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Abstract: In this paper, a multi-time scale stochastic eco-epidemic model where the prey population
was infected with disease was proposed. The stochastic factors in the ecological environment and
the fact that the growth and loss rates of predators were much smaller than those of prey were
considered. First, the dynamical behavior of the deterministic model was analyzed, including the
existence and the stability of the equilibrium points and the bifurcation phenomena. Second, the
existence and uniqueness of global positive solutions and the ergodic property of stochastic model
were discussed. Meanwhile, the solution trajectory which was perturbed was also analyzed by using
random center-manifold and random averaging method. Finally, the stochastic P-bifurcation is shown
by applying singular boundary theory and invariant measure theory. Numerical simulation also verified
the correctness of the theoretical analysis.

Keywords: prey-predator model; Lyapunov function; multi-time scale; geometric singular
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1. Introduction

The interaction between prey and predator has become one of the main relationships in ecology
due to its universality and importance. Meanwhile, disease is one of the most common influencing
factors on prey-predator systems in the natural environment. The study of disease dynamics in an
ecological system is an important issue from both mathematical and ecological point of view, as
spread of infectious diseases becomes an important factor to regulate animal population sizes. Many
researchers have proposed and studied different predator–prey models in the presence of disease.
Gupta and Dubey discussed bifurcation and chaos in a delayed eco-epidemic model [1]; dynamic
behavior of an eco-epidemic model with two delays was analyzed by Jana et al. [2]; Debasis
Mukherjee discussed the Hopf oscillation phenomenon of an eco-epidemic model [3].

Meanwhile, as is well-known, the fluctuation in environmental changes is an important component
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of an ecosystem in natural ecological environments. Due to the stochastic perturbation in the real
world, the dynamic behavior described by deterministic models cannot accurately predict the true
future behavior of the system. Thus, considering the stochastic models with noise is reasonable.
Related work could be found in Mukherjee [4]; Khare et al. [5]; and Zhang and Wu [6, 7]. These
indicate that many scholars have begun to pay attention to the impact of stochastic factors on
ecological populations and have made many academic achievements.

On the other hand, another practical issue in the ecological environment is that the growth rate of
prey is generally much faster than that of predator in most systems. Therefore, in most applications,
the dynamics of different variables in simple differential equation systems are scaled hierarchically.
Based on the stochastic system, many authors have considered system research and management at
different timescales. Wang and Roberts discussed the dynamics of a slow-fast stochastic system by
using random slow manifold reduction [8]. Stochastic P-bifurcation and the asymptotic behaviors of a
stochastic model of Alzheimer’s disease, which has two timescales, were analyzed by Zhang and
Wang [9].

Random slow manifolds are geometrical invariant structures of multi-scale stochastic dynamical
systems. It has been shown that the deterministic slow manifold has dramatic effect on the overall
dynamical behavior. In [10], the authors discover that the bifurcation structure of the deterministic
slow manifold creates a reaction channel for non-equilibrium transitions, leading to vastly increased
transition rates. The random slow manifold also has a profound impact on the stochastic bifurcation
for the stochastic dynamical system. It is beneficial to take advantage of random slow manifolds in
order to examine dynamical behaviors of multi-scale stochastic systems, either through the slow
manifolds themselves or by the reduced systems on these slow manifolds [11]. For multidimensional
stochastic slow-fast systems, the reduction on random slow manifolds brings great convenience to the
analysis of dynamic behavior.

Based on the above discussion, this paper is to discuss a stochastic mathematical model which has
two timescales with disease infection in the prey population. As far as we know, the study of the
epidemic model considering stochastic noise and multi-time scale is not extensive, especially the
further study of the stochastic system. In our work, the further reduction analysis of multi-time scale
stochastic system using random slow manifold can analyze its dynamic behavior, such as stochastic
bifurcations, while maintaining accuracy. This makes the analysis of the system closer to reality, more
biologically significant and more comprehensive. The P-bifurcation analysis after dimension
reduction also provides a more specific and further discussion on the dynamic behavior on the
dynamical behavior of the ecosystem affected by stochastic noise.

The rest of paper is divided as follows: In Section 2, a stochastic eco-epidemiological system with
multi-time scale is presented. The stability and bifurcation of the equilibrium points of the model
without noise are discussed in Section 3. In Section 4, the existence, boundedness, and ergodic
property of solutions are analyzed on the stochastic model. In addition, the singular perturbation
problem with random center-manifold method and the stochastic P-bifurcation are considered in
Section 5. Finally, in Section 6, we end the paper with some concluding remarks.

2. Model formulation

Zhang et al. [12] proposed a prey-diseased predator model with stochastic disturbances:
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
Ṡ (t) = rS (t)(1 − S (t)

K ) − βS (t)I(t) + σ1S (t)dB1(t),
İ(t) = βS (t)I(t) − d1I(t) − cI(t)P(t) + σ2I(t)dB2(t),
Ṗ(t) = P(t) (kcI(t) − d2) + σ3P(t)dB3(t),

where S (t), I(t), and P(t) represent the number of the susceptible prey, infective prey, and predator at
time t, respectively. r denotes the increase rate, K is the environmental capacity, β denotes the disease
transmission coefficient, and d1 represents the disease related mortality rate of I(t). k is the conversion
efficiency of predator, while d2, c represent the natural mortality rate and the attack rate on infected
prey of P(t), respectively. Bi(t) > 0 (i = 1, 2, 3) represents the standard Brownian motion with an
intensity of i, and σi > 0 (i = 1, 2, 3) represents the intensities of environmental white noise. Bi(t) > 0
(i = 1, 2, 3) are independent of each other.

In this paper, the different timescales are applied to the model due to multiple timescales revealing
that the rate of reproduction and death of prey is often much faster than that of predators in actual
situations. We take into account the timescale ε, which is selected as the ratio of the product of the
predator’s predation rate and predation conversion rate to the intrinsic growth rate of prey. Rescale the
variables as

ε =
kc
r
, q =

β

r
, h =

d2

kc
, α =

d1

r
, δ =

a
r

and assume

t̃ = rt, P̃ =
cP
r
,

still using t to represent t̃ and P to represent P̃.
Moreover, considering that the susceptible prey and the infected prey are often subjected to the same

interference as the same biological population in the same environment, the following dimensionless
system can be obtained: 

Ṡ = S (1 − S
K ) − qS I + σ1S dB1(t),

İ = qS I − IP − αI − δI2 + σ1IdB1(t),
Ṗ = εP(I − h) + σ2

√
εPdB2(t),

(2.1)

where ε describes the timescale separation and 0 < ε ≪ 1. a represents the interspecific competition
coefficient of I(t). Bi(t) > 0 (i = 1, 2) represents the standard Brownian motion with an intensity of i
while B1(t) and B2(t) are independent of each other. σi > 0 (i = 1, 2) represents the intensities of
environmental white noise. This model is applicable to infectious diseases that spread only in the prey
population and have a high mortality rate while having no effect on predators, for example, mouse
hepatitis virus and rabbit hemorrhagic disease virus.

3. Equilibrium analysis of model without noise

When σ1 = σ2 = 0, the corresponding deterministic model of system (2.1) is
Ṡ = S (1 − S

K ) − qS I,

İ = qS I − IP − αI − δI2,

Ṗ = εP(I − h).

(3.1)
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In this section, the dynamics of the deterministic situation is mainly focused.
By calculating, there are four equilibrium points for system (3.1): E1(0, 0, 0), E2(K, 0, 0),

E3( K(δ+qα)
q2K+δ ,

qK−α
q2K+δ , 0), and E4(S ∗, I∗, P∗), where S ∗ = K(1 − qh), I∗ = h, P∗ = qK(1 − qh) − α − δh.

It is easy to see that the Jacobian matrix of (3.1) is given as

J =


1 − 2S

K − qI −qS 0
qI qS − P − α − 2δI −I
0 εP ε(I − h)

 .
For E1(0, 0, 0), the corresponding Jacobian matrix is

J(E1) =


1 0 0
0 −α 0
0 0 −εh

 .
Obviously, the eigenvalues of J(E1) are λ1 = 1 > 0, λ2 = −α < 0, λ3 = −εh < 0. Therefore, E1 is a
saddle and always unstable.

Theorem 3.1. For E2,
(a) if q < αK ,E2 is a stable node.
(b) if q > αK , E2 is a saddle.
(c) if q = qTC =

α
K , the system (3.1) undergoes a transcritical bifurcation.

Proof. For E2 (K, 0, 0),

J(E2) =


−1 −qK 0
0 qK − α 0
0 0 −hε

 ,
the eigenvalues of J (E2) are λ1 = −1 < 0, λ2 = −hε < 0, λ3 = qK − α. If q < α

K , λ3 < 0, E2 is stable.
If q > αK , λ3 > 0, E2 is a saddle.

If q = qTC =
α
K , λ3 = 0. Let V and W be two eigenvectors corresponding to the eigenvalue λ3 for

the matrices J (E2) and J (E2)T, respectively. After calculation, we have

V =


V1

V2

V3

 =

−α

1
0

 ,W =

W1

W2

W3

 =

0
1
0

 .
Moreover,

F (S , I, P) =


S (1 − S

K ) − qS I
qS I − IP − αI − δI2

εP(I − h)

 ,
Fq (E2; qTC) =


−S I
S I
0


E2,qTC

=


0
0
0

 ,
Electronic Research Archive Volume 33, Issue 3, 1667–1692.
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DFq (E2; qTC) V =


−I −S 0
I S 0
0 0 0



−α

1
0

 =

−K
K
0

 ,

D2F (E2; qTC) (V,V) =


0

−2(δ + α
2

K )
0

 .
Clearly,V and W satisfy

WTFq (E2; qTC) = 0,
WT(DFq (E2; qTC) V) = K , 0,

WT(D2F (E2; qTC) (V,V)) = −2(δ +
α2

K
) , 0.

By the Sotomayor theorem [13], when q = qTC, the transcritical bifurcation occurs at E2, and the two
equilibrium points E2 and E3 coincide. The proof of Theorem 3.1 is finished.

Theorem 3.2. For E3,
(a) if h > qK−α

q2K+δ , E3 is a stable node.

(b) if h < qK−α
q2K+δ , E3 is a saddle.

(c) if h = hTC =
qK−α
q2K+δ , the system (3.1) undergoes a transcritical bifurcation.

To ensure the existence of E3, qK > α must be satisfied, and h is chosen to be the bifurcation
parameter for ease of calculation. Then, the situation is similar to E2. By calculating, the following
results are obtained:

WTFh (E3; hTC) = 0,
WT(DFh (E3; hTC) V) = ε(q2K + δ) , 0,
WT(D2F (E3; hTC) (V,V)) = −2ε(q2K + δ) , 0.

By the Sotomayor theorem [13], when h = hTC, the transcritical bifurcation occurs at E3, and the two
equilibrium points E3 and E4 coincide.

For E4, its existence conditions are q > αK , h < 1
q , h < qK−α

q2K+δ . The corresponding Jacobian matrix is

J(E4) =


qh − 1 −qK(1 − qh) 0

qh −δh −h
0 ε(qK(1 − qh) − α − δh) 0

 ,
and the characteristic equation is

λ3 + a1λ
2 + a2λ + a3 = 0,

where
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a1 = 1 − qh + δh,

a2 = h(δ − δqh + q2K − q3hK + ε(qK − q2Kh − α − δh)),
a3 = εh(1 − qh)(qK − q2Kh − α − δh),
a1a2 − a3 = h(δh + 1 − qh)(δ(1 − qh) + q2K(1 − qh)) + δhε(−Kq2h + qK − δh − α).

Due to the existence conditions, it is easy to know a1, a2, a3 > 0 and a1a2 − a3 > 0. According to the
Routh-Hurwitz criterion, E4 is asymptotically stable.

4. Analysis of model with noise

4.1. The existence and uniqueness of positive solutions

Considering the nonnegative nature of the ecological population, it is necessary to prove the
existence of unique positive global solution for any positive initial condition of the system (2.1).

Theorem 4.1. For any initial value (S (0), I(0), P(0)) ∈ R3
+, system (2.1) admits a unique global positive

solution (S (t), I(t), P(t)) for all t ≥ 0, and the solution remains in R3
+ with probability one, namely,

P{(S (t), I(t), P(t)) ∈ R3
+, f or all t ≥ 0} = 1.

Proof. Due to the coefficients of the system (2.1) satisfying the local Lipschitz condition, it always has
solution (S (t), I(t), P(t)) ∈ R3

+ at t ∈ [0, τe) for any initial value (S (0), I(0), P(0)) ∈ R3
+, where τe is

the moment of explosion. To prove that it is almost a global solution, it’s simply needed to show that
τe = ∞. Let k0 > 0 be sufficiently large such that each component of (S (0), I(0), P(0)) lies within the
interval [ 1

k0
, k0]. For any integer k > k0, the stopping time is defined:

τk = in f {t ∈ (0, τe) : min{(S (t), I(t), P(t))} ≤
1
k

or max{(S (t), I(t), P(t))} ≥ k},

where in f∅ = ∞, and ∅ generally represents the empty set.
Obviously, τk monotonically increases as k increases. Set τ∞ = lim

k→∞
τk, then τ∞ ≤ τe is valid almost

surely. It is known that if τ∞ = ∞ holds almost surely, then τe = ∞ will hold almost surely and there is
(S (t), I(t), P(t)) ∈ R3

+ for any t ≥ 0. The following proof will use the method of proof by contradiction.
If the statement is not true, there exist a pair of constants T > 0 and ε1 ∈ (0, 1) such that P{τk ≤ T } ≥ ε1

for any integer k ≥ k0.
Define a C2 function V : R3

+ → R+

V(S (t), I(t), P(t)) = S (t) − 1 − lnS (t) + I(t) − 1 − lnI(t) + P(t) − 1 − lnP(t),

from inequality u − 1 − lnu ≥ 0(u > 0), it can be inferred that V(S (t), I(t), P(t)) ≥ 0. Applying the
generalized Itô formula to V , we have
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LV(S , I, P) =(1 −
1
S

)(S (1 −
S
K

) − qS I) + (1 −
1
I

)(qS I − IP − αI − δI2)

+ (1 −
1
P

)(εP(I − h)) + σ2
1 +
εσ2

2

2

≤S +
S
K
+ α + δI + εh + εIP + P + σ2

1 +
εσ2

2

2

≤K + 1 + α + δK + εh + P(εK + 1) + σ2
1 +
εσ2

2

2
. (4.1)

By using inequality x − a − aln x
a ≥ 0 for any positive constant a, and combining formula (4.1) with

positive constant ξ = 2εK + 1 > 0 , we get

L(e−ξtV(S , I, P))
=e−ξt(−ξV(S , I, P) + LV(S , I, P))
≤e−ξt((−ξ(S − 1 − lnS + I − 1 − lnI + P − 1 − lnP) + K + 1

+ α + δK + εh + (εK + 1)P + σ2
1 +
εσ2

2

2
)

=e−ξt((−ξ(S − lnS ) − ξ(I − lnI) − εK(P −
ξ

εK
lnP) + 3ξ

+ K + 1 + α + δK + εh + σ2
1 +
εσ2

2

2
)

≤e−ξt((−2ξ − ξ(1 − ln
ξ

εK
) + 3ξ + K + 1 + α + δK + εh + σ2

1 +
εσ2

2

2
)

≤Ke−ξt, (4.2)

where K = ξ|ln ξ
εK | + K + 1 + α + δK + εh + σ2

1 +
εσ2

2
2 > 0, and further obtain

d(e−ξtV(S , I, P)) ≤Ke−ξt + σ1(S − 1)dB1(t)

+σ1(I − 1)dB1(t) + σ2
√
ε(P − 1)dB2(t). (4.3)

Set

Ṽ(S (t), I(t), P(t)) =
K
ξ
+ V(S (t), I(t), P(t))

and obtain that

dṼ(S (t), I(t), P(t)) ≤ξṼ(S (t), I(t), P(t))dt + σ1(S − 1)dB1(t)

+σ1(I − 1)dB1(t) + σ2
√
ε(P − 1)dB2(t). (4.4)

For any k ≥ k0 and t ∈ [0,T ], integrating the two sides of the inequality (4.4) from 0 to τk ∧ T =
min{τk,T }, we obtain
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Ṽ(S (τk ∧ T ), I(τk ∧ T ), P(τk ∧ T )) ≤Ṽ(S (0), I(0), P(0)) +
∫ τk∧T

0
ξṼ(S (t), I(t), P(t))dt

+ σ1

∫ τk∧T

0
(S − 1)dB1(t) + σ1

∫ τk∧T

0
(I − 1)dB1(t)

+ σ2
√
ε

∫ τk∧T

0
(P − 1)dB2(t)

=Ṽ(S (0), I(0), P(0)) +
∫ τk∧T

0
ξṼ(S (t), I(t), P(t))dt

+ M1(τk ∧ T ) + M2(τk ∧ T ) + M3(τk ∧ T ), (4.5)

where

M1(τk ∧ T ) = σ1

∫ τk∧T

0
(S − 1)dB1(t),

M2(τk ∧ T ) = σ1

∫ τk∧T

0
(I − 1)dB1(t),

M3(τk ∧ T ) = σ2
√
ε

∫ τk∧T

0
(P − 1)dB2(t)

are three local martingales. Then, take expectation of the inequality (4.5) due to the fact that the
solution of the system (2.1) is Ft adaptive, and we have

EṼ(S (τk ∧ T ), I(τk ∧ T ), P(τk ∧ T )) ≤Ṽ(S (0), I(0), P(0))

+ ξ

∫ τk∧T

0
EṼ(S (τk ∧ T ), I(τk ∧ T ), P(τk ∧ T ))dt. (4.6)

Based on the Gronwall inequality, it yields that

EṼ(S (τk ∧ T ), I(τk ∧ T ), P(τk ∧ T )) ≤Ṽ(S (0), I(0), P(0))eξT . (4.7)

Therefore, for any k ≥ k0, we define Ωk = {ω ∈ Ωk : τk = τk(ω) ≤ T }, then we have P(Ωk) ≥ ε1. Note
that for each ω ∈ Ωk, there is at least one in S (τk, ω), I(τk, ω), P(τk, ω) that equals k or 1

k . Consequently,
we have

Ṽ(S (τk ∧ T ), I(τk ∧ T ), P(τk ∧ T )) ≥ min{k − 1 − lnk,
1
k
− 1 + lnk}.

It can be concluded from formula (4.7):

Ṽ(S (0), I(0), P(0))eξT ≥ E(1Ωk(ω)Ṽ(S (τk, ω), I(τk, ω), P(τk, ω)))

≥ ε1 min{k − 1 − lnk,
1
k
− 1 + lnk},

where 1Ωk(ω) is the indicator function of Ωk. It’s clear to have the expression
∞ = Ṽ(S (0), I(0), P(0))eξT < ∞ as k tends to infinity, which shows contradiction. Accordingly, there
exists a unique positive solution for stochastic system (2.1), and the proof is complete.
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4.2. Boundedness

Theorem 4.2. For any initial value (S (0), I(0), P(0)) ∈ R3
+, the solutions U(t) = (S (t), I(t), P(t)) of

model (2.1) are stochastically ultimately bounded.

Proof. To prove the validity of the property, it is to prove that for any 0 < ε1 < 1, there is a positive
constant δ̃ = δ̃(ε1) such that the solution U(t) = (S (t), I(t), P(t)) satisfies

lim
t→∞

supP{|U(t)| > δ̃} < ε1

for any initial value (S (0), I(0), P(0)) ∈ R3
+.

We define a function V :

V(S , I, P) = S θ + Iθ + Pθ,

where (S , I, P) ∈ R3
+ and θ > 1.

Applying the generalized Itô formula to V:

L(etV(S , I, P)) =etLV(S , I, P) + etV(S , I, P)

=et(θS θ−1(S (1 −
S
K

) − qS I) + θIθ−1(qS I − IP − αI − δI2)

+ θPθ−1(εP(I − h)) +
θ(θ − 1)

2
(σ2

1S θ + σ2
1Iθ + σ2

2εP
θ)

+ S θ + Iθ + Pθ)

≤θet(Kθ(1 +
1
θ

) + Kθ(
1
θ
+ Kq − α) + εPθ(K − h +

1
θ

)

(θ − 1)σ2
1Kθ +

(θ − 1)
2
σ2

2εP
θ)

≤K̃et, (4.8)

let K − h + 1
θ
=

(θ−1)
2 σ

2
2; further, there is

L(etV(S , I, P)) ≤θet(Kθ(1 +
1
θ

) + Kθ(
1
θ
+ Kq − α) + (θ − 1)σ2

1Kθ)

≤K̃et, (4.9)

where K̃ is a constant.
Integrating the two sides of the inequality (4.9) from 0 to τk ∧ t and taking expectation, we have

E(eτk∧tV(S (τk ∧ t), I(τk ∧ t), P(τk ∧ t))) ≤ V(S (0), I(0), P(0)) + K̃E
∫ τk∧t

0
esds.

This shows that

EV(S (t), I(t), P(t)) ≤ e−tV(S (0), I(0), P(0)) + K̃.

Meanwhile, it could obtain that
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|U(t)|θ = (S 2(t) + I2(t) + P2(t))
θ
2

≤ 3
θ
2 max{S θ(t), Iθ(t), Pθ(t)}

≤ 3
θ
2 (S θ(t) + Iθ(t) + Pθ(t)).

Thus, we could have

E|U(t)|θ ≤ 3
θ
2 (e−tV(S (0), I(0), P(0)) + K̃),

which implies that

lim
t→∞

sup E|U(t)|θ ≤ 3
θ
2 K̃ < ∞.

Obviously, a positive constant π1 could be found such that

lim
t→∞

sup E|U(t)| < π1.

Applying Markov’s inequality and taking δ = π1
ε1

, for any 0 < ε1 < 1, we have

P{|U(t) > δ} ≤
E|U(t)|
δ
.

Hence, the following inequality holds:

lim
t→∞

supP{|U(t) > δ} ≤
π1

δ
= ε1,

and the proof is complete.

4.3. Ergodic property of positive recurrence

When considering eco-epidemic models, when the disease will persist is always of interest. In this
section, based on the theory of Has’minskki [14], an ergodic stationary distribution which reveals that
the disease will persist is proved. Here is some theory about the stationary distribution.

Lemma 4.1. ( [14]) The Markov process X(t) has a unique ergodic stationary distribution µ(·) if there
exists a bounded domain D ⊂ El with regular boundary Γ and
A1: there is a positive number M such that

∑l
i, j=1 ai j(x)ξiξ j ≥ M|ξ|2, x ∈ D, ξ ∈ Rl.

A2: there exists a nonnegative C2-function V such that LV is negative for any El\D. Then,

Pχ{ lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
El

f (x)µ(dx)} = 1

for all x ∈ El, where f (·) is a function integrable with respect to the measure µ.

Theorem 4.3. Assume that Rs
0 =

1
α+σ2

1+εh+
ε
2σ

2
2
> 1, then system (2.1) has a unique stationary distribution

µ(·) and it has the ergodic property.
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Proof. In view of Theorem 4.1, it has been known that for any initial value (S (0), I(0), P(0)) ∈ R3
+,

there exists a unique global solution (S (t), I(t), P(t)) ∈ R3
+. In what follows, for the simplification, we

denote S (t), I(t), and P(t) as S , I, P, respectively.
The diffusion matrix of system (2.1) is given by

A =


σ2

1S 2 0 0
0 σ2

1I2 0
0 0 εσ2

2P2

 .
Choose M = min

(S ,I,P)∈Dk⊂R3
+

{σ2
1S 2, σ2

1I2, εσ2
2P2}, and we have

3∑
i, j=1

ai j(S , I,P)ξiξ j = σ
2
1S 2ξ2

1 + σ
2
1I2ξ2

2 + εσ
2
2P2ξ2

3 ≥ M|ξ|2,

(S , I, P) ∈ Dk, ξ = (ξ1, ξ2, ξ3) ∈ R3,

where Dk = ( 1
k , k) × ( 1

k , k) × (1
k , k), then the condition A1 in Lemma 4.1 holds.

Next, we focus on the condition A2, and define

V1(S , I, P) = −lnS − lnI − lnP +
q + δ
α

(S + I) +
P
εh
,

V2(S , I, P) = −lnP,

V3(S , I, P) =
1

m + 2
(S + I +

P
ε

)m+2,

where m is a sufficiently small constant satisfying 0 < m < min{ α
σ2

1
− 1, h

σ2
2ε
− 1}.

By calculating, we have

LV1 = −1 +
S
K
+ qI − qS + P + α + δI − ε(I − h) + σ2

1 +
ε

2
σ2

2

+
q + δ
α

(S −
S 2

K
− IP − αI − δI2) + P(

I
h
− 1)

≤ −(α + σ2
1 + εh +

ε

2
σ2

2)(
1

α + σ2
1 + εh +

ε
2σ

2
2

− 1) +
α + (q + δ)K
αK

S +
PI
h

= −λ +
α + (q + δ)K
αK

S +
PI
h
, (4.10)

where

λ = (α + σ2
1 + εh +

ε

2
σ2

2)(
1

α + σ2
1 + εh +

ε
2σ

2
2

− 1) > 0.

Similarly, it can be obtained that

Electronic Research Archive Volume 33, Issue 3, 1667–1692.



1678

LV2 = − ε(I − h) +
ε

2
σ2

2, (4.11)

LV3 =(S + I +
P
ε

)m+1(S −
S 2

K
− αI − δI2 − Ph) +

σ2
1

2
S 2(m + 1)(S + I +

P
ε

)m

+
σ2

1

2
I2(m + 1)(S + I +

P
ε

)m +
σ2

2

2ε
P2(m + 1)(S + I +

P
ε

)m

≤S (S + I +
P
ε

)m+1 −
1
K

S m+3 − αIm+2 − δIm+3 −
h
εm+1 Pm+2

+
m + 1

2
(σ2

1S m+2 + σ2
1Im+2 +

σ2
2

εm Pm+2)

≤B −
1

2K
S m+3 −

α

2
Im+2 −

h
2εm+1 Pm+2, (4.12)

where

B = sup
(S ,I,P)∈R3

+

{S (S + I +
P
ε

)m+1 +
m + 1

2
(σ2

1S m+2 + σ2
1Im+2 +

σ2
2

εm Pm+2)

−
1

2K
S m+3 −

α

2
Im+2 −

h
2εm+1 Pm+2} < ∞.

Define a Lyapunov function V : R3
+ → R as

V(S , I, P) = M0V1(S , I, P) + V2(S , I, P) + V3(S , I, P), (4.13)

where M0 is a positive constant satisfying

− M0λ +C1 ≤ −2, (4.14)

C1 = sup
(S ,I,P)∈R3

+

{B −
1

2K
S m+3 −

α

2
Im+2 −

h
2εm+1 Pm+2 + εh +

ε

2
σ2

2 +
M0PI

h
}.

It is easy to check that

lim inf
k→∞,(S ,I,P)∈R3

+\Dk

V(S , I, P) = +∞.

Furthermore, V(S , I, P) is a continuous function. Hence, V(S , I, P) has a minimum point (S 0, I0, P0) in
the interior of R3

+. Then, a nonnegative C2-function V̂(S , I, P) : R3
+ → R+ is constructed as follows:

V̂(S , I, P) = V(S , I, P) − V(S 0, I0, P0). (4.15)

From (4.10) to (4.15), it can be calculated that

LV̂ ≤ − M0λ + M0(
α + (q + δ)K
αK

S +
PI
h

) + εh +
ε

2
σ2

2

+ B −
1

2K
S m+3 −

α

2
Im+2 −

h
2εm+1 Pm+2. (4.16)
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Now, we select a bounded closed set Dε1 as

Dε1 = {(S , I, P) ∈ R3
+ : ε1 ≤ S ≤

1
ε1
, ε1 ≤ I ≤

1
ε1
, ε1 ≤ P ≤

1
ε1
},

where ε1 > 0 is a sufficiently small constant satisfying the following conditions in the set R3
+\Dε1:

− M0λ +C1 + M0
α + (q + δ)K
αK

ε1 ≤ −1, (4.17)

M0ε1(
1
h

)1+ 1
m+1 +C2 ≤ −1, (4.18)

M0ε1(
1
h

)1+ 1
m+1 +C3 ≤ −1, (4.19)

−
1

2K
(

1
ε1

)m+3 +C4 ≤ −1, (4.20)

−
α

2
(

1
ε1

)m+2 +C5 ≤ −1, (4.21)

−
h

2εm+1 (
1
ε1

)m+2 +C6 ≤ −1, (4.22)

where

C2 = sup
(S ,I,P)∈R3

+

{M0
α + (q + δ)K
αK

S + εh +
ε

2
σ2

2 + B −
1

2K
S m+3 −

α

2
Im+2},

C3 = sup
(S ,I,P)∈R3

+

{M0
α + (q + δ)K
αK

S + εh +
ε

2
σ2

2 + B −
1

2K
S m+3 −

h
2εm+1 Pm+2},

C4 = sup
(S ,I,P)∈R3

+

{M0(
α + (q + δ)K
αK

S +
PI
h

) + εh +
ε

2
σ2

2 + B −
α

2
Im+2 −

h
2εm+1 Pm+2},

C5 = sup
(S ,I,P)∈R3

+

{M0(
α + (q + δ)K
αK

S +
PI
h

) + εh +
ε

2
σ2

2 + B −
1

2K
S m+3 −

h
2εm+1 Pm+2},

C6 = sup
(S ,I,P)∈R3

+

{M0(
α + (q + δ)K
αK

S +
PI
h

) + εh +
ε

2
σ2

2 + B −
1

2K
S m+3 −

α

2
Im+2}.

We can get that (4.17) holds from (4.14). For the sake of convenience, R3
+\Dε1 is divided into the

following six domains:

D1 = {(S , I, P) ∈ R3
+ : 0 < S < ε1}, D2 = {(S , I, P) ∈ R3

+ : 0 < I < ε1},

D3 = {(S , I, P) ∈ R3
+ : 0 < P < ε1}, D4 = {(S , I, P) ∈ R3

+ : S >
1
ε1
},

D5 = {(S , I, P) ∈ R3
+ : I >

1
ε1
}, D6 = {(S , I, P) ∈ R3

+ : P >
1
ε1
}.

Obviously, DC
ε1
= D1 ∪ · · · ∪ D6. In order to verify LV̂(S , I, P) ≤ −1 for any (S , I, P) in DC

ε1
, we will

clarify it on the above six domains.
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Case 1. For (S , I, P) ∈ D1, it follows from (4.16) and (4.17) that

LV̂ ≤ − M0λ + M0(
α + (q + δ)K
αK

S +
PI
h

) + εh +
ε

2
σ2

2 + B

−
1

2K
S m+3 −

α

2
Im+2 −

h
2εm+1 Pm+2

≤ − M0λ +C1 + M0
α + (q + δ)K
αK

ε1

≤ − 1.

Case 2. For (S , I, P) ∈ D2, it follows from (4.16) and (4.18) that

LV̂ ≤M0(
α + (q + δ)K
αK

S +
Pε1

h
) + εh +

ε

2
σ2

2 + B −
1

2K
S m+3,

−
α

2
Im+2 −

h
2εm+1 Pm+2

=
M0Pε1

h
−

h
2εm+1 Pm+2 +C2.

Notice that for any p > 1, x ≥ 0, the following inequality holds [15]:

x ≤ ξxp + ξ
1

1−p , (4.23)

thus,

LV̂ ≤
M0Pε1

h
−

h
2εm+1 Pm+2 +C2

≤
M0ε1

h
(hPm+2 + (

1
h

)
1

m+1 ) −
h

2εm+1 Pm+2 +C2

≤ − (
h

2εm+1 − M0ε1)Pm+2 + M0ε1(
1
h

)1+ 1
m+1 +C2

≤M0ε1(
1
h

)1+ 1
m+1 +C2

≤ − 1.

Case 3. For (S , I, P) ∈ D3, it follows from (4.16), (4.19), and (4.23) that
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LV̂ ≤M0(
α + (q + δ)K
αK

S +
ε1I
h

) + εh +
ε

2
σ2

2 + B −
1

2K
S m+3

−
α

2
Im+2 −

h
2εm+1 Pm+2

=
M0ε1I

h
−
α

2
Im+2 +C3

≤
M0ε1

h
(hIm+2 + (

1
h

)
1

m+1 ) −
α

2
Im+2 +C3

≤ − (
α

2
− M0ε1)Im+2 + M0ε1(

1
h

)1+ 1
m+1 +C3

≤M0ε1(
1
h

)1+ 1
m+1 +C3

≤ − 1.

Case 4. For (S , I, P) ∈ D4, it follows from (4.16) and (4.20) that

LV̂ ≤ −
1

2K
S m+3 + M0(

α + (q + δ)K
αK

S +
PI
h

) + εh +
ε

2
σ2

2 + B

−
α

2
Im+2 −

h
2εm+1 Pm+2

≤ −
1

2K
(

1
ε1

)m+3 +C4

≤ − 1.

Case 5. For (S , I, P) ∈ D5, it follows from (4.16) and (4.21) that

LV̂ ≤ −
α

2
Im+2 + M0(

α + (q + δ)K
αK

S +
PI
h

) + εh +
ε

2
σ2

2 + B

−
1

2K
S m+3 −

h
2εm+1 Pm+2

≤ −
α

2
(

1
ε1

)m+2 +C5

≤ − 1.

Case 6. For (S , I, P) ∈ D6, it follows from (4.16) and (4.22) that

LV̂ ≤ −
h

2εm+1 Pm+2 + M0(
α + (q + δ)K
αK

S +
PI
h

) + εh +
ε

2
σ2

2 + B

−
1

2K
S m+3 −

α

2
Im+2

≤ −
h

2εm+1 (
1
ε1

)m+2 +C6

≤ − 1.

Clearly, from above all it can be obtained that for a sufficiently small ε1,

LV̂(S , I, P) ≤ −1 f or all (S , I, P) ∈ R3
+\Dε1 .
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Therefore, A2 in Lemma 4.1 is satisfied. The system (2.1) has a stable stationary distribution and
the solution is ergodic by the Lemma 4.1 [14]. This completes the proof.

Remark 4.1. The existence of the stationary distribution describes the probability equilibrium state
of variables such as biomass and species abundance in the long-term evolution of ecosystems. It
provides quantitative tools for key issues such as extinction risk and coexistence probability. The
ultimate boundedness characterizes the dynamic resilience of an ecosystem, which refers to its ability
to resist collapse or explosive growth under stochastic disturbances (environmental noise and resource
fluctuations). Both of them provide theoretical basis for the analysis of ecosystems, and ultimately
boundedness often lays the foundation for the existence of stationary distributions, which is a necessary
but not sufficient condition for the existence of stationary distributions.

5. Stochastic bifurcation

In this section, first the dimensionality of deterministic model (3.1) is reduced. Then, the
corresponding reduction stochastic model could be obtained by applying the lemma from [11].
Finally, the stochastic bifurcation is analyzed.

In terms of the slow time t = ετ, the model (3.1) becomes the following slow system:
εṠ = S (1 − S

K ) − qS I = f1,

εİ = qS I − IP − αI − δI2 = f2,

Ṗ = P(I − h) = g.

(5.1)

Note that systems (3.1) and (5.1) are equivalent as long as ε > 0.
When ε = 0 in (3.1), the following equation, which is also called the fast subsystem, could be obtained:

Ṡ = S (1 − S
K ) − qS I = f1,

İ = qS I − IP − αI − δI2 = f2,

Ṗ = 0.

(5.2)

The singular perturbation theory defines the critical manifold of (3.1) as the equilibrium points of
the fast subsystem (5.2), which means f1 = S (1 − S

K ) − qS I = 0,
f2 = qS I − IP − αI − δI2 = 0.

(5.3)

By simply calculating, we get the explicit expression of critical manifold:

M10 = {(S , I, P)|S = K, I = 0} ,
M20 =

{
(S , I, P)|S = (1 − qI)K, P = (−δ − q2K)I + qK − α

}
.

For further discussion, the critical manifold is decomposed into the following branches:

M−10 = {(S , I, P)|S = K, I = 0, P > qK − α} ,
M+10 = {(S , I, P)|S = K, I = 0, P < qK − α} ,
M−20 =

{
(S , I, P)|S = (1 − qI)K, P = (−δ − q2K)I + qK − α, I < 1

q

}
,

M+20 =
{
(S , I, P)|S = (1 − qI)K, P = (−δ − q2K)I + qK − α, I > 1

q

}
.

Then, we have the following result:
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Figure 1. The critical manifold of system (3.1). The red curve is the saddle part and the blue
curve is the attracting part.

Theorem 5.1. Consider 0 < ε ≪ 1, where the branches M−10 and M−20 are normally hyperbolic
attracting, and M+10 and M+20 are normally hyperbolic saddle. M10 and M20 lose their normal
hyperbolicity at Q(K, 0, qK − α) and T (0, 1

q ,−
δ
q − α).

Proof. Along the manifold M10, the Jacobian matrix associated with (5.3) is given by

J10 =

(
−1 −qK
0 qK − P − α

)
.

The eigenvalues are λ11 = −1 < 0 and λ12 = qK − P − α . By simply calculating, M10 is normally
hyperbolic attracting when P > qK − α and normally hyperbolic saddle when 0 < P < qK − α. In
addition, Q(K, 0, qK − α) is a turning point where M10 loses its normal hyperbolicity (as Figure 1).

Similarly, along the manifold M20, we have

J20 =

(
qI − 1 −qK + q2KI

qI −δI

)
.

The eigenvalues are λ21,22 =
qI−δI−1±

√
(δI−qI+1)2−4(qI2(−q2K−δ)+I(δ+q2K))

2 . By calculating, M20 is normally
hyperbolic attracting when 0 < I < 1

q and normally hyperbolic saddle when I > 1
q . In addition,

T (0, 1
q ,−

δ
q − α) is a turning point where M20 loses its normal hyperbolicity.

Obviously, T has no biological significance because of − δq − α < 0 . In the following, we will only
discuss about point Q. Moreover, from definition, it is easy to know that slow flow doesn’t exist at
Q. For 0 < ε ≪ 1, Fenichel’s theorem indicates that M10 and M20 can be perturbed to Mε10 and Mε20,
which the distance to M10 and M20 is within O(ε), respectively. As ε increases, the solution trajectory
fluctuates accordingly, but ultimately stabilizes at the internal equilibrium point E4, as Figure 2.
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(a) (b)

Figure 2. The solution trajectory of system (3.1) with increasing ε. As ε increases, the
solution trajectory fluctuates accordingly, but ultimately stabilizes at the internal equilibrium
point E4. (a) ε = 0.1, (b) ε = 0.9.

To analyze the system (3.1), the central manifold theorem is applied to reduce the dimensionality.
Using the linear transformation w = S + qKI yields the following system:

ẇ = (w − qKI)(1 − w
K + qI) − qI(w − qKI) + qK(qI(w − qKI) − IP − αI − δI2),

İ = qwI − q2KI2 − IP − αI − δI2,

Ṗ = εP(I − h).
(5.4)

Let

X =
(
w
I

)
, g(w, I, P) = P(I − h),

f (w, I, P) =
(

f −(w, I, P)
f 0(w, I, P)

)
=

(
w − w2

K − qKI + qwI + q2KwI − q3k2I2 − qKIP − qKαI − qKδI2

qwI − q2KI2 − PI − αI − δI2

)
.

By transformation, the matrix ∂X f (K, 0, qK − α) is transformed to block-diagonal with eigenvalues
−1 and 0. Hence, for sufficiently small ε and in a neighborhood of (0, qK − α), the locally attracting
critical manifold M̂0 and slow manifold M̂ε are as follows:

M̂0 = {(w, I, P)|w = h0(I, P)} ,
M̂ε = {(w, I, P)|w = h(I, P, ε), (I, P) ∈ N} ,

where h0(I, P) =
K(1+qI+q2KI+

√
(1+qI+q2KI)2− 4

K (qKI+q3K2I2+qKIP+qKαI+qKδI+K))
2 and h(I, P, ε) is a solution of the

partial differential equation
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f −(h(I, P, ε), I, P) = ∂Ih(I, P, ε) f 0(h(I, P, ε), I, P)
+ ε∂Ph(I, P, ε)g(h(I, P, ε), I, P),

and N is a sufficiently small neighborhood of (I, P).
Explicitly, we have

h(I, P, ε) = k0 + (k1I + k2ε + k3P)
+ (k4I2 + k5IP + k6Iε + k7P2 + k8Pε + k9ε

2) + . . . .

Then, we obtain the following equation:

h(I, P, ε) −
h2(I, P, ε)

K
− qKI + qh(I, P, ε)I + q2Kh(I, P, ε)I − q3k2I2 − qKIP − qKαI − qKδI2

= (k1 + 2k4I + k5P + k6ε)(qh(I, P, ε)I − q2KI2 − PI − αI − δI2) + εP(k3 + k5I + 2k7P + k8ε)(I − h).

Through using Maple to compare coefficients, the center manifold expression to second order is

h(I, P, ε) = k0 + k1I + k4I2 + k5IP + . . .

= K +
qK(qK − α)
qK + 1 − α

I + k4I2 −
qK

(qK + 1 − α)2 IP + . . . ,

where k4 = −
qK(qKδ−αδ+αq+δ)

(qK−α+1)2(2qK−2α+1) .
By local attractivity, it is sufficient to obtain the reduced system of system (3.1):{

dI = (qI(k0 + k1I + k4I2 + k5IP) − q2KI2 − IP − αI − δI2)dt,
dP = εP(I − h)dt.

(5.5)

The function h(I, P, ε) satisfies h(0, qK−α, 0) = K. In order to make it easier to distinguish between
the stochastic system and deterministic system, we use wt, It, and Pt to represent stochastic system
variables here. Meanwhile, we fix a particular solution (Idet

t , P
det
t ) of the deterministic system (5.5).

By local attractivity, the system (2.1) could be rewritten in (wt, It, Pt)-coordinates as
dwt =

1
ε

f −(wt, It, Pt)dt + σ1√
ε
F−(wt, It, Pt)dB1(t),

dIt =
1
ε

f 0(wt, It, Pt)dt + σ1√
ε
F0(wt, It, Pt)dB1(t),

dPt = g(wt, It, Pt)dt + σ2G(wt, It, Pt)dB2(t),

where (
F−(wt, It, Pt)
F0(wt, It, Pt)

)
=

(
h(It, Pt, ε) − qKIt

It

)
,

G(wt, It, Pt) = Pt.

Consider the deviation ξt = wt −h(It, Pt, ε) of sample paths from M̂ε. It satisfies an SDE (Stochastic
Differential Equation) of the form

dξt =
1
ε

f̂ −(ξt, It, Pt)dt +
σ1
√
ε

F̂−(ξt, It, Pt)dB1(t),
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and using Itô’s formula, it shows that

f̂ −(ξt, It, Pt) = f −(h(It, Pt, ε) + ξt, It, Pt) − ∂Ith(It, Pt, ε) f 0(h(It, Pt, ε) + ξt, It, Pt)
− ε∂Pth(It, Pt, ε)g(h(It, Pt, ε) + ξt, It, Pt) + O(σ2

1),

where the last term is the second-order term in Itô’s formula. The properties of invariant manifold
indicate that all terms in f̂ −(ξt, It, Pt), except the last one, vanish when ξt = 0. Then, we could
approximate the linearization of f̂ − at ξt = 0 by the matrix

A−(It, Pt, ε) = ∂wt f −(h(It, Pt, ε), It, Pt) − ∂Ith(It, Pt, ε)∂wt f 0(h(It, Pt, ε), It, Pt)
− ε∂Pth(It, Pt, ε)∂wtg(h(It, Pt, ε), It, Pt)

= 1 −
2
K

h(It, Pt, ε) + qIt + q2KIt − (k1 + 2k4It + k5Pt)qIt.

Since A−(0, qK − α, 0) = ∂wt f −(K, 0, qK − α) = A− = −1, the eigenvalues of A−(It, Pt, ε) have negative
real parts , bounded away from zero when we take N and ε small enough. In the following, the
dependence of A− on ε will be ignored.

Now approximate the dynamics of (ξt, It, Pt) by the following system:
dξ0

t =
1
ε
A−(Idet

t , P
det
t )ξ0

t dt + σ1√
ε
F−0 (Idet

t , P
det
t )dB1(t),

dIdet
t =

1
ε
(qwIdet

t − q2K(Idet
t )2 − Idet

t Pdet
t − αIdet

t − δ(I
det
t )2)dt,

dPdet
t = Pdet

t (Idet
t − h)dt,

where F−0 (I, P) = F−(0, I, P)|Q = K is the value of the diffusion coefficient on the invariant manifold.
Moreover, the process ξ0

t is Gaussian with zero mean and covariance matrix X, where X obeys
the equation:

A−(It, Pt, ε)X + XA−(It, Pt, ε)T + F−0 (It, Pt)F−0 (It, Pt)T = 0,

through calculating, we have

X = −K2

2(1− 2h(It ,Pt ,ε)
K −qIt+q2KIt−qIt(k1+2k4It+k5Pt))

.

As we know, all eigenvalues of A−(It, Pt) have negative real parts, and there exists a locally attracting
invariant manifold X = H(I, P, ε) for (I, P) ∈ N and ε small enough. Based on this invariant manifold,
define the domain of concentration of paths

B(h) =
{
(w, I, P) : (I, P) ∈ N, ⟨w − h(I, P, ε),H−1(I, P, ε)(w − h(I, P, ε))⟩ < h2

∗

}
,

and stopping times
τB(h) = inf {t > 0 : (wt, It, Pt) < B(h)} ,
τN = inf {t > 0 : (It, Pt) < N} ,

where h∗ is defined in Theorem 5.3.2 [11].
Then, a conclusion through the Theorem 5.3.2 could be drawn that sample paths of the stochastic

system (2.1) are concentrated in B(h) as long as (It, Pt) remains in N. To put it another way, it means
the sample paths under stochastic condition tend to concentrate in a neighborhood of order σ1 of the
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invariant manifold M̂ε. Based on this result, rescale time by τ = 1
ε
t, the system could be approximated

by its projection{
dIt =

1
ε
(qIt(k0 + k1It + k4I2

t + k5ItPt) − q2KI2
t − ItPt − αIt − δI2

t )dτ + σ1√
ε
ItdB1(τ),

dPt = Pt(It − h)dτ + σ2PtdB2(τ),
(5.6)

which is also called the reduced stochastic system.

Remark 5.1. This method of reducing the dimensionality of the stochastic system by mapping it to the
slow manifold makes the dynamical behavior of multidimensional stochastic slow-fast systems easier to
analyze, while also ensuring the accuracy of the analysis. For ecosystems affected by natural stochastic
noise and characterized by multiple timescales, the discussion process will not be complicated and the
conclusions are more in line with reality.

In the following, the bifurcation of the reduced system (5.6) will be discussed. First of all, there
are three equilibrium points containing two boundary equilibrium points E11(0, 0), E12(I12, 0) where

I12 =
q2K+δ−qk1+

√
(qk1−q2K−δ)2−4qk4(qK−α)

2qk4
, and an internal equilibrium point E13(Ir, Pr) where Ir = h, Pr =

q(k0+k1h+k4h2)−q2Kh−α−δh
1−k5qh . Note that 0 < h < q2K+δ−qk1+

√
(qk1−q2K−δ)2−4qk4(qK−α)

2qk4
is an existence condition

for E13.
This subsection mainly focuses on the analysis of the internal equilibrium point E13, as it has more

biological significance. Let u = It − Ir, v = Pt − Pr, and we have{
u̇ = r11u(τ) + r12v(τ) + Ψ(u(τ), v(τ)) + σ1√

ε
(u(τ) + Ir)ξ1(τ),

v̇ = r21v(τ) + r22v(τ) + Φ(u(τ), v(τ)) + σ2(v(τ) + Pr)ξ2(τ),
(5.7)

where ξi(τ)dτ = dBi(τ),

r11 =
1
ε

(q(k0 + 2k1h + 3k4h2 + 2k5hPr − 2qKh) − Pr − α2δh),

r12 =
1
ε

(−h + qk5h2),

Ψ(u, v) =
1
ε

(−uv + k5qu2v − δu2 − q2Ku2 + qk1u2 + qk4u3),

r21 = Pr, r22 = 0, Φ(u, v) = uv.

Performing coordinate transformation u = rcosθ and v = rsinθ on system(5.7), we have ṙ = r(r11cos2θ + r22sin2θ + (r12 + r21)sinθcosθ) + σ1√
ε
rcos2θξ1(τ) + σ2rsin2θξ2(τ),

θ̇ = r21cos2θ − r12sin2θ − r11sinθcosθ − σ1√
ε
sinθcosθξ1(τ) + σ2sinθcosθξ2(τ).

Based on the Khasminskii limit theorem [14], if the noise intensity of white noise (σ1, σ2) is small
enough, then the response process r(τ), θ(τ) weakly converges with a two-dimensional Markov
diffusion process. By using the random averaging method, the following Itô stochastic differential
equation is obtained: {

dr = mrdt + ε11dBr + ε12dBθ,
dθ = mθdt + ε21dBr + ε22dBθ,

(5.8)
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where Br(τ) and Bθ(τ) are independent standard Wiener processes,
(
mr

mθ

)
is the drift vector, and(

ε11 ε12

ε21 ε22

)
is the diffusion coefficient matrix.

By calculating various coefficients, the parameters in (5.8) satisfy:

mr =
r
2

r11 +
5
8

r(
σ2

1

ε
+ σ2

2),mθ =
1
2

(r21 − r12),

ε2
11 =

3
8

r2(
σ2

1

ε
+ σ2

2), ε2
22 =

1
8

(
σ2

1

ε
+ σ2

2), ε2
12 = ε

2
21 = 0,

where the average amplitude r(τ) is a one-dimensional Markov diffusion process when ε2
12 = ε

2
21 = 0.

It means we could obtain the following equation:

dr = ((µ1 +
µ2

8
)r +
µ3

r
)dτ + (µ3 +

µ4

8
r2)

1
2 dBr, (5.9)

where

µ1 =
1
2

r11, µ2 = 5(
σ2

1

ε
+ σ2

2),

µ3 =
1
2

(
σ2

1

ε
h2 + σ2

2P2
r ), µ4 = 3(

σ2
1

ε
+ σ2

2).

From Pr > 0, it can be seen that µ3 , 0. According to the Itô’s differential equation, the Fokker-Planck
equation of system (5.9) is:

∂P(r)
∂τ
= −
∂

∂r
(((µ1 +

µ2

8
)r +
µ3

r
)P(r)) +

1
2
∂2

∂r2 (µ3 +
µ4

8
r2)P(r)). (5.10)

The initial condition is P(r, τ|r0, τ0)→ δ(r−r0), τ→ τ0, where P(r, τ|r0, τ0) is the transition probability
density of the diffusion process r(τ). The steady-state density PS T (r) is the invariant measure of r(τ),
and it is the solution of the following degenerate system:

−
∂

∂r
(((µ1 +

µ2

8
)r +
µ3

r
)P(r)) +

1
2
∂2

∂r2 ((µ3 +
µ4

8
r2)P(r)) = 0. (5.11)

By calculating, we could obtain

Pst = 8

√
2
π

2−3∆µ2−∆
3 (
µ4

µ3
)

3
2Γ(2 − ∆)(Γ(

1
2
− ∆))−1r2(µ4r2 + 8µ3)∆−2, (5.12)

where ∆ = (8µ1 + µ2)µ−1
4 , Γ(x) =

∫ ∞
0
τx−1e−τdτ.

Based on Namachivaya’s theory [16], when the noise intensity approaches zero, the extreme value
of Pst(r) approaches the behavior of the deterministic system. We calculate the most likely amplitude
r∗ of (5.9) so that Pst(r) has its maximum value at r∗, i.e.,

dPst(r)
dr
|r=r∗ = 0,

d2Pst(r)
dr2 |r=r∗ < 0,
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where r∗ =
√

−8µ3
8µ1+µ2−µ4

, ( −8µ3
8µ1+µ2−µ4

< 1
2 ).

In addition, Pst(r) achieves the minimum value at r = 0, which means the system (2.1) is almost
unstable at the equilibrium point E13 when subjected to random excitation. According to the singular
boundary theory, the system (2.1) undergoes P-bifurcation at r = r∗.

Remark 5.2. Through numerical simulation, as shown in Figure 3, the position of P-bifurcation
increases as µ3 increases. Figure 4(a)–(d) respectively corresponds to different values of parameter
µ3 in Figure 3(a). The influence of ε is also shown in Figure 3. With the increase of ε, the oscillation
amplitude of x(τ) and y(τ) decreases, where the impact on x(τ) is relatively greater.

Remark 5.3. The existence of P-bifurcation indicates that the solution crossing the singularity Q
will follow Mε+10 for a distance before being repelled, then the solution will be attracted by Mε−20 . By
calculating, the equilibrium point E4 on Mε−20 is locally asymptotically stable. Hence, the solution
converges to the stable equilibrium point E4.
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Figure 3. (a) The steady-state probability density Pst(r) and the position r∗ of stochastic P-
bifurcation at µ1 = −0.354137, µ2 = 0.2125, µ3 = 0.1, 0.15, 0.2, 0.35, µ4 = 0.1275. (b) The
time responses of the system (5.6) as ε changes.
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(a) (b)

(c) (d)

Figure 4. (a)–(d): Images of the steady-state probability density Pst(r) using data of Table 1.

Table 1. The P-bifurcation probability and position in system (5.6).

condition cond1 cond2 cond3 cond4
r 0.54 0.66 0.76 1.016
Psτ(r) 1.4777 1.2065 1.0448 0.7898
µ3 0.1 0.15 0.2 0.35

6. Conclusions

In this paper, an stochastic eco-epidemiological model with multi-time scale is mainly studied
through the theory analysis and numerical simulation. First, we take a dimensionless transformation
to system for simplicity. Then based on the stochastic noise, the stochastic items are considered in
order to be more in line with reality. Meanwhile, considering the difference in iteration speed between
prey and predator, paramater ε is added to the model. The stability and bifurcation of equilibrium
points on the deterministic system are discussed.

For the system with noise, the existence and uniqueness of solutions is proven by constructing a

Electronic Research Archive Volume 33, Issue 3, 1667–1692.



1691

function V , and boundedness is also obtained. Then, the C2-function V and V̂ are constructed to prove
the ergodic property of the solutions by the lemma from [14]. As for the slow-fast dynamics, the
deterministic condition is analyzed. It is obtained that the solution crossing the singularity converges
to the stable equilibrium point E4 by geometric singular perturbation theory and center-manifold
reduction considering 0 < ε ≤ 1. Applying the theorem from [11], it could be known that sample
paths of the stochastic system are concentrated in the neighborhood of the deterministic one. Finally,
through calculating, P-bifurcation occurs at the singularity, and that’s why there is a delay in the
trajectory at the singularity of the solution. Numerical simulation verified our theoretical results.

Compared with other eco-epidemic systems, it should be noted that the models proposed in this
paper investigate dynamical behavior with multi-time scale and stochastic noises, which makes the
work studied in this paper have some new and positive features. It is also interesting to consider the
effects of the other types of functional response functions, which will be the subject of our further
research. In practical application, the control of disease is also very significant and important. The
discussion of biological control is very extensive. One direction that can be explored in the future is
model predictive control. It can better tackle the scenario involving the uncertainties or disturbances,
and it is worth exploring whether the model predictive control can be used to the proposed model,
such as [17].
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