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Abstract: In this paper, Kou’s method is extended to solve nonlinear systems. The convergence order
of the iterative method is proved. Using fractal theory, we study the theoretical operators related to the
iterative method, and analyze the stability of the iterative method. Properties related to strange fixed
points and critical points are explored. The fractal results indicate that the iterative method is most
stable when the parameter γ equals zero. The extended iterative method is applied to solve the Ham-
merstein equation and some nonlinear systems. The dynamic plane and numerical experiments show
that the extended iterative method can solve the nonlinear system of equations with good convergence
and stability.
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1. Introduction

Nonlinear problems are a hot topic in modern mathematics, attracting the attention of many re-
searchers. Problems in fields such as economics, physics, chemistry, and fluid dynamics can be trans-
formed into nonlinear equation systems. The solution of nonlinear equation systems is difficult to
discover, and this problem can be solved using some numerical methods [1–3]. Chen et al. proposed
the alternating direction implicit (ADI) compact differential scheme, which reduces the CPU time of
two-dimensional problems [4]. Yang et al. proposed an efficient compact finite difference method [5–7]
for solving nonlinear equations and an orthogonal Gauss collocation method (OGCM) [8] for solving
systems of partial differential equations.

Therefore, in-depth research on numerical methods for solving nonlinear systems has important
practical significance [9]. In solving nonlinear systems, we can obtain approximate solutions with
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the help of various iterative methods. Multi-point iterative methods [10–13] are an effective class of
methods for solving nonlinear equation systems.

Wang et al. achieved research results in the study of multi-point iterative methods, such as local
convergence analysis [14–16] and fractal theory-based investigations of iterative methods [17, 18].
Cordero et al. studied the three-step iterative method [19, 20] for solving nonlinear equations .

Newton’s iterative method [21] is one of the most famous iterative methods

x(n+1) = x(n) − S ′(x(n))−1S (x(n)), n ∈ 0, 1, 2, · · · . (1.1)

where S : D ⊆ Rn −→ Rn and the inverse of the Jacobian matrix S ′(xn) is S ′(xn)−1 .
On the basis of Newton’s method, Potra-Pták [22] proposed a third-order iterative method

yn = xn −
s(xn)
s′(xn)

,

xn+1 = xn −
s(xn) + s(yn)

s′(xn)
.

(1.2)

These methods (1.2) have the advantage of not needing to compute second-order derivatives.
Cordero et al. [23] proposed an iterative method using division difference instead of the traditional

Jacobi matrix

S n+1 = S n −

 m∑
h=1

AhJS (ηh(S n))

−1

F(S n), (1.3)

where ηh(x) = x − τhJ−1
S (x)S (x) and the parameters Ah satisfy

∑m
h=1 Ah = 1. Considering τ1 = 0, the

following iterative method is obtained:

S n+1 = S n −

[
1
4

JS (xn) +
3
4

JS

(
xn −

2
3

JS (xn)−1S (xn)
)]−1

S (xn). (1.4)

Kou et al. [24] proposed an iterative method for solving nonlinear equations with convergence of at
least third order 

yn = xn −
s(xn)
s′(xn)

,

xn+1 = xn − γ
s(xn) + s(yn)

s′(xn)
− (1 − γ)

s(xn)2

s′(xn)(s(xn) − s(yn))
,

(1.5)

where γ ∈ R . Let S [xn, yn] = S (yn)−S (xn)
yn−xn

and S (xn)2

S ′(xn)(s(xn)−S (yn)) can be represented as S (xn)
S [xn,yn] . We obtain an

iterative method (1.6) for solving nonlinear systems. The iterative method (1.5) can be represented as

x(n+1) = x(n) − γS ′(x(n))−1(S (x(n)) + S (y(n))) − (1 − γ)S [x(n), y(n)]−1S (x(n)), (1.6)

where
y(n) = x(n) − S ′(x(n))−1S (x(n)),

γ ∈ R is a real parameter.
The contents of this paper are as follows: Section 2 analyzes the order of convergence of the ex-

tended iterative method (1.6). In Section 3, we adopt the Möbius conjugacy map to convert the iterative
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method (1.6) to a rational operator and examine the fixed points and critical points for this rational op-
erator in depth. The parameter space is constructed and some specific parameters are chosen in the
parameter space. Section 4 compares the iterative method (1.6) with other iterative methods through
numerical experiments. Section 5 shows some fractal diagrams. We verify that the expanded method
has optimal stability and convergence for the parameter γ = 0.

2. An expanded iterative method

We prove the convergence order for the iterative method (1.6) with the following theorem .

Theorem 1. Let S : D ⊆ Rn → Rn be a sufficiently differentiable function from an open convex set D
and let x∗ ∈ D denote the solution of S (x) = 0 that makes S ′ continuous and nonsingular at x∗ . The
error equation of the iterative method (1.6) is

e(n+1) = c2
2(1 + γ)(e(n))3 + (−3c3

2(1 + 2γ) + c2c3(3 + 4γ))(e(n))4 + O((e(n))5). (2.1)

When the parameter γ = −1 , the iterative method is fourth-order convergent and the error expression
is

e(n+1) = (3c3
2 − c2c3)(e(n))4 + O((e(n))5). (2.2)

Proof. Let C(n) = 1
n!S
′(x∗)−1S (n)(x∗), i ≥ 2 and e(n) = x(n) − x∗. Expanding S in terms of the Taylor’s

series on x∗, we get

S (x(n)) =S ′(x∗)(e(n) +C2(e(n))2 +C3(e(n))3+C4(e(n))4 +C5(e(n))5) + O((e(n))6), (2.3)

S ′(x(n)) =S ′(x∗)(I +2C2e(n)+3C3(e(n))2+4C4(e(n))3+5C5(e(n))4) +O((e(n))5). (2.4)

According to the equation S ′(x(n))−1S ′(x(n)) = I , we can calculate the inverse of S ′(x(n)) :

S ′(x(n))−1 = S ′(x(∗))−1(I + A1e(n) + A2(e(n))2 + A3(e(n))3 + A4(e(n))4) + O((e(n))5)), (2.5)

where

A1 = −2C2,

A2 = 4C2
2 − 3C3,

A3 = −8C3
2 + 6C2C3 + 6C3C2 − 4C4,

A4 = 16C4
2 + 9C2

3 + 8C2C4 + 8C4C2 − 12C2
2C3 − 12C2C3C2 − 12C3C2

2 − 5C5.

Now, using(2.3)–(2.5), we get

y(n) − x∗ = x(n) − x∗ − S ′(x(n))−1S (x(n))

= e(n) +C2

(
e(n)

)2
+

(
2C3 − 2C2

2

) (
e(n)

)3

+
(
3C4 − 4C2C3 − 3C2C3 + 4C3

2

) (
e(n)

)4
+ O

(
(e(n))5

)
. (2.6)

Taylor expansion of S (y(n)) at x∗ gives

S (y(n)) = S (x∗) + S ′(x∗)(y(n) − x∗) +
S ′′(x∗)

2!
(y(n) − x∗)2 + · · · +

S (n)(x∗)
n!

(y(n) − x∗)n, (2.7)
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and we have

S (y(n)) = S ′(x(n))(C2(e(n))2 − 2(C2
2 −C3)(e(n))3 + (5C3

2 − 7C2C3 + 3C4)(e(n))4) + O((e(n))5). (2.8)

In the iterative method (1.6), a first-order difference quotient operator is introduced, which can be
regarded as a mapping relationship S [x, y] : D × D ⊂ Rn × Rn → L(Rn),

S [x, y] =
∫ 1

0
S ′(x + ρd) dρ, ∀(x, d) ∈ Rn × Rn.

By performing Taylor expansion on S ′(x + ρd) at point x, we can obtain the following results:∫ 1

0
S ′(x + ρd)dρ = S ′(x) +

1
2

S ′′(x)d +
1
6

S ′′′(x)d2 + O(d3). (2.9)

According to
x + d = y, d = y − x = −S ′(x(n))−1S (x(n)), (2.10)

the following conclusion can be reached:

S [x(n), y(n)] = S ′(x∗)(I + U1e(n) + U2(e(n))2 + U3(e(n))3 + U4(e(n))4 + O((e(n))5), (2.11)

where
U1 = C2,

U2 = C2
2 +C3,

U3 = −2C2
3 + 3C2C3 +C4,

U4 = 4C2
4 − 8C2

2C3 + 2C3
2 + 4C2C4 +C5.

(2.12)

Based on the equation S [x(n), y(n)]−1S [x(n), y(n)] = I , the inverse of S [x(n), y(n)]−1 is

S [x(n), y(n)]−1 =S ′(x∗)−1
(
I −U1e(n) +(U2

1 − U2)(e(n))2+(−U3
1 +2U1U2− U3)(e(n))3 +O((e(n))4)

)
. (2.13)

Therefore, one has

S [x(n), y(n)]−1=S ′(x∗)−1
(
I −C2e(n) +

(
C2

2 −C3

)
(e(n))2

+
(
−2C2

3 + 2C2C3 −C4

)
(e(n))3 + O((e(n))4)

)
.

(2.14)

The error equations for the iterative method (1.6) give us

e(n+1) =C2
2(1 + γ)(e(n))3 + (−3C3

2(1 + 2γ) +C2C3(3 + 4γ))(e(n))4 + O((e(n))5). (2.15)

The equation above shows that the iterative method converges at least to the third order. In particu-
lar, when the parameter γ = −1, the error equation is as follows:

e(n+1) = (3C3
2 −C2C3)(e(n))4 + O((e(n))5). (2.16)

When the parameter γ = 1, the method (1.6) is a fourth-order convergent method with the following
iteration format:

x(n+1) = x(n) + S ′(x(n))−1(S (x(n)) + S (y(n))) − 2S [x(n), y(n)]−1S (x(n)), (2.17)

where
y(n) = x(n) − S ′(x(n))−1S (x(n)). (2.18)

□
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3. Study of complex dynamic behavior

Fractal theory [25, 26] can be used to study the stability and convergence of iterative methods. To
visualize the convergence of the proposed iterative approach, fractal maps are constructed for a variety
of nonlinear functions. Such methods have been employed in numerous research studies for practical
applications. Lee et al. [27] studied a dynamic view of a class of single-parameter optimal eighth-
order multi-root finders under Riemannian ball Möbius conjugate mappings using fractal knowledge.
The complex dynamic behavior can be used for exploring the relevant properties of rational operators
connected with iterative methods, which are the unique characteristics of rational operators closely
connected with iterative methods, as demonstrated by the Möbius conjugate mappings on Riemann
spheres. A thorough study of the behavior of the complex dynamics at fixed points allows us to perform
a careful analysis of the stability of rational operators. A parameter space that was constructed by the
critical point provides us with a reference to have a better idea of the stability in the iterative method,
thus enabling us to pick more appropriate parameter values to make iterative methods more stable.

An in-depth study of the method’s (1.6) complex dynamic behavior is presented in this section.
First, we need to construct rational operators related to the iterative method (1.6).

3.1. Rational operator

Now, we will analyze the iterative method (1.5) in the context of quadratic polynomial dynamics.
The rational operator can be constructed on an arbitrary nonlinear function by a principle based on
Riemann ball dynamics [28] and the scalar theorem [29]. Therefore, a rational operator for quadratic
polynomials is designed.

Theorem 2. Let E(x) = (x − m)(x − a) be some arbitrary polynomial of quadratic form, where m and
a are its roots. The corresponding rational operator De(x; γ) of the family in (1.5) applied to E(x) is

De(x; γ) =
x3(γ + (1 + x)3)

1 + 3x + 3x2 + (1 + γ)x3 . (3.1)

Proof. Applying the iterative method (1.5) in E(x), we obtain a rational function Be associated only
with m , a, and γ. Next, we construct a rational function Be by applying the Möbius transform in Be

with the
k(x) =

x − m
x − a

. (3.2)

The properties of the conjugate mappings are as follows (see [30]):

k(∞) = 1, k(a) = ∞, k(m) = 0. (3.3)

We can get

Be = x +
(−1 + γ)(m + a − 2x)(m − x)(−a + x)

m2 + a2 + m(a − 3x) − 3ax + 3x2

+
γ(m − x)(a − x)(m2 + 3ma + a2 − 5mx − 5ax + 5x2)

(m + a − 2x)3 .

(3.4)
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and

De(x; γ) = (k ◦ Be ◦ k−1)(x)

=
x3(γ + (1 + x)3)

1 + 3x + 3x2 + (1 + γ)x3 .
(3.5)

□

According to the theorem above, we find that the expressive form of the rational operator De(x; γ)
rests on the choice of the parameter value γ. Furthermore, it is known that Be(x) and De(x; γ) are
conjugate to each other, and thus the expression for De(x; γ) contains only the parameter γ. The form
of De(x, γ) is affected by the parameter γ, so it is only necessary to explore its relation to γ. When γ is
−1 or 0 , the expressions of De(x; γ) will be further simplified by factorizing De(x; γ) as follows:

De(x;−1) =
x3((1 + x)3 − 1)

1 + 3x + 3x2 , (3.6)

and

De(x; 0) =
x3(1 + x)3

1 + 3x + 3x2 + x3 . (3.7)

3.2. Analysis of iterative methods for fixed points

In this section, the fixed points and the stability of the rational operator De(x; γ) are analyzed. The
particular value of the parameter γ will determine the number of fixed points and their stability.

De(x) − x =
x(x − 1)λ(x)
ϑ(x)

, (3.8)

where

λ(x) =1 + 4x − (−6 + γ)x2 + 4x3 + x4, (3.9)

and

ϑ(x) =1 + 3x + 3x2 + (1 + γ)x3. (3.10)

From solving the equation De(x)− x = 0, we know that the fixed points include x = 0, x = ∞, x = 1,
and the roots of the polynomial λ(x) = 1 + 4x − (−6 + γ)x2 + 4x3 + x4.

Here, x = 0 and x = ∞ are the free points and fixed points of the parameter γ, respectively. Varying
values of the parameter γ lead to different expressions for the iterative method (1.6). So, for the number
of strange fixed points for different values of the parameter, we have Theorem 3.

Theorem 3. For λ(x) and ϑ(x), we have

• If γ = 0 , (1+ x)3 is the common factor of the polynomial λ(x) and ϑ(x). In this case, the operator
De(x) exhibits one unique strong fixed point, namely x = 1.
• If γ = 9, the operator De(x) has four strange fixed points, namely x = −4.79129, x = −0.208712,

the complex number x = −0.5 + 0.866025i and x = 0.5 − 0.866025i .
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• If γ = 1, in this case, the operator De(x) exhibits two strange fixed points namely x =
−2.61803, x = −0.381966.
• If γ = 16, in this case, the operator De(x) exhibits four strange fixed points namely x =
−5.82843, x = 1 (with multiplicity 2) and x = −0.171573.
• If γ satisfies (γ − 1)(γ + 1)(γ − (−1)

1
3 )(γ − (−1)

2
3 ) , 0, the operator De(x) has nine strange fixed

points: x = 1 and the eight roots of the polynomial λ(x) = 0. Then the operator De(x) will
have five strange fixed points: in addition to x = 1 , there are four other roots of the polynomial
λ(x) = 0.

Proof.

• With λ(x) = 0 and ϑ(x) = 0, we can get

(1 + x)(1 + x + x2) = 0. (3.11)

Suppose that x ∈ C is some root such that λ(x) = 0 and ϑ(x) = 0 . Linking these two multinomial
equations, we are in a position to remove the parameter γ , giving us the equation (1 + x)(1 + x +
x2) = 0. From (1 + x) = 0 or (1 + x + x2) = 0 , we get x = −1 or (−1)

1
3 or x = (−1)

2
3 . The

common factorization of λ(x) = 0 and ϑ(x) = 0 is (1 + x) . As we substitute x = −1 for λ(x;−1)
and ϑ(x;−1) , we get the parameter γ = 0. So for the operator De(x; 0), there is now one anomaly
in the fixed points.
• The remainder of the proof is consistent with the approach outlined earlier.

□

Theorem 3 allows us to conclude that the maximum number of fixed points is 5, while the minimum
is 1. The stability of strange fixed points is discussed below. We first need to calculate the first-order
derivatives of the iterative method’s rational operator De(x; γ) with regard to the parameter γ. The
first-order derivatives of De(x; γ) are computed as follows:

D′e(x; γ) = −
3x2(1 + x)2δ(x)

ϱ(x)2 , (3.12)

where
δ(x) = 1 + γ + 4x + 6x2 + 4x3 + x4 + γx4, (3.13)

ϱ(x) =1 + 3x + 3x2 + (1 + γ)x3. (3.14)

The stability characteristics of the fixed points described above are discussed in detail next. With x = 1,
for the stability of any parameter value γ : ∀δ ∈ C \ {−8}, the following conclusions are obtained:

1) The point x is repulsive when | 24
8+γ | > 1 ;

2) The point x is attractive when | 24
8+γ | < 1 ;

3) The point x is parabolic when | 24
8+γ | = 1;

4) The point x is a superattracting point when | 24
8+γ | , 0.
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Proof. This follows from Eq (3.1):

D′e(x; γ) = −
3x2(1 + x)2δ(x)

ϱ(x)2 , (3.15)

where
δ(x) = 1 + γ + 4x + 6x2 + 4x3 + x4 + γx4, (3.16)

and

ϱ(x) =1 + 3x + 3x2 + (1 + γ)x3. (3.17)

Substituting x = 1 into (3.15), we acquire D′e(1; γ) = 24
8+γ . It is easy to obtain | 24

8+γ | = 1⇔ |24| = |8+ γ|.
Let γ = x + iy and (γ ∈ C) . Then the following equation holds: (x + 8)2 + y2 = 242. Therefore,
|D′e(1; γ)| > 1⇔ |γ + 8| < 24.

The strange fixed point is the root of x = 1 and the polynomial λ(x) = 1+4x− (−6+γ)x2+4x3+ x4.
The roots of λ(x) are denoted as λi(x), for any i ranging from 1 to 4 . For γ satisfying x(x − 1) , 0, we
have the following:

• If x = 1, taking parameter values in the region [−35, 20] × [−25, 25] , it is a point of attraction.
• λ1(x) is exclusive and independent of the value of the parameter γ.
• λ2(x), λ3(x), and λ4(x) act as attractors for the value of γ within the small region of the complex

plane [−10, 12.5] × [0.96, 0.98] , [−2.58, 2.56] × [−10.96, 12.98], [−1.58, 1.56] × [−2.06, 1.98].

Figure 1 displays the stability regions when x=1. The repulsive region is depicted as a gray area, while
the attractive region is shown as a gold area. When the selected parameter value is inside the disk, a
behaves as a repelling point, while a becomes an attractor when the γ value is outside the disk. We are
generally more attentive to values inside the disk. Figures 1 and 2 illustrate the stability characteristics
of the strange fixed points for the operator De(x; γ) .

Figure 1. The stable region at x = 1.

3.3. Analysis of the critical points De(x; γ) for iterative methods

On the basis of the definition of critical point, the critical point of the operator De(x; γ) is found
through solving the equation D′e(x; γ) = 0. Clearly, the critical points of the operator are 0 and 1, and
these are closely related to the roots of the quadratic polynomial E(x) = (x − m)(x − a). Apart from
this, the other critical points are considered to be defined as free critical points. The following theorem
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(a) λ2(x) (b) λ3(x) (c) λ4(x)

Figure 2. Stability region of λi(x), i = 2, 3, 4.

shows what happens when number of free critical points changes with various values of the parameter
γ.

Theorem 4. If D′e(x; γ) = 0, then x = −1 and δ(x) = 0 correspond to a free critical point.

• The parameter γ takes the value of 0 when x = −1, δ(x) = (1 + x)4 , then the rational operator
De(x; γ) has four free critical points, which are x = −1 (with multiplicity 4).
• The value of parameter γ is -8 when x = 1,ς(x) = (1 + x)4 − 8(1 + x4), then the rational operator

De(x; γ) has two free critical points, which are x = −0.714286− 0.699854i and x = −0.714286+
0.699854i.
• The value of the parameter γ is 1 when x = (−1)

2
3 ,ς(x) = (1 + x)4 + (1 + x4) , at which point, the

rational operator De(x; γ) has four free critical points, which are x = −1 ( with multiplicity 2)
and x = 0 ( with multiplicity 2).
• For any γ(γ + 8)(γ − 9)(γ − 1) that is not equal to 0, we can learn that there are four free critical

points.
cr1 =

−1
1+γ − τ −

1
2

√
Ω − ξ − ∆ − Γ;

cr2 =
−1

1+γ − τ +
1
2

√
Ω − ξ − ∆ − Γ;

cr3 =
−1

1+γ + τ −
1
2

√
Ω − ξ − ∆ + Γ;

cr4 =
−1

1+γ + τ +
1
2

√
Ω − ξ − ∆ + Γ;

where τ =
√
−γ+γ2

√
2
√

1+2γ+γ2
; ξ = 6

1+γ ;∆ =
2+2γ
1+γ ;Γ =

√
1+2γ+γ2( −64

(1+γ)3
+ 96

(1+γ)2
− 32

1+γ )

4
√

2
√
−γ+γ2

;Ω = 8
(1+γ)2 . In spite of the

large number of free critical points, however, they are not completely independent of each other,
but they are interconnected and together influence the dynamical behavior of the iterative method,
as cr1 =

1
cr2

and cr3 =
1

cr4
.

Proof. Under the assumption that x ∈ C indicates certain values of δ(x) = 0 if we ϱ(x) = 0, and
combine these two equations, by eliminating the parameter γ, we get (1+x)3(−1+x3)

x3 = 0 ,which can be
reduced to (1 + x)3(−1 + x3) = 0. It follows that (1 + x)3 and (−1 + x3), which can be a common
factorization of δ(x) = 0 and ϱ(x) = 0 . As a result, substituting x = −1 for δ(x) = 0 and ϱ(x) = 0
gives the parameter γ = 0, at which point δ(x)

ϱ(x) = −2 , and there are four critical points. The equation

(−1 + x3) = 0 is solved to solve for x = 1, x = −(−1)
1
3 and x = (−1)

2
3 . The equation (−1 + x3) = 0

is then solved to solve for γ = 1 and γ = −8. There are four critical points in D′e(x) = 6x2(1+x)2

(1+2x)2 when
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γ = 1. When γ = −8 , D′e(x) = −3x2(1+x)2(7+10x+7x2)
(1+4x+7x2)2 has two critical points. □

3.4. Study of parameter spaces and dynamical planes

The dynamic plane H and the parameter plane Q are plotted and used to visualize the dynamical
behavior associated with the iterative method (1.6). In the process of plotting the parameter plane,
each γ-value is located in the same connected region of the parameter space, resulting in a series of
subsets of methods (1.6) with similar dynamic behavior. Thus, more stable regions can be identified
in the parameter plane, allowing us to extract more members with stability from the family of iterative
methods (1.6).

Q = {γ ∈ C : the free critical point cr whose orbit converges to κq ∈ C̃ under the influence of the
operator De(x; γ)}.

H = {x ∈ C : for a given γ ∈ Q, the orbital of x (γ) tends towards a certain number κh ∈ C̃ under the
action of De(x; γ)}.

3.4.1. Parameter spaces

By Theorem 3, there are, at most, three free independent critical points that can be observed. Fur-
thermore, we recognize that x = −1 is actually the mapping point of the fixed point x = 1, and this
critical point does not show a distinctive feature on the parameter plane. Thus, we can distinguish two
unique parameter planes that each carry complementary information.

When analyzing the free critical point cr1 (or cr2) as the starting point for a series of iterative
methods (1.6) associated with a particular complex value, we color the complex plane according to
the convergence properties of the different methods. The corresponding point is labeled in red in the
complex plane if the iterative method (1.6) converges to zero. If the convergence is to a non-zero
value, then it will be marked in blue. For all other cases, points will be marked green. Figure 3 depicts
the parameter plane for the iterative method with the initial point set to cr1. The figure is generated
within the range of γ values [−40, 20] × [−30, 30] and [−5, 5] × [−5, 5], using a grid of 1000 × 1000
points and computed with 50 iterations for each point. Figure 3b provides a more detailed presentation
of the situation in Figure 3(a). In Figures 3 and 4, it is observed that the red region represents the
iterative method converging to 0 , the blue region represents convergence to infinity, and the green
region indicates convergence to 0 . In this final parameter selection process, we should try to avoid
using green parameter values and prioritize red or blue parameter values to ensure the stability of the
iterative process.

3.4.2. Dynamic planes

The iterative method (1.6) has a dynamic plane influenced by the parameter γ, and the regions are
marked with different colors. The region where the initial point converges to 0 we color orange , and
the region that converges to infinity is marked blue. The region is green if the initial point converges to
the fixed point x = 1. Black regions indicate no convergence to any root if the initial point converges
to black. Additionally, the iteration track is set to red. The dynamic planes are built on a 400 × 400
point grid, with each point undergoing an iterative process of up to 20 iterations. In Figure 5, the
parameter planes that correspond to some specific parameter values are shown. When γ = 0, the blue
and orange regions are the only ones, indicating that the initial points converge only to 0 and infinity.
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(a) Details of Figure Q1 (b) Details of Figure (a)

Figure 3. Parameter plan Q1 for cr1,2.

(a) Details of Figure Q2 (b) Details of Figure (a)

Figure 4. Parameter plan Q2 for cr3,4.

This parameter value is therefore considered to be a desirable value to take. For γ = −8 and γ = 1,
some black regions appear in Figure 5, and the initial values of these black regions do not converge to
any root, suggesting that these parameter values are not ideal choices.

Figure 6: Dynamic planes for special parameter values γ. We have selected the parameter values
that satisfy the condition |8 + γ| > 24 and divided these values into two subsets; a group of smaller
values, specifically γ = 20, 30, and a larger group of values including γ = 1300, 1340,−1500.A related
graphical presentation can be found in Figure 6. We plot γ = −7000, 10, 000; refer to Figure 7.

The dynamic plane shows only orange and blue as stable parameter regions. The larger the absolute
value of the parameter, the more complex the structure on the dynamic plane tends to be. Putting these
observations into context, it is possible to conclude that the corresponding iterative method shows
better stability when γ = 0.
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(a) γ = 0 (b) γ = −8

(c) γ = 1 (d) γ = 16

Figure 5. Dynamic planes of particular values of γ.
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(a) γ = 20 (b) γ = 30

(c) γ = 1300 (d) γ = 1340

(e) γ = −1500

Figure 6. Dynamic planes of other values of γ.
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(a) γ = −7000 (b) γ = 10000

Figure 7. Dynamical planes of unstable γ values.

4. Numerical experiments

In this section, we conduct a series of numerical experiments aimed at verifying the theoretical con-
vergence and stability predictions made in previous sections for the method (2.17)(XM). The iterative
methods (2.17) (XM) are compared with Homeier’s method (HM) [31] and Chun’s method (CM) [32]
for solving some nonlinear equations. Then two numerical experiments are carried out to solve the
nonlinear systems.

Homeier’s method (HM) [31]:

x(n+1) = x(n) −
S (x(n))

2

(
S ′(x(n))−1 + S ′(y(n))−1

)
, (4.1)

where y(n) = x(n) − S ′(x(n))−1S (x(n)).
Chun’s method [32]:

x(n+1) = x(n) − 3
2S ′(x(n))−1S (x(n)) + 1

2 (S ′(x(n))2)−1(S (x(n))S ′(y(n))), (4.2)

where y(n) = x(n) − S ′(x(n))−1S (x(n)).
Within Tables 1 and 2, the time column demonstrates the computing time, the x0 column labels the

starting point in the iterative process, ACOC [33] denotes the approximate convergence order.
We use six nonlinear equations mentioned in references [34, 35] for the in-depth study.

s1(x) = x3 + 4x2 − 10,
ε ≈ 1.3652300134140968.
s2(x) = x4 − log(x) − 5,
ε ≈ 1.5259939537536892.
s3(x) = sin2(x) − x2 + 1,
ε ≈ 1.4044916482153412.

s4(x) = cos
(
πx
2
+ x2 − π

)
,

ε ≈ 0.59480888843087377 − 0.0000852783334727i.
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s5(x) = arcsin(x2 − 1) −
1
2

x + 1,

ε ≈ 0.59480888843087377.

Additionally, we explore population growth patterns [36]: population dynamics are analyzed by means
of a first-order linear ordinary differential equation as follows:

P′(x) = cP(x) + s, (4.3)

where c stands for a constant birth rate and s stands for a constant migration rate. P(x) is used to rep-
resent the total population size at any random time point x. By solving the linear differential equation,
we can get its generalized solution

P(x) = P0ecx +
s
c

(ecx − 1), (4.4)

By P0, we denote the initial population size. Examining and exploring the multiple possible values of
the parameters and combining them with the initial conditions provided in the literature [37], we can
accurately calculate the birth rate by using the nonlinear equation below:

s6(x) = 1564 − 1000ex − 435
x (ex − 1), ε ≈ 0.1009979328831604.

Here, c = k represents the ideal birth rate we wish to determine.

Example 1. Take the nonlinear systemx1 + ex1 − cos(x2) = 0,
3x1 − x2 − sin(x2) = 0,

(4.5)

where x1 and x2 are the unknowns in the nonlinear system (4.5).
Example 2. Take the nonlinear the system of equations for the Hammerstein equation, which plays

a crucial role in nonlinear integral equations:

s(x) = 1 +
(
1
5

) ∫ 1

0
M(x, t)s(t)3dt, (4.6)

where x ∈ C[0, 1], x, t ∈ [0, 1]. The kernel function M is

M(x, t) =

(1 − x)t t ≤ x,

x(1 − t) x ≤ t.
(4.7)

A system of nonlinear equations is formed by discretization and solved (4.6) by approximating the
integral in Eq (4.6) by the Gauss-Legendre product method.

∫ 1

0
x(t)dt ≈

7∑
i=1

w jx(t j), (4.8)
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Table 1. Numerical results from different iteration methods.

si(x) Method x0 |x1 − x0| |x2 − x1| |x3 − x2| |x4 − x3| ACOC Time
s1(x) XM 1.4 3.476e-2 9.725e-6 2.2109e-16 2.5973e-48 2.9999996 0.390530

HM 1.4 3.4769e-2 1.333e-6 7.8428e-20 1.4607e-59 3.000001 0.398433
CM 1.4 3.475e-2 2.0184e-5 4.2017e-15 3.7902e-44 2.9999984 0.409339
XM 1.3 6.5158e-2 2.0184e-5 4.2017e-15 3.7902e-44 2.9999984 0.409339
HM 1.3 6.5223e-2 6.91e-6 9.9906e-18 3.0194e-53 2.9999994 0.406029
CM 1.3 6.507e-2 1.6018e-4 2.1006e-12 4.7361e-36 3.000016 0.418919

s2(z) XM 1.4 1.2322e-1 2.772e-3 2.3441e-8 1.4102e-23 3.0004456 0.378724
HM 1.4 1.2576e-1 2.3771e-4 2.9752e-12 5.8369e-36 2.9999689 0.633551
CM 1.4 1.1826e-1 7.7388e-3 1.1455e-6 3.6246e-18 3.0030309 0.473145
XM 1.6 7.3619e-2 3.689e-4 6.3353e-11 2.7837e-31 2.9999538 0.364632
HM 1.6 7.3904e-2 1.0183e-4 2.341e-13 2.8435e-39 3.0000122 0.487294
CM 1.6 7.3235e-2 7.7125e-4 1.1033e-9 3.2379e-27 2.9998068 0.482667

s3(z) XM 1.3 1.0363e-1 8.6367e-4 3.9673e-10 3.8196e-29 3.0001193 0.385904
HM 1.3 1.0449e-1 6.1387e-6 1.0142e-17 4.5733e-53 2.9999987 0.889935
CM 1.3 1.0241e-1 2.0802e-3 1.1527e-8 1.9478e-24 3.0005625 0.780309
XM 1.5 9.5067e-2 4.414e-4 5.2757e-11 9.0156e-32 2.9999442 0.364020
HM 1.5 9.5456e-2 5.2515e-5 6.3513e-15 1.1233e-44 3.0000132 0.815432
CM 1.5 9.4686e-2 8.2275e-4 7.0641e-10 4.4833e-28 2.9998082 0.777321

s4(z) XM 1.8 2.2924e-1 5.4852e-3 4.8052e-8 3.2011e-23 3.0007836 0.770896
HM 1.8 2.3536e-1 6.3333e-4 1.0604e-12 5.0524e-39 2.9992499 0.919149
CM 1.8 2.2038e-1 1.4339e-2 1.7532e-6 3.087e-18 3.0041621 0.869809
XM 1.9 1.3384e-1 8.8166e-4 1.9802e-10 2.2404e-30 3.0000956 0.764242
HM 1.9 1.3478e-1 5.852e-5 8.4809e-16 2.5851e-48 2.9999442 0.899065
CM 1.9 13271e-1 2.0161e-3 4.7188e-9 6.0185e-26 3.0004016 0.958593

s5(z) XM 0.7 1.0509e-1 1.0106e-4 7.3026e-14 2.755e-41 3.0000094 0.372409
HM 0.7 1.0503e-1 1.5417e-4 4.4925e-13 1.1114e-38 3.0000055 0.387347
CM 0.7 1.0484e-1 3.4457e-4 1.0807e-11 3.3333e-34 3.0000218 0.711144
XM 0.9 3.0153e-1 3.6606e-3 3.4953e-9 3.0209e-27 3.0005195 0.363470
HM 0.9 3.0066e-1 4.5271e-3 1.1409e-8 1.8204e-25 3.0002463 0.411865
CM 0.9 2.9467e-1 1.0518e-2 3.1085e-7 7.9314e-21 3.0011099 0.726080

s6(z) XM 0.2 9.8796e-2 2.0631e-4 1.9522e-12 1.6541e-36 2.999995 0.379134
HM 0.2 9.8925e-2 7.689e-5 3.4635e-14 3.1654e-42 3.0000016 0.546499
CM 0.2 9.8549e-2 4.5356e-4 4.8574e-11 5.9694e-32 2.9999684 0.509358
XM 0.6 4.7715e-1 2.1853e-2 2.2984e-6 2.6993e-18 2.9989692 0.369832
HM 0.6 4.8842e-1 1.0583e-2 9.0743e-8 5.6928e-23 3.0004065 0.509111
CM 0.6 4.5978e-1 3.9191e-2 3.0088e-5 1.4186e-14 2.9942634 0.548055
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Table 2. Numerical results of the iterative method (1.4) with stability parameter values.

si(x) γ x0 |x1 − x0| |x2 − x1| |x3 − x2| |x4 − x3| ACOC Time
s1(x) 0 0.9 4.2417e-1 4.1039e-2 1.7406e-5 1.2675e-15 3.0060079 0.395263

1 0.9 3.2788e-1 1.3573e-1 1.6133e-3 2.0244e-9 3.0657447 0.411651
9 0.9 4.4244e-1 54.806 5.2807 4.7567 nc 0.463676

s2(x) 0 1.5 2.5974e-2 2.0187e-5 9.006e-15 7.9969e-43 3.0000018 0.365875
1 1.5 2.5952e-2 4.1889e-5 1.6095e-13 9.1294e-39 3.000007 0.406378
9 1.5 2.5778e-2 2.1550e-4 1.0967e-10 1.4441e-29 3.0000642 0.524439

s3(x) 0 1.4 4.4916e-3 5.6144e-8 1.0866e-22 7.8771e-67 3.0 0.384539
1 1.4 4.4915-3 1.1286e-7 1.7652e-21 6.7536e-63 3.0 0.413546
9 1.4 4.4911e-3 5.6657e-7 1.1166e-18 8.5487e-54 3.0000001 0.703668

s4(x) 0 2.0 3.4712e-2 1.2797e-5 6.0467e-16 6.3787e-47 3.0000009 0.796057
1 2.0 3.4699e-2 2.6357e-5 1.0566e-14 6.8067e-43 3.000003 0.813411
9 2.0 3.459e-2 1.3483e-4 7.0755e-12 1.022e-33 3.0000251 0.801792

s5(x) 0 0.6 5.189e-3 9.9857e-9 7.044e-26 2.4725e-77 3.0 0.794878
1 0.6 5.189e-3 1.9977e-8 1.1281e-24 2.0311e-73 3.0 1.063982
9 0.6 5.1889e-3 9.9912e-8 7.0557e-22 1.022e-33 3.0000251 0.801792

s6(x) 0 1.6 1.1355 3.5448e-1 9.0195e-3 1.6249e-7 2.975614 0.407156
1 1.6 1.0323 4.3713e-1 2.9580e-2 1.119e-5 2.925868 0.542887
9 1.6 0.20652 2.785e-1 3.5908e-1 3.8939e-1 nc 0.554967

Table 3. Numerical results for Example 1.

γ iter
∥∥∥x(k+1) − x(k)

∥∥∥ ∥∥∥∥S
(
x(k+1)

)∥∥∥∥ ACOC
-1 6 7.188e-505 1.457e-2017 4.00000
0 7 1.126e-440 5.584e-1321 3.00000
1 7 8.525e-362 4.847e-1084 3.00000
9 8 1.170e-450 6.260e-1350 3.00000
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Here, t j and w j are the nodes in the Gauss-Legende product method and the weights. Denote the
approximation of s(t j) as xi, i = 1, . . . , 7

si − 1 −
1
5

7∑
j=1

ai js3
j = 0, i = 1, . . . , 7 (4.9)

where

ai, j =

w jt j(1 − ti) j ≤ i,

w jti(1 − t j) i < j.
(4.10)

Table 4. Numerical results for Example 2.

γ iter
∥∥∥x(k+1) − x(k)

∥∥∥ ∥∥∥∥S
(
x(k+1)

)∥∥∥∥ ACOC
-1 5 2.815e-312 8.479e-1250 4.00017
0 6 4.212e-367 2.286e-1102 3.00001
1 6 6.901e-327 2.011e-981 3.00001
9 6 1.800e-239 1.786e-718 3.00001

According to Table 1, the iterative method (1.6) has high computational accuracy. Compared with
other methods, the iterative method (1.6) takes less time for calculation. In Table 2, different values of
stabilization parameters such as γ = 0, γ = 1 and γ = 9, are chosen, and the iterative method (1.6) has
better convergence. Tables 3 and 4 are numerical experiments for solving nonlinear systems.

5. Fractal results

This section draws fractal graphs for different iterative methods used to solve the nonlinear equation
S 1(x) = x2 − 1. The iterative methods we compare include AM (when parameter γ = 0, iterative
method (1.6) is defined as AM), K2 (when parameter γ = −1, iterative method (1.6) is defined as K2),
Solaiman’s method (MH), and Kou’s method (KW).

Solaiman’s method [38] (MH):

x(n+1) = x(n) − S ′(x(n))−1S (x(n)) + 2(4(S ′(x(n)))4 − 4S (x(n))(S ′(x(n)))2S ′′(x(n))
+ (S (x(n)))2(S ′′(x(n)))2)−1S (x(n))S ′(x(n))S ′′(x(n)),

(5.1)

Kou’s method [39] (KW) :

x(n+1) = x(n) − S ′(x(n))−1(S (y(n)) − S (x(n))), (5.2)

where y(n) = x(n) + S ′(x(n))−1S (x(n)).
We created a 500 × 500 point grid to generate images in the region D = [−5, 5] × [−5, 5]. The

maximum number is 25 iterations. Blue, red, and yellow areas respectively, converge to the roots of
the polynomials, whereas areas that do not converge within the maximum number of iterations are in
black. The number of iterations is indicated by the brightness of the colors. For example, regions with
fewer iterations show brighter colors. From the fractal maps , method AM showed better convergence
than the other methods. Therefore, the iterative method (AM ) has better convergence and stability
than the other methods.
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(a) AM (b) K2

(c) MH (d) KW

Figure 8. Fractal map of various iterative methods for x2 − 1.
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6. Conclusions

The paper investigates the complex dynamic behavior exhibited by Kou’s extended iterative method,
which is used to solve systems for nonlinear equations. Strange fixed points and critical points of the
iterative method (1.6) are intensively studied. We found the relevant parameter plane and select some
parameter values for further analysis. Some unique parameter planes with values such as γ = 0,−1 and
9 are observed. By observing the parameter plane and the dynamic plane, we discover the parameter
γ = 0 to have good stability. Numerical experiments and dynamic analyses both agree with each other,
verifying the accuracy of the conclusion. We will study the iterative methods with higher convergence
and their stability in the future.
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eighth-order multiple-root finders under the Möbius conjugacy map on the Riemann sphere, Nu-
mer. Algorithms, 83 (2020),1063–1090. https://doi.org/10.1007/s11075-019-00716-8

28. X. Wang, W. Li, Choosing the best members of the optimal eighth-order Petković’s family by its
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