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Abstract: This paper is devoted to the study of tractability of the L,-approximation and integration
from weighted Korobov spaces of increasing smoothness in the worst-case setting. The considered
algorithms use information from the class A%, including all continuous linear functionals, and from
the class A*Y, including function evaluations. Necessary and sufficient conditions on the weights of the
function space for strong polynomial tractability, polynomial tractability, quasi-polynomial tractability,
uniform weak tractability, weak tractability and (o, 7)-weak tractability, are provided. Our results give
a comprehensive picture of the weight conditions for all standard notions of algebraic tractability. It
may be helpful to study the tractability of nonhomogeneous tensor product spaces.
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1. Introduction

Solving multivariate continuous problems is a classical topic in applications, and there are
thousands of papers to study this problem, usually for a fixed space of functions. Such problems can
almost never be solved analytically. Since they must be solved numerically, they can only be solved
approximately to within a threshold . To deal with these problems, we often use algorithms based on
finitely many information evaluations, either from the class A¥ of general linear information
consisting of all continuous linear functionals, or from the class A% of standard information
consisting of function evaluations only. This motivates us to study the tractability of multivariate
problems referring to S = {S, : F; — G4}, where F,; is a Banach space of functions and G, is another
Banach space. For ¢ € (0, 1), the information complexity n*(e, S 4, F4; A), X € {ABS,NOR}, can be
defined as the least number of linear functionals that are sufficient to obtain an e-approximation for
the information class A under the absolute error criterion (ABS) and normalized error criterion
(NOR). Tractability describes how the information complexity n*(g, S 4, F4; A) behaves as a function
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of d and &', which mainly includes strong polynomial tractability (SPT), polynomial tractability
(PT), quasi-polynomial tractability (QPT), uniformly weak tractability (UWT), weak tractability
(WT), and (o, 7)-weak tractability ((o, 7)-WT).

The two most important and widely studied such problems are multivariate approximation and
multivariate integration (see e.g., [1-3]). In many applications, including the solution of important
computational problems such as differential and integral equations, and problems in financial
mathematics, people are particularly interested in Sobolev spaces. A variant of Sobolev spaces is the
Korobov space, which is often called the Sobolev spaces of dominating mixed smoothness. Such
spaces are probably the most important spaces for the study of computational problems for periodic
smooth functions. Moreover, these spaces also have many interesting applications for non-periodic
functions due to interesting relations and estimates between the complexity for the periodic and
non-periodic computational problems, such as multivariate integration, see e.g., [2]. This paper is
devoted to discussing the tractability of multivariate L,-approximation

APP := {APPd - H(Kz) — Ly([0, 1]d)}d€N

with APP,(f) = f, and multivariate integration

INT := {INTd t H(Kg) — R}deN

with INT,(f) = f[o i f(X)dx, for both A and A*Y in the worst-case setting, where H(K) denotes

a weighted Korobov space with increasing smoothness defined over [0, 1]¢ with Fourier weight R €
{Faays Waay> Waa,y} (see Section 2.2 for details). Here, ¥ = {(1 >)y; > ¥, > ...} is a positive weight
sequence and @ = {(1 <)a; < a, < ...} is an increasing smoothness sequence (see Section 2 for
details). We remark that in our considered case the initial error is 1; therefore, the results under ABS
and NOR coincide. The related problem has already been discussed in a large number papers, see
e.g., [1,3-5,7]. Particularly, for R = r; 4, with 1 <a; = a, = ..., the complete picture of multivariate
L,-approximation for A € {A™, A*"} and multivariate integration was given in [8]. For R = Yday With
l < a < a < ..., the results on multivariate L,-approximation for A*" were given in [9]. For a
more general case, R € {Y/4q.y, Wiay}, some partial results of multivariate L,-approximation for A*!
were found in [10]. The related results will be formulated in Section 2.3. In this paper, our aim is to
provide the conditions that are both sufficient and necessary for all tractability notions of multivariate
L,-approximation and multivariate integration for both information classes A*' and A*.

The remainder of this article is organized as follows. In Section 2 we recall some basic facts on
tractability and weighted Korobov spaces, and briefly formulate previous results and the main results of
the current paper. In Sections 3 and 4, we discuss the tractability of L,-approximation and integration
in the worst-case setting, respectively.

2. Preliminaries and main results
In this section, we first introduce the fundamental concepts related to tractability in multivariate
problems and weighted Korobov spaces, and then we recall the previous results on the tractability of

L,-approximation and integration. Finally, our results are summarized in a table.
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2.1. Tractability.

Let {Fj}uen, {Galaery be two sequences of Hilbert spaces, and let {S,; : Fy — Gg}aen be a family of
continuous linear operators. We will consider two special choices of S, namely:

e L,-approximation of functions f € F,. In this case, we have S ,(f) = f and G4 = L,([0, 1]9).
e Integration of functions f € F,. In this case, we have S ,(f) = f[o o f(x)dx and G; = R.

We approximate S, by algorithms A, ; of the form

Ava(F) = ) L, 2.1
i=1

where g; € Gyand L; € A fori = 1,--- ,n. We will assume that the considered functionals L; belong
to A* = F* or A*. The worst-case error for the algorithm A, 4 of the form (2.1) is defined as

e(Ana>Sa, Fa) = sup |ISa(f) — Ana(Hllg,-
Ifllr, <1

Then, the n-th minimal worst-case error is defined by

en,Sa, Fa; A) = i\nf e(Ana,Sa Fa),
nd

where the infimum is taken over all linear algorithms of the form (2.1). Particularly, for n = 0, the
initial error of the problem S, in the worst-case setting is defined by

e(0,S4, F; A) = €(0,54, Fa) = sup [ISa(Plle, = IS allr,-6,-
IfllF, <1

It is interesting to see how the worst-case errors of A,, depend on the number n and on the
dimension d under ABS or NOR. For this purpose, we introduce the so-called information complexity
as

n*(e.S4, Fs: A) :=min{n € Ny : e(n, Sy, Fa: A) < e CRI}

where
1, if X = ABS,
e(0,84,Fy), if X = NOR.
The following notions have been frequently studied. For more about tractability we refer to [1-3] by
Novak and WoZniakowski.

Consider the multivariate problem S := {S ;}4e using the information class A € {A*, A%} under
ABS or NOR. We say that § is

CRI) ::{

1) polynomially tractable (PT) if there are C > 0 and 7, 0 > 0 satisfying
ne,Sq, Fi; N) <Ce'd? foralld e N, g€ € (0, 1).
2) strong polynomially tractable (SPT) if there are C > 0 and 7 > O satisfying
ne,Sq, Fi;A) < Ce  foralld e N, € € (0, 1). (2.2)
The infimum of 7 > 0 for which the inequality (2.2) is satisfied for a certain C > 0 is referred to

as the exponent of SPT, denoted by 7°(A).
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3) quasi-polynomially tractable (QPT) if there are r > 0 and C > 0 satisfying
n(e, S, Fi; A) < C exp(t (1 +Ind)(1 +Ing™)) foralld € N, & € (0, 1). (2.3)

The infimum of ¢ > 0 for which the inequality (2.3) is satisfied for a certain C > 0 1s referred to
as the exponent of QPT, denoted by 7°(A).

4) weak tractable (WT) if
lnn(87 Sd’ Fda A) _

li 0.
dret e d+e!
5) (o, 7)-weak tractable ((o, 7)-WT) for o, 7 > 0 if
lim lnn(a’Sd,Fd’A) -0.

d+e 1500 do— + &7
6) uniform weak tractable (UWT) if (o, 7)-WT holds for all o, 7 > 0.

It is evident that the following relationship holds:
SPT = PT = QPT = UWT = (0, 7)-WT for all (o, 1) € (0, ).

Clearly, the notions of WT and (1, 1)-WT coincide.

2.2. Weighted Korobov space H(KR).

Now we briefly recall some facts on weighted Korobov spaces of increasing smoothness. Weighted
Korobov spaces are special types of the reproducing kernel Hilbert spaces H(K) with a reproducing
kernel of the form

Kr(x,y) = Z R(k) exp(2nik - (x —y)), forall x,y € [0, 119,

kezd

for some summable function R : Z¢ — (0, +), i.e., > kezd R(K) < +co, which is often called the
Fourier weight, and the corresponding inner product

—
f, &)y = Z mf K)gk) and ||fllaxey = Vs re -
kez4

—

Here, the Fourier coefficients { f(k)}ycz« are given by

fk) = £(x) exp(=2nik - x)dx.
[0,1)4
We remark that the reproducing kernel Ky is well defined, since for all x,y € [0, 1]¢,
IKr(x,y)| < D R(K) < +00.

kezd

We will consider three possible Fourier weights. Assume that y = {y;};ay is a sequence of so-called
product weights and a = {a;}jav is the smoothness parameter sequence satisfying

l<a;<ay<---. (2.4)
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1) Weighted Korobov space.
In this case, we consider R(k) as

d

Faay ) = [ | ru, k),

j=1

where

1, for k =0,
Tay(k) =
7 y#, for k # 0,

fory >0,a > 1.
Furthermore, when «; € N for all j € N, we define the norm

d

I, = >, ([ fw @0y

where 8% := 87! ... for T := (11,...,74) € Z%. Tt can be checked that the norm || f ”W(Krd,a,y) is
finite if and only if the norm || f]],,,, is finite with the existence of 9% f forall T < @ := (ay, .. ., @q).
This also indicates a relation between smoothness and «.

2) A first variant of the weighted Korobov space.
In this case, we consider R(K) as

d
Wd,a,y(k) = n wa’j,)/j(kj)’

j=1

where
1, for k =0,

l//a,y(k) = ’}/ﬁ’ for 1 < [k < a,
y UL for [k > a,
fory > 0,a > 1.
3) A second variant of the weighted Korobov space.
In this case, we consider R(K) as

d
wd,a,y(k) = n waj,yj(kj)a

j=1

where
[a] L k| > s,

-1
! -5’
Wa,y(K) = (1 + ;Zﬁs(k)] , By(k) = { (()lkl )

pr) otherwise,

fory > 0,a > 1.
Without loss of generality, we usually assume that the weights y = {y;} ey are ordered by

>y =2y, >2--->0. (2.5)
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Remark 1 ([10]). Let Ry, y; € {ra,y;» Wa,y;» Wa,y;} fOr all j € N. Then

Royy,(0) = 1 and Ry, (1) 2 2. (2.6)

@jsYj
Furthermore, we have the following proposition from [11] (also [10, Remark 4]).

Proposition 1 ( [10, 11]). Let @ = {a;}jen be the smoothness parameter sequence satisfying (2.4) and
let y = {y;}jexr be the weight sequence satisfying (2.5). Set Rjay = {Ra,y;t i1 € {TaaysVaeys Wiayt-
Then, for all j € N and k € Z, we have

ra/j,yj(k) < l/la/j,yj(k) < raj-lraj-lra'j,)/j(k)’

and |
3T (k) < Way,(K) < Yay (k) < [a; 11 ry (k). 2.7
Hence, we obtain
) < Rey () < [T, 0, 2.38)
which implies that for all k € Z¢,
Tday/3(K) < Riay(K) < Ry, y(K) < 74, 10,7011, (K), (2.9)
and
Fa.oy(K), Waay(K) < g0, (K), (2.10)

where rg o3 = ]_[?:1 Yajyil3 AN Ty o, o7y = H;l:l T a1y,
Remark 2. From the definition of H(Ky), we know that if R|,R, : Z¢ — (0, +o0) are two Fourier
weights for weighted Korobov spaces H(Kg,) and H(Kg,) with
R1(K) < CRy(K), for allk € Z¢,
then
Cll fllgtcxr,) = I1fl1ke,)» for all f € H(Kg,).
That is, H(Kp,) is continuously embedded into H(Kg,), denoted by H(K,) — H(Kg,). Meanwhile,

by (2.7), we have
d
Faay () < Yoy (K) < ]_[raﬂf“ﬂ] Faay ().
j=1

and
d

Faay3(K) < Wy (K) < (]—[faﬂ“’”

J=1

r d,a,y(k)’

which implies that

HK,,,,) — H(Ky,,,) = HK,,,)
and
H(K,,,,) = H(K,,,,) = HK,, ).

These also indicate a relation between smoothness and «.
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2.3. Results.

Let ¥ = {y;}ax be a sequence of product weights and let @ = {a;};ay be the smoothness parameter
sequence satisfying 1 < a; < a, < ---. For the weight space ?{(K,dm) withl <oy =a, = ...,
the complete picture of tractability of L,-approximation APP for both A®! and A, and integration
INT, has been obtained in [12]. Besides, [5, 10] obtained some partial results of weighted Korobov
space H(Kg) with R € {ry 0.y Wa ey, Waay)- The characterization of tractability will be given in terms
of decay conditions on the weight sequence ¥ = {y,}ay. Before presenting our findings, we will first
outline some key notations. (We use the convention that inf ) = c0.)

e The infimum of the sequence y is denoted by

y; :=infy;.

j21
e The infimum of the sequence (In yjfl /In j) jen 1s denoted by

Iny;!

0y 1= ligriglf I

e The sum exponent s,, is defined as
Sy = inf{;<>(): Zy§<00}.
=1

e The exponent 7, is defined as

d
1
t, = inf{K> 0: ligls;lpm;)/j < oo}.
We summarize the above results in the following two tables (Tables 1 and 2).

Table 1. Tractability of L,-approximation for 1 >y, >y, >--->0and 1l <a=a) =ay =
- under ABS and NOR by the information class A%,

rd,a,y lﬁdﬂ’y and (,l)d,my
SPT 5y < 00 §y < 00
PT 5, < 00 $y < 00
QPT v, <1 suff.: y, < 1
UWT v, <1 ?
(o, 7)-WT, 0 € (0, 1] v, <1 ?
WT v, <1 ?

(o,7)-WT, 0 > 1

no extra condition on y

no extra condition on y

Electronic Research Archive

Volume 33, Issue 2, 1160-1184.
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Table 2. Tractability of L,-approximationfor 1 >y, >y, >--->0and 1 <) <ay < ---
under ABS and NOR by the information class A&,

rd,a',y wd,a,y and (Ud,a,y

SPT 0,>0 0, >0

PT 0, >0 0, >0

QPT v, <1 ?

UWT v, <1 ?

(o, 7)-WT, 0 € (0, 1] v, <1 ?

WT v, <1 ?

(o,7)-WT, o > 1 no extra condition on y no extra condition on y

Remark 3. We remark that the condition ¢,, > 0 is equivalent to the condition s,, < co which can be
seen from the condition 1 < @ = @] = @, = --- in Tables 1 and 2.

In this paper, we outline the conditions necessary for the tractability of L,-approximation in H(Kx)
for both A and A*Y, as demonstrated in Theorems 1 and 2. The results of our findings are presented
in Table 3.

Table 3. Tractability of L,-approximationfor 1 >y, >y, >--->0and 1 <a; <@, <---
under ABS and NOR. (To all three weights.)

Adll Asd

SPT 5y < 00 21y <

PT 5, < 00 lirdn_itlp LYy <o

QPT y, <1 113121;) LYy <o

UWT y, <1 lim £ 35,7, = 0 Vo € (0,1]
(o, 7)-WT for o € (0, 1] y, <1 lim +X,y,=0

WT y, <1 dli_)l‘gcll]gl’)/jZO

(o,7)-WT foro > 1 no extra condition on y no extra condition on y

This paper also investigates the tractability of integration INT. We obtain the sufficient and
necessary conditions on all tractability notions, which are the same as for the tractability of the
L,-approximation APP for the class A%,

3. L,-approximation in H(Kjy).
This section focuses on the tractability of L,-approximation on the weighted Korobov space H(Kx).

We will study this problem for the classes A" and A*Y, respectively. More precisely, we want to
approximate the embedding operators

APP, : H(KR) — L([0,11%), APP(f) = f,

Electronic Research Archive Volume 33, Issue 2, 1160-1184.
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in the worst-case setting. It can be seen that APP, is the compact embedding from the weighted space
H(KR) to L,([0, 1]9). To approximate APP, with respect to the L,-norm || - || 1, over [0, 114, it follows
from [1, 13] that it suffices to use linear algorithms A'") of the form

AP = Lif)gi 3.1)
i=1

with g; € L,([0, 119) and L; € {A™, A%} fori = 1,...,n. Remember that H(Ky) is a reproducing kernel
Hilbert space and A% € A#!,
The n-th minimal worst-case error with respect to the information class A is given by

e(n, AP, H(Kp); A)i= inf  sup IIf = AD()lz,.

) n,d
nd e <t

where the infimum is extended over all algorithms of the form (3.1) with information from A. For
n = 0, the initial approximation error is given by

e(0, APPy, H(Kg)) :=  sup |APP4(f)] = [|APP].

A k) <1

In the following, we assume that 0 < R(k) < 1 for all k € Z¢, which implies that the norm of APP, is
1, since for all f € H(KR),
1

IAPP,(PIE, = IIfIE, = é FOPR < é: R P = 111G, < +oo.

and the above inequality is sharp if f = 1. In the remaining part of this paper, we always assume
that 0 < R(k) < 1, which implies that there is no need to distinguish between ABS and NOR. For
abbreviation, we write n(e, APP,, H(Kg); A) = n* (e, APP,, H(KR); A).

3.1. The information class A™.

First we present the results on L,-approximation in the weighted Korobov space H(Ky) for the
information class A%,

Theorem 1. Let @ = {a;}jan be the smoothness parameter sequence satisfying (2.4) and let y = {y;}jen
be the weight sequence satisfying (2.5). Consider the L,-approximation problem APP = {APP;} e
for the weighted spaces H(Kg), R € {140, Vaa.y Waay} for the information class A under ABS and
NOR. We have the following conditions:

(i) (Cf. [10]) SPT and PT are equivalent and hold iff s, < oco. In this case, the exponent of SPT is
1
(A" = 2 max (—, s,,) .
a)

(ii) QPT, UWT, WT, and (o, 7)-WT with o € (0, 1], are are equivalent and hold iff y, < 1. In this case,
the exponent of QPT satisfies

11
(AT < 2max(—, —1)
@ Iny;

Electronic Research Archive Volume 33, Issue 2, 1160-1184.
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and the equality holds for R € {rgay,Vaay}. (In particular, if y; = 0, then we set (In 7/1‘1)‘l =0
and we have that t'(A™) = 2/a,.)
(iii) (Cf. [10]) For o > 1, (o, 7)-WT always holds.

To obtain the above theorem, we recall some basic knowledge about L,-approximation for the
information class A®. Tt is well known, see e.g., [1], that the n-th minimal worst-case errors
e(n, APP;, H(Kg); A") and the information complexity n(e, APP,;, H(Kz); A*™") depend on the
eigenvalues of the continuous linear operator

W, = APPAPP, : H(Kg) — H(Kg).
Let (44,5, 1, j) jen be the eigenpairs of Wy, i.e.,
Wan, ; = dan, ;» forall j €N,

where the eigenvalues (14,;) are ordered by A1 > Ag2 > --- > 0, and the eigenvectors (1, j) jely are
orthonormal,

U l]d’j>7-{(KR) = 0;j, forall i, j € N.

Then, the n-th minimal error is obtained (see [1, Corollary 4.12]) for the algorithm

Asaf = ) oy prckona, for all f € H(K),
j=1
and
e(n, APP;, H(Kg); A™) = e(A}, ., H(Kg), A™) = )2 (3.2)

- Mdn+1

Hence, the information complexity is equal to

n(e, APP,, H(Kp): A = Hn €Ny : Agp > &)

o

with € € (0, 1) and d € N. Since it follows from [1] that the eigenpairs of the operator W, are (R(K), ex)
with k € Z¢, where

ex(x) := VR(K) exp(2nik - x),
we have
n(e, APP,, H(Ky); AY) = ‘{k €74 : Rk) > 32}' . (3.3)

Now we begin to prove Theorem 1.

Proof of Theorem 1. (1) and (iii) have been proved in [10]. We include the proof of item (i) and (ii) in
a different way as a warm-up.

(i) From [1, Theorem 5.2], we know that APP is PT for A% if and only if there exist g > 0 and 7 > 0
such that

o 1/t
Cry = sup[ /12’1.) d? < oo, (3.4)
deN 1

j:
and 7" (A™) = inf{27 : 7 satisfies (3.4)).

Since SPT implies PT, it suffices to demonstrate the sufficiency of s, < co for SPT, and the necessary
of s, < oo for PT.

Electronic Research Archive Volume 33, Issue 2, 1160-1184.
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e Sufficiency of s, < oo for SPT.

Now we assume that s, < co. Then, for any 7 > max(s,, - L 2)» we have pIp ¥ < co. Using (2.10)
and (2.8), we obtain

}:4J='_(1+2§}R%”m»j

j=1 k=1

[1 + 2[a T Z(raj,y,(k))TJ
k=1

(1 +2[a 1 "y (7))

IA
|& T
_

IA
s T

J=1

2mwm2aww}
< exp {2[&1]“*']7{(@17) Zyj} < o0

J=1

< exp

d
= exp {Z In(1+2fa ]ra'-lT)/T{(a’]T))}

where we also used that In(1 + x) < x for x > 0 and {(a;7) < oo for 7 > 1/a,. This leads to
C.4 < oo forall g > 0, thus we have SPT, PT and
* all 1
(A" < 2max (s,, 1. (3.5)

e Necessity of s, < oo for PT.

Now we assume that PT holds. Then there exists 7 > 0 such that (3.4) holds with g = 0. Clearly,
we need 7 > 1/a;. Again using (2.8) and {(a;7) > 1 for all j, we obtain
d

w%ﬁ (R (K)) —1+2wmmﬁw
S (12 Fnsor ]

keZ? J=1

a PR
> [ ;Z%mm)
i=1
]i 1 &
= [T+ 5@m)= 5 20
j=1 j=1

Meanwhile, (3.4) implies that 3.7 ¥} < oo and hence 5, < 7 < co. Combining both results yields
that T > max(s,, all) and hence also

T(A") 2 2max (s,, 1. (3.6)
Then (3.5) and (3.6) imply 7*(A™) = 2 max(s,, - -).

Electronic Research Archive Volume 33, Issue 2, 1160-1184.
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(i1) From [3, Theorem 23.2] (see also [14]), we know that APP is QPT if and only if there exists a
7 > 0 such that

1/t
Cr :=supCry = sup — 7 [Z /1T(1+lnd)] < oo. (3.7)

deN deN

First, assume that y; < 1. For R € {ry oy, Vd0y> Wdey), We have, by (2.7) and similar to the proof
of [11, Theorem 14], that

Z/lr(nlnd) Z(Rday(k))‘r(lﬂnd)

kezd
< D Waay )

kezd

i oo
=] ]|1+2 Zwa,.,,,(k))“”l"d))

j=1 k=1

d [a;1-1 7(1+Ind) ) (1+Ind)

< 1 (k= [a;D!
_ 7(1+Ind) - J
=[] 1+2y] 2 (& +krz](—k!

J= = a;

d Leind) [a;1-1 1 7(1+Ind) i 7(1+Ind)
< L+2y7" — + ( — )
j=1 = \k! o (k - faﬂ + 1)%
d Lend) rgl 1 7(1+Ind) o0 1 t(1+Ind)

= L+2y7" — + (T)
j=1 k=1 k! k=1 ke
d fa;1-1 1 \(+nd)

— 1+ 2,}/;(1+lnd) Z E + é’(aﬂ'(l +In d))]]
j=1 k=1 ’
d o0 1 7(1+Ind)

< 1+ 2yT(l+lnd) Z (E) + {(a17(1 + In d)))).
j=1 k=1 V7

In order that ¢; := {(a17(1 + Ind)) < oo for all d € N, we need 7 > 1/a;. Next, we have

S ( 1 )T(l+lnd) 1 00 7(1+Ind)
E — = 1+ + E ( )

| ‘r(1+lnd) 7(1+Ind)
k=1 k! 2 6 k=4

1 [ee]

< 1+ 27(1+Ind) 6T(1+lnd) + Z (2T(l+1nd))
k=4
L] 1 1 1
- + 27(1+Ind) + 67(l+Ind) + 24r(1+Ind) 1 — 1/27(1+lnd)
] 1 1
- + 27(1+Ind) + 67(1+Ind) + 24t(1+Ind) _ 937(1+Ind)
1 1 1 1 1

= T 2T(1+lnd) T 6T(I+lnd) + 23Tlnd 24‘r _ 23‘r
<

1 1 fo
1+ 2‘rlnd (2 + 247 _ 237) =1+ d‘r]n2’

Electronic Research Archive Volume 33, Issue 2, 1160-1184.



1172

where ¢, := 2 + 1/(2% - 2%7). This gives

1/t
e
1 d
{;Zln(l+2f(l+1“d)({ +—))- 21nd}
J=
2 o\
s,

j=1

where we used that In(1 + x) < x for all x > 0. Using the inequality
1

{x) <1+ Pt forall x > 1,
x —

we have
1

<1+

(it= D +a;tInd’

Then we obtain
d

2 1 c
C, < 1+ . § Hd) _ 2 lndl.
= exp{T ( (yt—1) +a7Ind d““z) Yi n

J=1

Now we distinguish two cases:

e Case 1: y; = 0. In this case, we have lim; .y, = 0 and hence, there is a J € N such that
y; < e V"forall j > J. Then

J-1

d d
Zy;(mnd) < Z 1+ Ze—lnd

j=1 J=1 Jj=J
Note that J depends on 7, and it is finite for any fixed 7. Thus, if 7 > 1/a; and y,; = 0 then

2 1
C.u < -1+
A exp{T ( (yt—1) +atInd a’”n2

)J 21nd}—>0ifd—>oo.

By the characterization in (3.7), this implies QPT.
e Case 2: y; € (0,1). In this case, for any vy, € (y,, 1), there exists a j, € N such thaty; <y, <1

for all j > j,. Then for every d € N,

d
D < o+ Y max(d = o, 0)
j=1

Y* maX(d ]0’ O)
d‘rlny

=Jjo+

Sj0+1,
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whenever 7 > (Iny.")~'. Thus, if T > 1/a; and 7 > (Iny;")7!, then

2 1 Cr
Cra < -1+ +
"‘ eXP{T( (@it D) +ayrind = d?

-0, ifd—> oo.

)(j0+1)—2lnd}

Again, by the characterization in (3.7), this implies QPT.

Clearly, QPT implies UWT, WT, and (o, 7)-WT with o € (0,1]. So it remains to prove that WT
implies y; < 1. To this end, we let y; = 1, i.e., y; = 1. Then we derive from (2.6) that for k € {0, 1},

d d
’)/.
Riay(k) = | | Ra,q,(kj) 2 [ I(Ej) =
J=1

j=1

which, by (3.3), implies that for any € € (0, /i),
n(e, APP,, H(Kz); A™) > ‘{k € {0, 1} Rya, (k) > .92}| 0

This means that APP suffers from the curse of dimensionality, and thus, we cannot have (o, 7)-WT for
any o € (0, 1]. This deduces that QPT, UWT, WT, and (o, 7)-WT with o € (0, 1] are equivalent, and
hold iff y, < 1.

Now we turn to calculate the exponent of QPT. Again from [3, Theorem 23.2], we know that the
exponent of QPT is

*(A™) = inf {27 : 7 satisfies (3.7)}.

From the above part of the proof, it follows that 7 satisfies (3.7) as long as 7 > 1/a; and 7 > (In yl‘l)‘l,
where we put (Iny;')™! := 0 whenever y, = 0. Therefore,

1 1
(AT < 2max(—, —1)
@ Iny;

Assume now that we have QPT for R € {ryo,,¥iay}. Then, (3.7) holds true for some 7 > O.
Consideration of the special case d = 1 together with (3.7) yields that

00 /T 00 1/
C. > [Z ﬂij) = [1 +2Y' R, (k))
=1 k=1
o 1/
> [1 +2) r;m(k))
k=1

= (1 +2L(art)y)'",

where we used (2.10), and hence we must have T > 1/a. This already implies the result #*(A*") = 2/a,
whenever y; = 0.

It remains to study the case ¥, > 0. Now, again according to (3.7) and (2.10), there existsat > 1/
such that for all d € N we have

d oo /T
C, > % {1—[ (1 + Z(Raj,yj(k))f(lﬂnd))}
k=1

J=1
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oo 1/t
(1 n Z(raj’yj(k))‘r(lﬂnd))}

k=1

\Y%
|-
—_———
T

d "
{ < (1 N y;(nlnd)é«(a,jq-(l + In d)))}

| d 1/t
> = { (1 + y;(1+lnd))}

d
= exp {% Z In (1 + y;(mnd)) —21In d} :
=1

Taking the logarithm leads to

d
InC, > % Z In(1+y ")~ 21nd

J=1

AW

>=In(1+y;""")-2Ind

oﬂ

for all d € N. Since y, € (0, 1) and since In(1 + x) > xIn2 for all x € [0, 1], it follows that for all d € N
we have

dIn2
InC, > T2y D _o g
T
TIn2 _
= yl_dl—ﬂnhl —21nd,
T

which implies that 7 > (Iny;')"!. Therefore, we will get

(A™) > 2 max (i ;_)
a; Iny;!
and the claimed result follows.
(iii) The result for (o, T)-weak tractability for o > 1 for the class A*! follows from the corresponding
result for the class A% from Theorem 2.
The proof is completed. O

3.2. The information class A%,

In the next theorem, we present the respective conditions for tractability of L,-approximation in the
weighted Korobov space H(Kp) for the information class A%,

Theorem 2. Let @ = {a;} jaiy be the smoothness parameter sequence satisfying (2.4) and let y = {y} jen
be the weight sequence satisfying (2.5). Consider the L,-approximation problem APP = {APP;},en
for the weighted spaces H(Kg), R € {r40.y,Wiay> Waay) for the information class A under ABS and
NOR. Then we have the following conditions:
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(i) SPT holds iff

iyj<oo

=1
(which implies s, < 1). In this case, the exponent of SPT is

1
7 (A™) = 2 max (—, s,,) .
a

(ii) PT, QPT are equivalent and hold iff

1 d
li — < oo .
(iii) WT holds iff
d
o1
lim ~ Z; y; = 0. (3.9)
]:
(iv) UWT holds iff
1
}Ln;%;yj—o, forall o € (0, 1]. (3.10)
(v) For o € (0, 1], (o, 7)-WT holds iff
1S
lim — Z;yj = 0. (3.11)
J:

For o > 1, (o, 1)-WT always holds.

The proof of Theorem 2 is based on relations between the minimal errors of A and A, in
particular on [17, Theorem 1] and on [6, Theorem 1] (see also [3, Theorem 26.10]). These results

provide that the trace of the operator W, = APP;APP, is finite. Recall that the trace of W, is given by
the sum of its eigenvalues, i.e.,

oo d oo
trace(W,) = Z Agj = Z Riay(K) = ]—[ (1 +2 Z Raj,yj(k)) .
k=1

J=1 kezd j=1

Using (2.10), we obtain

trace(W,) < | | (1 + 2[a; ] Z raj,y,(k)]

k=1

= (1 + Z[QI]MHK(%‘)?’J’)

IA

(1 + 2@ ™ ¢ (en)y)) (3.12)
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and
d ’ & d 2y,
trace(W,) > D [1 +3 ; raj,yj(k)] = D (1+ Zr¢@))
Hence trace(W,) is infinite if and only if @; = @, = --- = 1. Note that in general there is no relation

between the power of A¥" and A*® whenever the trace of W, is infinite. For a discussion of this issue
we refer to [3, Section 26.3].

In order to prove the sufficiency of PT for A%Y, we use a criterion from [3] as stated below.

Lemma 2. ( [3, Theorem 26.13]). Consider multivariate approximation APP = {APP,},cn in the
worst-case setting for ABS or NOR, where

APP, : F;, — G, with APP,(f) = f,

and F; is a reproducing kernel Hilbert space continuously embedded in G,. Assume that the trace of
W, is finite for all d, and there are two constants C, q > 0 such that

trace(W,)

q
(CRIV)? < Cd?, foralld e N.

Then polynomial tractabilities of APP for A™ and A are equivalent. Particularly, if ¢ = 0, then
strong polynomial tractabilities of APP for A and A% are equivalent. More precisely,

n%(e, APP,, F s A™) < e " q¢" for all £ € (0,1),d € N,
implies that there exists a constant C* > 0 such that
n*(e, APP,, Fz; A < 97" g4 for all £ € (0, 1),d € N,

where
pstd — pall + 2 and qstd — qall + q.

Now we prove Theorem 2.

Proof of Theorem 2. It follows from (4.2) in Section 4 that necessary conditions of tractability for
integration INT are also necessary for L, approximation APP. Consequently, the necessity of the
conditions outlined in items (1)—(v) is derived from Theorem 3. It is enough to examine whether the
conditions in items (i)—(v) are sufficient.

(i) Clearly, a; > 1 implies that trace(W,) is finite for all d € N. Then according to [17, Theorem 1],
there is a positive integer c satisfying for all n € N

[0e]

1
e(cn, APP,, H(Kg): A™)? < — Z e(k, APP,, H(Kg); A™). (3.13)
n

k=n

Now let 372, ¥; < co. Then, the sum exponent s, < 1.
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e First we consider s, < 1. Then, using Theorem 1, we have SPT for A*' with exponent
w0 A all 1
T(AY) =2max|—,s,| < 2.
ay

Hence, for every 7 > 7*(A™) there is C > 0 such that
n(e, APP,, H(Kg); A™M) < Ce™,

which yields that

e(k, APP,, H(Kg); A™) < IR

Inserting into (3.13) gives

e(cn, APP,, H(Kg); A*)?

IA

Co 1 cC (™ 1
- <= d

C T 1 < Ct 1
n2—tnel = 2 rp2t

Hence, there exists a number a, > 0 such that

ar
nl/T’

e(cn, APP,, H(Kg); A*9) <

which implies that
n(e, APP;, H(Kz); A*) < [cale™™].

Hence, since T > 7*(A*"Y) is arbitrary, we have SPT with

, 1
(AN = 2max(—, s,,).
a;

(Note that trivially 7*(A*) > 7*(A*") = 2 max(1/ay, s,).)
e Next we consider s, = 1. From (3.13) and (3.2) we obtain

I © I v trace(W,
e(cn, AP, H(K): A% < = 3 Ay < = > i = trace(Wa) (3.14)
n k=n n k=1 n

Since Z;‘;l ¥j < ooand a; > 1, we derive from (3.12) that

d
trace(W,) < exp {Z In(l+ 2f051]rm§(041)7j)}

=1

< exp {Z[afﬂr”‘]{(m) Z )’j}
=1

=: 1 < co.
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Hence, insertion into (3.14) gives

e(cn, APP;, H(Kg); A™) <

Sl

From this, we obtain in the same way as above SPT with
* std 1
(A7) =2 =2max|—, s, |.
(03]
(i) Assume that (3.8) holds. This implies that there exists a constant M > 0 such that

d
1
mZ'yJ<M, forall d € N.
n

J=1

Then, by (3.12) we have

d
trace(Wa) < exp {Zraﬂm”{ (@) %}
j=1
< exp (27,1 (a) Ind™) = gl 1™ e,

Meanwhile, since the sequence (y;) jen is non-increasing, we have

d
D y;< M, foralld €N,

=1

which implies that* y; = O(j ™' In j) and 5, = 1. By Theorem 1 ( this implies that APP is SPT for A%,
i.e., there exist two constants C*!, p¥' > 0 such that

n(e, APPy, H(Kz); A" < CMs" forall € (0,1) and d € N.
Now Lemma 2 implies that there is a constant C*' > 0 such that
n(e, APP,, H(Kg); A) < C*e™™d™ forall e € (0,1) and d € N,

where
p*=p"+2 and ¢" = [a 1" (@) M.

Hence, we have PT and QPT for A®Y.
(ii)—(v) If any of the three conditions (3.9), (3.10) or (3.11) holds, then this leads to ¥, < 1, since
otherwise, for every o € (0, 1],

- _ l-o
im g Z%—}L@od fmd =1

“Here, A; = O(B;) means that there exists a constant C > 0 independent of j such that A; < CB;.
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Therefore, we know from Theorem 1 that WT, UWT, and (o, 7)-WT with o € (0, 1] hold for A?".

We only prove the sufficiency of (3.11) for (o, 7)-WT with o € (0, 1] since the other two weak
tractabiliies can be deduced similarly. Thus, it suffices to show that (3.11) implies (o, 7)-WT with
o € (0,1]. Indeed, we observe from (3.12) that

d

1
- In l—[ (1+ 2[01][Ql]€(a1)7j)

J=1

In(trace(Wy)) <
d- -

| &
== Z In(1+2[a 1 (ar)y;)
=1

[a1] d
< 2fal1dgé(a1) Z”f’
j=1

where we used that In(1 + x) < x for all x > 0. Thus (3.11) implies

. In(trace(W,))
lim ——— = 0.
d—o0 ac
Following the proof of [3, Theorem 26.11], we can obtain (o, 7)-WT with o € (0, 1] for A*Y,
The proof is completed. O

4. Integration in H(Ky).

In this section, we investigate the tractability of integration operators defined on the weighted
Korobov space H(Ky). More precisely, we want to approximate the integral operators

INT, : H(Kg) — R, INT,(f) = Fx)dx = £(0),
[0,1}¢

in the worst-case setting. We approximate INT,; by means of linear algorithms A;“; of the form

ARF) = ) Af(x), (4.1)
i=1
with nodes x1, ..., X, € [0, 1]¢ and integration weights 4;,...,4, € R.

The n-th minimal error for integration in H(Ky) is defined as

e(n,INT,, H(Kg)) :=inf sup |INT,(f) — A"(f)|

Ay 1l <1

where the infimum is taken over all algorithms of the form (4.1). For n = 0, the initial integration error
is given by
e(0,INT,, H(Kg)) :=  sup [INT(f)l = |[INT,]|.

1/ llpe gy <1

In the following, we assume that R(0) = 1, which leads to the norm of INT, is 1, since

1£(0)

0#fer (k) IS 1k

IINT || =

Electronic Research Archive Volume 33, Issue 2, 1160-1184.



1180

] 1£(0)]
= sup
0% feH(Kg) \/ ezt R1(K) IJ?(k)|2
oL

< sup
0#feH(KR) ,|]T(0)|2

and the upper bound can be attained by choosing f = 1. Therefore, there is no need to distinguish
between ABS and NOR. For abbreviation, we write n(e, INT,, H(Kg)) = n*(e, INT,, H(KR)).
Obviously, we have
e(n, INT,, H(KR)) < e(n, APP,, H(Kg): A*Y),

which implies
n(e, INT,, H(Kg)) < n(e, APP,, H(Kg); A™). (4.2)

Now we formulate our result of the tractability of integration INT in the weighted Korobov space
H(Kg) for R € {ryays Vaays Wiay}

Theorem 3. Let @ = {«;} jan be the smoothness parameter sequence satisfying (2.4), and lety = {y;}jen
be the weight sequence satisfying (2.5). Consider the integration problem INT = {INT,},en for the
weighted spaces H(Kg), R € {140, Via.y Waay}. Then we have the following conditions:

(i) SPT holds iff
Z Y < 00
=1

(which is equivalent to s, < 1). In this case the exponent of SPT satisfies

1
75 (A*Y) = 2 max (—, s,,) )
a;

(ii) PT, QPT are equivalent and hold iff

(iii) WT holds iff

(iv) UWT holds iff

1 d
lim — ;y, =0, forall o € (0, 1].

d—oo

(v) For o € (0,1] (o, 7)-WT holds iff
1Y
fim G 2,71=0
]:
For o > 1, (o, 7)-WT always holds.
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To verify Theorem 3, we shall give the lower bound of the n-th minimal error for INT in H(Kx).
we will employ the subsequent proposition and lemma.

Proposition 3 ( [15]). For j = 1,...,d, let B; € (0,1] and let H; be a reproducing kernel space on
[0, 1] such that (1,8; cos(2rx), B sin(2rx)) are orthonormal in H;. Consider the integration problem
INTfor feH, =H, ®---® H;. We have

d
e(n. INT Hy? 2 1—n | [0+
j=1
Lemma 4. Let @ = {a}}jav be the smoothness parameter sequence satisfying (2.4), and let y = {y;} jen
be the weight sequence satisfying (2.5). Set R € {rg0., Y0y Waay} Then, foralln € N,

e(l’l, INTda H(KR)) > e(l’l, INTda H(Krd,a’yn ))

Proof. This can be deduced from Remark 2, (2.9), and the definition of the n-th minimal error for
integration. O

Applying Proposition 3 and Lemma 4 to the weighted space H (K,

1ay3)» WE ODtain the lower bound
Of e(n, INTd9 7_{(I<R)) fOI' R e {rd,a,y’ wd,a,y’ wd,a,y}-

Lemma 5. Let @ = {a}}jav be the smoothness parameter sequence satisfying (2.4), and let y = {y;} jen
be the weight sequence. Set R € {rg4, Wi a.y Wiay}. Then we have

d -1
1
e(n, INT;, H(Kp))? > 1 =n| | (1 + —yj) . (4.3)
j=1 3
This implies that for all € € (0, 1),
d
1
n(e, INT,, H(Kg)) > (1 — &) l—l (1 + §7j)' “4.4)
=1

Proof. Clearly, the weighted Korobov space H (K,

o) Satisfies the conditions of Proposition 3 with

B = vi/3, j = 1,...,d, which, by Proposition 3 and Lemma 4, implies that for
R e {rd,(l,’ya wd,a’,’ya wd,a,y}’

d -1
1
e(n, INT,, H(Kg))* > e(n,INT;, H(K,,,,,))> = 1 —n ]_[ (1 + gy,-) :
j=1
which gives (4.3). For all € € (0, 1), letting e(n, INT,, H(Kg)) < &, we will obtain (4.4). This completes
the proof. O

Remark 4. We remark that for R € {ry4,,Va4a.,}, the constant 1/3 in (4.3) and (4.4) can be replaced by
1. That is,

e(n, INT, HKp) = 1—n [ [(1+7,)

I~

j=1

and for all £ € (0, 1),
d
n(e, INT, H(Kp) = (1 =) | [ (1+7)).

J=1
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Now we turn to give the proof of Theorem 3.

Proof of Theorem 3. According to (4.2), we know that the sufficient condition on the tractability of the
L,-approximation problem for A®¢ also works for the integration problem in H(Kz). Therefore, we
only need to verify the necessary conditions.

First, we assert that lim;_,., y; = 0. If it does not hold, there would exist a constant y, > 0 such that
¥j = v« > 0 for every j € N. According to Lemma 5, it can be derived that

d
n(e, INT,, H(KR)) > (1 — &) (1 + %y*) .

Thus n(e, INT,;, H(Kg)) grows exponentially fast in d, which implies that INT suffers from the curse
of dimensionality. This proves our claim.

Now we assume that }72, y; = co. Then we can derive from lim;..y; = 0 and the inequality
xIn2 < In(1 + x) < x, x € [0, 1] that'

n(;)p{zl(;)}
_o [exp [% 3 y,.]] | 4.5)

Then it follows from (4.4) and (4.5) that

}im n(e, INT,, H(KRg)) = oo,

which implies that INT cannot be SPT. Thus 372, y; < oo is necessary for SPT.
Next assume that lim sup,_, ﬁ Z?:l ¥; = co. Then we can derive from lim;_,., y; = 0 that

d

ﬂ (1 + %n) = @ (ama 7).

J=1

Combining with (4.4), we obtain that n(e, INT,, H(Kg)) goes to infinity faster than any power of d,
and INT cannot be PT. Thus, limsup,_,, ﬁ Z?:l ¥;j < oo is necessary for PT.

Finally, assume that

Inn(e, INT,., H(K
fim & INTe HEKD) o0 o),

dte 1500 A’ + &7
Then we can derive from (4.4) and (4.5) that

1
fm G 2 %1=0
J:

This implies the condition is necessary for the three WT notions.
The proof is completed. O

"Here, A; = ®(B,) means that there exsits a constant C > 0 independent of d such that C-'B, < A, < CB,.
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5. Concluding remarks

This paper gives a complete picture of the tractability of multivariate L,-approximation for both
A and A*Y, and multivariate integration from weighted Korobov spaces of increasing smoothness in
the worst-case setting. According to the results in [16], the corresponding tractability conditions of
L,-approximation in the randomized case setting are the same as in the worst-case setting. Moreover,
our results may be helpful to study the tractability of nonhomogeneous tensor product spaces.
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