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Abstract: Numerous adaptations of traditional entropy concepts and their residual counterparts
have emerged in statistical research. While some methodologies incorporate supplementary variables
or reshape foundational assumptions, many ultimately align with conventional formulations. This
study introduces a novel extension termed residual cumulative generalized exponential entropy to
broaden the scope of residual cumulative entropy for continuous distributions. Key attributes of
the proposed measure include non-negativity, bounds, its relationship to the continuous entropy
measure, and stochastic comparisons. Practical implementations are demonstrated through case studies
involving established probability models. Additionally, insights into order statistics are derived to
characterize the measure’s theoretical underpinnings. The residual cumulative generalized exponential
entropy framework bridges concepts such as Bayesian risk assessment and excess wealth ordering.
For empirical implementation, non-parametric estimation strategies are devised using data-driven
approximations of residual cumulative generalized exponential entropy, with two distinct estimators
of the cumulative distribution function evaluated. A practical application is showcased, using clinical
diabetes data. The study further explores the role of generalized exponential entropy in identifying
distributional symmetry, mainly through its application to uniform distributions to pinpoint symmetry
thresholds in ordered data. Finally, the utility of generalized exponential entropy is examined in pattern
analysis, with a diabetes dataset serving as a benchmark for evaluating its classification performance.
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1. Introduction

Shannon [1] first proposed the idea of entropy in 1948. It is a fundamental idea in the theories
of information that measures the degree of uncertainty or knowledge contained in a given random
variable. Shannon entropy is acquainted mathematically as

S n(P) = −
n∑

k=1

pk ln pk,

for discrete random variables, with noting that P = (p1, p2, ..., pn) is the vector of mass function
probability, or

S n(X) = −
∫ ∞

−∞

f (x) ln f (x) dx, (1.1)

for a randomly generated continuous variable X, and f (x) represents the probability density functional
(PDF). It has proven to be a powerful tool in various fields, including communication systems, where
it optimizes data transmission, and in data compression, where it measures the limits of
compressibility. By capturing the average amount of information generated by random events,
Shannon entropy provides a robust framework for analyzing uncertainty in diverse systems.

Building on this seminal work, Rao et al. [2] established the conception of the cumulative residual
entropy model as an extension of entropy designed for survival analysis and reliability theory. Unlike
traditional entropy, which measures overall uncertainty, residual cumulative entropy focuses on the
uncertainty remaining in a system or process beyond a given time or threshold. Formally, given a
randomly variable that is not negative X, the residual cumulative function of entropy measurement is
described as:

RCEn(X) =
∫ ∞

0
F̄(x) ln F̄(x) dx, (1.2)

in which the survival function is encapsulated by F̄(x) = 1 − F(x), and the cumulative distribution
function (CDF) of X is encapsulated by F(x). This measure captures the tail behavior of the determined
distribution, causing it to be quite helpful in applications requiring an understanding of the uncertainty
associated with extreme events. Residual cumulative entropy has since been employed in numerous
disciplines regarding reliability engineering, risk analysis form, and lifetime data analysis, where the
quantification of remaining uncertainty is of critical importance.

Following Campbell [3], Pal and Pal [4,5] used these concerns to establish a new measure, called the
exponential entropy measure, through other descriptions parallel to Shannon entropy. In the discrete
situation, the formulation of the exponential entropy model is described below:

EXn(P) =
n∑

k=1

Pk(e1−Pk − 1). (1.3)

They added the −1 term since it seems only logical that any measurement that contains data should be
assigned 0 for the degenerative distribution of probabilities (0, ..., 0, 1, 0, ..., 0). The authors argued that
exponential entropy offers distinct benefits over Shannon’s formulation. For example, they noted that
exponential entropy reaches a fixed upper value in the case of a distribution that is considered to be
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uniform, where each probability is given by pk =
1
n for k = 1, 2, . . . , n as demonstrated by

lim
n→∞

EXn
(
1
n
,

1
n
, . . . ,

1
n

)
= e − 1;

in contrast, Shannon’s entropy does not exhibit this bounded behavior.
Furthermore, Panjehkeh et al. [6] examined the features and attributes of the exponential measure

of entropy, along with the Shannon measure of entropy model, in both discrete and continuous
situations, including the asymptotic equipartition property, invariancy under monotone
transformation, subadditivity, and the chain rule. The concept of a continuous exponential measure of
entropy was first presented as

EXn(X) =
∫

Ds

f (x)(e1− f (x))dx. (1.4)

We may observe that Panjehkeh et al. [6] eliminated the term −1 from the measurement in order to
make it inherently non-negative against Shannon entropy, given that X is a randomly variable that is
continuous, following the PDF f , and the support Ds. Kvalseth [7] developed a more broad variant of
the exponential entropy of Eq (1.2), known as generalized entropy, given by

GEXn(P) =
1
β

n∑
k=1

pk(e1−pβk − 1), (1.5)

where the parameter β is arbitrary and has a non-zero real value (i.e., β ∈ R\{0}). Moreover, the
generalized exponential entropy measure has been used in many topics. Alotaibi and Elaraby [8]
created a generalized exponential entropy-based method for COVID-19 disease segmentation from
computed tomography scans. Fuzzy c partitioning and generalized exponential entropy were combined
in their suggested method. In multi-criteria decision-making, we can see, for example, Wei et al. [9]
and Dinesh and Kumar [10].

Work motivation: Since the PDF is calculated as the distribution’s derivative form, the CDF appears
more regularly than the density function. Furthermore, the CDF is what is relevant and/or quantifiable
in practice. For instance, if the variable that is chosen randomly is the life span of a machine, the
happenstance that is relevant is not whether the life span equals t, but rather whether it surpasses t.
This is what prompted us to study it instead of the existing entropy based on the PDF. The question
that arises is whether it can be generalized and if the traditional model can be made a special case of
it. Moreover, studying the discrete case is not satisfactory without considering the continuous case.
As we have mentioned that the exponential entropy in discrete case has been discussed in distinct
fields; take into consider, for instance, Wei et al. [11], and Ye and Cui [12]. Therefore, it is essential
to study and discuss it in the continuous case with clarification of the applications associated with
the continuous side. Another important aspect to discuss is that the proposed model is based on the
exponential function. Dose this function help solve some of the problems that appear in uncertainty
issues?

This article aimed to present a generalization of the continuous residual cumulative entropy,
known as residual cumulative generalized exponential entropy. Applications, including
non-parametric estimation, are provided. On the other hand, the continuous form of the generalized
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exponential entropy is used to discuss the characterization of symmetry via order statistics. Moreover,
a classification problem involving the pattern recognition in diabetes data based on the generalized
exponential entropy model is presented. The following is the arrangement of the remaining portions
of this paper: in Section 2, the concept of residual cumulative generalized exponential entropy in the
continuous setting is presented. Additionally, the properties, including bounds, non-negativity, the
relationship with differential entropy, and stochastic orders, are explained. In Section 3, some
consequences of the residual cumulative generalized exponential entropy expansion, such as the
Bayes risk and the order of excess wealth, are discussed. In Section 4, the non-parametric estimation
of the empirical residual cumulative generalized exponential entropy is applied using two methods.
Finally, in Section 5, the symmetry characterization using order statistics with an example based on
the symmetrical uniform distribution and the classification problem using pattern recognition based
on the generalized exponential entropy are illustrated.

2. Residual cumulative generalized exponential entropy measure

In this section, we will establish the concept of the residual cumulative generalized exponential
entropy. Inspired by Rao et al. [2], we can depend on the function of survival F̄(x) to derive the
residual cumulative generalized exponential entropy from the discrete case of the generalized
exponential entropy in (1.5) according to the following definition.

Definition 2.1. Consider the non-negativity continual randomly variable X following the CDF F.
Then, we can realize the residual cumulative generalized exponential entropy by the following formula:

RGEXnβ(X) =
1
β

∫ ∞

0
F̄(x)

(
e1−F̄β(x) − 1

)
dx

=
1
β

[∫ ∞

0
F̄(x)e1−F̄β(x) dx − µ

]
,

(2.1)

where β ∈ R\{0}, and the mean (expected value) µ = E(X) =
∫ ∞

0
F̄(x) dx.

The following proposition shows the limitation of the residual cumulative generalized exponential
entropy when β tends to zero, which returns to residual cumulative entropy in (1.2).

Proposition 2.1. Consider the non-negativity continual random variable X following the CDF F.
Then, from (2.1) and (1.2), we have

lim
β→0

RGEXnβ(X) = RCEn(X).

Proof. From (2.1), utilizing the L’Hopital’s rule, we have

lim
β→0

RGEXnβ(X) = lim
β→0

∫ ∞
0

F̄(x)
(
e1−F̄β(x) − 1

)
dx

β

= lim
β→0
−

∫ ∞

0
F̄1+β(x)e1−F̄β(x) ln F̄(x) dx

=

∫ ∞

0
F̄(x) ln F̄(x) dx = RCEn(X).

□
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In the following discussions, we will discuss the non-negativity and the bounds of the residual
cumulative generalized exponential entropy when β > 0.

Proposition 2.2. Consider the non-negativity continual random variable X following the CDF F.
Then, from (2.1), we can say that

(1) The residual cumulative generalized exponential entropy is non-negative for all β > 0.

(2) To discuss the bounds of the residual cumulative generalized exponential entropy:

(a) We get
RGEXnβ(X) ≥ (≤)RGEXn1(X), ∀ 0 < β ≤ 1(β ≥ 1). (2.2)

(b) We get

0 ≤ RGEXnβ(X) ≤
µ(e − 1)

β
, ∀ β ≥ 0. (2.3)

Proof. (1) Its known that e1−F̄β(x) ≥ 1, for all β > 0, and F̄(x) ∈ [0, 1]. Thus, F̄(x) e1−F̄β(x) ≥ F̄(x),
which implies that

∫ ∞
0

F̄(x) e1−F̄β(x) dx ≥
∫ ∞

0
F̄(x) dx = µ. Then, RGEXnβ(X) ≥ 0, for all β > 0.

Or, by another method, we can assume, by converse, that βRGEXnβ(X) < 0, then we have∫ ∞

0
F̄(x) e1−F̄β(x) dx −

∫ ∞

0
F̄(x) dx < 0 ⇒

∫ ∞

0
F̄(x) e1−F̄β(x) dx <

∫ ∞

0
F̄(x)e0 dx.

Therefore, we deduce that e1−F̄β(x) < 1, which implies 1 − F̄β(x) < 0 or, equivalently, F̄β(x) > 1.
This contradicts the fact that F̄(x) ∈ [0, 1] for any x. Then, the result follows.

(2) For 0 < β ≤ 1(β ≥ 1), we have F̄β(x) ≥ (≥)F̄(x), which implies that F̄(x) e1−F̄β(x) ≥ (≤)F̄(x)e1−F̄(x).
Then, 1

β

[∫ ∞
0

F̄(x)e1−F̄β(x) dx − µ
]
≥ (≤)

∫ ∞
0

F̄(x)e1−F̄(x) dx − µ, and the result follows.
□

Lemma 2.1. If µ = E(X) < ∞, then RGEXnβ(X) < ∞, for all β > 0.

Proof. The result is obtained directly from (2.3). □

Theorem 2.1. If X is an absolutely continual non-negativity random variable following a PDF f (x),
then

RGEXn1(X) ≥ C∗eS n(X),

with noting that

C∗ = exp
{∫ 1

0
ln

∣∣∣∣u (
e1−u − 1

)∣∣∣∣ du
}
≃ 0.176192,

and S n(X) is defined in (1.1).

Proof. Using the fact of the inequality of log-sum, it contends that∫ ∞

0
f (x) ln

f (x)∣∣∣∣F(x)
(
e1−F(x) − 1

)∣∣∣∣dx ≥ ln
1∫ ∞

0

∣∣∣∣F(x)
(
e1−F(x) − 1

)∣∣∣∣ dx
dx = − ln RGEXn(X), (2.4)
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Moreover, the left-hand side of (2.4) can be expressed as∫ ∞

0
f (x) ln

f (x)∣∣∣∣F(x)
(
e1−F(x) − 1

)∣∣∣∣dx = −S n(X) −
∫ ∞

0
f (x) ln

∣∣∣∣F(x)
(
e1−F(x) − 1

)∣∣∣∣ dx

= −S n(X) −
∫ 1

0
ln

∣∣∣∣u (
e1−u − 1

)∣∣∣∣ du.

Therefore, it follows that

S n(X) +
∫ 1

0
ln

∣∣∣∣u (
e1−u − 1

)∣∣∣∣ du ≤ ln RGEXn(X).

Applying the exponential function to both sides of the aforementioned relation, we derive

RGEXn(X) ≥ C∗eS n(X),

where

C∗ = exp
{∫ 1

0
ln

∣∣∣∣u (
e1−u − 1

)∣∣∣∣ du
}
≃ 0.176192,

thereby finalizing the proof. □

Proposition 2.3. If X is an absolutely continual non-negativity random variable with residual
cumulative generalized exponential entropy RGEXnβ(X) < ∞ as given in (2.1), ∀β > 0. Then, we can
obtain

RGEXnβ(X) =
1
β

E(ψβ(X)), (2.5)

where

ψβ(X) =
∫ x

0

(
e1−F̄β(t) − 1

)
dt. (2.6)

Proof. From (2.1), and utilizing the theorem of Fubini, we can express the following:

RGEXnβ(X) =
1
β

∫ ∞

0

[∫ ∞

t
f (x) dx

] (
e1−F̄β(t) − 1

)
dt

=
1
β

∫ ∞

0
f (x)

[∫ x

0

(
e1−F̄β(t) − 1

)
dt

]
dx,

and (2.5) is obtained by utilizing (2.6). □

In the following, we will show some examples of the residual cumulative generalized exponential
entropy of well-known distributions.

Example 2.1. Consider the non-negativity continual random variable X following the CDF F. Then,

(1) Under the distribution of exponential (Exp(γ)) with F(x) = 1 − e−γx, we get

RGEXnβ(X) = −

(
β − eΓ

[
1
β

]
+ eΓ

[
1
β
, 1

])
γ β2 ,
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where Γ
[

1
β

]
is the function of the Euler gamma, and Γ

[
1
β
, 1

]
is the function of the incomplete

gamma. Moreover, with β = 1, we get

RGEXn1(X) =
2 − e
γ

.

(2) Under the uniform distribution (Ud(t1, t2)) with F(x) = x−t1
t2−t1

, and β = 1, we get

RGEXn1(X) = e −
5
2
.

Figure 1 shows the plot of the residual cumulative generalized exponential entropy and the residual
cumulative entropy defined in (1.2) of the Exp(γ) distribution. Therefore, we can see the assurance of
Proposition 2.1 and Eq (2.2).

Figure 1. Plot of RGEXnβ(X), RGEXn1(X), and RCEn(X) of the Exp(2) distribution (left)
and the Exp(5) distribution (right).

2.1. Stochastic order

The theorem outlined below establishes a characterization in terms of the residual cumulative
generalized exponential entropy under the usual stochastic, dispersive, increasing convex, and hazard
rate orders. In the usual stochastic, dispersive, increasing convex, and hazard rate orders, represented,
respectively, by X1 ≤UstOr X2, X1 ≤DisOr X2, X1 ≤IcxOr X2, and X1 ≤HrOr X2, we mainly remember that
the random variable X1 is smaller than X2 if

(1) F̄1(x) ≤ F̄2(x) (for the usual stochastic order),

(2) F−1
2 (v) − F−1

1 (v) is increasing in v ∈ (0, 1) (for the dispersive order),

(3) E(ξ(X1)) = E(ξ(X1)), with the existence of the expectations and for all convex increasing
functions ξ (for the increasing convex order),

(4) F̄2(x)
F̄1(x) is increasing with respect to x (for the hazard rate order).

where F−1
1 and F−1

2 are the right continually inverses of the CDF’s F1 and F2, correspondingly; see
Shaked and Shanthikumar [13].
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Theorem 2.2. Assume that two random variables that are continuously, X1 and X2, following
distribution functions that are strictly increasing, (F1 and F2, respectively). If X1 ≤UstOr X2, then, we
obtain:

(1) RGEXnβ(X1) ≤ RGEXnβ(X2).

(2) RGEXnβ(X1) − RGEXnβ(X2) ≥ 1
β

(µ1 − µ2), where µ1 =
∫ ∞

0
F̄1(x) dx, and µ2 =

∫ ∞
0

F̄2(x) dx.

Proof. 1) Let F̄1(x) ≤ F̄2(x), and since e1−F̄β(x) ≥ 1, for all β > 0. Then, the result follows.

(2) Since F̄1(x) ≤ F̄2(x), then F̄β
1(x) ≤ F̄β

2(x), for all β > 0, or equivalently e1−F̄β
1 (x) ≥ e1−F̄β

2 (x).
Therefore, we have

RGEXnβ(X1) − RGEXnβ(X2) =
1
β

∫ ∞

0

[
F̄1(x)

(
e1−F̄β

1 (x) − 1
)
− F̄2(x)

(
e1−F̄β

2 (x) − 1
)]

dx

≥
1
β

(∫ ∞

0

(
F̄1(x) − F̄2(x)

)
dx

)
=

1
β

(µ1 − µ2) .

□

Example 2.2. Suppose that two random variables that are continuously, X1 and X2, following Ud(0, t1)
and Ud(0, t2) distributions with the CDFs F1(x) = x

t1
, 0 ≤ x ≤ t1, and F2(x) = x

t2
, 0 ≤ x ≤ t2,

respectively. Moreover, the means are µ1 =
t1
2 and µ2 =

t2
2 . If we let t2 ≥ t1, then we have X1 ≤UstOr X2.

With β = 1, we obtain

RGEXn1(X1) = t1

(
e −

5
2

)
≤ t2

(
e −

5
2

)
= RGEXn1(X2),

and

RGEXn1(X1) − RGEXn1(X2) =
(
e −

5
2

)
(t1 − t2) ≥

1
2

(t1 − t2) = µ1 − µ2,

where (t1 − t2) ≤ 0. Which assures the results in Theorem 2.2.

Theorem 2.3. Assume that two random variables that are continuously, X1 and X2, following
distribution functions that are strictly increasing, (F1 and F2, respectively). If X1 ≤DisOr X2, and

RGEXnβ(X1) = RGEXnβ(X2),

for a fixed β > 0. Consequently, up to a location parameter, the distributions of X1 and X2 are identical.

Proof. Suppose that X1 ≤DisOr X2 (i.e., the function F−1
2 (v) − F−1

1 (v) is decreasing in v), and
RGEXnβ(X1) = RGEXnβ(X2). Then, by a change of variable v = F(x), we observe that (according to
the equality given)

RGEXnβ(X2) − RGEXnβ(X1) =
1
β

∫ 1

0

(
(1 − v)

(
e1−(1−v)β − 1

) )
d
[
F−1

2 (v) − F−1
1 (v)

]
= 0,

for a fixed β > 0. Since X1 ≤DisOr X2, we are aware of that F−1
2 (v) − F−1

1 (v) is a function considered to
be decreasing of v. We now assert that for every 0 ≤ v ≤ 1, F−1

2 (v)−F−1
1 (v) = c (constant). Suppose, to
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the contrary, that there exists a subinterval (θ1, θ2) within [0, 1] where F−1
2 (v) − F−1

1 (v) fails to remain
constant across (θ1, θ2). In this case,

0 =
1
β

∫ 1

0

(
(1 − v)

(
e1−(1−v)β − 1

)
d
[
F−1

2 (v) − F−1
1 (v)

]
≥

1
β

∫ θ2

θ1

(
(1 − v)

(
e1−(1−v)β − 1

)
d
[
F−1

2 (v) − F−1
1 (v)

]
> 0,

which is a contradiction. Consequently, for all 0 ≤ v ≤ 1, F−1
2 (v) − F−1

1 (v) = c (constant), indicating
that X1 and X2 have an equal distribution according to the location parameter. Alternatively, in more
detail, the proof can be argued by contradiction. Suppose that F−1

2 (v) − F−1
1 (v) is not constant on

some subinterval (θ1, θ2). Then, because F−1
2 (v)− F−1

1 (v) is decreasing, the integral over (θ1, θ2) will be
positive:

1
β

∫ θ2

θ1

(1 − v)
(
e1−(1−v)β − 1

)
d
[
F−1

2 (v) − F−1
1 (v)

]
> 0.

This contradicts the equality RGEXnβ(X1) = RGEXnβ(X2), implying that F−1
2 (v) − F−1

1 (v) must be
constant for all v ∈ [0, 1]. □

Remark 2.1. As a deeper explanation of Theorem 2.3, the phrase “Consequently, up to a location
parameter, the distributions of X1 and X2 are identical” means that the distributions of X1 and X2 are
the same except for a shift or translation along the real number line. In other words, X1 and X2 have the
same shape and structure in their distributions, but one is a shifted version of the other. For example,
let X1 and X2 be Exp(γ) distributed random variables with the rate parameter γ > 0. If X1 and X2 both
follow the same exponential distribution with the rate parameter γ, then their CDFs are:

F1(x) = 1 − e−γx, F2(x) = 1 − e−γx.

Here, X1 and X2 are identically distributed, and there is no shift (c = 0). Suppose that X2 is a shifted
version of X1 by a constant c > 0. In this case, the CDF of X2 is:

F2(x) = F1(x − c) = 1 − e−γ(x−c), x ≥ c.

Here, X2 is the same as X1 but shifted to the right by c. The distributions are identical up to the location
parameter c.

The following assertion gives an alternate formula for the residual cumulative generalized
exponential entropy of X. The sequel uses this formulation, which is in respect of an expanding
convex function, to derive a number of findings.

Lemma 2.2. The following is true for β > 0 if X represents an entirely constantly non-negativity
random variable with the limiting mean µ = E(X):

RGEXnβ(X) ≥
ψβ(µ)
β

,

with noting that the function ψβ(·) is given in (2.6).
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Proof. Given that ψβ(·) is a function to be convex, Jensen’s inequality may be used as E(ψβ(X)) ≥
ψβ(E(X)), which obtains the proof. □

The following characteristics of stochastic order are useful for comparing risk measurements and
are also obtained by using Proposition 2.3.

Proposition 2.4. For β > 0, it is true that if X1 and X2 are completely continuously non-negative
random variables that correspond to X1 ≤IcxOr X2, then

ψβ(X1) ≤IcxOr ψβ(X2),

where (2.6) defines the function ψβ(·). X1 ≤IcxOr X2 specifically suggests

RGEXnβ(X1) ≤ RGEXnβ(X2).

Proof. According to Theorem 4.A.8 of Shaked and Shanthikumar [13], ψβ(X1) ≤IcxOr ψβ(X2) is an
function which considered to be increasing convex for β > 0 in the function ψβ(·). Specifically, using
Eq (2.5) and the concept of rising convex order, we obtain RGEXnβ(X1) ≤ RGEXnβ(X2). □

Proposition 2.5. Assume that X1, . . . , Xm be m independent non-negativity absolutely continuous
random variables with the collective CDF F, and Z1, . . . ,Zm are another set of m independent
non-negative continuous random variables with the collective CDF F∗. If Xi ≤IcxOr Zi for
i = 1, 2, . . . ,m, then for all β > 0, we obtain

RGEXnβ
(

max{X1, X2, . . . , Xm}
)
≤ RGEXnβ

(
max{Z1,Z2, . . . ,Zm}

)
.

Proof. Given that Xi ≤IcxOr Zi for i = 1, 2, . . . ,m, using Shaked and Shanthikumar’s [13] Corollary
4.A.16 , we get

max{X1, X2, . . . , Xm} ≤IcxOr max{Z1,Z2, . . . ,Zm}.

The result then follows directly from Proposition 2.3. □

Proposition 2.6. For β > 0, the following is true if X1 and X2 are non-negative randomized variables
that match X1 ≤HrOr X2:

RGEXnβ(X1)
E(X1)

≤
RGEXnβ(X1)

E(X2)
.

Proof. Shaked and Shanthikumar [13] determined that, assuming X1 ≤HrOr X2, the function ψβ(·),
described in (2.6), is an increasing function to be convex such that ψβ(0) = 0:

E(ψβ(X1))
E(X1)

≤
E(ψβ(X2))

E(X2)
.

Therefore, Proposition 2.4 completes the evidence. □
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2.2. Order statistics-based characterization

In this subsection, we will examine the characterization of the residual cumulative generalized
exponential entropy based on order statistics. Using the well-known Müntz-Szász theorem, we first
review the idea of a full sequence of functions and a lemma; for further information, see [14–16].

Lemma 2.3. (Müntz-Szász theorem; see Higgins [16], pp, 95–96). On a limited interval (θ1, θ2), for a
function which considered integrable Θ(z), if∫ θ2

θ1

ztiΘ(z) dz = 0, i ≥ 1,

for nearly all z ∈ (θ1, θ2), Θ(z) = 0, where {ti, i ≥ 1} is a sequence of positive integers that increasing
strictly fulfilling

∞∑
j=1

1
t j
= +∞.

In functional analysis, the well-known Lemma 2.3 states that the set of values
{zt1 , zt2 , · · · : 1 ≤ t1 < t2 < . . . } constitutes a complete sequence. It is important to note that
Galambos [17] presents a straightforward version of the Müntz-Szász theorem along with a proof (see
Theorem AlI.3). Furthermore, the Müntz-Szász theory for {ψti(z), ti ≥ 1} was extended by Hwang and
Lin [14], where ψ(z) is monotone and absolutely continuous on a range (θ1, θ2). We examine
characterization using the first-order statistics in the following theorem. Let Z1, . . . ,Zt be completely
continuously non-negativity random variables with the routine PDF f and CDF F, and let t be
independent and distributed in an identical manner. The function that is considered to be the survival
function of the first-order statistics is thus expressed as follows: F̄1;t(z) = [F̄(z)]t, z ≥ 0.

Theorem 2.4. Assume that X and Z are two completely continual, non-negativity random variables,
each with a PDF of f and h and a CDF of F and H. Then, if and only if F and H are members of the
same distribution family, albeit, with a different scale and location, we have

RGEXnβ(X1;t)
E(X1;t)

=
RGEXnβ(Z1;t)

E(Z1;t)
,

for every t = tk, k ≥ 1, and for a given β > 0, such that

∞∑
k=1

t−1
k = ∞.

Proof. The necessary condition is inessential. For the sufficiency condition, after letting v = F̄(x), we
realize that

E(X1;t) =
∫ ∞

0
F̄1;t(x) dx =

∫ 1

0

vt

f
(
F̄−1(v)

) dv,

and that,

βRGEXnβ(X1;t) =
∫ 1

0

vt
(
e1−vtβ

− 1
)

f
(
F̄−1(v)

) dv.
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Consequently,
RGEXnβ(X1;t)

E(X1;t)
=

RGEXnβ(Z1;t)
E(Y1;t)

,

is equivalent to ∫ 1

0

vt
(
e1−vtβ

−1
)

f(F̄−1(v)) dv∫ 1

0
vt

f(F̄−1(v)) dv
=

∫ 1

0

vt
(
e1−vtβ

−1
)

h(H̄−1(v)) dv∫ 1

0
vt

h(H̄−1(v)) dv
.

Therefore, ∫ 1

0
vt

(
e1−vtβ

− 1
)  1

f
(
F̄−1(v)

) − 1

Ψh
(
H̄−1(v)

) dv, =
∫ 1

0
vtΘ(v) dv,

where

Θ(v) =
(
e1−vtβ

− 1
)  1

f
(
F̄−1(v)

) − 1

Ψ h
(
H̄−1(v)

) , (2.7)

Ψ =

∫ 1

0
vt

f(F̄−1(v)) dv∫ 1

0
vt

h(H̄−1(v)) dv
.

For every t = tk, k ≥ 1, the latter relation is hypothesized to exist, so that
∑∞

k=1 t−1
k = ∞. Applying

the Müntz-Szász theorem to the whole sequence vt, t ≥ 1 and Lemma 2.3, the relation (2.7) provides
Θ(v) = 0, or equivalently, f

(
F̄−1(v)

)
= Ψ h

(
H̄−1(v)

)
, for every 0 < v < 1. We may observe that

F−1(v) = ΨH−1(v)+c, for any 0 < v < 1 and a real constant c, if we remember that d
dv F

−1
(v) = 1

f(F̄−1(v)) .
By the same manner, in Psarrakos and Toomaj [18], the CDFs F and H are members of the same
distribution family, with a different scale and location. □

Theorem 2.5. Consider two completely continuous, non-negativity random variables, X and Z, each
with PDFs of f and h and CDFs of F and H. For a change in location, F and H are members of the
same distribution family, if and only if

RGEXnβ(X1;t) = RGEXnβ(Z1;t),

for a fixed β > 0 and for every t = t j, j ≥ 1, where
∑∞

k=1
1
tk
= ∞.

Proof. For Ψ = 1, the proof is comparable to Theorem 2.4. □

3. Results on the expansion of the residual cumulative generalized exponential entropy measure

In this section, we will examine the expansion of the residual cumulative generalized exponential
entropy and obtain some results. The definition of the residual cumulative generalized exponential
entropy is:

RGEXnβ(X) =
1
β

∫ ∞

0
F̄(x)

(
e1−F̄β(x) − 1

)
dx.
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Using the Taylor series expansion for e1−F̄β(x) − 1, we have:

e1−F̄β(x) − 1 = (1 − F̄β(x)) +
(1 − F̄β(x))2

2!
+

(1 − F̄β(x))3

3!
+ · · ·

=

∞∑
k=1

(1 − F̄β(x))k

k!
.

For β > 0, F̄β(x) ≥ 0 for all x, so 1 − F̄β(x) is finite and the series converges. Substituting into the
integral:

RGEXnβ(X) =
1
β

∞∑
k=1

1
k!

∫ ∞

0
F̄(x)

(
1 − F̄β(x)

)k
dx.

For (1 − F̄β(x))k, we use the binomial theorem to obtain

(1 − F̄β(x))k =

k∑
j=0

(
k
j

)
(−1) jF̄β j(x).

Substituting this back yields

RGEXnβ(X) =
1
β

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j

∫ ∞

0
F̄1+β j(x)dx. (3.1)

For β > 0, the survival function F̄(x) typically decreases to 0 as x → ∞, ensuring the convergence of
F̄1+β j(x).

3.1. The mean residual life function’s risk Bayes

The residual or excess of Z, assuming that it surpasses a threshold t, is represented by Zt = [Z − t |
Z > t] if the random variable Z represents the lifespan of a component or a system. In contrast, [Z | W]
often indicates a random variable with a similar distribution as Z conditional on W. The PDF of Zt is
obtained as follows:

f (z | t) =
f (z)
F̄(t)

, z > t.

The equation for the function of the average residual life of Z with a finite mean µ can potentially be
calculated as

M(t) = M(Z; t) = EZ>t[Z − t | Z > t], t ≥ 0, (3.2)

in this case, EZ>t denotes the expectation of the residual PDF f (z | t). With Zβ in place of Z, the
function of the mean residual life of Zβ, represented as Mβ(t), may be found using (3.2). We note that
the best choice under the quadratic loss function is the function of the mean residual life of Zβ:

Qls(δ,Zβ | t) = (Zβ − t − δ)2, Zβ > t,

for excess of prediction, i.e.,

δ∗(t) = arg min
δ

EZβ>t[Qls(δ,Zβ | t)] = Mβ(t), β > 0.
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Asadi et al. [19] noted that Mβ(t) is a risk local measure that depends on the threshold t. The Bayes
risk is its global risk, as

Br(Mβ) = EΠ[Mβ(t)],

where Π(t) is the distribution of prior for the threshold t.

Theorem 3.1. Let Z have the function of the mean residual life M, and assume the baseline prior
Π(t) = f (t). Then, the residual cumulative generalized exponential entropy can be expressed by the
Bayes risk of Mβ(t) as follows:

RGEXnβ(Z) =
∞∑

k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j Br(Mβ j+1)

=

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j E[Mβ j+1(Z)].

(3.3)

Proof. Under the substitution Π(t) = f (t), and utilizing the theorem of Fubini, we can express the
Bayes risk as

Br(Mα) =
∫ ∞

0
Mα(t)Π(t) dt =

∫ ∞

0
Mα(t) f (t) dt

=

∫ ∞

0


∫ ∞

t
F̄α(z) dz

F̄α(t)

 f (t) dt

=

∫ ∞

0
F̄α(z)

(∫ z

0

f (t) dt
F̄α(t)

dt
)

dz

=

∫ ∞

0
F̄α(z)

(
1

α − 1

(
F̄−α+1(z) − 1

))
dz

=
1

α − 1

∫ ∞

0

(
F̄(z) − F̄α(z)

)
dz

=
1

α − 1

(
µ −

∫ ∞

0
F̄α(z) dz

)
,

where 1 , α > 0. Therefore, we can see that∫ ∞

0
F̄α(z) dz = µ − (α − 1)Br(Mα). (3.4)

Substituting from (3.4) in (3.1), we obtain

RGEXnβ(Z) =
1
β

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j

[
µ − (β j)Br(Mβ j+1)

]
= −

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j Br(Mβ j+1),
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where the last line is obtained from noting that the inner summation:

k∑
j=0

(
k
j

)
(−1) j = (1 − 1)k = 0, for k ≥ 1.

□

Theorem 3.2. Assume that Z is a non-negativity, exactly continually random variable following the
PDF f (z). In this case

RGEXnβ(Z) = −
∞∑

k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j

(
E(Zβ j+1) + E(gβ j+1(Z))

)
,

where E(Zβ) =
∫ ∞

0
F̄β(z) dz, gβ(v) =

∫ v

0
M′(u)F̄β−1(u) du, and v > 0.

Proof. From (3.1), we can rewrite it as

RGEXnβ(Z) = −
1
β

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j

[
1
β j

(
µ −

∫ ∞

0
F̄1+β j(z)dz

)]
. (3.5)

Let η(z) = f (z)
F̄(z) be the function of the hazard rate. We then have the integration

∫ ∞

0
M(z)η(z)F̄β(z) dz =

∫ ∞

0


∫ ∞

z
F̄(t) dt

F̄2−β(z)

 f (z) dz

=

∫ ∞

0
F̄(z)

(∫ z

0
f (t)F̄β−2(t) dt

)
dz

=
1

β − 1

(
µ −

∫ ∞

0
F̄β(z)dz

)
.

(3.6)

By substituting (3.6) in (3.5), and using the result M(u)η(u) = 1 + M′(u), we get

RGEXnβ(Z) = −
1
β

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j

[∫ ∞

0
M(z)η(z)F̄β j+1(z) dz

]

= −
1
β

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j

[
E(Zβ j+1) +

∫ ∞

0
M′(z)F̄β j+1(z) dz

]

= −
1
β

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j

[
E(Zβ j+1) +

∫ ∞

0
M′(z)

∫ ∞

x
f (u)[F̄(z)]β j du dz

]

= −
1
β

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j

[
E(Zβ j+1) +

∫ ∞

0
f (u)

∫ u

0
M′(z)[F̄(z)]β j dz du

]
,

then the result follows. □
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3.2. Relation to the order of excess wealth

This part examines the connection between the residual cumulative generalized exponential entropy
and the wealth order excess, sometimes referred to as the spread right order. Examining the standard
deviations of two distribution functions is usually the simplest method to compare their variability.
However, Shaked and Shanthikumar [13] developed and thoroughly analyzed stochastic ordering and
different transformations for comparing the variability, since numerical measurements alone may not
always give adequate information. One of them is the order of excess wealth, which is used to evaluate
spread. The wealth excess convert for a non-negativity random variable Z follows a CDF H and PDF
h is given by (cf. Fernandez-Ponce et al. [20])

∆Z(v) =
∫ ∞

H−1(v)
H(z)dz =

∫ 1

v
(1 − q) ·

1
h(H−1(q))

dq

=

∫ 1

v

(
H−1(q) − H−1(v)

)
dq,

with noting that H−1(v) = inf{z : F(z) ≥ v}, v ∈ (0, 1), is the quantile function of H, and
dz = d

dq H−1(q) dq = 1
h(H−1(q)) dq. Therefore, the difference H−1(q) − H−1(v) measures the excess above

the threshold F−1(v) at a level q.

This function and the function of the mean residual life are also connected in this manner by the
following connection:

MZ(F−1(u)) =
∆Z(v)
1 − v

, 0 < v < 1. (3.7)

Equation (3.7) is used to prove the following theorem.

Theorem 3.3. If Z has a CDF of H and is a completely continuous, non-negative random variable,
then

RGEXnβ(Z) =
∞∑

k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j

[∫ 1

0
MZ(H−1(v))(1 − v)β jdv

]
. (3.8)

for all β > 0.

Proof. The residual cumulative generalized exponential entropy given in (3.3), can be rewritten as

RGEXnβ(Z) =
∞∑

k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j E[Mβ j+1(Z)]

=

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j

β j + 1
E[MZ(Zβ j+1)],

and the result follows. □
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Example 3.1. (1) Suppose that Z has a distribution of Ud(0, d). It is clear to see that

MZ(F−1(v)) =
d(1 − v)

2
.

Consequently, using (3.8), we obtain

RGEXnβ(Z) =
∞∑

k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j d

2

[∫ 1

0
(1 − v)β j+1dv

]

=

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j d

2(β j + 2)
,

β > 0.

(2) Let us examine the Pareto distribution, characterized by a scale parameter p > 0 and a shape
parameter s > 0, where the function of survival is provided by H(z) = ps

(z+p)s for z ≥ 0. It is
straightforward to observe that

MZ(F−1(v)) =
p(1 − v)

−1
s

(s − 1)
.

Consequently, using (3.8), we obtain

RGEXnβ(Z) =
∞∑

k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j p

(s − 1)

[∫ 1

0
(1 − v)β j− 1

s dv
]

=

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j j s p

(s(β j + 1) − 1)(s − 1)
,

β > 0.

4. Empirical residual cumulative generalized exponential entropy

The residual cumulative generalized exponential entropy is estimated in this section using the
empirical residual cumulative entropy. For any β > 0, and the random sample X1, X2, . . . , Xn, the
empirical estimation of the residual cumulative generalized exponential entropy is expressed as

RGEXnβ(F̂n) =
1
β

∫ ∞

0
F̂n(x)

[
e1−F̂β

n (x) − 1
]

dx

=
1
β

n−1∑
j=1

∫ X j+1;n

X j;n

(
1 −

j
n

) [
e1−

(
1− j

n

)β
− 1

]
dx

=
1
β

n−1∑
j=1

Ω j+1

(
1 −

j
n

) [
e1−

(
1− j

n

)β
− 1

]
,

(4.1)

with noting that X1;n ≤ X2;n ≤ . . . ≤ Xn;n are the associated order statistics of the random sample, and
the sample spacings are Ω j+1 = X j+1;n − X j;n, j = 1, 2, ..., n − 1. For the sample that corresponds to F,
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the empirical distribution function is described by F̂n(x) =
∑n−1

j=1
j
nA[x j,x j+1](x), x ≥ 0, with the indicator

function, Aϖ(x) = 1, x ∈ ϖ. Moreover, with β > 0, we can use the expansion form of the residual
cumulative generalized exponential entropy in (3.1) to present its empirical expression as follows:

RGEXnβ(F̂n) =
1
β

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j

∫ ∞

0
F̄1+β j(x)dx

=
1
β

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j

n−1∑
l=1

Ωl+1

(
1 −

l
n

)1+β j

.

(4.2)

Utilizing the expansion form of the empirical residual cumulative generalized exponential entropy
in (4.2), we can now provide a central limit theorem for this measure, which is derived from a random
sample with an exponential distribution.

Theorem 4.1. A sample selected at random X1, X2, . . . , Xn drawn from a common Exp(γ) distribution
is considered. In this case,

RGEXnβ(F̂n) − E
[
RGEXnβ(F̂n)

]
√

Var
[
RGEXnβ(F̂n)

] −→ standard normal distribution,

where β > 0.

Proof. The empirically residual cumulative generalized exponential entropy measure can be written as
a total of the independent exponential random variables Xl, l = 1, 2, ..., n, using the expansion (4.2),
where the variance and expected value are given by (noting that the spacing Ωl+1 are independent and
distributed by Exp(γ(n − l)))

E[Xl] =
1

nγβ

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j

(
1 −

l
n

)β j

, (4.3)

and

Var[Xl] =
1

n2γ2β2

 ∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j

(
1 −

l
n

)β j


2

. (4.4)

Consider the following: Φl,q = E[|Xl − E(Xl)|q], q = 2, 3. From (4.4), one can derive the following
estimates for n considered to be large, as follows

n∑
l=1

Φl,2 =

n∑
l=1

E[|Xl − E(Xl)|2] =
n∑

l=1

Var[Xl] =
1

n2γ2β2

n∑
l=1

 ∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j

(
1 −

l
n

)β j


2

≈
1

n2γ2β2

∫ 1

0
(e1−xβ − 1)2 dx =

1
n2γ2β2 g2.
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Additionally, given whatever random variable Xl with an exponential distribution, the following result
may be reached. From (4.3), we obtain (observing that E[|Xl − E(Xl)|3] = 2(6−e)[E(Xl)]3

e , see, [21, 22])

n∑
l=1

Φl,3 =
2(6 − e)

e

n∑
l=1

[E(Xl)]3 =
2(6 − e)
e(nγβ)3

n∑
l=1

 ∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j

(
1 −

l
n

)β j


3

≈
2(6 − e)
en3γ3β3

∫ 1

0
(e1−xβ − 1)3 dx =

2(6 − e)
en3γ3β3 g3.

Taking note of that

gq =

∫ 1

0
(e1−xβ − 1)q dx, q = 2, 3,

and the integrand (e1−xβ − 1)q is bounded and continuous over the interval [0, 1]. Therefore, it is true
for large n, given an adequate function Gn, that∑n

l=1Φl,3∑n
l=1Φl,2

≈
Gn
n
−→
n→∞

0.

Thus, the central limit theorem’s Lyapunov condition is satisfied (see, for example, [23]), thus
completing the proof. □

4.1. Procedure of the second estimator

In this subsection, a different non-parametric estimator can be developed as follows. The residual
cumulative generalized exponential entropy given in (3.1) can be rewritten as

RGEXnβ(X) =
1
β

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j

∫ ∞

0
F̄1+β j(x)dx

=
1
β

 ∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j(1 + β j)

(∫ ∞

0
x f (x) F̄β j(x) dx

) .
(4.5)

The residual cumulative generalized exponential entropy was introduced as an L-functional by
Zardasht [24]. Similarly, RGEXnβ(X) in (4.5) can be represented as

RGEXnβ(X) =
1
β

 ∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j(1 + β j)

(∫ ∞

0
xF̄β j(x) dF(x)

)
=

1
β

 ∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j(1 + β j)

(∫ ∞

0
xLnβ j(F(x))dF(x)

) ,
(4.6)

where Lnβ j(v) = (1 − u)β j, 0 ≤ u ≤ 1. In the follow-up, we can produce an estimate for RGEXnβ(X)
using the following L-statistic by replacing F in (4.6) with F̂n:

RGEXnβ∗(F̂n) =
1
β

 ∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j(1 + β j)

(∫ ∞

0
xLnβ j

(
F̂n

)
dF̂n

)
≈

1
β

 ∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j (1 + β j)

n

 n∑
l=1

Xl;nLnβ j

(
l
n

)
 .

(4.7)
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4.2. Application

Example 4.1. A random sample X1, X2, . . . , Xn selected from the EXP(1) distribution is considered.
Ωl+1 = X(l+1) − X(l) provides the sample spacing for l = 1, 2, . . . , n − 1, which are independent. Each
Ω j+1 has an exponential distribution with a parameter of (n − l). Thus, from (4.1), we obtain the
following:

(1) The mean of RGEXnβ(F̂n) is

E[RGEXnβ(F̂n)] =
1

nβ

n−1∑
l=1

(
e1−(1− l

n )β − 1
)
.

(2) The variance of RGEXnβ(F̂n) is

Var[RGEXnβ(F̂n)] =
1

n2β2

n−1∑
l=1

(
e1−(1− l

n )β − 1
)2
.

It is possible to infer, from Eq (4.7) and the relations (4.6.6)–(4.6.8) provided by Arnold et al. [25],
that

(1) The mean of RGEXn∗β(F̂n) is

E[RGEXn∗β(F̂n)] =
1
β

∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j (1 + β j)

n

n∑
l=1

Lnβ j

(
l
n

) l∑
p=1

1
n − p + 1

.

(2) The variance of RGEXn∗β(F̂n) is

Var[RGEXn∗β(F̂n)] =
1
β2

 n∑
l=1


 ∞∑

k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j (1 + β j)

n
Lnβ j

(
l
n

)
2 l∑

p=1

1
(n − p + 1)2


+ 2

n∑
l1=1

n∑
l2=1

 ∞∑
k=1

1
k!

k∑
j=0

(
k
j

)
(−1) j (1 + β j)

n
Lnβ j

(
l1

n

)
 ∞∑

k=1

1
k!

k∑
j=0

(
k
j

)

× (−1) j (1 + β j)
n

Lnβ j

(
l2

n

)) l1∑
p=1

1
(n − p + 1)2

 .
Remark 4.1. The intervals of confidence for RGEXnβ(X) can possibly be computed using the results
of Theorem 4.1 if the random variables have an exponential distribution. In particular, from (4.1) and
(4.7), it is true for any specific β > 0 that

RGEXnβ(F̂n) ± χ δ
2

√
Var[RGEXnβ(F̂n)],

RGEXn∗β(F̂n) ± χ δ
2

√
Var[RGEXn∗β(F̂n)],

where the critical point of the standard normal distribution at δ
2 is shown by χ δ

2
.

Electronic Research Archive Volume 33, Issue 3, 1633–1666.



1653

The mean and variance of the empirical residual cumulative generalized exponential function of
entropy for the aforementioned relationships are shown in Table 1. Sample sizes of 10, 20, 30, 40, and
50 were chosen, with varying values of the order β. The residual cumulative generalized exponential
entropy’s precise values are computed as follows: RGEXn1(X) = 0.718282, RGEXn2(X) = 0.515039,
and RGEXn3(X) = 0.398348. On the basis of the results in Table 1, we can conclude the following

(1) It is evident that the mean converges to the true value, and the variability of the empirical
measurement approaches zero as the sample size increases.

(2) For any fixed n and increasing β, the variance decreases.

(3) For any large n, the second estimator provides a more accurate result (by decreasing the variance)
compared with the first.

Table 1. Empirical residual cumulative generalized exponential entropy’s expected value
and variance for the exponential distribution with a unit mean for β = 1, 2, and 3 and n =
10, 20, 30, 40, and 50 sample sizes.

Sample size β E[RGEXnβ(F̂n)] Var[RGEXnβ(F̂n)] E[RGEXn∗β(F̂n)] Var[RGEXn∗β(F̂n)]

n = 10
1 0.633799 0.0618118 0.636254 0.086091
2 0.471249 0.0302985 0.57848 0.0651343
3 0.368875 0.0174016 0.530634 0.056318

n = 20
1 0.675683 0.0343049 0.027132 0.617761
2 0.493352 0.0160719 0.55787 0.0203291
3 0.38382 0.00911087 0.507678 0.017622

n = 30
1 0.689803 0.023654 0.611674 0.0135907
2 0.500628 0.0109196 0.550958 0.0101643
3 0.388709 0.00616504 0.499906 0.0061073

n = 40
1 0.696893 0.0180386 0.608645 0.00826977
2 0.504248 0.0082666 0.547493 0.00618269
3 0.391136 0.00465795 0.495995 0.00438061

n = 50
1 0.701156 0.014575 0.606833 0.00560691
2 0.506414 0.00665019 0.545411 0.00419222
3 0.392587 0.00374276 0.493641 0.00365316

Example 4.2. Reaven and Miller [26] investigated the connection between insulin and blood
chemistry indicators of glucose tolerances in 145 non-fat individuals. They visualized the data in
three dimensions using the Stanford Accelerator Linear Center’s PRIM9 technology and found an odd
pattern that resembled a big blob with two wings pointing in separate directions. Three categories
were created from the 145 observations: Overt diabetes, Chemical diabetics, and Normals.
Additionally, the 145 observations were divided into three groups: 33 for overt diabetes, 36 for
chemical diabetes, and 76 for normal diabetes. Five factors for every single individual were examined
as follows:

(1) Relative of weight (Λ1),

(2) Test plasma glucose level (Λ2),
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(3) Fasting plasma glucose level (Λ3),

(4) Plasma insulin during the test (Λ4), and

(5) Steady state plasma glucose (Λ5).

For the Λ5 data set, we fit it to the exponential distribution with the parameter γ = 0.00433. Figure
2 shows the histogram of the Λ5 data set with the exponential curve, along with the empirical and
theoretical CDFs. To statistically validate this fit, we performed a Kolmogorov-Smirnov test, which
yielded a p-value of 0.051032. This result supports the suitability of the EXP(0.00433) distribution for
modeling these data.

Figure 2. Histogram of the Λ5 data set along with the exponential curve (left) and the
empirical and theoretical CDFs (right).

Figure 3 shows the theoretical residual cumulative generalized exponential entropy, which was
computed using this exponential parameter distribution and the confidence interval (at δ = 0.05)
obtained from Eq (4.1). It is clear that the estimators’ confidence intervals contain the theoretical
value.

Figure 3. Theoretical measure of the residual cumulative generalized exponential entropy
with 95% confidence intervals in Example 4.2.
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5. Characterization of symmetry and pattern of recognition using generalized exponential
entropy

In this section, we will apply some properties and applications with the generalized exponential
entropy including symmetry characterization and classification problem with pattern of recognition.

5.1. Characterization of symmetry

Using (1.5), we can define the continuous case of the generalized exponential entropy of the
continual random variable Z with the PDF f as follows:

GEXn(Z) =
1
β

∫ ∞

−∞

f (z)(e1− f β(z) − 1) dz, (5.1)

where β ∈ R\{0}. Several interesting features of the extended exponential entropy of order statistics
appear when the PDF of the underlying identical besides the independent of random variables is
symmetric. With an underlying distribution Z containing the lth-order statistic Zl;t, 1 ≤ l ≤ t, the PDF
of a sample of size t is derived by

fl;t(z) =
1

Beta f (l, t − l + 1)
F l−1(z)F

t−l
(z) f (z), (5.2)

with nothing that Beta f (l, t − l+ 1) = Γ(l)Γ(t−l+1)
Γ(t+1) . We begin with two lemmas discussed by Fashandi and

Ahmadi [27] and Balakrishnan and Selvitella [28], respectively, the definition of fr;t in (5.2) and the
symmetry assumption serve as the immediate foundation for the proof.

Lemma 5.1. [27] The following result is supported by GZ, PDF f , and CDF F, and Z is a continuous
random variable as

f
(
F−1(v)

)
= f

(
F−1(1 − v)

)
for all v ∈ (0, 1),

which suggests the symmetry of F(z) with respect to a constant gn ∈ GZ.

Lemma 5.2. [28] Assume that the parent distribution of the order statistic Zl;t, l = 1, ..., t, has a PDF
f with noting f (µ + z) = f (µ − z), z ≥ 0. We proceed with the following analysis:

F(µ + z) = F(µ − z), fl;t(µ + z) = ft−l+1;t(µ − z).

Theorem 5.1. Let Z1, ...,Zt be identical, including independent distributed observations over Z whose
PDF is regarded as symmetric around its mean µ. Consequently, we have

(1) In the event that t is deemed to be odd, GEXnβ(Zl;t) = GEXnβ(Yt−l+1;t), l = 1, ..., t.

(2) If and only if GEXnβ(Z1;t) = GEXnβ(Zt;t), ∀t ≥ 1, then Z has a symmetric PDF.

Proof. (1) Lemma 5.2 and Eq (5.1) provide us with

GEXnβ(Zl;t) =
1
β

∫ ∞

−∞

fl;t(z)(e1− f βl;t(z)
− 1) dz

1
β

∫ ∞

−∞

fl;t(µ + z)(e1− f βl;t(µ+z)
− 1) dz

=
1
β

∫ ∞

−∞

ft−l+1;t(µ − z)(e1− f βt−l+1;t(µ−z)
− 1) dz

=
1
β

∫ ∞

−∞

ft−l+1;t(z)(e1− f βt−l+1;t(z)
− 1) dz = GEXnβ(Zt−l+1;t).
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(2) The first part of this theorem establishes the necessity. We now turn to the sufficiency. Suppose
that GEXnβ(Zl;t) = GEXnβ(Zt;t) holds for all t ≥ 1. Using Lemma 5.1, we derive the following,
for every v ∈ (0, 1),

f (F−1(1 − v)) = f (F−1(v)),

which leads to − d
du F−1(1 − v) = d

dv F−1(v). Consequently, −F−1(1 − v) = F−1(v) + gn, and thus
f (−F−1(v) − gn) = f (F−1(v)), where gn is a constant, which is valid for all v ∈ (0, 1). Substituting
F−1(v) = −gn

2 + z, we obtain f (−gn
2 − z) = f (−gn

2 + z) for all z ∈ R, thereby completing the proof
of the theorem.

□

Figure 4. Generalized exponential entropy of the lth-order statistics of Ud(−1, 1)
distribution.

Corollary 5.1. In alignment with Theorem 5.1, let ∆GEXnβ(Zp;t) = GEXnβ(Zp+1;t) − GEXnβ(Zp;t)
represent the forward difference operator with respect to p, where 1 ≤ p ≤ t − 1. It follows that
∆GEXnβ(Zl;t) = −∆GEXnβ(Zt−l;t), for l = 1, ..., t.

Remark 5.1. Define Ξt as GEXnβ(Z1;t) − GEXnβ(Zt;t). The condition Ξt = 0, for t = 1, 2, ..., holds if
and only if Z exhibits symmetry. Consequently, Ξt can serve as a fundamental measure of symmetry
and as a statistic for testing symmetry.

From the assumptions outlined in Corollary 5.1, it can be deduced that the fractional generalized
entropy GEXnβ(Zl;n) attains either a local maximum at the median. This property is illustrated using
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the Ud(−1, 1) distribution. Specifically, for the generalized exponential entropy of the median (l = 4)
with t = 7, the maximum values are −0.7269227 for β = 1, −0.56026 for β = 2, −0.4016726 for β = 3,
and −0.3036904 for β = 4 (refer to Figure 4).

5.2. Pattern of recognition

The probabilistic measures of information in the classification problems using pattern recognition
will be covered in this section. For classification problems, uncertainty measurements are a helpful
tool; for instance, one might refer to [29] and [30] in this context. We will use the data presented in
Example 4.2 to discuss its relevant pattern of recognition using the generalized exponential entropy
given in (1.5). The variables and their correlation are presented in Figure 5.

Figure 5. The variables and their correlation of Example 4.2 data (∗∗∗ : p-value < 0.001;∗∗ :
p-value < 0.01).

As indicated in Table 2(I), we select 30 samples for each data categorization in order to build
an interval number model. We next identify a sample that has both the greatest and lowest values.
An anonymous test case of every possible occurrence in the dataset is displayed. Assuming that the
selected singleton data sample (1.18, 108, 486, 297, 220) originates from the chemical diabetic group
(a singleton is a quantity that occurred only once in a dataset). To identify the singletons in a sample,
we must first select a sample from a sequence of data and then note the occurrences of the values in
that sample.
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Table 2. (I) The three specified groups’ interval numbers. (II) Distributions of probabilities
according to the interval values.

(I) Item Λ1 Λ2 Λ3 Λ4 Λ5

Normal [0.74, 1.2] [74, 112] [269, 418] [81, 267] [29, 273]
Chemical diabetic [0.83, 1.2] [75, 114] [413, 643] [109, 748] [60, 300]
Overt diabetic [0.74, 1.2] [120, 353] [538, 1520] [10, 460] [150, 458]
(II) Item Λ1 Λ2 Λ3 Λ4 Λ5

P(normal) 0.319397 0.45749 0.318917 0.395996 0.329123
P(chemical diabetic) 0.361206 0.483345 0.603506 0.234745 0.405461
P(overt diabetic) 0.319397 0.0591652 0.0775768 0.369259 0.265417

Subsequently, we create five distinct probability distributions using Kang et al.’s [31] technique,
which is based on the closeness between interval numbers. R1 = [λ1, λ2] and R2 = [λ∗1, λ

∗
2] are the two

ranges taken into account. The distance between the ranges R1 and R2 is then calculated by

I(R1,R2) =
[(
λ1 + λ2

2

)
−

(
λ∗1 + λ

∗
2

2

)]2

+
1
3

(λ1 − λ2

2

)2

+

(
λ∗1 − λ

∗
2

2

)2 .
Furthermore, their similarity ρ(R1,R2) is explained as

ρ(R1,R2) =
1

1 + ζ I(R1,R2)
,

in which ζ is the supporting coefficient; one example of its application is to set ζ to 5. For range the
R1, we use the ranges listed in Table 2(I); for the range R2, we use individual values from the selected
sample to generate the given probability distributions (for example, the range of for the value 1.18 in
the Λ1 attribute is R2 = [1.18, 1.18]). Table 2(II) shows that each of the five evaluated criteria produces
three similarity values. A probability distribution is then created using the normalized representation of
this data. These probability distributions are then evaluated using our generalized exponential entropy
measure (with β = 1, β = 2, and β = 3) and are shown in Table 3(I). We also use W∗(T ) = e−T as
the weighting foundation due to the monotonicity of the function that is considered to be exponential.
The weights are then obtained by normalizing them. For example, when the generalized exponential
entropy’s Λ3 characteristic is used, the procedure produces

W∗(Λ3) =
e−GEXn(Λ3)

e−GEXn(Λ1) + e−GEXn(Λ2) + e−GEXn(Λ3) + e−GEXn(Λ4) + e−GEXn(Λ5) ,

The weighted values W∗(Λt), t = 1, 2, 3, 4, 5, corresponding to the five characteristics, are
presented in Table 3(II). Therefore, the final probability distribution of the generalized exponential
entropy measure is listed as:

(1) Under β = 1, we obtain

P(normal) = 0.36586, P(chemical diabetic) = 0.427895, P(overt diabetic) = 0.206244.

(2) Under β = 2, we obtain

P(normal) = 0.364894, P(chemical diabetic) = 0.424175, P(overt diabetic) = 0.210931.
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(3) Under β = 3, we obtain

P(normal) = 0.364377, P(chemical diabetic) = 0.421197, P(overt diabetic) = 0.214426.

Following that, it was concluded that the chosen sample is most likely to be in the chemical diabetic
category. As a result, in this case, the conclusion was correct.

Table 3. (I) Generalized exponential entropy measurements (II) W∗(Λt), t = 1, 2, 3, 4, 5,
where the weights represent the five variables.

(I) Item Λ1 Λ2 Λ3 Λ4 Λ5

β = 1 0.945856 0.748902 0.722495 0.922879 0.931814
β = 2 0.71489 0.604572 0.5662 0.699949 0.705139
β = 3 0.539139 0.488135 0.4556 0.531995 0.534171
(II) Item W∗(Λ1) W∗(Λ2) W∗(Λ3) W∗(Λ4) W∗(Λ5)
β = 1 0.181642 0.221183 0.227102 0.185864 0.18421
β = 2 0.188615 0.210614 0.218853 0.191454 0.190463
β = 3 0.194114 0.204272 0.211027 0.195506 0.195081

Table 4. The recognition rates of entropy and generalized exponential entropy approaches.

Method Normal Chemical diabetic Overt diabetic In general
Entropy method 100% 55.5% 60.6% 72.03%
Generalized exponential entropy
method 100% 44.4% 33.3% 59.23%

Figure 6. Probabilities of the 76 normal categories tested samples.

Electronic Research Archive Volume 33, Issue 3, 1633–1666.



1660

Figure 7. Probabilities of the 36 chemical diabetic categories tested samples.

Figure 8. Probabilities of the 33 overt diabetic categories tested samples.

Using this strategy, we examined all 145 samples via the entropy and generalized exponential
entropy approaches over a range of β values, including 33 in the overt diabetic, 36 in the chemical
diabetic, and 76 in the normal categories. The recognition rates are displayed in Table 4, where the
entropy technique yields 72.03%. In the meanwhile, 59.23 is obtained using the extended exponential
entropy technique. Moreover, when β = 1, we can see the probabilities when we choose the 76
normal categories tested samples in Figure 6, the 36 chemical diabetic categories tested samples in
Figure 7, and the 33 overt diabetic categories tested samples in Figure 8 (the higher probability
indicates the right choice).

Electronic Research Archive Volume 33, Issue 3, 1633–1666.



1661

It must be emphasized that the results obtained in this section are based on the specific dataset used
in our analysis and should not be interpreted as a general statement of preference. The performance of
the proposed model may vary with different datasets, where its advantages could become more evident.

6. Conclusions and future work

In this study, we emphasized that the study of the continuous case must be carried out and not just
the discrete case, as its importance appeared in many of the applications used, such as dealing with
the order statistics, as dealing with them in the discrete case is not flexible and limited. In addition, it
is important to study the model based on the distribution function because of its many advantages.
Besides, we have seen that the residual cumulative generalized exponential entropy measure is a
generalization of the original model presented by Rao et al. [2]; this is one of the reasons why we do
not rely on the original model. Moreover, proving that this measure is bounded contributed to solving
some problems that have appeared in some theories and made it flexible in dealing with them. In
addition, the measure’s reliance on the exponential function made us use its expansion in studying
some topics, like the order of excess wealth, Bayes risk, and estimations. Moreover, the real data were
selected to see the application of this measure in terms of non-parametric estimators and the extent of
suitability of these estimators with the proposed measure. On the other hand, this data was used to
solve the problem of classification, as is clear at the end in Table 4, where the extent of the efficiency
of using this measure to solve the problem at hand was shown.

Overall, the implications of the residual cumulative generalized exponential entropy as an
extension of the residual cumulative entropy, which tends to it when β → 0, has been presented.
Numerous findings have been examined, including non-negativity, limits, relationship to the measure
of classical differential measure of entropy, and preservation features, with a few well-known and
familiar stochastic comparisons. Besides, some of those features are verified with some well-known
distributions. In addition, some characterization of our model based on the first-order statistics has
been obtained. Moreover, under the Taylor series expansion, some results on the expansion of the
residual cumulative generalized exponential entropy, such as Bayes risk and the connection with the
transform of excess wealth, have been explained. On top of that, we have examined the issue of using
its empirical CDF to estimate the residual cumulative generalized exponential entropy. In this context,
we estimate this measure using two distinct empirical estimators of the CDF. A theorem of the
centralized limitation for the empirical measurement of randomly samples drawn from a distribution
that is considered to be exponential is developed for the first estimator. A theorem of the central limit
solution for empirical measuring constructed from a randomly sample using an unknown distribution
is provided; however, it is also provided for the second estimator. Both methods were used on the
data, and we found that they are close in their results, as the average values give results close to the
true values, but there is some slight advantage for the second estimator. Moreover, the continuous
case of generalized exponential entropy is discussed to illustrate the symmetry characterization of
order statistics, using an example of a symmetric uniform distribution that shows that the median is
the point of symmetry. On the other hand, generalized exponential entropy has been discussed in
many areas, such as multi-criteria decision-making. Therefore, we have applied this model to the
classification issue by utilizing the pattern recognition of a diabetes dataset and comparing it with the
classical entropy, which shows superiority to the classical entropy measure.
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In future work, we can implement the obtained measure to different topics like the concomitants of
order statistics and tests of hypotheses and compare it against other existing entropy-based models in
terms of interpretability, efficiency, or computational feasibility. Moreover, we aim to extend our
analysis to additional common distributions, such as the normal and gamma distributions, which
currently require numerical solutions. Investigating these distributions in greater detail will help
illustrate the broader applicability of the measure and provide further insights into its practical utility.
Furthermore, while the current study relies on closed-form expressions for the variance and mean
(which eliminate the need for simulation-based data), future work will incorporate simulation studies
to compute the mean square error. This will allow us to further validate the estimator’s accuracy and
assess the convergence of bias as the sample sizes increase. Moreover, we plan to explore the
integration of the stochastic precedence order to evaluate its potential contributions and impact on our
theoretical framework, thereby broadening the scope of stochastic ordering relations analyzed in this
study.
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Appendix

The following Mathematica codes are provided to allow readers to reproduce the results presented
in the paper.

A.1. Code of calculations in Table 1 using Wolfram Mathematica

Beta= 2 ; Gamma = 1 ;
fx= 1 − Exp[−Gamma x ] ;
RGEXn= N[ 1 / Beta I n t e g r a t e [ ( 1 − fx ) ( Exp [1 − (1 − fx ) ˆ Be ta ] − 1 ) ,

{ x , 0 , I n f i n i t y } ] ] ;
n = 1 0 ;
mean= N [ 1 / ( n Beta ) Sum [ ( Exp [1 − (1 − l / n ) ˆ Beta ] − 1 ) , { l , 1 , n − 1 } ] ] ;
v a r= N [ 1 / ( n Beta ) ˆ 2 Sum [ ( Exp [1 − (1 − l / n ) ˆ Beta ] − 1 ) ˆ 2 ,

{ l , 1 , n − 1 } ] ]

A.2. Code of Figure 3 using Wolfram Mathematica

y= S o r t [ { d a t a } ] ;
n= Length [ y ] ;
Be ta= Beta ;
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Gamma= 0 . 0 0 4 3 3 ;
fx= 1 − Exp[−Gamma x ] ;
RGEXn= N[ 1 / Beta I n t e g r a t e [ ( 1 − fx ) ( Exp [1 − (1 − fx ) ˆ Be ta ] − 1 ) ,

{ x , 0 , I n f i n i t y } ] ] ;
s1= N[ 1 / Beta Sum [ ( y [ [ i + 1 ] ] − y [ [ i ] ] ) (1 − i / n )

( Exp [1 − (1 − i / n ) ˆ Beta ] − 1 ) , { i , 1 , n − 1 } ] ] ;
va r1= N[ V a r i a n c e [ y ] ] ;
c1= s1 + 1 . 9 6 S q r t [ va r1 ] ;
c2= s1 − 1 . 9 6 S q r t [ va r1 ] ;
P l o t [ {STMn, c1 , c2 } , { Beta , 0 . 0 0 1 , 3 } ,

P l o t L e g e n d s −> { ”RGEXn” , ” Upper ” , ” Lower ” } ,
AxesLabel −> Automat ic ,
P l o t S t y l e −> { Black , Red , {Dashed , Red , A b s o l u t e T h i c k n e s s [ 3 ] } } ,
Frame −> True ]

A.3. Code of Figure 4 using R software

rm ( l i s t = l s ( ) )
# Load n e c e s s a r y l i b r a r i e s
l i b r a r y ( g g p l o t 2 )

# De f i ne p a r a m e t e r s
The ta <− 4
n <− 7
a <− −1
b <− 1

# De f i ne t h e f u n c t i o n f o r f y o s 1
f y o s 1 <− f u n c t i o n ( y , r ) {

f f y <− ( y − a ) / ( b − a )
fy <− 1
r e t u r n ( ( gamma ( n + 1) * f f y ˆ ( r − 1) * (1 − f f y ) ˆ ( n − r ) * fy ) /

( gamma ( r ) * gamma ( n − r + 1 ) ) )
}

# De f i ne t h e g e n e r a l i z e d f u n c t i o n GF
GF <− f u n c t i o n ( r ) {

i n t e g r a n d <− f u n c t i o n ( y ) {
f y o s 1 v a l <− f y o s 1 ( y , r )
r e t u r n ( f y o s 1 v a l * ( exp (1 −( f y o s 1 v a l ) ˆ ( The ta ) ) −1 ) )

}

r e s u l t <− i n t e g r a t e ( i n t e g r a n d , a , b ) $ v a l u e
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r e t u r n ( ( 1 / The ta ) * r e s u l t )
}

# C r e a t e t h e p l o t d a t a
r v a l u e s <− 1 : n
GF va lues <− s a p p l y ( r v a l u e s , GF)

# C r e a t e a d a t a f rame f o r g g p l o t
d f <− d a t a . f rame ( r = r v a l u e s , GF = GF va lues )

# P l o t u s i n g g g p l o t 2
g g p l o t ( df , a e s ( x = r , y = GF ) ) +

geom po in t ( ) +
g e o m l i n e ( ) +
l a b s ( x = ” l ” , y = ” ” , t i t l e = e x p r e s s i o n ( p a s t e ( be t a , ”= 3 ” ) ) ) +
t heme min imal ( b a s e s i z e = 15)

A.4. Code of Figure 5 using R software

# C l e a r t h e e n v i r o n m e n t
rm ( l i s t = l s ( ) )
l i b r a r y ( h e p l o t s )
l i b r a r y ( GGally )

d a t a ( ” D i a b e t e s ” )

# S e l e c t on ly t h e n u m e r i c a l v a r i a b l e s
d f <− D i a b e t e s [ , c ( ” r e l w t ” , ” g l u f a s t ” , ” g l u t e s t ” , ” i n s t e s t ” , ” s spg ” ) ]

# C r e a t e a s c a t t e r p l o t m a t r i x
g g p a i r s ( df , l ower = l i s t ( c o n t i n u o u s = ” smooth ” ) )
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