
Electronic  
Research Archive

https://www.aimspress.com/journal/era

ERA, 33(2): 1160–1184.
DOI: 10.3934/era.2025052
Received: 13 December 2024
Revised: 11 February 2025
Accepted: 26 February 2025
Published: 28 February 2025

Research article

Tractability of L2-approximation and integration over weighted Korobov
spaces of increasing smoothness in the worst case setting

Weiran Ding1, Jiansong Li2,*, Yumeng Jia2 and Wanru Yang2

1 School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
2 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

* Correspondence: Email: 2210501007@cnu.edu.cn.

Abstract: This paper is devoted to the study of tractability of the L2-approximation and integration
from weighted Korobov spaces of increasing smoothness in the worst-case setting. The considered
algorithms use information from the class Λall, including all continuous linear functionals, and from
the class Λstd, including function evaluations. Necessary and sufficient conditions on the weights of the
function space for strong polynomial tractability, polynomial tractability, quasi-polynomial tractability,
uniform weak tractability, weak tractability and (σ, τ)-weak tractability, are provided. Our results give
a comprehensive picture of the weight conditions for all standard notions of algebraic tractability. It
may be helpful to study the tractability of nonhomogeneous tensor product spaces.
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1. Introduction

Solving multivariate continuous problems is a classical topic in applications, and there are
thousands of papers to study this problem, usually for a fixed space of functions. Such problems can
almost never be solved analytically. Since they must be solved numerically, they can only be solved
approximately to within a threshold ε. To deal with these problems, we often use algorithms based on
finitely many information evaluations, either from the class Λall of general linear information
consisting of all continuous linear functionals, or from the class Λstd of standard information
consisting of function evaluations only. This motivates us to study the tractability of multivariate
problems referring to S = {S d : Fd → Gd}, where Fd is a Banach space of functions and Gd is another
Banach space. For ε ∈ (0, 1), the information complexity nX(ε, S d, Fd;Λ), X ∈ {ABS,NOR}, can be
defined as the least number of linear functionals that are sufficient to obtain an ε-approximation for
the information class Λ under the absolute error criterion (ABS) and normalized error criterion
(NOR). Tractability describes how the information complexity nX(ε, S d, Fd;Λ) behaves as a function
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of d and ε−1, which mainly includes strong polynomial tractability (SPT), polynomial tractability
(PT), quasi-polynomial tractability (QPT), uniformly weak tractability (UWT), weak tractability
(WT), and (σ, τ)-weak tractability ((σ, τ)-WT).

The two most important and widely studied such problems are multivariate approximation and
multivariate integration (see e.g., [1–3]). In many applications, including the solution of important
computational problems such as differential and integral equations, and problems in financial
mathematics, people are particularly interested in Sobolev spaces. A variant of Sobolev spaces is the
Korobov space, which is often called the Sobolev spaces of dominating mixed smoothness. Such
spaces are probably the most important spaces for the study of computational problems for periodic
smooth functions. Moreover, these spaces also have many interesting applications for non-periodic
functions due to interesting relations and estimates between the complexity for the periodic and
non-periodic computational problems, such as multivariate integration, see e.g., [2]. This paper is
devoted to discussing the tractability of multivariate L2-approximation

APP :=
{
APPd : H(KR)→ L2([0, 1]d)

}
d∈N

with APPd( f ) = f , and multivariate integration

INT :=
{
INTd : H(KR)→ R

}
d∈N

with INTd( f ) =
∫

[0,1]d f (x)dx, for both Λall and Λstd in the worst-case setting, where H(KR) denotes
a weighted Korobov space with increasing smoothness defined over [0, 1]d with Fourier weight R ∈
{rd,α,γ, ψd,α,γ, ωd,α,γ} (see Section 2.2 for details). Here, γ = {(1 ≥)γ1 ≥ γ2 ≥ . . . } is a positive weight
sequence and α = {(1 <)α1 ≤ α2 ≤ . . . } is an increasing smoothness sequence (see Section 2 for
details). We remark that in our considered case the initial error is 1; therefore, the results under ABS
and NOR coincide. The related problem has already been discussed in a large number papers, see
e.g., [1,3–5,7]. Particularly, for R = rd,α,γ with 1 < α1 = α2 = . . . , the complete picture of multivariate
L2-approximation for Λ ∈ {Λall,Λstd} and multivariate integration was given in [8]. For R = rd,α,γ with
1 < α1 ≤ α2 ≤ . . . , the results on multivariate L2-approximation for Λall were given in [9]. For a
more general case, R ∈ {ψd,α,γ, ωd,α,γ}, some partial results of multivariate L2-approximation for Λall

were found in [10]. The related results will be formulated in Section 2.3. In this paper, our aim is to
provide the conditions that are both sufficient and necessary for all tractability notions of multivariate
L2-approximation and multivariate integration for both information classes Λall and Λstd.

The remainder of this article is organized as follows. In Section 2 we recall some basic facts on
tractability and weighted Korobov spaces, and briefly formulate previous results and the main results of
the current paper. In Sections 3 and 4, we discuss the tractability of L2-approximation and integration
in the worst-case setting, respectively.

2. Preliminaries and main results

In this section, we first introduce the fundamental concepts related to tractability in multivariate
problems and weighted Korobov spaces, and then we recall the previous results on the tractability of
L2-approximation and integration. Finally, our results are summarized in a table.
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2.1. Tractability.

Let {Fd}d∈N, {Gd}d∈N be two sequences of Hilbert spaces, and let {S d : Fd → Gd}d∈N be a family of
continuous linear operators. We will consider two special choices of S , namely:

• L2-approximation of functions f ∈ Fd. In this case, we have S d( f ) = f and Gd = L2([0, 1]d).
• Integration of functions f ∈ Fd. In this case, we have S d( f ) =

∫
[0,1]d f (x)dx and Gd = R.

We approximate S d by algorithms An,d of the form

An,d( f ) =
n∑

i=1

Li( f )gi, (2.1)

where gi ∈ Gd and Li ∈ Λ for i = 1, · · · , n. We will assume that the considered functionals Li belong
to Λall = F∗d or Λstd. The worst-case error for the algorithm An,d of the form (2.1) is defined as

e(An,d, S d, Fd) := sup
∥ f ∥Fd≤1

∥S d( f ) − An,d( f )∥Gd .

Then, the n-th minimal worst-case error is defined by

e(n, S d, Fd;Λ) := inf
An,d

L1,...,Ln∈Λ

e(An,d, S d, Fd),

where the infimum is taken over all linear algorithms of the form (2.1). Particularly, for n = 0, the
initial error of the problem S d in the worst-case setting is defined by

e(0, S d, Fd;Λ) ≡ e(0, S d, Fd) = sup
∥ f ∥Fd≤1

∥S d( f )∥Gd = ∥S d∥Fd→Gd .

It is interesting to see how the worst-case errors of An,d depend on the number n and on the
dimension d under ABS or NOR. For this purpose, we introduce the so-called information complexity
as

nX(ε, S d, Fd;Λ) := min
{
n ∈ N0 : e(n, S d, Fd;Λ) ≤ εCRIX

d

}
where

CRIX
d :=

{1, if X = ABS,
e(0, S d, Fd), if X = NOR.

The following notions have been frequently studied. For more about tractability we refer to [1–3] by
Novak and Woźniakowski.

Consider the multivariate problem S := {S d}d∈N using the information class Λ ∈ {Λall,Λstd} under
ABS or NOR. We say that S is

1) polynomially tractable (PT) if there are C > 0 and τ, σ ≥ 0 satisfying

n(ε, S d, Fd;Λ) ≤ C ε−τdσ for all d ∈ N, ε ∈ (0, 1).

2) strong polynomially tractable (SPT) if there are C > 0 and τ ≥ 0 satisfying

n(ε, S d, Fd;Λ) ≤ C ε−τ for all d ∈ N, ε ∈ (0, 1). (2.2)

The infimum of τ ≥ 0 for which the inequality (2.2) is satisfied for a certain C > 0 is referred to
as the exponent of SPT, denoted by τ∗(Λ).
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3) quasi-polynomially tractable (QPT) if there are t ≥ 0 and C > 0 satisfying

n(ε, S d, Fd;Λ) ≤ C exp(t (1 + ln d)(1 + ln ε−1)) for all d ∈ N, ε ∈ (0, 1). (2.3)

The infimum of t ≥ 0 for which the inequality (2.3) is satisfied for a certain C > 0 is referred to
as the exponent of QPT, denoted by τ∗(Λ).

4) weak tractable (WT) if

lim
d+ε−1→∞

ln n(ε, S d, Fd;Λ)
d + ε−1 = 0.

5) (σ, τ)-weak tractable ((σ, τ)-WT) for σ, τ > 0 if

lim
d+ε−1→∞

ln n(ε, S d, Fd;Λ)
dσ + ε−τ

= 0.

6) uniform weak tractable (UWT) if (σ, τ)-WT holds for all σ, τ > 0.

It is evident that the following relationship holds:

SPT⇒ PT⇒ QPT⇒ UWT⇒ (σ, τ)-WT for all (σ, τ) ∈ (0,∞)2.

Clearly, the notions of WT and (1, 1)-WT coincide.

2.2. Weighted Korobov spaceH(KR).

Now we briefly recall some facts on weighted Korobov spaces of increasing smoothness. Weighted
Korobov spaces are special types of the reproducing kernel Hilbert spaces H(KR) with a reproducing
kernel of the form

KR(x, y) :=
∑
k∈Zd

R(k) exp(2πik · (x − y)), for all x, y ∈ [0, 1]d,

for some summable function R : Zd → (0,+∞), i.e.,
∑

k∈Zd R(k) < +∞, which is often called the
Fourier weight, and the corresponding inner product

⟨ f , g⟩H(KR) :=
∑
k∈Zd

1
R(k)

f̂ (k) ĝ(k) and ∥ f ∥H(KR) =
√
⟨ f , f ⟩H(KR) .

Here, the Fourier coefficients { f̂ (k)}k∈Zd are given by

f̂ (k) =
∫

[0,1]d
f (x) exp(−2πik · x)dx.

We remark that the reproducing kernel KR is well defined, since for all x, y ∈ [0, 1]d,

|KR(x, y)| ≤
∑
k∈Zd

R(k) < +∞.

We will consider three possible Fourier weights. Assume that γ = {γ j} j∈N is a sequence of so-called
product weights and α = {α j} j∈N is the smoothness parameter sequence satisfying

1 < α1 ≤ α2 ≤ · · · . (2.4)
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1) Weighted Korobov space.
In this case, we consider R(k) as

rd,α,γ(k) =
d∏

j=1

rα j,γ j(k j),

where

rα,γ(k) :=

 1, for k = 0,

γ 1
|k|α , for k , 0,

for γ > 0, α > 1.
Furthermore, when α j ∈ N for all j ∈ N, we define the norm

∥ f ∥2rd,α,γ
:=

∑
τi∈{0,...,αi}

i=1,...,d

( d∏
j=1
τ j,0

γ−1
j

) ∫
[0,1]d

(
∂τx f (x)

)2 dx,

where ∂τx := ∂τ1
x1 . . . ∂

τd
xd for τ := (τ1, . . . , τd) ∈ Zd. It can be checked that the norm ∥ f ∥H(Krd,α,γ ) is

finite if and only if the norm ∥ f ∥rd,α,γ is finite with the existence of ∂τx f for all τ ≤ α := (α1, . . . , αd).
This also indicates a relation between smoothness and α.

2) A first variant of the weighted Korobov space.
In this case, we consider R(k) as

ψd,α,γ(k) =
d∏

j=1

ψα j,γ j(k j),

where

ψα,γ(k) :=


1, for k = 0,

γ 1
|k|! , for 1 ≤ |k| < α,

γ (|k|−⌈α⌉)!
|k|! , for |k| ≥ α,

for γ > 0, α > 1.
3) A second variant of the weighted Korobov space.

In this case, we consider R(k) as

ωd,α,γ(k) =
d∏

j=1

ωα j,γ j(k j),

where

ωα,γ(k) :=

1 + 1
γ

⌈α⌉∑
s=1

βs(k)


−1

, βs(k) :=


|k|!

(|k|−s)! , if |k| ≥ s,

0, otherwise,

for γ > 0, α > 1.

Without loss of generality, we usually assume that the weights γ = {γ j} j∈N are ordered by

1 ≥ γ1 ≥ γ2 ≥ · · · > 0. (2.5)
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Remark 1 ( [10]). Let Rα j,γ j ∈ {rα j,γ j , ψα j,γ j , ωα j,γ j} for all j ∈ N. Then

Rα j,γ j(0) = 1 and Rα j,γ j(1) ≥
γ j

2
. (2.6)

Furthermore, we have the following proposition from [11] (also [10, Remark 4]).

Proposition 1 ( [10, 11]). Let α = {α j} j∈N be the smoothness parameter sequence satisfying (2.4) and
let γ = {γ j} j∈N be the weight sequence satisfying (2.5). Set Rd,α,γ = {Rα j,γ j} j≥1 ∈ {rd,α,γ, ψd,α,γ, ωd,α,γ}.
Then, for all j ∈ N and k ∈ Z, we have

rα j,γ j(k) ≤ ψα j,γ j(k) ≤ ⌈α j⌉
⌈α j⌉rα j,γ j(k),

and
1
3

rα j,γ j(k) ≤ ωα j,γ j(k) ≤ ψα j,γ j(k) ≤ ⌈α j⌉
⌈α j⌉rα j,γ j(k). (2.7)

Hence, we obtain
1
3

rα j,γ j(k) ≤ Rα j,γ j(k) ≤ ⌈α1⌉
⌈α1⌉rα1,γ j(k), (2.8)

which implies that for all k ∈ Zd,

rd,α,γ/3(k) ≤ Rd,α,γ(k) ≤ Rd,α1,γ(k) ≤ rd,α1,⌈α1⌉
⌈α1⌉γ(k), (2.9)

and
rd,α,γ(k), ωd,α,γ(k) ≤ ψd,α,γ(k), (2.10)

where rd,α,γ/3 =
∏d

j=1 rα j,γ j/3 and rd,α1,⌈α1⌉
⌈α1⌉γ =

∏d
j=1 rα1,⌈α1⌉

⌈α1⌉γ j
.

Remark 2. From the definition of H(KR), we know that if R1,R2 : Zd → (0,+∞) are two Fourier
weights for weighted Korobov spacesH(KR1) andH(KR2) with

R1(k) ≤ CR2(k), for all k ∈ Zd,

then
C∥ f ∥H(KR1 ) ≥ ∥ f ∥H(KR2 ), for all f ∈ H(KR2).

That is, H(KR1) is continuously embedded into H(KR2), denoted by H(KR1) ↪→ H(KR2). Meanwhile,
by (2.7), we have

rd,α,γ(k) ≤ ψd,α,γ(k) ≤

 d∏
j=1

⌈α j⌉
⌈α j⌉

 rd,α,γ(k),

and

rd,α,γ/3(k) ≤ ωd,α,γ(k) ≤

 d∏
j=1

⌈α j⌉
⌈α j⌉

 rd,α,γ(k),

which implies that
H(Krd,α,γ) ↪→ H(Kψd,α,γ) ↪→ H(Krd,α,γ),

and
H(Krd,α,γ/3) ↪→ H(Kωd,α,γ) ↪→ H(Krd,α,γ).

These also indicate a relation between smoothness and α.
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2.3. Results.

Let γ = {γ j} j∈N be a sequence of product weights and let α = {α j} j∈N be the smoothness parameter
sequence satisfying 1 < α1 ≤ α2 ≤ · · · . For the weight space H(Krd,α,γ) with 1 < α1 = α2 = . . . ,
the complete picture of tractability of L2-approximation APP for both Λall and Λstd, and integration
INT, has been obtained in [12]. Besides, [5, 10] obtained some partial results of weighted Korobov
space H(KR) with R ∈ {rd,α,γ, ψd,α,γ, ωd,α,γ}. The characterization of tractability will be given in terms
of decay conditions on the weight sequence γ = {γ j} j∈N. Before presenting our findings, we will first
outline some key notations. (We use the convention that inf ∅ = ∞.)

• The infimum of the sequence γ is denoted by

γI := inf
j≥1
γ j.

• The infimum of the sequence (ln γ−1
j / ln j) j∈N is denoted by

δγ := lim inf
j→∞

ln γ−1
j

ln j
.

• The sum exponent sγ is defined as

sγ := inf

κ > 0 :
∞∑
j=1

γκj < ∞

 .
• The exponent tγ is defined as

tγ := inf

κ > 0 : lim sup
d→∞

1
ln d

d∑
j=1

γκj < ∞

 .
We summarize the above results in the following two tables (Tables 1 and 2).

Table 1. Tractability of L2-approximation for 1 ≥ γ1 ≥ γ2 ≥ · · · > 0 and 1 < α = α1 = α2 =

· · · under ABS and NOR by the information class Λall.

rd,α,γ ψd,α,γ and ωd,α,γ

SPT sγ < ∞ sγ < ∞
PT sγ < ∞ sγ < ∞
QPT γI < 1 suff.: γI < 1
UWT γI < 1 ?
(σ, τ)-WT, σ ∈ (0, 1] γI < 1 ?
WT γI < 1 ?
(σ, τ)-WT, σ > 1 no extra condition on γ no extra condition on γ
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Table 2. Tractability of L2-approximation for 1 ≥ γ1 ≥ γ2 ≥ · · · > 0 and 1 < α1 ≤ α2 ≤ · · ·

under ABS and NOR by the information class Λall.

rd,α,γ ψd,α,γ and ωd,α,γ

SPT δγ > 0 δγ > 0
PT δγ > 0 δγ > 0
QPT γI < 1 ?
UWT γI < 1 ?
(σ, τ)-WT, σ ∈ (0, 1] γI < 1 ?
WT γI < 1 ?
(σ, τ)-WT, σ > 1 no extra condition on γ no extra condition on γ

Remark 3. We remark that the condition δγ > 0 is equivalent to the condition sγ < ∞ which can be
seen from the condition 1 < α = α1 = α2 = · · · in Tables 1 and 2.

In this paper, we outline the conditions necessary for the tractability of L2-approximation inH(KR)
for both Λall and Λstd, as demonstrated in Theorems 1 and 2. The results of our findings are presented
in Table 3.

Table 3. Tractability of L2-approximation for 1 ≥ γ1 ≥ γ2 ≥ · · · > 0 and 1 < α1 ≤ α2 ≤ · · ·

under ABS and NOR. (To all three weights.)

Λall Λstd

SPT sγ < ∞
∑∞

j=1 γ j < ∞

PT sγ < ∞ lim sup
d→∞

1
ln d

∑d
j=1 γ j < ∞

QPT γI < 1 lim sup
d→∞

1
ln d

∑d
j=1 γ j < ∞

UWT γI < 1 lim
d→∞

1
dσ

∑d
j=1 γ j = 0 ∀σ ∈ (0, 1]

(σ, τ)-WT for σ ∈ (0, 1] γI < 1 lim
d→∞

1
dσ

∑d
j=1 γ j = 0

WT γI < 1 lim
d→∞

1
d

d∑
j=1
γ j = 0

(σ, τ)-WT for σ > 1 no extra condition on γ no extra condition on γ

This paper also investigates the tractability of integration INT. We obtain the sufficient and
necessary conditions on all tractability notions, which are the same as for the tractability of the
L2-approximation APP for the class Λall.

3. L2-approximation inH(KR).

This section focuses on the tractability of L2-approximation on the weighted Korobov spaceH(KR).
We will study this problem for the classes Λall and Λstd, respectively. More precisely, we want to
approximate the embedding operators

APPd : H(KR)→ L2([0, 1]d), APPd( f ) = f ,

Electronic Research Archive Volume 33, Issue 2, 1160–1184.
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in the worst-case setting. It can be seen that APPd is the compact embedding from the weighted space
H(KR) to L2([0, 1]d). To approximate APPd with respect to the L2-norm ∥ · ∥L2 over [0, 1]d, it follows
from [1, 13] that it suffices to use linear algorithms Aapp

n,d of the form

Aapp
n,d ( f ) =

n∑
i=1

Li( f ) gi (3.1)

with gi ∈ L2([0, 1]d) and Li ∈ {Λ
all,Λstd} for i = 1, . . . , n. Remember thatH(KR) is a reproducing kernel

Hilbert space and Λstd ⊆ Λall.
The n-th minimal worst-case error with respect to the information class Λ is given by

e(n,APPd,H(KR);Λ) := inf
Aapp

n,d
L1,...,Ln∈Λ

sup
∥ f ∥H(KR)≤1

∥ f − Aapp
n,d ( f )∥L2 ,

where the infimum is extended over all algorithms of the form (3.1) with information from Λ. For
n = 0, the initial approximation error is given by

e(0,APPd,H(KR)) := sup
∥ f ∥H(KR)≤1

|APPd( f )| = ∥APPd∥.

In the following, we assume that 0 < R(k) ≤ 1 for all k ∈ Zd, which implies that the norm of APPd is
1, since for all f ∈ H(KR),

∥APPd( f )∥2L2
= ∥ f ∥2L2

=
∑
k∈Zd

| f̂ (k)|2 ≤
∑
k∈Zd

1
R(k)
| f̂ (k)|2 = ∥ f ∥2

H(KR) < +∞,

and the above inequality is sharp if f ≡ 1. In the remaining part of this paper, we always assume
that 0 < R(k) ≤ 1, which implies that there is no need to distinguish between ABS and NOR. For
abbreviation, we write n(ε,APPd,H(KR);Λ) ≡ nX(ε,APPd,H(KR);Λ).

3.1. The information class Λall.

First we present the results on L2-approximation in the weighted Korobov space H(KR) for the
information class Λall.

Theorem 1. Let α = {α j} j∈N be the smoothness parameter sequence satisfying (2.4) and let γ = {γ j} j∈N

be the weight sequence satisfying (2.5). Consider the L2-approximation problem APP = {APPd}d∈N

for the weighted spaces H(KR), R ∈ {rd,α,γ, ψd,α,γ, ωd,α,γ} for the information class Λall under ABS and
NOR. We have the following conditions:

(i) (Cf. [10]) SPT and PT are equivalent and hold iff sγ < ∞. In this case, the exponent of SPT is

τ∗(Λall) = 2 max
(

1
α1
, sγ

)
.

(ii) QPT, UWT, WT, and (σ, τ)-WT with σ ∈ (0, 1], are are equivalent and hold iff γI < 1. In this case,
the exponent of QPT satisfies

t∗(Λall) ≤ 2 max
(

1
α1
,

1
lnγ−1

I

)
,
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and the equality holds for R ∈ {rd,α,γ, ψd,α,γ}. (In particular, if γI = 0, then we set (lnγ−1
I )−1 := 0

and we have that t∗(Λall) = 2/α1.)
(iii) (Cf. [10]) For σ > 1, (σ, τ)-WT always holds.

To obtain the above theorem, we recall some basic knowledge about L2-approximation for the
information class Λall. It is well known, see e.g., [1], that the n-th minimal worst-case errors
e(n,APPd,H(KR);Λall) and the information complexity n(ε,APPd,H(KR);Λall) depend on the
eigenvalues of the continuous linear operator

Wd = APP∗dAPPd : H(KR)→ H(KR).

Let (λd, j, ηd, j) j∈N be the eigenpairs of Wd, i.e.,

Wdηd, j = λd, jηd, j, for all j ∈ N,

where the eigenvalues (λd, j) are ordered by λd,1 ≥ λd,2 ≥ · · · ≥ 0, and the eigenvectors (ηd, j) j∈N are
orthonormal,

⟨ηd,i, ηd, j⟩H(KR) = δi, j, for all i, j ∈ N.

Then, the n-th minimal error is obtained (see [1, Corollary 4.12]) for the algorithm

A∗n,d f =
n∑

j=1

⟨ f , ηd, j⟩H(KR)ηd, j, for all f ∈ H(KR),

and
e(n,APPd,H(KR);Λall) = e(A∗n,d,H(KR),Λall) = λ1/2

d,n+1. (3.2)

Hence, the information complexity is equal to

n(ε,APPd,H(KR);Λall) =
∣∣∣∣{n ∈ N0 : λd,n > ε

2
}∣∣∣∣ ,

with ε ∈ (0, 1) and d ∈ N. Since it follows from [1] that the eigenpairs of the operator Wd are (R(k), ek)
with k ∈ Zd, where

ek(x) :=
√

R(k) exp(2πik · x),

we have
n(ε,APPd,H(KR);Λall) =

∣∣∣∣{k ∈ Zd : R(k) > ε2
}∣∣∣∣ . (3.3)

Now we begin to prove Theorem 1.

Proof of Theorem 1. (i) and (iii) have been proved in [10]. We include the proof of item (i) and (ii) in
a different way as a warm-up.

(i) From [1, Theorem 5.2], we know that APP is PT for Λall if and only if there exist q ≥ 0 and τ > 0
such that

Cτ,q := sup
d∈N

 ∞∑
j=1

λτd, j


1/τ

d−q < ∞, (3.4)

and τ∗(Λall) = inf{2τ : τ satisfies (3.4)}.
Since SPT implies PT, it suffices to demonstrate the sufficiency of sγ < ∞ for SPT, and the necessary

of sγ < ∞ for PT.
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• Sufficiency of sγ < ∞ for SPT.
Now we assume that sγ < ∞. Then, for any τ > max(sγ, 1

α1
), we have

∑∞
j=1 γ

τ
j < ∞. Using (2.10)

and (2.8), we obtain

∞∑
j=1

λτd, j =

d∏
j=1

1 + 2
∞∑

k=1

(Rα j,γ j(k))τ


≤

d∏
j=1

1 + 2⌈α1⌉
⌈α1⌉τ

∞∑
k=1

(rα j,γ j(k))τ


≤

d∏
j=1

(
1 + 2⌈α1⌉

⌈α1⌉τγτjζ(α jτ)
)

= exp

 d∑
j=1

ln
(
1 + 2⌈α1⌉

⌈α1⌉τγτjζ(α jτ)
)

≤ exp

2⌈α1⌉
⌈α1⌉τ

d∑
j=1

ζ(α jτ)γτj


≤ exp

2⌈α1⌉
⌈α1⌉τζ(α1τ)

∞∑
j=1

γτj

 < ∞,
where we also used that ln(1 + x) ≤ x for x ≥ 0 and ζ(α1τ) < ∞ for τ > 1/α1. This leads to
Cτ,q < ∞ for all q ≥ 0, thus we have SPT, PT and

τ∗(Λall) ≤ 2 max
(
sγ, 1

α1

)
. (3.5)

• Necessity of sγ < ∞ for PT.
Now we assume that PT holds. Then there exists τ > 0 such that (3.4) holds with q = 0. Clearly,
we need τ > 1/α1. Again using (2.8) and ζ(α jτ) > 1 for all j, we obtain

∞∑
j=1

λτd, j =
∑
k∈Zd

(Rd,α,γ(k))τ =
d∏

j=1

1 + 2
∞∑

k=1

(Rα j,γ j(k))τ


≥

d∏
j=1

1 + 2
3τ

∞∑
k=1

(rα j,γ j(k))τ


=

d∏
j=1

(
1 +

2
3τ
γτjζ(α jτ)

)
≥

1
3τ

d∑
j=1

γτj .

Meanwhile, (3.4) implies that
∑∞

j=1 γ
τ
j < ∞ and hence sγ ≤ τ < ∞. Combining both results yields

that τ ≥ max(sγ, 1
α1

) and hence also

τ∗(Λall) ≥ 2 max
(
sγ, 1

α1

)
. (3.6)

Then (3.5) and (3.6) imply τ∗(Λall) = 2 max(sγ, 1
α1

).
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(ii) From [3, Theorem 23.2] (see also [14]), we know that APP is QPT if and only if there exists a
τ > 0 such that

Cτ := sup
d∈N

Cτ,d := sup
d∈N

1
d2

 ∞∑
j=1

λτ(1+ln d)
d, j


1/τ

< ∞. (3.7)

First, assume that γI < 1. For R ∈ {rd,α,γ, ψd,α,γ, ωd,α,γ}, we have, by (2.7) and similar to the proof
of [11, Theorem 14], that

∞∑
j=1

λτ(1+ln d)
d, j =

∑
k∈Zd

(Rd,α,γ(k))τ(1+ln d)

≤
∑
k∈Zd

(ψd,α,γ(k))τ(1+ln d)

=

d∏
j=1

1 + 2
∞∑

k=1

(ψα j,γ j(k))τ(1+ln d)


=

d∏
j=1

1 + 2γτ(1+ln d)
j

⌈α j⌉−1∑
k=1

(
1
k!

)τ(1+ln d)

+

∞∑
k=⌈α j⌉

(
(k − ⌈α j⌉)!

k!

)τ(1+ln d)



≤

d∏
j=1

1 + 2γτ(1+ln d)
j

⌈α j⌉−1∑
k=1

(
1
k!

)τ(1+ln d)

+

∞∑
k=⌈α j⌉

(
1

(k − ⌈α j⌉ + 1)α j

)τ(1+ln d)



=

d∏
j=1

1 + 2γτ(1+ln d)
j

⌈α j⌉−1∑
k=1

(
1
k!

)τ(1+ln d)

+

∞∑
k=1

(
1

kα j

)τ(1+ln d)



=

d∏
j=1

1 + 2γτ(1+ln d)
j

⌈α j⌉−1∑
k=1

(
1
k!

)τ(1+ln d)

+ ζ(α jτ(1 + ln d))




≤

d∏
j=1

1 + 2γτ(1+ln d)
j

 ∞∑
k=1

(
1
k!

)τ(1+ln d)

+ ζ(α1τ(1 + ln d))

 .
In order that ζd := ζ(α1τ(1 + ln d)) < ∞ for all d ∈ N, we need τ > 1/α1. Next, we have

∞∑
k=1

(
1
k!

)τ(1+ln d)

= 1 +
1

2τ(1+ln d) +
1

6τ(1+ln d) +

∞∑
k=4

(
1
k!

)τ(1+ln d)

≤ 1 +
1

2τ(1+ln d) +
1

6τ(1+ln d) +

∞∑
k=4

(
1

2τ(1+ln d)

)k

= 1 +
1

2τ(1+ln d) +
1

6τ(1+ln d) +
1

24τ(1+ln d)

1
1 − 1/2τ(1+ln d)

= 1 +
1

2τ(1+ln d) +
1

6τ(1+ln d) +
1

24τ(1+ln d) − 23τ(1+ln d)

≤ 1 +
1

2τ(1+ln d) +
1

6τ(1+ln d) +
1

23τ ln d

1
24τ − 23τ

≤ 1 +
1

2τ ln d

(
2 +

1
24τ − 23τ

)
= 1 +

cτ
dτ ln 2 ,
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where cτ := 2 + 1/(24τ − 23τ). This gives

Cτ,d ≤
1
d2

 d∏
j=1

(
1 + 2γτ(1+ln d)

j

( cτ
dτ ln 2 + ζd

))
1/τ

= exp

1
τ

d∑
j=1

ln
(
1 + 2γτ(1+ln d)

j

(
ζd +

cτ
dτ ln 2

))
− 2 ln d


≤ exp

2
τ

(
ζd +

cτ
dτ ln 2

) d∑
j=1

γτ(1+ln d)
j − 2 ln d

 ,
where we used that ln(1 + x) ≤ x for all x ≥ 0. Using the inequality

ζ(x) ≤ 1 +
1

x − 1
, for all x > 1,

we have
ζd ≤ 1 +

1
(α1τ − 1) + α1τ ln d

.

Then we obtain

Cτ,d ≤ exp

2
τ

(
1 +

1
(α1τ − 1) + α1τ ln d

+
cτ

dτ ln 2

) d∑
j=1

γτ(1+ln d)
j − 2 ln d

 .
Now we distinguish two cases:

• Case 1: γI = 0. In this case, we have lim j→∞ γ j = 0 and hence, there is a J ∈ N such that
γ j ≤ e−1/τ for all j ≥ J. Then

d∑
j=1

γτ(1+ln d)
j ≤

J−1∑
j=1

1 +
d∑

j=J

e− ln d = J.

Note that J depends on τ, and it is finite for any fixed τ. Thus, if τ > 1/α1 and γI = 0 then

Cτ,d ≤ exp
{

2
τ

(
1 +

1
(α1τ − 1) + α1τ ln d

+
cτ

dτ ln 2

)
J − 2 ln d

}
→ 0 if d → ∞.

By the characterization in (3.7), this implies QPT.
• Case 2: γI ∈ (0, 1). In this case, for any γ∗ ∈ (γI , 1), there exists a j0 ∈ N such that γ j ≤ γ∗ < 1

for all j > j0. Then for every d ∈ N,

d∑
j=1

γτ(1+ln d)
j ≤ j0 + γ

τ(1+ln d)
∗ max(d − j0, 0)

= j0 +
γτ∗max(d − j0, 0)

dτ ln γ−1
∗

≤ j0 + 1,
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whenever τ ≥ (ln γ−1
∗ )−1. Thus, if τ > 1/α1 and τ ≥ (ln γ−1

∗ )−1, then

Cτ,d ≤ exp
{

2
τ

(
1 +

1
(α1τ − 1) + α1τ ln d

+
cτ

dτ ln 2

)
( j0 + 1) − 2 ln d

}
→ 0, if d → ∞.

Again, by the characterization in (3.7), this implies QPT.

Clearly, QPT implies UWT, WT, and (σ, τ)-WT with σ ∈ (0, 1]. So it remains to prove that WT
implies γI < 1. To this end, we let γI = 1, i.e., γ j ≡ 1. Then we derive from (2.6) that for k ∈ {0, 1}d,

Rd,α,γ(k) =
d∏

j=1

Rα j,γ j(k j) ≥
d∏

j=1

(γ j

2

)
=: η,

which, by (3.3), implies that for any ε ∈ (0,
√
η),

n(ε,APPd,H(KR);Λall) ≥
∣∣∣∣{k ∈ {0, 1}d : Rd,α,γ(k) > ε2

}∣∣∣∣ = 2d.

This means that APP suffers from the curse of dimensionality, and thus, we cannot have (σ, τ)-WT for
any σ ∈ (0, 1]. This deduces that QPT, UWT, WT, and (σ, τ)-WT with σ ∈ (0, 1] are equivalent, and
hold iff γI < 1.

Now we turn to calculate the exponent of QPT. Again from [3, Theorem 23.2], we know that the
exponent of QPT is

t∗(Λall) = inf {2τ : τ satisfies (3.7)} .

From the above part of the proof, it follows that τ satisfies (3.7) as long as τ > 1/α1 and τ > (lnγ−1
I )−1,

where we put (lnγ−1
I )−1 := 0 whenever γI = 0. Therefore,

t∗(Λall) ≤ 2 max
(

1
α1
,

1
lnγ−1

I

)
.

Assume now that we have QPT for R ∈ {rd,α,γ, ψd,α,γ}. Then, (3.7) holds true for some τ > 0.
Consideration of the special case d = 1 together with (3.7) yields that

Cτ ≥

 ∞∑
j=1

λτ1, j


1/τ

=

1 + 2
∞∑

k=1

Rτ
α1,γ1

(k)

1/τ

≥

1 + 2
∞∑

k=1

rτα1,γ1
(k)

1/τ

=
(
1 + 2ζ(α1τ)γτ1

)1/τ ,

where we used (2.10), and hence we must have τ > 1/α1. This already implies the result t∗(Λall) = 2/α1

whenever γI = 0.
It remains to study the case γI > 0. Now, again according to (3.7) and (2.10), there exists a τ > 1/α1

such that for all d ∈ N we have

Cτ ≥
1
d2

 d∏
j=1

(
1 +

∞∑
k=1

(Rα j,γ j(k))τ(1+ln d)
)

1/τ
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≥
1
d2

 d∏
j=1

(
1 +

∞∑
k=1

(rα j,γ j(k))τ(1+ln d)
)

1/τ

=
1
d2

 d∏
j=1

(
1 + γτ(1+ln d)

j ζ(α jτ(1 + ln d))
)

1/τ

≥
1
d2

 d∏
j=1

(
1 + γτ(1+ln d)

j

)
1/τ

= exp

1
τ

d∑
j=1

ln
(
1 + γτ(1+ln d)

j

)
− 2 ln d

 .
Taking the logarithm leads to

ln Cτ ≥
1
τ

d∑
j=1

ln
(
1 + γτ(1+ln d)

j

)
− 2 ln d

≥
d
τ

ln
(
1 + γτ(1+ln d)

I

)
− 2 ln d

for all d ∈ N. Since γI ∈ (0, 1) and since ln(1+ x) ≥ x ln 2 for all x ∈ [0, 1], it follows that for all d ∈ N
we have

ln Cτ ≥
d ln 2
τ
γτ(1+ln d)

I − 2 ln d

=
γτI ln 2
τ

d1−τ lnγ−1
I − 2 ln d,

which implies that τ ≥ (lnγ−1
I )−1. Therefore, we will get

t∗(Λall) ≥ 2 max
(

1
α1
,

1
lnγ−1

I

)
and the claimed result follows.

(iii) The result for (σ, τ)-weak tractability forσ > 1 for the classΛall follows from the corresponding
result for the class Λstd from Theorem 2.

The proof is completed. □

3.2. The information class Λstd.

In the next theorem, we present the respective conditions for tractability of L2-approximation in the
weighted Korobov spaceH(KR) for the information class Λstd.

Theorem 2. Let α = {α j} j∈N be the smoothness parameter sequence satisfying (2.4) and let γ = {γ j} j∈N

be the weight sequence satisfying (2.5). Consider the L2-approximation problem APP = {APPd}d∈N

for the weighted spacesH(KR), R ∈ {rd,α,γ, ψd,α,γ, ωd,α,γ} for the information class Λstd under ABS and
NOR. Then we have the following conditions:
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(i) SPT holds iff
∞∑
j=1

γ j < ∞

(which implies sγ ≤ 1). In this case, the exponent of SPT is

τ∗(Λstd) = 2 max
(

1
α1
, sγ

)
.

(ii) PT, QPT are equivalent and hold iff

lim sup
d→∞

1
ln d

d∑
j=1

γ j < ∞. (3.8)

(iii) WT holds iff

lim
d→∞

1
d

d∑
j=1

γ j = 0. (3.9)

(iv) UWT holds iff

lim
d→∞

1
dσ

d∑
j=1

γ j = 0, for all σ ∈ (0, 1]. (3.10)

(v) For σ ∈ (0, 1], (σ, τ)-WT holds iff

lim
d→∞

1
dσ

d∑
j=1

γ j = 0. (3.11)

For σ > 1, (σ, τ)-WT always holds.

The proof of Theorem 2 is based on relations between the minimal errors of Λstd and Λall, in
particular on [17, Theorem 1] and on [6, Theorem 1] (see also [3, Theorem 26.10]). These results
provide that the trace of the operator Wd = APP∗dAPPd is finite. Recall that the trace of Wd is given by
the sum of its eigenvalues, i.e.,

trace(Wd) =
∞∑
j=1

λd, j =
∑
k∈Zd

Rd,α,γ(k) =
d∏

j=1

1 + 2
∞∑

k=1

Rα j,γ j(k)

 .
Using (2.10), we obtain

trace(Wd) ≤
d∏

j=1

1 + 2⌈α1⌉
⌈α1⌉

∞∑
k=1

rα j,γ j(k)


=

d∏
j=1

(
1 + 2⌈α1⌉

⌈α1⌉ζ(α j)γ j

)
≤

d∏
j=1

(
1 + 2⌈α1⌉

⌈α1⌉ζ(α1)γ j

)
(3.12)
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and

trace(Wd) ≥
d∏

j=1

1 + 2
3

∞∑
k=1

rα j,γ j(k)

 = d∏
j=1

(
1 +

2γ j

3
ζ(α j)

)
.

Hence trace(Wd) is infinite if and only if α1 = α2 = · · · = 1. Note that in general there is no relation
between the power of Λall and Λstd whenever the trace of Wd is infinite. For a discussion of this issue
we refer to [3, Section 26.3].

In order to prove the sufficiency of PT for Λstd, we use a criterion from [3] as stated below.

Lemma 2. ( [3, Theorem 26.13]). Consider multivariate approximation APP = {APPd}d∈N in the
worst-case setting for ABS or NOR, where

APPd : Fd → Gd with APPd( f ) = f ,

and Fd is a reproducing kernel Hilbert space continuously embedded in Gd. Assume that the trace of
Wd is finite for all d, and there are two constants C, q ≥ 0 such that

trace(Wd)
(CRIX

d )2
≤ Cdq, f or all d ∈ N.

Then polynomial tractabilities of APP for Λall and Λstd are equivalent. Particularly, if q = 0, then
strong polynomial tractabilities of APP for Λall and Λstd are equivalent. More precisely,

nX(ε,APPd, Fd;Λall) ≤ Callε−pall
dqall

for all ε ∈ (0, 1), d ∈ N,

implies that there exists a constant Cstd ≥ 0 such that

nX(ε,APPd, Fd;Λstd) ≤ Cstdε−pstd
dqstd

for all ε ∈ (0, 1), d ∈ N,

where
pstd = pall + 2 and qstd = qall + q.

Now we prove Theorem 2.

Proof of Theorem 2. It follows from (4.2) in Section 4 that necessary conditions of tractability for
integration INT are also necessary for L2 approximation APP. Consequently, the necessity of the
conditions outlined in items (i)–(v) is derived from Theorem 3. It is enough to examine whether the
conditions in items (i)–(v) are sufficient.

(i) Clearly, α1 > 1 implies that trace(Wd) is finite for all d ∈ N. Then according to [17, Theorem 1],
there is a positive integer c satisfying for all n ∈ N

e(c n,APPd,H(KR);Λstd)2 ≤
1
n

∞∑
k=n

e(k,APPd,H(KR);Λall)2. (3.13)

Now let
∑∞

j=1 γ j < ∞. Then, the sum exponent sγ ≤ 1.
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• First we consider sγ < 1. Then, using Theorem 1, we have SPT for Λall with exponent

τ∗(Λall) = 2 max
(

1
α1
, sγ

)
< 2.

Hence, for every τ > τ∗(Λall) there is C > 0 such that

n(ε,APPd,H(KR);Λall) ≤ Cε−τ,

which yields that

e(k,APPd,H(KR);Λall) ≤
C

k1/τ .

Inserting into (3.13) gives

e(c n,APPd,H(KR);Λstd)2 ≤
C
n

∞∑
k=n

1
k2/τ ≤

C
n

∫ ∞

n

1
x2/τdx

=
C
n

τ

2 − τ
1

n2/τ−1 ≤
C τ

2 − τ
1

n2/τ .

Hence, there exists a number aτ > 0 such that

e(c n,APPd,H(KR);Λstd) ≤
aτ

n1/τ ,

which implies that
n(ε,APPd,H(KR);Λstd) ≤

⌈
c aττ ε

−τ⌉ .
Hence, since τ > τ∗(Λstd) is arbitrary, we have SPT with

τ∗(Λstd) = 2 max
(

1
α1
, sγ

)
.

(Note that trivially τ∗(Λstd) ≥ τ∗(Λall) = 2 max(1/α1, sγ).)
• Next we consider sγ = 1. From (3.13) and (3.2) we obtain

e(c n,APPd,H(KR);Λstd)2 ≤
1
n

∞∑
k=n

λd,k+1 ≤
1
n

∞∑
k=1

λd,k =
trace(Wd)

n
. (3.14)

Since
∑∞

j=1 γ j < ∞ and α1 > 1, we derive from (3.12) that

trace(Wd) ≤ exp

 d∑
j=1

ln
(
1 + 2⌈α1⌉

⌈α1⌉ζ(α1)γ j
)

≤ exp

2⌈α1⌉
⌈α1⌉ζ(α1)

∞∑
j=1

γ j


=: Γ < ∞.
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Hence, insertion into (3.14) gives

e(c n,APPd,H(KR);Λstd)2 ≤
Γ

n
.

From this, we obtain in the same way as above SPT with

τ∗(Λstd) = 2 = 2 max
(

1
α1
, sγ

)
.

(ii) Assume that (3.8) holds. This implies that there exists a constant M > 0 such that

1
ln d

d∑
j=1

γ j < M, for all d ∈ N.

Then, by (3.12) we have

trace(Wd) ≤ exp

2⌈α1⌉
⌈α1⌉ζ(α1)

d∑
j=1

γ j


≤ exp

(
2⌈α1⌉

⌈α1⌉ζ(α1) ln dM
)
= d2⌈α1⌉

⌈α1⌉ζ(α1)M.

Meanwhile, since the sequence (γ j) j∈N is non-increasing, we have

d γd

ln d
≤

1
ln d

d∑
j=1

γ j < M, for all d ∈ N,

which implies that* γ j = O( j−1 ln j) and sγ = 1. By Theorem 1 ( this implies that APP is SPT for Λall,
i.e., there exist two constants Call, pall ≥ 0 such that

n(ε,APPd,H(KR);Λall) ≤ Callε−pall
for all ε ∈ (0, 1) and d ∈ N.

Now Lemma 2 implies that there is a constant Cstd > 0 such that

n(ε,APPd,H(KR);Λstd) ≤ Cstdε−pstd
dqstd

for all ε ∈ (0, 1) and d ∈ N,

where
pstd = pall + 2 and qstd = ⌈α1⌉

⌈α1⌉ζ(α1)M.

Hence, we have PT and QPT for Λstd.
(iii)–(v) If any of the three conditions (3.9), (3.10) or (3.11) holds, then this leads to γI < 1, since

otherwise, for every σ ∈ (0, 1],

lim
d→∞

1
dσ

d∑
j=1

γ j = lim
d→∞

d
dσ
= lim

d→∞
d1−σ ≥ 1.

*Here, A j = O(B j) means that there exists a constant C > 0 independent of j such that A j ≤ CB j.
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Therefore, we know from Theorem 1 that WT, UWT, and (σ, τ)-WT with σ ∈ (0, 1] hold for Λall.
We only prove the sufficiency of (3.11) for (σ, τ)-WT with σ ∈ (0, 1] since the other two weak

tractabiliies can be deduced similarly. Thus, it suffices to show that (3.11) implies (σ, τ)-WT with
σ ∈ (0, 1]. Indeed, we observe from (3.12) that

ln(trace(Wd))
dσ

≤
1

dσ
ln

 d∏
j=1

(
1 + 2⌈α1⌉

⌈α1⌉ζ(α1)γ j
)

=
1

dσ

d∑
j=1

ln
(
1 + 2⌈α1⌉

⌈α1⌉ζ(α1)γ j
)

≤
2⌈α1⌉

⌈α1⌉ζ(α1)
dσ

d∑
j=1

γ j,

where we used that ln(1 + x) ≤ x for all x ≥ 0. Thus (3.11) implies

lim
d→∞

ln(trace(Wd))
dσ

= 0.

Following the proof of [3, Theorem 26.11], we can obtain (σ, τ)-WT with σ ∈ (0, 1] for Λstd.
The proof is completed. □

4. Integration inH(KR).

In this section, we investigate the tractability of integration operators defined on the weighted
Korobov spaceH(KR). More precisely, we want to approximate the integral operators

INTd : H(KR)→ R, INTd( f ) =
∫

[0,1]d
f (x)dx = f̂ (0),

in the worst-case setting. We approximate INTd by means of linear algorithms Aint
n,d of the form

Aint
n,d( f ) :=

n∑
i=1

λi f (xi), (4.1)

with nodes x1, . . . , xn ∈ [0, 1]d and integration weights λ1, . . . , λn ∈ R.
The n-th minimal error for integration inH(KR) is defined as

e(n, INTd,H(KR)) := inf
Aint

n,d

sup
∥ f ∥H(KR)≤1

∣∣∣INTd( f ) − Aint
n,d( f )

∣∣∣
where the infimum is taken over all algorithms of the form (4.1). For n = 0, the initial integration error
is given by

e(0, INTd,H(KR)) := sup
∥ f ∥H(KR)≤1

|INTd( f )| = ∥INTd∥.

In the following, we assume that R(0) = 1, which leads to the norm of INTd is 1, since

∥INTd∥ = sup
0, f∈H(KR)

| f̂ (0)|
∥ f ∥H(KR)
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= sup
0, f∈H(KR)

| f̂ (0)|√∑
k∈Zd R−1(k) | f̂ (k)|2

≤ sup
0, f∈H(KR)

| f̂ (0)|√
| f̂ (0)|2

= 1

and the upper bound can be attained by choosing f = 1. Therefore, there is no need to distinguish
between ABS and NOR. For abbreviation, we write n(ε, INTd,H(KR)) ≡ nX(ε, INTd,H(KR)).

Obviously, we have
e(n, INTd,H(KR)) ≤ e(n,APPd,H(KR);Λstd),

which implies
n(ε, INTd,H(KR)) ≤ n(ε,APPd,H(KR);Λstd). (4.2)

Now we formulate our result of the tractability of integration INT in the weighted Korobov space
H(KR) for R ∈ {rd,α,γ, ψd,α,γ, ωd,α,γ}.

Theorem 3. Let α = {α j} j∈N be the smoothness parameter sequence satisfying (2.4), and let γ = {γ j} j∈N

be the weight sequence satisfying (2.5). Consider the integration problem INT = {INTd}d∈N for the
weighted spacesH(KR), R ∈ {rd,α,γ, ψd,α,γ, ωd,α,γ}. Then we have the following conditions:

(i) SPT holds iff
∞∑
j=1

γ j < ∞

(which is equivalent to sγ ≤ 1). In this case the exponent of SPT satisfies

τ∗(Λstd) = 2 max
(

1
α1
, sγ

)
.

(ii) PT, QPT are equivalent and hold iff

lim sup
d→∞

1
ln d

d∑
j=1

γ j < ∞.

(iii) WT holds iff

lim
d→∞

1
d

d∑
j=1

γ j = 0.

(iv) UWT holds iff

lim
d→∞

1
dσ

d∑
j=1

γ j = 0, for all σ ∈ (0, 1].

(v) For σ ∈ (0, 1] (σ, τ)-WT holds iff

lim
d→∞

1
dσ

d∑
j=1

γ j = 0.

For σ > 1, (σ, τ)-WT always holds.
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To verify Theorem 3, we shall give the lower bound of the n-th minimal error for INT in H(KR).
we will employ the subsequent proposition and lemma.

Proposition 3 ( [15]). For j = 1, . . . , d, let β j ∈ (0, 1] and let H j be a reproducing kernel space on
[0, 1] such that (1, β j cos(2πx), β j sin(2πx)) are orthonormal in H j. Consider the integration problem
INT for f ∈ Hd = H1 ⊗ · · · ⊗ Hd. We have

e(n, INTd,Hd)2 ≥ 1 − n
d∏

j=1

(1 + β2
j)
−1.

Lemma 4. Let α = {α j} j∈N be the smoothness parameter sequence satisfying (2.4), and let γ = {γ j} j∈N

be the weight sequence satisfying (2.5). Set R ∈ {rd,α,γ, ψd,α,γ, ωd,α,γ}. Then, for all n ∈ N,

e(n, INTd,H(KR)) ≥ e(n, INTd,H(Krd,α,γ/3)).

Proof. This can be deduced from Remark 2, (2.9), and the definition of the n-th minimal error for
integration. □

Applying Proposition 3 and Lemma 4 to the weighted spaceH(Krd,α,γ/3), we obtain the lower bound
of e(n, INTd,H(KR)) for R ∈ {rd,α,γ, ψd,α,γ, ωd,α,γ}.

Lemma 5. Let α = {α j} j∈N be the smoothness parameter sequence satisfying (2.4), and let γ = {γ j} j∈N

be the weight sequence. Set R ∈ {rd,α,γ, ψd,α,γ, ωd,α,γ}. Then we have

e(n, INTd,H(KR))2 ≥ 1 − n
d∏

j=1

(
1 +

1
3
γ j

)−1

. (4.3)

This implies that for all ε ∈ (0, 1),

n(ε, INTd,H(KR)) ≥ (1 − ε2)
d∏

j=1

(
1 +

1
3
γ j

)
. (4.4)

Proof. Clearly, the weighted Korobov space H(Krd,α,γ/3) satisfies the conditions of Proposition 3 with
β j =

√
γ j/3, j = 1, . . . , d, which, by Proposition 3 and Lemma 4, implies that for

R ∈ {rd,α,γ, ψd,α,γ, ωd,α,γ},

e(n, INTd,H(KR))2 ≥ e(n, INTd,H(Krd,α,γ/3))
2 ≥ 1 − n

d∏
j=1

(
1 +

1
3
γ j

)−1

,

which gives (4.3). For all ε ∈ (0, 1), letting e(n, INTd,H(KR)) ≤ ε, we will obtain (4.4). This completes
the proof. □

Remark 4. We remark that for R ∈ {rd,α,γ, ψd,α,γ}, the constant 1/3 in (4.3) and (4.4) can be replaced by
1. That is,

e(n, INTd,H(KR))2 ≥ 1 − n
d∏

j=1

(
1 + γ j

)−1
,

and for all ε ∈ (0, 1),

n(ε, INTd,H(KR)) ≥ (1 − ε2)
d∏

j=1

(
1 + γ j

)
.
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Now we turn to give the proof of Theorem 3.

Proof of Theorem 3. According to (4.2), we know that the sufficient condition on the tractability of the
L2-approximation problem for Λstd also works for the integration problem in H(KR). Therefore, we
only need to verify the necessary conditions.

First, we assert that lim j→∞ γ j = 0. If it does not hold, there would exist a constant γ∗ > 0 such that
γ j ≥ γ∗ > 0 for every j ∈ N. According to Lemma 5, it can be derived that

n(ε, INTd,H(KR)) ≥ (1 − ε2)
(
1 +

1
3
γ∗

)d

.

Thus n(ε, INTd,H(KR)) grows exponentially fast in d, which implies that INT suffers from the curse
of dimensionality. This proves our claim.

Now we assume that
∑∞

j=1 γ j = ∞. Then we can derive from lim j→∞ γ j = 0 and the inequality
x ln 2 ≤ ln(1 + x) ≤ x, x ∈ [0, 1] that†

d∏
j=1

(
1 +

1
3
γ j

)
= exp

 d∑
j=1

ln
(
1 +

1
3
γ j

)
= Θ

exp

1
3

d∑
j=1

γ j


 . (4.5)

Then it follows from (4.4) and (4.5) that

lim
d→∞

n(ε, INTd,H(KR)) = ∞,

which implies that INT cannot be SPT. Thus
∑∞

j=1 γ j < ∞ is necessary for SPT.
Next assume that lim supd→∞

1
ln d

∑d
j=1 γ j = ∞. Then we can derive from lim j→∞ γ j = 0 that

d∏
j=1

(
1 +

1
3
γ j

)
= Θ

(
d

1
3 ln d

∑d
j=1 γ j

)
.

Combining with (4.4), we obtain that n(ε, INTd,H(KR)) goes to infinity faster than any power of d,
and INT cannot be PT. Thus, lim supd→∞

1
ln d

∑d
j=1 γ j < ∞ is necessary for PT.

Finally, assume that

lim
d+ε−1→∞

ln n(ε, INTd,H(KR))
dσ + ε−τ

= 0, σ ∈ (0, 1].

Then we can derive from (4.4) and (4.5) that

lim
d→∞

1
dσ

d∑
j=1

γ j = 0.

This implies the condition is necessary for the three WT notions.
The proof is completed. □

†Here, Ad = Θ(Bd) means that there exsits a constant C > 0 independent of d such that C−1Bd ≤ Ad ≤ CBd.
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5. Concluding remarks

This paper gives a complete picture of the tractability of multivariate L2-approximation for both
Λall and Λstd, and multivariate integration from weighted Korobov spaces of increasing smoothness in
the worst-case setting. According to the results in [16], the corresponding tractability conditions of
L2-approximation in the randomized case setting are the same as in the worst-case setting. Moreover,
our results may be helpful to study the tractability of nonhomogeneous tensor product spaces.
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