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Abstract: This paper mainly discusses the non-zero-sum Nash differential games for stochastic dif-
ferential equations (SDEs) involving time-varying coeflicient and infinite Markov jumps. First of all,
a necessary and sufficient conditions for the existence of Nash equilibrium strategies is given, which
turns the non-zero-sum Nash differential games into solving the equations that are composed of count-
able coupled generalized differential Riccati equations (CGDRESs). As an application, a unified treat-
ment is presented for H,, H.,, and H,/H,, control by the Nash game approach, which can reveal the
relationship among these three problems. Furthermore, the theoretical results are used to solve a nu-
merical example.
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1. Introduction

Applications of Markov jump stochastic systems have been found in a variety of fields, such as
robotics, economics, and fault detection. For Markov jump stochastic systems, a sample of problems
can be found in the literature, such as stability and stabilization, see [1-6], reinforcement learning-
based optimization, see [7,8], H, optimal control, see [9, 10], H,, control, see [11-14], H,/H., control,
see [15,16], and game problem, see [17—19]. Recalling some existing results, most of them take values
in finite state space for Markov chains, while few are based on the assumption that Markov chains are
valued in countable state space. Thus, this is a significant research topic.

From an applicable point of view, countable Markov chain may be better suited to describe sudden
changes in many practical scenarios such as modern queueing theory, solar thermal receivers, and
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so on [20]. From a theoretical point of view, in terms of stability, stochastic systems with finite or
infinite Markov jumps are fundamentally different. The essential root lies in the fact that the causal
and anticausal Lyapunov operators of infinite Markov jump systems are no longer adjoint. As a special
hybrid system, infinite Markov jump stochastic systems contain two kinds of mixed dynamic forms.
One is called mode, which is described by a Markov process with countable discrete states. The
other, called the state, is described by stochastic differential equations (SDEs) for each mode. To
be specific, [21] clarified the relationship among four kinds of stability for stochastic systems with
countable Markov chains. Further, [22] took into account the effect of time delay and parametric
uncertainties and also summarized the relationship among the above four stabilities. On this basis,
some controller synthesis problems have been solved in [23-25]. Therefore, it is of significance both
in theory and in practice to consider stochastic systems with countable Markov chains.

The differential games are widely applied in many fields, such as engineering, finance, and biology.
For a special case where the state equations are linear and the payoff functionals are quadratic, [26]
considered the linear quadratic (LQ) stochastic zero-sum differential game for the Markov jump sys-
tem driven by Brownian motion and obtained a linear feedback saddle point characterized by the set
of coupled Riccati differential equations. Under a more general functional, both open-loop solvability
and closed-loop solvability are discussed in [27], and the solvability of associated Riccati equations
under the uniform convexity-concavity condition has been studied. Besides, the differential equation
characterizations of the lower and upper value functions of the game under a rather general setup are
obtained in [28]. Further, [29] extended the differential games for Markov jump-diffusion models to the
leader-follower Stackelberg game framework. For non-zero-sum differential games, games of regime-
switching diffusions with mean-field interactions were concerned in [30]. However, for such systems
with countable Markov chains, there are few results reported on the Nash game problem. In [31], al-
though a unified treatment approach for the three control design problems, that is, H,, H,, and H,/H.,
control, is presented via Nash equilibrium solution, a countable Markov chain is not involved. In [32],
the Nash game problem is studied, while the effect of the control term on noise is neglected, which is
focused on revealing the relationship between Nash equilibrium strategies and H,/H,, control. This
is basically different from the starting point of our research that emphasizes a unified treatment for
the three control problems. In [33], although the finite horizon H,/H., controller design was investi-
gated for a system considering countable Markov chain, the Nash equilibrium points and finite horizon
H,/H,, controller design were not equivalent for system (2.1); see Remark 4.3. Hence, it is necessary
to investigate the non-zero-sum Nash differential games for SDEs involving time-varying coefficient
and infinite Markov jumps, which is the main motivation of the paper.

In this paper, we will discuss the non-zero-sum Nash differential games for SDEs involving time-
varying coefficients and infinite Markov jumps, in which the Markov chain takes values in countable
state space. The contribution of our paper rests on four aspects: First of all, since finite and infinite
Markov jump systems have the essential difference on stability, the countable dimension Banach spaces
are introduced, and their elements are linear and bounded operators. Next, with the tool of stochastic
analysis, the Nash equilibrium strategies can be obtained by coupled generalized differential Riccati
equations (CGDRESs), which are a countable coupled Riccati equations, and this makes the equations
more difficult to handle than those in [31,32]. Specifically, for the existence of Nash equilibrium strate-
gies, a necessary and sufficient condition is given based on the pseudo inverse matrix. Once more, to
demonstrate the above game result’s theoretical value, a unified treatment for the three control prob-
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lems is presented with some corresponding parameters. Last but not least, to overcome the difficulty
of solving the CGDREs analytically, the discretization method and backward recursive algorithm are
applied to solve CGDRESs approximately.

The structure of this article is as follows: Preliminary discussions are included in Section 2. We
show in Section 3 that Nash equilibrium strategies can be obtained by the CGDREs. Based on this
result, in Section 4, a unified treatment is presented for the three control problems. In Section 5, one
numerical example is given. Section 6 describes the conclusions.

The following symbols are used. R"(R>™) is n-dimensional real Euclidean space (the linear space
of all [ by m real matrices). A’ and A" stand for the transpose and pseudo-inverse of the matrix A,
respectively. The totality of #-null sets is denoted by N, . := c(w(s),0 < s < ¢) V o(w(s),0 < s <
§)VN.E([0,T]; R = {e € R'|e is F.—measurable and fOT Elle(¢)|Pdg < o0}, D :=1{1,2,...}.

2. Preliminaries

Consider the following linear SDEs with time-varying coefficients and infinite Markov jumps:
dx(s) = [Ci(s, @)x(S) + Di(s, w)n(s) + Ei(s, we)o($)lds
+HCa(s, @H)X(S) + Da(s, wn(s) + Ex(s, we)o(6)1dw(s),

A(s, @ )x(S) , _
B(s, wg)n(g)] » B m )y Bls, ) =1,

(2.1)
2g) = [

where x(0) = xo € R", @w(0) = @y € D, x(¢) € R" is on behalf of the system state, z(¢) € R stands
for the measurement output, and for two different players, n(s) € R™ and o(s) € R" are the control
processes, respectively. w(g) represents a standard one-dimensional Brownian motion. {@}¢co7] takes
values in the countable state space O, which is a right continuous and homogeneous Markov process.
P = [px(s)] is the transition probability matrix of {w}eeo,r] With pxj(s) = P(w s = jlw, = N), which
is assumed to be stationary. The infinitesimal matrix of {w}cef0,r) 1s defined as @ = (¢x)x jen, Where
Py, = limw, pxi(0) = 65—y, N, j € D. It should be noted that when 8 # j, ¢x; > 0, and for

>—0
N e Z)Sand some ¢ > 0,0 < —dxx = X jep jex Pxj < ¢ < 00. Added to that, P is nondegenerate, and for
s€[0,T], m,(N) := P(w, =NK) > 0,8 € D.

A" (AT") represents the real Banach space of {A]JA = (A(1),A(2),---),AR) € R™"} with the
norm ||All; = X5-; IAMN)I < o0 (|Allee = SUPgeq [AR)I| < ). When m = n, AT*" (AZ") will be
expressed as A7 (A%). For A € A" (A"), A > 0 if and only if A(N) > 0 for all X € D. A € A" (A"
means A > 0. By C!([0, T'], A™") (C,([0, T1, A™)), we denote all continuously differentiable (bounded)
mappings g, and by C} ([0, T'], A™), we denote all bounded mappings g(s) and %.

Given two parameters with @ > 0 and 8 > 0, the relevant cost functionals are defined as follows:

T
J1(x0, @0, (), 0°(-)) = E{f0 [l (I = llz(o)IP1dslmo = N}, (2.2)

T
J2(x0, @0, 1(-), 0°(+)) = E{j; [P = Bllor(9)IP1dslao = N}, (2.3)

We will look for the optimal Nash equilibrium strategies (i7°(-), o*(+)) to minimize cost functionals (2.2)
and (2.3) subject to system (2.1).
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Definition 2.1. For all admissible (1(-), o(-)) € I2([0, T]; R™) x I*([0, T1; R™), if

Jl (.X(), wo, 77*()’ O-*()) < Jl (-x09 wo, 77*(), O-())a (24)
JQ(X(), Wy, T]*(), 0-*()) < JZ(XO, Wy, T](), O-*()), (25)
then (n*(+), o*(-)) € P(Np; R™) X X(Ny; R") is called the Nash equilibrium strategy.
Lemma 2.1 ( [33]). For system (2.1) with Di(¢,@w;) = 0,E(s,@w;) = 0, = 1,2, if G(¢g, @) €
C,([0,T1, AL, then we yield
E[X(T) G(s, @)x(T) = x,G(0, @o)xolmo = K]

=E f [x(s) (G (s, @) + G(s, T)Ci(s, @) + Ci(s, @) G(s, @) + Z b, /G (S, J)

j=1

+ Ca(s, @) G(s, @ )Ca(s, @) x($)]dslmg = K} (2.6)
for (xp,N) € R" X D.

Lemma 2.2 ( [36]). Let matrices Ty, T,, Ts, and F be given approprlate sizes. Then the matrix
equation T\YT, = Ts admits a solution Y if and only if TlT T3T 'T, = T5. Moreover, the solution can
be represented by Y = T T3TT + F — TTTlFTzT

3. Nash equilibrium strategies

The purpose of this section is to get the necessary and sufficient conditions for the existence of

Nash equilibrium strategies. For this end, suppose that the feedback strategies can take the following
form [37]:

n(s) = (s, @wo)x(s), o(s) = I'i(g, we)x(S). (3.1)

Theorem 3.1. Under hypothetical conditions that C,(s,@w.) € Cu([0,T],AL), D,(s,@;) €
Cy([0,T1, A™), E,(s, @) € Cp([0, T, AX"™), m = 1,2, A(s, @) € Cp([0,T],AZ") in (2.1), for
Nash game problem (2.4) and (2.5), a unique Nash equilibrium strategy

17°(s) =Ta(s, @e)x(s), o(s) = T'i (s, w)x(5))

exists iff the following CGDREs:

=Gi(5,R) = [C1(5, R) + Di(s, M)Ta(, N)'Gi (5, 8) + G1(5, N)C (s, N)
+D1(6, M) (s, )] + [Ca(6, R) + Da(5, M) (s, MG (s, N)
1Ca(6, R) + Da(6, N)Ia(s, N)] — A(s, N)'A(g, )

Ta6 N Ta(eN) + 3 G (s..) (32)

_Hl (g’ N)Ml (ga N)IHI (g’ N),’
Mi(s, )M (¢, 8) H(s,8) — Hi(¢,N) =0
GI(T9 N) = Oa Ml(g’ N) > 0’ (g9 N) € [09 T] XD,
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—Ga(5,R) = [Ci(5,N) + E1(, X)T1(5,N)]'Ga(s, N) + Ga(s, N)[Ci (5, )
+E1(5, N)1(5, R)] + [Ca(5, N) + Er(6, N)1(5, N)]'Ga(s, N)
[Ca(5, N) + Ex(5, M) (6, )] + A6, N)'A(s, N)

—BT1(5, N)T (s, N) + L #xiGa(s ) (3.3)
£

_HZ(g’ N)MZ(g, N)THZ(ga N)/a
My(s, R)Ma(s, N) Hy(s, R) — Hy(s,8) =0,
GZ(T’ z.¢) = 09 M2(g5 N) > 09 (g’ N) € [0’ T] X Da

admit solutions (G (g, N), G2(s,N)) for (¢,N) € [0, T] X D, where

Mi(s,R) = @I, + Ex(s,R) Gi(, N)Es(s, N),
My(s,R) = 1, + Dy(5, R) G(s, R)Da(s, W),
Hi(5,R) = G1(6,N)E (5, R) + [C2(s, R) + Da(5, N)2(5, X)'G1(5, N)Ea (5, N),
Hy(5,8) = Ga(5, 8)Di (5, R) + [Ca(s, W) + Ea(s, N)[1(5, 8)]'Ga(s, N)Da(s, N),
(5, N) = =M(6.R)'Hi(, N,
(6, 8) = =Ma(6, N) Ha(5, NY'.
Proof. Sufficiency: Because CGDREs (3.2) and (3.3) have solutions G(s,N8) < 0, Ga2(s,N) > 0,

(5,8) € [0,T] x D, we can infer from I',(s, @) = —Ma(s, @) Ha(s, @)’ that n(s) can be substituted
by 7°(¢) = I'a(s, w)x(g) in system (2.1)

dx(s) = {[Ci(s,m;) + Di(5, @I 2(s, @ )]x(s) + Ei (5, wg)o(s)}dg
HICo(s, @) + Di(s, w2 (s, @) x(S) + Ex(s, w)o($)dw(s),

A(S, T)X(S) ) ~
B(ga wg)rz(g, wg)x(g) ’ B(g’ wg) B(g’ wg) = In”.

(3.4)
2g) =

By now applying the method of completing the square, it can be obtained from Lemma 2.1 and Eq (3.2)
that

Jl (-an wy, 77*()’ 0-())
= E[x,G (0, N)xo]

T
+E{ f [Pl (I = Iz(I* + d(x(s) G (s, @) x(s))ds|my = N}
0
T
= E[x{G1(0,N)xo] + Ef f [Pl = lz(DIP NIy = N}
0
T
+E{ f {(x(¢)'{G1(s, ®) + [Ci(5,R) + D1 (s, N)a2(5, N)'G1(s, N)
0
+G1(5, N)[Ci(s,R) + Di(s,N)2(s, R)] + [Ca(5, V) + Dr(5, N)a(s, W)’
‘Gi(s, N)[Ca(s, R) + Dy(s, N2 (5, N)] + Z x;jG1(s, DIx(S)
j=1

+0(¢) Hi(s, N) x(1) + x(t) Hi (s, R)o ()
+0(s) Ex(6,N)'G1(5, N)Ex (s, R)o(s)dglmy = N}

Electronic Research Archive Volume 33, Issue 4, 2525-2542.



2530

T
= E[x,G1(0,N)xo] + E ﬁ [(s) = Ti(s, w)x($)' Mi(s, w)lo(s) = T'i(s, @w)x(s)]ds

T
+E{f {x(6){G1(s,R) + [C1(s,N) + D1 (s, N)2(5, N)'G 1 (5, N)
0
+G1(§’ N)[Cl(g’ N) + Dl(g’ N)FZ(g’ N)] + [CZ(g’ N) + DZ(g’ N)FZ(g’ N)]/
‘G1(6, N)[Ca(s,R) + Dy(s, N)2(5, N)] = A5, R)'A(s, N) — Ta(5, R)'Ta (s, K)

+ Z ¢x,G1(s, ) = Hi(s, XYM, (5, ) Hi (5, XY )x(6)}dslmy = N

=

T
=E fo [0(¢) = T'i (s, ) X()) M (s, w0 (s) - T'i(s, @o)x($)lds

+ ) m®)xiG1(0,R)x
N=1

> Ji(x0, @0, 7" (), 0 () = D mo(R)x)G1(0, M), (3.5)
N=1
where 0*(¢) = I'i(s, wo)x(s) = —Mi(s, @) Hi(s, ) x(s), mo(R) = Gi(wy = N), N € D. This means
the Nash equilibrium strategies inequality (2.4) of Definition 2.1 is valid.

In order to illustrate the other Nash equilibrium strategies inequality (2.5), put 0(¢) = I'i (¢, @) x(5)
into system (2.1), and we can obtain

dx(s) = {[Ci(s, @) + Ei (s, mI'1(5, @)]x(s) + Di(5, m)n(s)}ds
HICo(s, @¢) + Ex(s, @)l (s, @ )]x(s) + Das, @ )n()dw(s),

(s = [;}g | Bemy B =1, "
Then, with such restrictive conditions attached to (2.5), we can compute
o0, 0,1, ()
= 5[ (6 1A, A, 1) - BT(5, 5 Ty, )
+n(g)’n(§)}d§|wO = N}. (3.7)

To move forward a single step, a combination of Lemma 2.1 and system (3.6) causes
Jo(x0, @o, (), 07 (+))
[ X6 TAG, @ Als, ) BT (6, ) T 5, ) ()
+n(g)’n(§) + d(x() Ga(s, we)x(s)dslmy = B} + E[xG2(0, N)xo]
= E{ fo T{X(g)’[Gz(g, @) + [Ci(s, @) + Ei(s, mIT1(s, @) Gals, @)

+Go(s, TICi(s, @) + Ei(5, mIL1(5, mo)] + AlS, wo) A(s, @)
—BTi(s, T Ti(s, @) + [Cals, @) + Ea(s, @AL' (s, @) Gals, @)
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1Cas, @) + Ex(§, T (5, @e)] + Z 0, jG2(8, NIX(S)

j=1
+x(¢) Ha(s, we)n(s) + n(s) Ha(s, @) x(5) + () Ma(s, we)n(s)}dslmy = N}
+E[x6G2(0, N)xo]. (3.8)

Via Eq (3.3), it can be received from completing the square that
J2(x0, @0, 1(+), 07 (+))

T
=E fo [(17(s) = I'a(s, @) x()]' M (s, @) [n(s) — I'a(s, wo)x(s)lds

+ Z ﬂo(N)X{)GQ(O, N)XO

N=1

> 20, @0, 7', 07 ()) = ) 1o(R)xGa(0, N, (3.9)
N=1
where n°(¢) = I'z (s, @) x(s) = —Ma(s, wg)THz(g, @) x(¢). So far, there exist Nash equilibrium strate-
gies (°(-), o*(+)) for system (2.1).
Necessity: For Nash game problems (2.4) and (2.5), make use of the definition of (2.4). We discover
that 0*(¢) = I'1 (g, @w¢)x(s) solves the following LQ optimal control problem:
) . T
min _ {J(x0, @0, 7" (-), () = E{ [ [@?llo (&I = ()P Idslmo = N},
o(-)elP([0.T]:R)
subject to (3.4).

(3.10)

In fact, it is an indefinite problem on account of

Jl (-XO, wy, 77*(), O-())

T
= E{ fo {(X() [-A(s, @) Als, @) — Io(s, W) Ta(s, @g)1x(s)
+ a’a(¢) o(s)ldslmy = ).

Of course, the above problem is well-posed, as it should be. Subsequent work will state that the well-
posed indefinite LQ optimal control problem (3.10) leads to the following CGDREs:

G1(5.8) +[Ci(5.8) + Di(6, M. )G (5. 8) + G (5. N Ci(5. 8)
+D1(5, R)Ta(s, M) + [Ca(s, B) + D (s, N)a(s, )G (5, R)
[Ca(s, R) + Da(s, N)Ta(s, R)] = A5, NY'A(6, N) = Ta(s, R) Tals, N
+ 2 niGi(s, ) = Hi(s, MM (5, 8) Hi (6, 8)' = 0,

—_— J= —_— —_— —_—

Mi(s,N)M (s, 8) Hi(5,N) - Hi(s,8) =0,

G|(T,X)=0, Mi(s,8) >0, (¢,8) € [0, T] x D,

(3.11)

admit a solution 51 (5, N) fo~r (c,N) € [0,T] x D, where ]\71 (5, N), ﬁl (s, N),Fl (¢, N) can be obtained
by replacing G(g, N) with G(g, N) in M,(s,N), H(s,N), (s, N). In this connection, define the value
function as

V(x(¢),s,we) = min  Ji(xo, @o, 7 (1), 0°()). (3.12)
(e[0T 1R
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Since the problem (3.10) is well-posed, similar to [36], by a simple adaptation, (3.12) has the form
V(x(),6,8) = x(s)G (s, N)x(s),N € D, (3.13)

where G;(¢,N) is a symmetric matrix. Further, for N € D, applying the dynamic programming method
and considering (3.13), we can yield that

X(g)’[51 (6,R) + G (s, R)(C1 (s, N) + Di(s, NI (5, R))
(Ci(5,N) + Dy (s, M)y (s, N))’Gi (5, N)
+(Ca(s, R) + Dy(s, N)2(6,8)'G1(5, N)(Ca(5, N) + Dr(5, M) (s, N))

—A(, YA, N) = Tao(s, R)Ta(s, 8) + > ;G (s, )x(s)
=1

+rrr(1§ig){X(§)’[l"1(§, R)*M (5. M)T1(s, R) + 2H, (5. N)T1 (5. N)]x(s)} = 0. (3.14)
18§
To minimize the above equation, the following condition is required:

9 — _
m{rl(g’ RIM, (6, RIT1 (6 N) + 2H1 (6, M1 (S R p0F ) = 05 (3.15)

and (3.15) is equivalent to
Mi(s,N)T1(s, ¥) + Hi(6,N)" = 0. (3.16)
At present, let T} = M 16,N), T, =1,,,T3 = —ﬁl (¢,N)’, and via Lemma 2, we can gain
Mi(s,N)Mi(6,8) Hi(6,R) = Hi(5, R
and
Ti(6,8) = =Mi(s, 8) Hy (s, NY (3.17)

with F = 0. Plugging (3.17) into (3.14) can be calculated. The Eq (3.11) has solution 51(g, N),
(¢,N) € [0,T] x D. Besides, we can generalize Lemma 3 in [38] to the infinite Markov jump case,
which is processed in a similar manner. What follows is M 1(¢,8) > 0. So far, we can get that the
CGDREs (3.11) admit a solution 51(5', N) for (¢,N) € [0,T] x D: then it can be obtained that the
solution of the indefinite LQ optimal control problem (3.10) is 0™(¢) = —M,(s,N) H (g, N) x(¢) with
I'i(6,N) = -M;(s,N) Hi (s, NY'.

The same can be seen with inequality (2.5) by Definition 2.1, and 1°(¢) = I'z(s, @ )x(s) is the
solution of the following indefinite LQ optimal control problem:

n(-)el([0.TT:R™)
sub ject to (3.6).

{ min {200, @0, 1), () = ELf) )1 = Bl Idstar = N, a1s)
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There is an analogous method for proving the following CGDREs

~Ga(6.N) = [C1(6.8) + Ei(6. N)1(6. M) Ga(s, N) + Gal. N)[Ca (5. )
+E] (g7 x)r] (g, N)] + [CZ(g7 N) + EZ(g’ z~<)1—‘1 (g’ N)]’GZ(S" N)
[Ca(6,R) + Ex(6, M)T1 (5, N)] + A6, RY A6, ®)

BTiENTIEN) + T #x,Ga(s. J) (3.19)
=

(s, N)My(s, N) Ha(s, NY,
M (s, R)Ma(s, ) Ha(6, ) — Ha(6, R) = 0,
GZ(Ta N) = O» MZ(ga N) > Oa (Ga N) € [Oa T] X 1)9

has solution 52(5', N), (¢, N) € [0, T]xD, where Mz(g, N), ﬁz(g, N), Fz(g, N) can be gained by replacing
G, (s, N) with 52(5', N) in M5 (s, N), Hy(s, N),2(s, N), and the solution of indefinite LQ optimal problem
(3.18) is °(¢) = =M (s, N) Ha(g, R x(¢) with Tx(¢, ) = —Ma (g, X) Ha(s, N)'. To sum up, a mixture
of (3.11) and (3.19) decides G;(s, 8) = G1(s, N), Ga(s, ) = Ga(s, N). That shows the CGDREs admit
solutions (G1(s, N8), G12(¢, N)) for (¢, 8) € [0, T] X D. This ends the proof. O

Remark 3.1. Based on Theorem 3.1, one can glean that the key to obtaining Nash equilibrium strate-
gies for system (2.1) is solving the CGDRESs (3.2) and (3.3). Since the CGDRE:s here are a countably
infinite set of equations, compared with [32] and the discrete-time case of [23, 31], it is harder and
more complex to solve. Actually, a discretization method is presented in [33], which can apply to
calculate (3.2) and (3.3).

Remark 3.2. Indeed, the solvability of (3.2) and (3.3) is very crucial. However, it is worth noting that
even for LQ problems with no Markov jumps, the related Riccati equations remain unsolved, and their
solvability can only be guaranteed under certain specific conditions, for example, LQ optimal control
in [34], LQ zero-sum game in [35], and LQ non-zero-sum game in [30]. The main difficulty lies in that
the Riccati equations are highly coupled. In future research, we will focus on the discussion about the
existence of solutions to the Riccati equations.

4. A unified control design for H,, H., and H,/H.,

From the previous studies, the existence of Nash equilibrium strategies for system (2.1) has been
discussed. This section will focus on a unified treatment for the three control problems with the differ-
ent values of @ and 8 or regarding o(g) as an exogenous disturbance.

4.1. H, control

Let @ — oo, =01n (2.2) and (2.3) we can obtain the following LQ optimal control problem

T
min  {J>(xo, @o,, (")) = E[f I12(o)lPdslao = N1}, 4.1)
nOEL(0.TTR ™) 0
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subject to

dx(s) = [Ci(s, @)x(s) + Di(s, w)n(s)ds + [Ca(s, @) x(S) + Da(s, w)n(s)ldw(s),

A, @)x(s) , _
z2(s) = [ Blc. wg)n(g)] , B(s, @) B(s, @) = I, 4.2)

xX0)=x€eR, w0 =wyeD, ¢e[0,T].

The weighting matrices of state and control in the cost function (4.1) of the above LQ optimal control
problem are A(¢, @w,)'A(s, @) and I, , respectively. Moreover, it can be computed by Theorem 3.1 that
Mi(s,8)" — 0,H (5, 8) = 0,T1(s,R) = 0, Ha(s,R) = Ga(s, N)Di(s, ) + Ca(s, XY Ga(s, R)Da(s, N),
and G, (¢, N) is the solution of the following CGDREs

Ga(s,R) + Ci(5,R) Ga(s, N) + Go(, R)Ci (5, R) + A5, NYA(s, N)
+C2(g’ N)’GZ(g’ N)CZ(g, N) + ‘Zl ¢NjG2(g7 ]) - [GZ(g’ N)Dl (g’ N)
j=

+Ca(s, R) Ga(s, R)Da(s, N[, + Da(s, R) Ga(s, R)Da(s, N)]™! (4.3)
[Ga(s, R)Di (s, N) + Ca(s, R) Ga(s, R) D1 (5, N)] = 0,
GZ(T’ N) = 0’

I, + D2(,N)' G1(g,N)Da(5,N) > 0, (¢,8) € [0,T] X D.
Via Theorem 3.1, we can further obtain that optimal control is 7°(¢) = I'2(¢, w)x(s) with

T5(s,8) = =[1,, + Da(s, ) Ga(s, N)Da(s, N)]™!
1G5, N)Di (5, R) + Ca(s, ) Ga(s, N)Da(s, NI

for @, = N, and the optimal value function is

min  Jo(xo, @o, 1(+)) = Ja(xp, @0, 177 () = Z mo(R)x,G2(0, R)xo. 4.4)
NOEL0.TIR™) £

Remark 4.1. Significantly different from (3.3), the positive definiteness of M,(s,N) can be guaranteed;
in other words, M»(¢,N)" = M»(¢,N)™'. In reality, the main reason is that, taking advantage of (4.4),
it can easily prove G,(¢,N8) > 0 for (¢,8) € [0, T] X D.

4.2. H, control
Set @ = fin (2.2) and (2.3), then it is clear that
Jl (.X(), Wy, n()a 0-()) + JZ(XO’ wo, T](), O-()) = 0
Furthermore, the Eq (3.3) is expressed in terms of the following form:

—G2(5,N) = [C1(s,N) + Ei(6, N)1(5, N) + Di(5, N)(s, N)]'Ga(s, N)
+Ga(s, N)[Ci(s,R) + Ei(s, N)[1(5, N) + Di(g, N)(g, N)]
+A(5, N) A6, N) — &’T'1 (5, R) Ty (5, N)
+[Ca(s, R) + Ex(s, N)L1(5, R) + Da(s, X)(s, )]
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'GZ(ga N)[CZ(g’ N) + EQ(g’ N)Fl (ga N)

+D5(¢, M) (s, N)] + Z PGS, J) + Ta(s, B)To(s, N), (4.5)

J=1

and it is equivalent to

—G(5,N) = [C1(5, N) + Di (s, N)2(s, M)]'Ga(s, V) + Ga(5, N)[Ci (5, N)
+D (5, N)2(s, N)] + A(s, R)'A(s, R)
+[Ca(5, R) + Dy(5, N)a(s, R)]'Ga(s, B[ Ca(s, N) + Da(s, N)a(s, V)]
+I1(5, N) [-a’L,, + Ex(, 8) Ga(s, B)Ex(s, N1 (5, N)
+11(6, R)'[E1(5, N) Ga(s, B) + Ea(s, R) Ga(s, N)(Ca(s, N)
+D1 (s, R)2(s, N))] + [Ga(s, NE (s, R)
+(Ca(s, R) + Da(s, N)a(s, R))' Ga(s, R)Ea(5, )T (5, N)

£ ¢3Gals. ) + Tals. R) (6. N). (4.6)

J=1

At present, we plug G»(¢s, N) = -G, (s, N) into (4.6), and have
G1(5,8) = —[Ci(s, W) + Dy (s, )25, )G (6, 8) = G1 (s, N)[Ci(s, N)

+D(5, N)(s, W) + A6, R)' A6, N) — Z #xiGi(s, J)
=)
+I5(6, 8)Ta(6, N) = [Ca(s, R) + Dy(5, X)2(5, N)'G (5, N)
[Ca(5, W) + Dy(s, X)2(s, )] = T'1(5, N) M (5, N1 (s, N)
-T'(¢,N)Hi(,N) = Hi(5,¥)I1(5, N). 4.7)

Taking notice of I';(g,N) = =M (s, N) H (g, R)’, which makes (4.7) the same as (3.2). On the other
hand, it should be noted that on the grounds of the definition of H,, control, ||L7|| < 7y is the premise
[33]. Hence, under the condition of ||L7|| < 7, following the line of Lemma 8.1.2 in [39], it can be
deduced that M;(g,NX) > 0. Keep in mind that M,(¢,N) > 0 leads to M,(s,N)" = M;(s,N)"!. At
this point, taking advantage of Theorem 3.1, we can obtain that the H,, optimal controller is 17(¢) =
I, (s, 8)x(s), and o*(¢) is the corresponding worst-case disturbance, where G(g, X) is the solution of
(4.7) and satisfies the following CGDREs:

~G(5,R) = [C1(s, ) + D1 (5, M), (5, M)]'G(s, N) + G(5,N)[C1 (s, N)
+D (5, N, (5, R)] + [Ca(5, N) + Dy(5, M), (5, N)'Gi (s, N)
[Ca(s, 8) + Dyy(s, N, (5, N)] — A, R)'A(s, N)

—L,(¢. N)T, (6. N) + Zl Px,G(s, J)
fa

~Hi(s, M (s, R) ' Hi(s, N,
G(T,N8) =0, Mi(¢c,8)>0,(5,8) €[0,T]xD,

(4.8)

where

Mi(s,R) = a’I,, + Ex(s,N) G(s, R)Ex(s, N),
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My(¢,8) = 1, — Da(s,N)'G(s, R)Dx(s, N),
Hi(s,R) = G(s,N)E1(5, R) + [Ca(s, N) + Da(s, N)L, (6, X)]'G(5, N)Ea(s, W),
Ho(s,N) = =G(5,N)D1(s, N) — [Ca(s, N) + Ea(s, N)L (6, X)]'G(5, B)Dy (s, N),
L(6,N) = = Mi(6, ) Hi(, N,
L,(6, R) = —Ma(s, R) ™' Ha(s, NY'.
Remark 4.2. Through the above analysis, to ensure the existence of an H., optimal controller, the

premise is M(g,8) > 0. Besides, the solution to the CGDREs (4.8) is G,(g,N) < 0, the reason for
Gi(¢,N)<0is

Do, @0, (), 0" () = D w561 (0, R)x
N=1

T
< Ji(x0, @0, 1 (-), 0) = E{f [-lIz($)IPldslmo = N} < 0.
0

4.3. H,/H,, control

If we set 8 = 01n (2.2) and (2.3), then we have the following new cost functionals:
T
J1(x0, @o, 1(-), °(+)) = E{f [l (I = lz(s)IP1dsly = N}, (4.9)
0

T
St o). ) = EL [ e)lPdsler = M) (4.10)
0
In light of the definition of H,/H,, control in [33], it can be concluded that

J1(x0, @0, 1" (), () < J1(x0, @0, (), 0(+)),
Jo(x0, @0, " (), 07 (+)) < Ja(x0, @0, n(+), ().

Consequently, it can be deduced from M, (g, X) > 0 and Theorem 3.1 that the following CGDREs

~G1(5,N) = [C1(s. R) + Dy (5, N)a(s5, M)'G (s, ) + G1 (5, N)[C1 (5. X)
+Dl(g’ N)FZ(g’ x)] + [CZ(g’ N) + DZ(g’ N)FZ(g? x)]’Gl(g’ N)
[Ca(s, N) + Da(s, N)Ia(s, N)] — A(s, R)'A(g, N)
—Ta(6, R)Ta(s, N) + '21 Px,;G1(s, )
j=
~H(s,N)M (s, 8) ' Hi(c,NY,
G(T,N) =0, Mi(¢,8) >0, (¢c,8) € [0, T] x D,
(6, N) = =M;(s,N) " H (s, N, (4.12)
—Gy(5,N) = [C1(5,N) + Ei(, N1 (5, X)) Ga (5, N) + Ga(s, N)[C1 (s, N)
+E1 (g’ N)Fl (g’ N)] + [CZ(g? N) + EQ(g’ N)I_‘l (g’ N)]/GZ(g7 N)
126 ) + Ex(6. NI (5. 8)] + A6, RV A5, ¥) Wi
+ 'Zl ¢NjG2(g7 ]) - HZ(ga x)M2(ga x)_lHZ(g’ N),’
j=

GZ(T9 N) = Oa MZ(g’ N) > 0’ (g9 x) € [09 T] X D,

(4.11)
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a(s, ) = =My (s, 8) "' Ha(6, N). (4.14)

admit solutions G(¢,N) < 0, Go(¢,NX) > 0 for (¢,N) € [0,T] x D. As a matter of fact, as we
described in Remark 4.1 and Remark 4.2, we have G(¢,N) < 0, G»(¢,X) > 0. In the meantime,
n*(s) = (s, N)x(s), () = T'1(s, N)x(s) is the H,/H,, optimal controller.

Remark 4.3. It is important to note that the CGDREs (4.11)—(4.14) are the same as (5.2)—(5.5) in
Theorem 5.1 of [33]. By contrast, the two group equations between Theorem 3.1 and Theorem 5.1
are not equivalent, which indicates that although we deal with the H,/H., control by making use of
Theorem 3.1 for system (2.1), the equivalence between Nash equilibrium points and H,/H, control is
not valid. This is fundamentally different from the discussion in [40].

Remark 4.4. The main reason for the inequivalence between Nash equilibrium points and H,/H,
control is that the conditions of M,(¢,N) > 0 in (4.11) and M»(g,N) > 0 in (4.13) are not satisfied for
Nash equilibrium points. In fact, it is important to notice that the root cause is whether the diffusion
term contains disturbance.

5. Numerical example

This part concentrates on a numerical example, which states the validity of the proposed method.

Example 5.1. Consider the linear SDEs with time-varying coefficients and infinite Markov jumps (2.1)

with
¢=0:
Ci(0,N) = N1 Di(0,8) =1, E{(0O,8) =1,
C(0,8) =1, Dy (0,N) =1, E»0,8) =1, AO,N) = \/% B(0,N) = 1;
¢=1:
2
Ci(1,8) = T_RT D Di(1,N) = e Ei(1,8) =1, B(1,N) =1,
1 1 1
CZ(I’N) - _ma DZ(l’N) - 1’ EZ(I’N) - 57 A(l’x) - ma
c=2:
C1(2, N) = 7(?(—-{-1)’ D1(2, N) = —1, E1(2, N) = —m, B(Z, 8) = 1,
N 1 1
C>(2,8) = N D>(2,R) = Nl E>(2,R) = ANT IR AQ2,R) = 1.

Set T = 2; it should be noted that a homogeneous Poisson process can be regarded as an infinite
Markov process. Thus let {w }ceio,r) be a homogeneous Poisson process with parameter > 0, and
the infinitesimal matrix of {@¢)ceor) 15 © = (@x))s jen With —Pxx = dxxe1 = Y and ¢x; = 0, N € D,
JED/NR,N+1}.

Observe that the discretization method and backward recursive algorithm are the key to solving
corresponding CGDRE:s as described in Remark 3.1. In view of the discussion in the previous section,
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first of all, it turns the LQ optimal controller designing into solving Eq (4.3). Further, we can compute
the following approximate solutions:

4 8
+ >0,

TR +1) TN +2)?

TN+ 1) +48 + 12

TN +1)24+28+6°
The LQ optimal control and optimal value function can be immediately obtained by (4.4). And then,
let @ = 1; the H,, optimal controller design problem is translated to the solvability of Eq (4.8). Addi-
tionally, the following approximate solutions can be given:

15 10 76
CON =~ 98+ T oomen =
—6(NX + 1)°G(0,R) + 2G(0, X)?
R+ D1 = G(0,8) + G(0,8)?) + G(0,N) — G(0,N)?"
We can get the H,, optimal control quickly. And finally, when 8 = 0, the finite horizon H,/H, optimal
control can be transformed into the existence of the solution to the CGDREs (4.11)—(4.14). Go a step
further; we can figure out the approximate solutions below:

G,(0,N) =1+

I,(0,N) =

L,0,N) =

15 10 76
O.N) = —— — <0,
GOSN =~ T T IR+ D
809 25 697

N) = — — >
G20, %) = 156 [196(N+1) 784(N + 1)2 20,

N+ 1)?

L0 = - o 6 o 2O ON)
(N + D?*(G1(0,R)* = 2G1(0, R)G»(0, R)) — 2G1(0, 8)>°G»(0, X)
(N + 1)2(1 + G2(0,8) — G1(0,8)G»(0,N)) + G1(0,R8) + G1(0,8)G»(0,R8)’
(0, 8) = —2(N + D*(G(0,R) — 2G»(0,R)) — 2G (0, R)G,(0, N)

(R + 12(1 + G2(0,8) — G1(0,8)G»(0,8)) + G1(0,8) + G1(0,8)G>(0,8)

The corresponding finite-horizon H,/H., optimal controller can be derived naturally.
6. Conclusions

In this note, we studied the non-zero-sum Nash differential games for SDEs involving time-varying
coeflicients and infinite Markov jumps. By means of a pseudo-inverse matrix, necessary and sufficient
condition for the existence of Nash equilibrium strategies is given by the solvability of CGDREs. As an
application, by the Nash game approach, we present a unified treatment for H,, H.,, and H,/H,, control
with some corresponding parameters. At last, the theoretical results are used to solve a numerical
example. There are several interesting problems that deserve further investigation, in particular, how
to generalize our result to the infinite horizon Nash game problem.
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