, such that
E( sup M”(v(t))) < M,E (M? (vy)). (2.6)
te[0,7]

Proof. We apply the It6 formula given in [3] to M(v). Since M(v) is Fréchet derivable, the derivatives
of M(v) along directions ¢ and (¢, ¥) are as follows,

DM®)(¢) = 2Re f vodx, D*M©)(¢, ) =2Re f opdx.

R R
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Using the It6 formula yields
1
dM((7)) = DM®)(dv) + EDZM(v)(dv, dav). (2.7)
For the first term of the righthand side of (2.7), we have
DM(v)(dv) = 2Re f vdvdx = =2 Imz f velb amdm g o dBi(s)dx.
RN keN RN
For the second term of the righthand side of (2.7), we have
1 — s
~D*M(v)(dv,dv) = Ref dvdvdx = Z f o @i g 2 sdlx.
2 RY ke VRV

Integrating (2.7) over [0,7], we get (2.5). We now prove (2.6). Applying the Itd formula to M?(v)
yields

MP(v(1)) =M"(vo) — 2pIm Z fo M (v) » veb g, (x)dxdpi(s)

keN

! '
+p||¢”i(2)0 f erO a(m)dep—l(v)dS
0

t 2
+2p(p - 1) f eZIOS a(m)del’—2(v) Z Re (f vqﬁTk(x)dx) ds.
0 RN

keN

Taking the supremum and using a martingale inequality, it yields

E( sup MP (V(t))) <E (Mp (V())) + 6pE ((fT MZ(P—I)(V)||¢*vef0S a(M)dm”iz(RN)ds)z]

te[0,7] 0

+ p”¢”igOE (f ezf(f a(m)deP—l(v)ds)
0

+2p(p - 1E (fo M2 () || veh “<m>dmniz<RN>ds)

o }
<E(M” (vo)) + 6p( f b ““"“’“ds) ||¢||iofoE(sup M (v))
0 2 te[0,7]
+pp-1) f ezfd‘“<m>d"1ds||¢||io,oE(sup M- (v)).
0 2 te[0,7]

By using Holder’s and Young’s inequalities in the second term of the righthand side and an induction
argument, (2.6) holds. O

Then, we give the evolution law of the energy.

Proposition 2.6. Let o, a(t), ¢, and vy be as in Theorem 2.3. Then, for any stopping time T such that
T < 1(v) a.s., we have

A ’ s
H(V, ‘[') :H(Vo) + a f f a(s)e—afo a(m)dmlvla'+2dxds
a+?2 0 RN
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~Im f f e« (AT + e b Iy ) gV
RN

0

1 d :
+§Z f fR ) 2 amdm 140 12 dxds
keN

——Z f f Can fy atmdm (1y)2 ey 2 + av]*™2 (Im (Fpey))?) dixds. (2.8)
RN

keN

Proof. The proof is similar to Proposition 2.5. Since H(v,?) is Fréchet derivable, the derivatives of
H(v,t) along directions ¢ and (¢, ¢) are as follows,

DH(®,1)(p) = Re f

RN

ViV@dx — A~ b aman ge f VIvgdx,

RN

D*H(®v, )(¢,¥) = Re f VyVgdx — e~ b amdn (Re f Vy@dx + f V[*2 Re(vy) Re(vg) | dx
RN RN RN
Using the It6 formula yields

o0H (v 1)

dH(v,t) = dt+ DH(v,t)(dv) + 1DzH(v 1(dv,dv). (2.9)

For the first term of the righthand side of (2.9), we have

OH(, 1)
ot

1 ;

_ (0 a(s)e—afo a(m)dm f |V|a+2dx.
a+?2 RN

For the second term of the righthand side of (2.9), we have

DH(v,1)(dv) =Re f VyVdvdx — de~® b amdm Re f v|*vdvdx

RN RN

= _Im f e~ b amam AT W g — A= by atmidm [y f V*vdWdx.
RN RN
For the last term of the righthand side of (2.9), we have

1 1 — ' —
—D*H(v,)(dv,dv) = — |Re f VdvVdvdx — de~ b amdn [Re f v|*dvdvdx
2 2 RN RN

Ivl" 2Re(vdv) Re(vdv)) dx)

t /l t
_ _Z f 2foa<m>dm|v¢sek|2dsdx——e<2-a>foa<m>dm2 f V[®|per*d sdx
N 2 N

keN ken YR

4
@ - a)foa(m)dm f V[*~? (Im (Vey))” dsdlx.

2 keN

Integrating (2.9) over [0,7], we get (2.8). ]

Electronic Research Archive Volume 33, Issue 6, 3571-3583.



3578

3. Global existence

In this section, our purpose is to prove the global existence for Eq (1.2), i.e., Theorem 1.1, via the
uniform boundedness of the momentum and energy functionals. First, we have the following lemma.

Lemma 3.1. AssumeO<a/<—lfN>30ra/>OlfN—1 2, and we have
(HhAa=1, O<cy<— then

2+ F2
H(V t) + C” ||L2(RN) B

IV}

2@y S
2) A = -1, then

VW2 n) < 2H(, 1).

L2(RN)

Proof. Case (2) is obvious, so we only need to prove case (1). When A4 = 1,

e—af(;a(s)dsll ||a+2

H(V, t) ||Vv||L2(RN) m v La+2(RN)*

Using the Gagliardo-Nirenberg inequality and Young’s inequality, the following estimation is obtained

- ta(s)ds a+2 a+2- 2+i‘7”a
e L ”V”L(—;—Z(RN) S CHVHLZ(RN) ||Vv||L2(RN) — 8”VV||L2(RN) + C”V”Lz(%livv) . (31)
Substituting (3.1) into H(v, t), we get
IIVVIILz(RN) <H@v, 1)+ IIVVIILZ(RN) + CIIVIILz(}‘Rva;'
Then, case (1) holds. O
Next, we begin to estimate E (sup0<t<7 V(|7 o (RN))
Lemma 3.2. Let a, ¢, and vy be as in Theorem 2.3, and assume that
(1) either 1 =1, 0 < a < %, a(t) € L'(0, ), a(?) <0,
2)ord=-1,a@) € le(o’ 00), a(t) permits sign-changing,
then for any given Ty > 0 and any stopping time T with T < inf(Ty, T*(vy)) a.s., we have
o
(sup ||v<t>||H.(RN)) < C (o, ¢, a0, BGHo). B (Il 55 ) (3.2)
o<t<r

Proof. Supported by Proposition 2.5 and Lemma 3.1, we only need to prove the uniform boundedness
of (2.8). Assume that vy € L** % (Q; L2(RN)) N L2(Q; H'(RY)) and that E(H(v)) is finite.

Case (1): If 2 = 1, we neglect the last term in (2.8) since they are nonpositive. Taking the expecta-
tion and using a martingale inequality to (2.8), we have

E(sup H(v, z)) <E(H(vy)) + E( f f |a(s)|e-“f<f“<'">dm|v|“+2dxds)
0<t<t a+2 0 RN
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I a(m)d Iy atmyd %

+3E (f 'eo ¢ (AV + e % h v v) L, s)

+= ||¢||L0] f 2 o atmdm g o (3.3)
0

For the second term of the righthand side of (3.3), using Holder’s inequality, we have

(0% E(f |a(s)|e_a,f(;'a(m)dm|v|a+2dxds) (f la(s)le™ af(;a(m)dmds sup ||V||z:+22(RN))
0 RN

a+?2 0<r<t

(04
Sa, n 2 f |a(s)|e f a(ﬂ’l)dmdsE (Osup ”VHZ:*%(RN)) .
<t<t
3.4)

The validity of the last inequality in (3.4) depends critically on the condition a(f) < 0. Using the
Gagliardo-Nirenberg inequality and Young’s inequality, we have

To
04 L o— 4o
f la(s)le™ b gyl < Clvley IIVVII IIVVII +CIVILEY. (3.5)
0

o+ Lo+2(RN) L2(RN) LZ(RN) -8 LX(RN) L2(RN)

Note that in the last inequality of (3.5), it is crucial that 0 < @ < %. Substituting (3.5) into (3.4), and
by Proposition 2.5, we get

o ’ —a [P a@mydm, . ja+2 4(, 1
= 2E( fo fR (s oy dxds) < C( (”VoHLz{ﬁJ) ))+ SE(OSEETHVVHLZ(RN)) (3.6)

For the third term of the righthand side of (3.3), the operator ¢* is bounded from H~'(RY) into L>(R")
with the norm majorized by [|4|,0.. Furthermore, H Y(RY) is embedded into L***(R") and ¢" is also

bounded from L& (RY) into L2(RY). We obtain,

It follows that

efoS a(m)dm¢* (A\_/ + e—a fos a(m)dmlvloz‘—/)

< il o e b 9 (1], + e el ).
2

L‘HZ(RN)
1
2
3E [(f | ) ]
L2(RN)

. 5 :
S3||¢||L21E[(f 2f0 a(m)dm”VV”Lz(RN) ) ]+ 3”¢”L(2)1E((f e(2—2<r)f0 a(m)dm”v”ig:—ZZ(RN)ds) ] (3.7)
0 0

For the first term of the righthand side of (3.7), using Holder’s and Young’s inequalities, we have

1 To . 3
3||¢||L0,1E[( f K amamgy2, g )]s3||¢||Lm ( f ezfo“('"“’"ds) E(sup ||Vv||Lz<R~>)
2 0 2 0 0<t<r

1
<35E (sup VI, RN)) + C(To, ¢, a(?)). (3.8)

o<t<t

L2(RN)

efo a(m)dm¢ (AV +e afo a(m)dmlvlav)
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For the second term of the righthand side of (3.7), using Holder’s inequality, Young’s inequality and
the Gagliardo-Nirenberg inequality, we have

1
T . 2
2-20) [ d 2a+2
3||¢||LgJE[( fo o020 ket mnvn;:rz(RN)ds) ]

1
To 2
2-20) [ a(m)d
S3||¢”Lgl (f €( a)fo a(m) mds) E(Sup ||v||L"+2(RN))
0

o<t<r

E ( Sup ”Vl Z;;—ZZ(RN)) + C(TO’ ¢7 Cl(t))

0<t<t

< 1
4(a+2)

1
<3 (sup IV, RN)) +C(To.0.a0.(Inl57)). (3.9)

0<t<

Combining (3.7)—(3.9), we get

([ ) |

1
<o (sup ||Vv||Lz(RN)) +C(To, 0,00, B (Il225)). (3.10)

0<t<t

efo a(m)dm¢ (AV +e a/fo a(m)dm|v| V)

Therefore, together with Lemma 3.1, we finally obtain

4 1
]E(sup Ho, t)) <E(H(vy)) + C (TO, 6, a(0), B (||v0||iz o )) ; EE(sup H, z)). G.11)

0<t<t 0<t<t

Then, case (1) holds.
Case (2): If A = —1, taking the expectation and using a martingale inequality to (2.8), we have

]E( f f Ia(s)le_“fdya(’")dm|v|“+2dxds)
0<t<t RN
+3]E[( f ‘

1
)
S
[2(RN) ))
+— ”¢”me e2fo atmydm g o
0

2 Z (f V[RN (2-a) [} am)dm (|V|a |¢ek| + av|*” 2 (Im (voey)) )dxds) (3.12)

keN

E(sup H(v, t)) <E(H(vo)) o

efo a(m)dm¢ (AV +e afo a(m)dm|v| V)

From (2.4), we obtain that

—— ¢ OB ) < HO 1), (3.13)

ZOC(O, 00) ensures that the term e h in (3.13) remains nonnegative
and bounded regardless of the sign of a(¢) (positive or negative). It follows, for the second term of the

t
Note that the condition a(?) € L a(s)ds
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righthand side of (3.12), that we have

[0

]E( f |a(s)|e—ﬂf(fa<m>d'"|v|a+2dxds) <aE ( f la(s)H(, s)ds) < aE( la(s)| sup H(v, s)ds).
a+2 0 JrY 0 0 O<s<t
(3.14)

For the third term of the righthand side of (3.12), using Holder’s inequality and Young’s inequality, we

have
1
T 2 2
3E ' ds
o L2(RN)

I I
T s 2 T s 2
2 | d 2 2-2 ' d 2a+2
S3||¢||L(2)1E[(f o2 o atm) m”VvHLZ(RN)dS) ]+ 3||¢||L(2)1E((f o2-20) [ atm) m||v||L(:f2(RN)dS) ]
0 0

1 2 1 - ta(m)dm a+2
SﬁE(SUP ||VV||L2(RN)) + C(Ty, ¢, at)) + mE(Sup e h vl

La+2 (RN )
0<t<t 0<t<t

ef()s a(m)dm¢* (Al_/ + e—a/ fos a(m)dmlvla‘—})

S%E ( sup H(v, t)) + C(To, ¢, a(?)). (3.15)

0<t<t

For the last term in (3.12), using Holder’s inequality, we have
1 T s
) E f f @b« ([ pey P + av]*2 (Im (Vey))?) dxds
2 keN 0 RN

< D[, [ e e asds
2 & 0 JRY

l+a ") [ atmydmy i 2
< 2 E e 0 ||v||La+2(RN)”¢ek”L€l+2(RN)ds
JeN 0

0<t<t

1 —a [ aGm)dm a+2
3@ +2)E(Sur> ¢ ham IIVIILLZ(RN)) + C(To, ¢, alt))

S%E ( sup H(v, t)) + C(To, ¢, a(?)). (3.16)

0<t<t

Combining (3.14)—(3.16), and Gronwall’s inequality, we finally have

E ( sup H(v, l)) <C (T, ¢, a(1), E(H(vo))) - (3.17)
0<t<t
Then, case (2) holds. In conclusion, we finish the proof of Lemma 3.2. O

Remark 3.3. Suppose that u(t, x) = e~ b a(9dsy (¢, x), and we obtain the global existence for Eq (1.1).
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