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Abstract: We study the regularity problem with non-homogeneous terms of p-Laplacian type, which
is a still unsolved problem for nonlinear elliptic equations. The main results of this work are obtained
by three steps. First, we use the Hodge decomposition theorem to construct a suitable test function
that satisfies the solution definition. Second, by combining the solution definition with the Hodge
decomposition theorem, we establish a properly formulated inverse Holder inequality to enhance
the integrability of the very weak solutions. Finally, through an iterative process, we show that the
considered very weak solutions can be improved to classical weak solutions.
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1. Introduction

In this paper, we investigate the regularity theory of very weak solutions to the elliptic equations
with p-Laplacian nonhomogeneous terms of the following type:

{divS (x,u, Vu) = div(|fIP2f), inQ, (1.1)

u=0, on 092,

where Q a Lipschitz domain in R" with n > 2, p € (1, +00), u is a vector-valued function taking values
in R” with N € N, Vu stands for the gradient matrix of u, and f : Q — R"" is a given vector field.

To introduce solutions under the very weak formulation for the elliptic system (1.1), it is necessary
to impose appropriate structural conditions on the operator S (x, u, -). To this end, we assume that the
function S (x, u, Vu) : Q x RN x R"™ — RV satisfies the following structural assumptions (H1)—(H3)
for a.e. x € Q and every u,u;,u, € RY, z;,z, € R™. Here, u, u; and u, are arbitrary functions, and z, 7,
and z, are the gradient matrices corresponding to u, u;, and u,, respectively.
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H1 (Coercivity assumption) There exists a positive constant v such that
S(x,u,2)z > v|z|P.
H2 (Monotonicity assumption) There exists a positive constant 3 such that
(S Cru,z1) = S (6 12, 22)) (21 = 22) > Blail + |22l — 2ol
H3 (Boundedness assumption) A positive constant y can be chosen so that

1S e, ) < (12 + b + p(x),

where y € [, +00), st € (0, 7). $(x) € Lr1(Q).
With these structural conditions, we are now in a position to define very weak solutions to the
system (1.1).

Definition 1. A vector-valued function u € Wé’q(Q, RM), max{1,p — 1} < g < p is called a very weak
solution of (1.1) under the structural assumptions (H1)—(H3) if

fS(x,u,Vu)'chdx:flfl”_zf-Vgodx (1.2)
Q Q

holds for all test functions ¢ € Cy(Q,RY).

The study of regularity theory is typically predicated on the existence of weak solutions. However,
the existence of weak solutions remains unresolved for certain classes of equations within the current
analytical framework. Prominent examples include elliptic equations with a p-Laplacian operator and
a singular convection term.

Currently, for the p-Laplacian, the existence of solutions has been extensively studied [1-4].
However, under general structural assumptions, little is known about the existence of solutions when
f € L1(Q,R"™) with g < p and p # 2. Even for the simplest degenerate p-Laplacian system,

div(|VulP2Vu) = div(|f1"~2f)

subject to u = 0 on €2, the existence of solutions remains an open question when g < p and p = 2.

Iwaniec [2] observed that the integral identity for weak solutions can still hold by weakening the
integrability of these solutions. This observation led to the introduction of very weak solutions with
exponents below the natural exponent. He further established the existence of such solutions for
homogeneous p-harmonic equations. Buli¢ek and Schwarzacher [5] demonstrated the existence of
very weak solutions to the system of p-Laplacian type

divS (x, Vu) = div|f|P2f

in Q, subject to the boundary condition # = 0 on Q2. Chen and Guo [6] extended this result to Eq (1.1)
for f € L1 with g € [p — 4, p], using the method of [5].

The existence results for very weak solutions naturally lead to the problem of characterizing their
relationship to weak solutions. Iwaniec and Sbordone [7] showed that very weak solutions are in fact
weak solutions for A-harmonic equations

divA(x, Vu) = 0.
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Later, Kinnunen and Zhou [8] obtained the same result for the system
div(|Vul"*Vu) = 0
when the exponent p is close to two. Greco and Verde [9] extended this result to the p-Laplacian system

diV((G(x)Vu, Vu)%G(x)Vu) =0.

Subsequently, similar results have been obtained for various systems, including p-Laplacian
systems [10-12], elliptic systems [13—17], and parabolic systems [18-20].

We are now interested in whether very weak solutions to Eq (1.1) can be promoted to weak solutions
when f € L? with g < p, given that the existence of these very weak solutions has been established
in [6]. To address this issue, we aim to demonstrate the self-enhancement property of the gradients
corresponding to the very weak solutions of (1.1).

The key challenge is to construct an appropriate test function, since conventional methods involving
truncations and powers of u fail when the exponent is below the natural exponent p. Iwaniec and
Sbordone [7] ingeniously applied the Hodge decomposition to address this challenge. Lewis [21]
similarly overcame this difficulty by appealing to the Whitney extension theorem. This study adopts
the method of Iwaniec and Sbordone, leveraging the stability of the Hodge-type decomposition to
design an auxiliary function.

Compared to previous works, a key new aspect of our work is that an operator of A-harmonic
S(x,u,Vu) in Eq (1.1) appears to be more general, as it depends not only on the gradient Vu and
additionally on u considered in the very weak framework. In this context, we refer to the operator
S (x, u, Vu) in the system represented in (1.1) that satisfies the framework conditions (H1)-(H3) as an
A-harmonic operator. Consequently, we must address the estimate issues arising from u under the
structural assumption (H3). By applying regularity proof techniques, we establish a weak reverse
Holder inequality. Subsequently, we enhance the integrability exponent for very weak solutions of
Eq (1.1) to the natural exponent p. These results extend the findings of [7]. And obtain the following
main results.

Theorem 1. Let u € Wé’q(Q, RY) be a solution in the very weak sense for the system (1.1), subject to
the structural conditions (HI)—(H3), where f € L{(Q,R™), g€ [p—A,pl, 1 <p < +00,0< A< 1.
This ensures the existence of an exponent q; that satisfies p — 1 < q; = q1(n, N, p,u,3,v) < p so that
all very weak solutions u € Wé’qz(Q) with g1 < g2 < p.

Corollary 1  Assuming that the hypotheses of Theorem 1 are fulfilled, one can find a constant
q1 = q1(n,N, p,u,B,y) < p such that for any solution u € Wg’q(Q) within the very weak solution
framework corresponding to the elliptic model (1.1), if ¢; < g < p, thenu € W(;’p (Q).

We now outline the structure of the remainder of this paper. In Section 2, we introduce the
existence of very weak solutions to elliptic equations of p-Laplacian type (1.1), the theory of Hodge
decomposition, a useful inequality, and a reverse Holder inequality. In Section 3, we show that these
very weak solutions to Eq (1.1) are, in fact, classical weak solutions.

2. Preliminaries

In this section, we review several basic results and inequalities that will facilitate the proof of
Theorem 1.
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The first result, which forms the basis of our work, establishes the existence of very weak solutions
to the p-Laplacian equations (1.1) when f € L7 with ¢ € [p — A4, p]. This existence theorem was
established through the selection of appropriately formed weight functions, in conjunction with
methods such as the relative covering decomposition theorem, weighted techniques, and the
divergence-curl lemma.

Lemma 1 ( [6]). Let Q C R" be a bounded Lipschitz domain, the operator S (x,u, Vu) satisfy (HI)-
(H3). Then, there exists a constant A(v, 3,y,n, N, p, Q) such that for all g € [p — A, p](1 < p < ), the
following results hold.
If f € LY(Q,R™), then there exists a very weak solution u € Wé’q(Q, RN) to the Eq (1.1).
Furthermore, there exist constants C(v,B,vy, p,q,n, N,Q) and C(v,B,v, p,q,n, N, Q) such that

IVulla@rmy < Cllflla@rmy + C.

The Hodge decomposition theorem serves as the key tool in constructing a suitable test function.

Lemma 2 ( [7]). Let Q C R" be a domain with a regular boundary, where w € Wé’r(Q, RM), r > 1 with

A satisfying —1 < A < r— 1. This yields the existence of a function ¢ € Wg’ﬁ(Q, RM) and a matrix field
with zero divergence H € LT1(Q,R"™) such that

IVw|'Vw = Vo + H. 2.1

Moreover,
IH|| =, < C (€2, NIV (2.2)

In Lemma 2, the most valuable case for the construction of a test function is when A can be negative.
Lletp—1<r<panduce Wé”(Q, RY) is considered a solution in the very weak formulation to the
p-Laplacian type equations (1.1), by letting 4 = r — p, it follows that —1 < 4 < 0. Hence ¢ in (2.1)
may be employed as a test function within (1.2) since Vg € L™ (Q, R™).

The following inequality will be useful for estimating the left-hand side term in the
Hodge-type decomposition.

Lemma 3 ( [22]). Assume that X, Y € R", where X, Y are nonzero vectors and A lies in [0, 1), then,
we have

1+4
XX = Y 1Y] < 20— X - Y

Finally, we introduce a reverse Holder inequality that implies the self-improvement of the
integrability exponent of u(x). To clarify the notation used in the upcoming lemma, we recall that the
average value of g(x) over a set X is defined as

1
fx g = o fX e(0)dx,

where X C R” is a Lebesgue measurable set and |X| denotes the Lebesgue measure of X. In particular,

1
f gdx = —— g(xdx,
Mg(x0) anR Mg (xo)

where, a, denotes the volume of the unit ball.
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Lemma 4 ( [23]). Let 0 < R < Ry < dist(xy, 0Q), xo € Q. Suppose that u(x) € LP(Mg(xp)), f(x) €
L'(Mg(x0)), t > p, 1 < p < oo satisfies the reverse Holder inequality

pls
f ()P dx < 0 f ()P dx + C*( J[ |u(x)|de) + f (0P dx
Mg > (x0) Mg(x0) Mg(xp) Mg (x0)

with 1 < s < p,0< 0 < 1. Then there exists a constant p’ = p’(0, p,n,C*) with t > p’ > p such that

uell

loc

. A\ 1/p L A\
G (o dx) < C*G |u(x)|”dx) ; c*b( P dx)
Mg > (x0) Mg(xo) Mg(xo)

where C, = C.(n,C*, p,6,Ry).

(Q),

and

3. Demonstration of the regularity theorem

In the present section, we first construct an appropriate test function using the Hodge
decomposition and establish a reverse-form Holder inequality for solutions within the very weak
formulation associated with (1.1). We then explore the relationship between the aforementioned very
weak solutions and standard weak solutions.

Proof of Theorem 1 By Lemma 1, there exists a very weak solution u € Wé’q(Q, RY) to the elliptic
equations (1.1) under the structural assumptions (H1)—(H3), where f € L1(Q,R™), g € [p — 4, p],
A = Av,B,y,n,N, p,Q). To prove Theorem 1, the key is to enhance the integrability exponent of
ue Wol’q(Q, RY). To this end, we need to construct an appropriate test function. For convenience, we
setg=p—-Awith0 < A< % Consequently, u € Wol’p HORMO0 < A < %) is a very weak solution
to (1.1). Let n(x) € C5(Mg(x0)) with 0 < R < min{1, dist(xy, 3Q)} be a truncation function with n(x)
taking values in [0, 1] and satisfying |Vn(x)| < % and identically equal to 1 on Mg/ (xo)

Based on the Hodge decomposition theorem in Lemma 2, for any 0 < A < 1, there exists ¢ €

2 9
-1 _
W (Q) and H e L (Q) such that

IV(n(0)u())| ™ V(n(x)u(x)) = Vo + H (3.1)

and
|Hlles < Cln, pAUN Gl 24, (3.2)
IVellpa < Clon, pIV(pu) ,1;1 (3.3)

X -1 . . . .
Since Vo € LT1(Q), ¢ is appropriate to act as a test function within the framework of very weak
solutions. Consequently,

f S (x,u, Vu) - Vodx = f [fIP~2f - Vedx. (3.4)
Mg(xo)

Mg (xo0)

Let
E(n,u) = V)|~V (nu) — InVul"nVu. (3.5)
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By Lemma 3, we obtain that

1+A4 _
£l < 25— u¥nl™ (3.6)

By combining Eq (3.1) with Eq (3.5), it follows that

Vo = E(p,u) + InVu|'nVu - H.
Substituting this equation into Eq (3.4), we obtain

f S(x,u,Vu) - InVul_’anudx
Mg (x0)

= - f S(x,u,Vu) - E(n,u)dx + f S(x,u,Vu) - Hdx
Mg(x0) Mg(xo)

+ f |72 f - Vedx.
Mg(x0)

Combining (H1), (H3), and (3.6), we can conclude that

vf nl_AIVul”_ﬂdx
Mg (x0)

< f S (x, u, Vi)lnVul 'nVudx
Mg(xo)

< f IS (x, u, VI E(m, u)ldx + f IS (x, u, Vu)||H|dx
Mg(xo) Mg(xo)

+ f P Ve,
Mg (xo)
<C f IVl u|'~dx + C, f P~V dx
Mg (xo)

Mg(xo)

+C f lp(0)llul'~dx +y f IVulP~|Hl|dx
Mg(xg) Mg(xo)
+y f b P~V |Hldx +y f lp(x)[|Hldx
Mg (xo) Mg(xo)

+ f P Veldx
Mg(xo)

Sh+bL+L+1L+1s+ 1+ 17,

(3.7)
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where
I = le \Vul?~ |u'~dx;
Mg (xo)
L=C f Jup PPl s
Mg(x0)
I = le ()|l dx;
Mg(xo)
Li=y f |VulP~'|H|dx;
Mg(xo)
Is = 7’f P~V H|dx;
Mg (xo)
Io=7 f G(OllHIdx;
Mg(xo)
L= f P Vel
Mg(x0)
with Ls 14
+ 1-2
C, =2 =) .
PTeTC /1(73) 4

To derive a weak reverse Holder inequality for |Vu|P~! of the form presented in Lemma 4, we need
to estimate /; — I; appropriately.

We begin by estimating /;.

In view of Holder’s inequality with exponents

, n(p—A4) , n(p—A4)
T arl-0p-0?T T w—prna-a

P

L

where 1 < p’ < 00,1 < ¢’ < o0, and [% + — =1, and the Sobolev embedding theorem with exponent

ql
"”o_ n(p B /1)
n+1-1
7’ |
such that 22 = 22~ we find that
n—p n—p+1
(n+1-)(p-1) (n—p+1)(1-2)
n(p-2) n(p-A4) n(p—A1) n(p—21)
I <C |Vu|==1dx |u| =P T dx
Mg(xo) Mg(xo)
(n+1-)(p-1) (n+1-2)(1-2)
_ n(p-2A) n(p—4) n(p—2) n(p=2)
<CiC! ﬂ( f |Vu|n+lf/idx) ( f |Vu|n+de)
Mg(xo) Mg (x0)

n+l-4
_ n(p—21) n
= C]C; /l(f |Vu|n+1/1dx)
Mg (xo)

Using the same techniques as for /;, we can estimate /5.
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L, <C f PO+ gy
Mg(xo)

(n=p+ Du(p~1)+1-1] (=D~ +u(p=1)+1-1]

n(p—A1)  a(p-H n(p-1)
<C1( f |u|n»+1dx) ( f dx)
Mg (x0) Mg (x0)

s )nr;.sw—w—ﬂ

< CIC(|MR(XO)|,CS)(f |Vu|=T1d

Mg(xo)

We now discuss the estimate of I, for different values of u.
If 0 < u < 1, it is evident that

L <CIC(|MR(xo>|,cs)( f IVu| T ‘idx)

Mg(xo)

Ifl<p<- we obtain

+1’

n+171

n(p-A)
b < CoC(IMa()l Cos il | f Vul#dy)
Wy "IN J Mp(xo)

Thus, we can conclude that

n+l-1

b < CuC(IMrCrol, Co ], ) f V)
‘Vb n+1-1

Mg(xo)

By applying Holder’s inequality, Poincaré’s inequality, and Young’s inequality, we obtain

p-1 1-

Ko f gl ax) f )
Mg(xp) Mg (xo)
1-1 p-Aa EE} =
< Clcg*‘( f |¢(x)|P'dx)p l( f IVl ﬂdx)”
Mg(x0) Mg (x0)

1-2
< Clclf’lsf [VulP~ Adx + C\Cy lC(s)f |¢(x)|ﬂ ldx
R(X0)

Mg (x0)

~

A

By Holder’s inequality and (3.2), we have

p—1

p-1
L < 7( f IVul”‘”dx)' A( f |H|™ dx)
Mg(xo) Mg(x0)
1-1

<C(n,p>m( f |Vu|1’-ﬂdx)”"( f |V(nu>|P-ﬂdx)””.
Mg (xo) Mg (xo)
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By employing Minkowski’s inequality and Poincaré’s inequality, we derive

( f |V<nu>|f’—”dx)”’”
Mg (xo)
1
:( f UV + nVulP ﬂdx) B
Mg(xo)
% =
<( f VP ﬂdx |nvu|P—ﬂdx)
Mg(xo) Mg(x0)

4 1 e e
<=cr Vuldx) " + Vul~dx)”
R P
Mg(xg) Mg (x0)
4 L =
(e 1) f Vx|
R Mg(xo)

Substituting (3.8) into the preceding estimate of I, we further obtain

4 L 1-1 p%l p%
<cop(zer +1) vl [ wara] ([ wara
R Mg(xo) Mg(x0)

1

4 _L 1-4
<Cn, p)(ﬁc;;-ﬂﬂ) va f Vul?dx.
Mg(xo)

By Holder’s inequality, (3.2) and (3.8), we can estimate

-l 1—
Is <y( f |u|”<f’-ﬂ>dx)”( f \HE Adx)”
Mg (xo) Mg(xo)
<Cn, pm( f |u|“<P-ﬁ>dx) ( f |V<nu>|P-ﬂdx)
Mg (xo) M,

'R(X0)

x

p-1

4 L 1-1 A =
<Cn, p)(—c;;* ; 1) y/l( f - ﬂ>dx) ( f |Vu|P-ﬂdx) .
R Mr(xo) Mr(xo)

As before, we consider u in two cases.
Assuming 0 < u <

(3.8)

1, and utilizing Holder’s, Young’s, and Poincaré’s inequalities, the following
equation is obtained.

=

;d

(f |uf P~ ﬂ)dx)”
Mg(xo)
(1—H)(P D
M(R(X()) R(XO)

p—1

p=1
f Iul”_ﬂdx +( f
Mg (x0) Mg (x0)
<Cr ( IVl dx) ( x) .
Mg (x0) Mg(xo)

/
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If I <u < —"—, using the Sobolev embedding theorem, we can find

p-1

( f |u|u(p—d)dx)”—ﬂ
Mg(xo)
#(pfﬁl)
r=
<C{;<P—‘>( f IVulp_/ldx)
Mg (xo0)

<c(Caluye)( |

R(X0)

p-1

|Vu|”"ldx)ﬂ

Combining the above two inequalities, we can deduce that

p—1 p—1 p—1

( f b 7=0dx)™ < C(Cpr Cos il f Vultdx) f ax)”.
Mg(x)) 0 Mg(x)) Mg(x))

Substituting the above inequality into the estimate for /5, we obtain the following bound:

I5 < C(n, p, v, Cp, Cos lly1-:)2 [ [ wapraxs [ dx].
Mg(x0) Mg(xo)

To estimate I, we apply Holder’s inequality, (3.2), (3.8), and Young’s inequality to obtain

p=1
A

16<7(fM(x)|¢<x>|z fax)” (fM(x)'H'”d’“)
< o fM N |¢(x>|ifdx)’p’3( fM

R R(x0)

A.L.

1-1

V()| ﬂdx)i”

p-l -1

1 1-2 i = =
<, p)( +1) y/l( f |¢(x)|r1dx) ( f |Vu|p_/ldx) !
Mg (x0) Mg(x0)

L 1-2 b
<Cnpzci +1) f Vul~idx + f 001 d).
Mg(xo) Mg(xo)

Finally, by applying Holder’s inequality, (3.3), (3.8), and Young’s inequality, we arrive at

1-

-1
L <( f | flp‘”‘dx)ﬂ( f Vol idx)p
Mg(x0) Mg (xo)
p-1 1-2
< cnp) f i7-tan) f Vonopdz)”
Mg(x0) Mg(xo)
1-1

1-1 = =
<c, p)( cr +1) ( f |f|ﬂdx) ( f IVl ﬂdx)
Mg(x0) Mg(xo)

1-4
cr+1) e f VulP4dx + C(e) 7).
Mg(x0) Mg(x0)

>.
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Substituting the estimates for /; through I; into (3.7) and using the definition of 7, the final

expression is derived.

% f |VulP~dx
Mg/2(x0)
_ n(p—1)
< ClC; /l(f |Vu|n+1 ‘dX)
Mg(xo)
n+l-4

p=A) n
+CIC(|MR(xo>|,cs,||u|| u)( f |w|n+wdx)
WO n+1-4 MR()CO)

1=1 1=d -
+ ClCﬁ'lsf IVulPdx + C,C} " C(e) |¢(x)|%dx
Mg(xo)

n+]—/l

Mg (x0)

4 1 1-a
+ C(n, p)( Ci+ 1) y/lf \VulP~dx
Mg (x0)

+ C(n’ p.7 CP, CS7 ||M||W1’p71)/1 (f |Vu|]7—/ldx + f dx)
0 Mg(xo) Mg(xo)

1 1-2
+Cn, p)( Ci o+ 1) 1 f Vil dx
R Mg(x0)
4 _L 1-4 p=A1
+Conp)ZCh +1) f 61 dx
Mg (xo)
4 1L\
+C(n,p)(— Cp'+ ) f VulP~dx
R Mg(x0)
4k y
+C(n,p>(§ cr ) C(e) AP dx.
Mg(xo)

Rearranging this inequality yields

v f |VulPdx
Mg >(x0)

[(2C(n p)(4cr* 1)

% -4 -2
(C1C +Cn, p)( i +1) f VulPdx
Mg(xo)

1-1 n(p—A1) n
+ |G+ CLC(MRG)L, Cos ) IVul = dx

Mg(xo)

-A
y + C(l’l, pa 7, CP, Csa ”I/tllw'(;l"/l))/1

n+l-4

[C Cric(e) + Cln, p)( 7 +1)l y/l]‘[M( )|¢(x)|53??dx

l

+Cn, p)( “+1) e f1Pdx

Mg (x0)

+ C(na p’ )/7 CP’ CS’ ”I’t”‘)[/(;vl”‘ﬂ)/l f dx~

Mg (x0)

Electronic Research Archive Volume 33, Issue 6, 3482-3495.



3493

Dividing both sides of the above inequality by |[Mg(xo)| = @,R", where @, denotes the volume of
the unit ball, we obtain

v J[ |VulP~*dx
Mg/ (x0)

4 L 1-1
< 2"|:(2C(n’ p)(ﬁcﬁ z 4+ 1) )’ + C(n’ p5 ’)/5 CP, CS’ ||l/l||W(;,p—/l))/l

+(C1C1_ cn, p)(% H)H)g]fw VPt

(x0)
n+l-1

1=d » e
+2CiCI + CLO( M, Coall i) |(0nR?) ™ Jf Vul )
Wo ™ Mg(xo)

+ 2"[c Cric(e) + Cln, p)( - 1)“%] )f 60| dx
Mg (x0)

+2"C(n, p)( 7 +1) e 1P dx

Mg (xo)
+C(n,p,.Cp. Cs, ||u||W3,p-a)a.
Choosing A, € small enough such that
2"[(2c<n p)( +1)" Ay +C(n, p,y, Cp, Cos lully1))A

(C1C" e, p)( + 1))l <,

n(p—4)

, then we can deduce that
n+l1-4

and setting 7 =

p=A1

f IVul”'dx < 6 J( IVulP~'dx + M |vu|fdx) + f \FIP~dx,
Mg/2(x0) Mg(x0) Mg(x0) Mg(xo)

with0 <8< 1,1 <7< p—Aand here

M= z[clc;-i + C1C(IMR(x0)l, €, ||u||W],m)](am") B
0

4

and

on 1= 4 % 1-2
F = [C Co'C(s) + C(n, p)( + 1) ¥
4

RCP lp(x)| =T

1
p-A

2" 4 1-1 a1
+=Cn.p)(Ch ) e +;c(n,p,y,cp,cs,||u||W5,p_ll)a}

Thus, by Lemma 4, one can find an exponent ¢’ > g = p— A for which u € Wé’q’ (Q) holds. Note that
f € LY(Q,R™) for g € [p — A, p]. By similar reasoning, we derive an alternative estimate comparable
to the reverse Holder inequality for |[Vu|P~4, where the exponents ¢’ and 7’ replace ¢ = p — A and 7,
respectively. Specifically,
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q/
T

f |Vu|q,dx < QJC IVulq/dx + M |Vu|7,dx) +f |F|Q'dx'
Mgy2(x0) Mg (x0) Mg(xo) Mg(xo)

We then obtain u € Wé’q” (QQ) for some g” > q’. Moreover, the reverse Holder inequality remains
valid with the new exponents ¢” and 7” in place of ¢’ and 7’, respectively. Therefore, by repeating
the above process, we can continuously improve the integrability of Vu. Consequently, we infer that
u € Wy(Q) for any u € W, (Q) with g € [p — A, p).

The proof of Theorem 1 is completed.
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