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Abstract: We establish the well-posedness of linear elliptic equations with critical-order drifts in Ld

and positive zero-order coefficients in L1 or L
2d

d+2 , where classical methods are often too restrictive. Our
approach relies on a divergence-free transformation and a structural condition on the drift vector field,
which admits a decomposition into a regular component and another whose weak divergence belongs
to Lq̃ for some q̃ > d

2 . This condition is essential for constructing a suitable weight function ρ via the
weak maximum principle and the Harnack inequality. Within this framework, we prove the existence
and uniqueness of weak solutions, significantly relaxing the regularity assumptions on the zero-order
coefficients in L

d
2 .
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1. Introduction

This paper establishes the well-posedness (existence and uniqueness of weak solutions) (cf.
Definition 2.1) of the following Dirichlet problem for a linear elliptic equation in divergence form,
defined on a bounded open subset U ⊂ Rd with d ≥ 3:− div(A∇u) + ⟨H,∇u⟩ + cu = f in U,

u = 0 on ∂U,
(1.1)

where A is uniformly strictly elliptic and bounded on U (see (1.3)). The well-posedness of (1.1) was
established in [1] not by the conventional bilinear form methods, but by employing weak convergence
techniques combined with a divergence-free transformation, under the assumptions that H ∈ Lp(U,Rd)
with p ∈ (d,∞), c ∈ L1(U), and f ∈ Lq(U) with q ∈ (d

2 ,∞). It is therefore a natural problem to
investigate whether the condition H ∈ Lp(U,Rd) can be relaxed to the critical case H ∈ Ld(U,Rd).
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However, under the sole assumption H ∈ Ld(U,Rd), an extension of the result to the cases c ∈ L1(U) or
c ∈ L

2d
d+2 (U) cannot be achieved directly by either the standard bilinear form methods or the approach

in [1].
The well-posedness of (1.1) via bilinear form methods based on the Lax-Milgram theorem

originates from G. Stampacchia’s work [2], where it was proved that there exists a constant γ > 0,
depending only on A, H, and d, such that the problem (1.1) admits a unique weak solution whenever
c ≥ γ and c ∈ L

d
2 (U) with d ≥ 3. Similar results, under certain restrictions on the zero-order

coefficients, are treated in [3]. In [4] (cf. [5, Section 8.2]), N. S. Trudinger established the
well-posedness of (1.1) by developing a weak maximum principle under the assumptions
H ∈ Ld(U,Rd), c ∈ L

d
2 (U) with c ≥ 0, and f ∈ L

2d
d+2 (U). In the absence of the classical coercivity

property, the well-posedness of (1.1) has also been obtained via a duality argument in [6]. For another
reference on non-coercive linear equations with coefficients in Lorentz spaces, [7] establishes the
well-posedness of the dual problem associated with (1.1). For further results beyond the
L2(U)-regularity of ∇u, or for corresponding results concerning non-divergence type counterparts of
(1.1), we refer to [1] and references therein.

To understand the technical challenge in the critical case of the drift coefficients, we first revisit
the approach of [1] under the assumptions H ∈ Lp(U,Rd) for some p ∈ (d,∞) and c ∈ L1(U) with
c ≥ 0. In [1], to apply a divergence-free transformation, one first constructs a strictly positive function
ρ ∈ H1,2(U) ∩ C(U) and a divergence-free vector field ρB ∈ L2(U,Rd), which then transforms the
original equation (1.1) into the form shown in (1.2) (see Theorem 4.3):

− div(ρA∇u) + ⟨ρB,∇u⟩ + ρcu = ρ f in U,

u = 0 on ∂U.
(1.2)

This reformulation enables the derivation of a priori H1,2 and L∞-bounds, and through a delicate
application of weak compactness methods and a duality argument, one can obtain the existence and
uniqueness of a weak solution u ∈ H1,2

0 (U) to (1.1).
In the critical case where H ∈ Ld(U,Rd), the lack of regularity makes it difficult to construct the

function ρ ∈ H1,2(U) ∩ C(U) and the vector field ρB as in the approach described above. The first
reason is that under the condition H ∈ Ld(U,Rd), obtaining the key estimate in Lemma 3.7 may not be
directly derived but requires delicate computations and the use of a partition of unity. The second
reason is that the method employed in [1] relies on the construction of a function ρ satisfying an
elliptic Harnack inequality and Hölder continuity. However, such a construction is significantly
restricted under the assumption H ∈ Ld(U,Rd) (see Remark 4.2), which justifies the necessity of
imposing additional conditions on H in Ld(U,Rd). Indeed, we show that the divergence-free
transformation can still be successfully carried out if H admits a decomposition where one component
has a sufficiently regular divergence in Lq̃ for some q̃ ∈

(
d
2 ,∞

)
.

Before stating our main result, let us present the main assumption in this paper:

(T) U is a bounded open subset of Rd with d ≥ 3, and Br(x0) is an open ball in Rd such that
U ⊂ Br(x0). H1 ∈ Lp(Br(x0),Rd) for some p ∈ (d,∞), and H2 ∈ Ld(Br(x0),Rd) satisfies the following
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distributional identity (see Definition 2.2): there exists h̃ ∈ Lq̃(Br(x0)) with q̃ ∈ ( d
2 ,∞) such that∫

Br(x0)
⟨H2,∇ψ⟩ dx = −

∫
Br(x0)

h̃ψ dx for all ψ ∈ C∞0 (Br(x0)),

i.e., div H2 = h̃ ∈ Lq̃(Br(x0)). H := H1 + H2 ∈ Ld(Br(x0),Rd). A = (ai j)1≤i, j≤d is a (possibly non-
symmetric) matrix of measurable functions on Rd such that there exist constants M > 0 and λ >

0 satisfying

max
1≤i, j≤d

|ai j(x)| ≤ M, ⟨A(x)ξ, ξ⟩ ≥ λ∥ξ∥2 for a.e. x ∈ Rd and all ξ ∈ Rd. (1.3)

The following is the main theorem of this paper, which shows that the conclusion of [1, Theorem
1.1] remains robust under the assumption of an Ld-drift.

Theorem 1.1. Assume that (T) holds. Let c ∈ L1(U) with c ≥ 0 in U. Then, the following
statements hold:

(i) Let v ∈ H1,2
0 (U) with cv ∈ L1(U) be such that∫

U
⟨A∇v,∇ψ⟩ + ⟨H,∇v⟩ψ + cvψ dx = 0 for all ψ ∈ C∞0 (U). (1.4)

Then, v = 0.
(ii) Let f ∈ Lq(U) for some q > d

2 . Then, there exists a unique weak solution u ∈ H1,2
0 (U) ∩ L∞(U) to

(1.1). Moreover, u satisfies
∥u∥H1,2

0 (U) ≤ K5∥ f ∥L 2d
d+2 (U)

, (1.5)

and
∥u∥L∞(U) ≤ K6∥ f ∥Lq(U), (1.6)

where K5 = K̃1K3, K6 = K̃1K4, K̃1 > 0 is a constant as in Theorem 4.1, depending only on d, λ, M,
Br(x0), p, q̃, H, the constant K3 > 0 depends only on d, λ

K̃1
, |U |, and the constant K4 > 0 depends

only on d, λ
K̃1

, |U |, q. In particular, if α > 0 is a constant, c ≥ α in U, and f ∈ Lθ(U)∩ Lq(U) with
θ ∈ [1,∞], then u satisfies the following contraction estimate:

∥u∥Lθ(U) ≤
K̃1

α
∥ f ∥Lθ(U). (1.7)

(iii) Let c ∈ L
2d

d+2 (U) and f ∈ L
2d

d+2 (U). Then there exists a unique weak solution u ∈ H1,2
0 (U) to

(1.1). Moreover, u satisfies (1.5). In particular, if α > 0 is a constant, c ≥ α in U, and f ∈
Lθ(U) ∩ L

2d
d+2 (U) with θ ∈ [1,∞], then u satisfies (1.7).

Although the main result of the paper concerns the existence and uniqueness of weak solutions,
it is particularly noteworthy that no additional structural conditions, such as the V MO assumption
on the matrix of functions A, are imposed. Furthermore, the main result Theorem 1.1 challenges
the conventional belief that the optimal regularity condition for the zero-order term is c ∈ L

d
2 (U) by

demonstrating that the weaker assumptions c ∈ L1(U) or c ∈ L
2d

d+2 (U) are sufficient. This observation
suggests the possibility of further developments that could partially relax the regularity condition on
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the zero-order coefficient, namely c ∈ L
d
2 (U), in order to obtain the well-posedness results for non-

divergence form equations as established in [8, 9].
This paper is organized as follows: Section 2 introduces the essential notations and definitions used

throughout the paper. Section 3 establishes fundamental inequalities and shows Lemma 3.10, a crucial
inequality for this paper. Section 4 sets up the divergence-free transformation and completes the proof
of Theorem 1.1. Section 5 concludes with a discussion.

2. Notations and definitions

In this paper, we work within the d-dimensional Euclidean spaceRd, where d ≥ 1, equipped with the
standard inner product ⟨·, ·⟩ and the corresponding Euclidean norm ∥ · ∥. For a point x0 ∈ R

d and radius
r > 0, we denote by Br(x0) the open ball {x ∈ Rd : ∥x − x0∥ < r}, and we write Br := {x ∈ Rd : ∥x∥ < r}.
The Lebesgue measure on Rd is denoted by dx, and for a measurable set E ⊂ Rd, dx(E) is written as |E|.
The indicator function of a set W is denoted by 1W . Let U be an open subset of Rd. We denote by C(U)
and C(U) the spaces of continuous functions on U and its closure U, respectively. For k ∈ N ∪ {∞},
the space Ck(U) consists of functions that are k-times continuously differentiable on U, while Ck

0(U)
denotes the subspace of Ck(U) consisting of functions with compact support in U. Let s ∈ [1,∞].
We denote by Ls(U) the standard Lebesgue space with norm ∥ · ∥Ls(U), and by Ls(U,Rd) the space of
Rd-valued functions whose components lie in Ls(U), equipped with the norm ∥F∥Ls(U) := ∥∥F∥∥Ls(U).
For each i ∈ {1, 2, . . . d}, ∂i denotes the weak partial derivative with respect to the i-th component. The
weak gradient of a function u is denoted by ∇u := (∂1u, . . . , ∂du). The Sobolev space H1,s(U) consists
of functions in Ls(U) whose weak partial derivatives also belong to Ls(U). The space H1,2

0 (U) denotes
the closure of C∞0 (U) in the H1,2(U)-norm. By the Poincaré inequality, we write ∥u∥H1,2

0 (U) := ∥∇u∥L2(U).

The dual space of H1,2
0 (U) is denoted by H−1,2(U), and the duality pairing is represented by ⟨·, ·⟩H−1,2(U).

Definition 2.1. Let A = (ai j)1≤i, j≤d be a matrix of bounded and measurable functions on Rd. Let
H ∈ L2(U,Rd), c ∈ L1(U), and f ∈ L1(U). We say that u is a weak solution to (1.1) if u ∈ H1,2

0 (U) and
cu ∈ L1(U), and the following identity holds:∫

U
⟨A∇u,∇ψ⟩ + ⟨H,∇u⟩ψ + cuψ dx =

∫
U

fψ dx for all ψ ∈ C∞0 (U). (2.1)

Definition 2.2. For a vector field H ∈ L1
loc(U,R

d), its divergence div H is understood in the weak sense.
That is, if h ∈ L1

loc(U) satisfies∫
U
⟨H,∇φ⟩ dx = −

∫
U

hφ dx for all φ ∈ C∞0 (U),

we write div H = h in U. A vector field H is called divergence-free if div H = 0.

3. Fundamental inequalities

In this section, we mainly assume the condition (T1) below, which is weaker than (T).

(T1): U is a bounded open subset of Rd with d ≥ 3, H ∈ Ld(U,Rd), and A = (ai j)1≤i, j≤d is a (possibly
non-symmetric) matrix of measurable functions on Rd such that there exist constants M > 0 and λ > 0
satisfying (1.3).
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Proposition 3.1. Under the assumption (T1), define a bilinear form B : H1,2
0 (U) × H1,2

0 (U) → R
given by

B( f , g) :=
∫

U
⟨A∇ f + f H,∇g⟩ dx, f , g ∈ H1,2

0 (U). (3.1)

Then, the following statements hold:

(i)
|B( f , g)| ≤ K∥∇ f ∥L2(U)∥∇g∥L2(U) for all f , g ∈ H1,2

0 (U), (3.2)

where K := dM +
2(d − 1)

d − 2
∥H∥Ld(U).

(ii) Let N ≥ 0 be a constant such that(∫
U

1{∥H∥≥N}∥H∥d dx
) 2

d

≤
λ2

16

(
d − 2
d − 1

)2

. (3.3)

Then,

B( f , f ) +
N2

λ
∥ f ∥2L2(U) ≥

λ

2
∥∇ f ∥2L2(U) for all f ∈ H1,2

0 (U). (3.4)

Proof. (i) Let f , g ∈ H1,2
0 (U). By the Sobolev inequality [10, Section 5.6, Theorem 1] (cf. [11, Theorem

4.8]), we obtain

∥g∥
L

2d
d−2 (U)

≤
2(d − 1)

d − 2
∥∇g∥L2(U). (3.5)

Applying the Cauchy–Schwarz inequality and the Hölder inequality, we have∣∣∣∣∣∫
U
⟨ f H,∇g⟩ dx

∣∣∣∣∣ ≤ ∥H∥Ld(U)∥ f ∥L 2d
d−2 (U)
∥∇g∥L2(U)

≤
2(d − 1)

d − 2
∥H∥Ld(U)∥∇ f ∥L2(U)∥∇g∥L2(U).

In addition, we estimate∣∣∣∣∣∫
U
⟨A∇ f ,∇g⟩ dx

∣∣∣∣∣ ≤ dM
∫

U
∥∇ f ∥ ∥∇g∥ dx ≤ dM∥∇ f ∥L2(U)∥∇g∥L2(U).

Hence, the desired estimate (3.2) follows.

(ii) Let f ∈ H1,2
0 (U). Using the Cauchy–Schwarz inequality and Young’s inequality, we obtain∣∣∣∣∣∫

U
⟨H,∇ f ⟩ f dx

∣∣∣∣∣ ≤ ∫
U
∥H∥ | f | ∥∇ f ∥ dx

≤
λ

4

∫
U
∥∇ f ∥2dx +

1
λ

∫
U
∥H∥2| f |2dx. (3.6)

Define the function ϕ : [0,∞)→ R by

ϕ(s) :=
(∫

U
1{∥H∥≥s}∥H∥ddx

) 2
d

, s ∈ [0,∞).
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Since ∥H∥ ∈ Ld(U) and is finite almost everywhere, it follows from the Lebesgue dominated
convergence theorem that

lim
s→∞

ϕ(s) = 0.

Now choose N ≥ 0 such that

ϕ(N) ≤
λ2

16

(
d − 2
d − 1

)2

. (3.7)

Using again the Hölder inequality, (3.7), and the Sobolev inequality (3.5), we estimate∫
U
∥H∥2| f |2dx =

∫
U

1{∥H∥≥N}∥H∥2| f |2dx +
∫

U
1{∥H∥<N}∥H∥2| f |2dx

≤

(∫
U

1{∥H∥≥N}∥H∥ddx
) 2

d

∥ f ∥2
L

2d
d−2 (U)

+ N2
∫

U
| f |2dx

≤
λ2

4
∥∇ f ∥2L2(U) + N2

∫
U
| f |2dx.

Substituting this into (3.6), we obtain∫
U
⟨H,∇ f ⟩ f dx ≥ −

λ

2

∫
U
∥∇ f ∥2dx −

N2

λ

∫
U
| f |2dx.

Since ∫
U
⟨A∇ f ,∇ f ⟩dx ≥ λ

∫
U
∥∇ f ∥2dx,

the desired estimate (3.4) follows. □

The following existence result is well known and can be found in [2, 5, 12]. For clarity and the
reader’s convenience, we state the details here.

Proposition 3.2. Assume (T1). Let B : H1,2
0 (U) × H1,2

0 (U) → R denote the bilinear form defined by
(3.1). Suppose that if w ∈ H1,2

0 (U) satisfies

B(w, φ) = 0 for all φ ∈ H1,2
0 (U),

then w = 0 in U. Then, for each ψ ∈ H−1,2(U), there exists a unique uψ ∈ H1,2
0 (U) such that

B(uψ, φ) = ⟨ψ, φ⟩H−1,2(U) for all φ ∈ H1,2
0 (U).

Proof. Let N ≥ 0 be the constant appearing in (3.3), and define γ := N2

λ
. Define a bilinear form

Bγ : H1,2
0 (U) × H1,2

0 (U)→ R given by

Bγ( f , g) := B( f , g) + γ
∫

U
f gdx, f , g ∈ H1,2

0 (U).

By the Lax–Milgram theorem (cf. [13, Corollary 5.8]) and Proposition 3.1, for each ψ ∈ H−1,2(U),
there exists a unique uγ,ψ ∈ H1,2

0 (U) such that

Bγ(uγ,ψ, φ) = ⟨ψ, φ⟩H−1,2(U) for all φ ∈ H1,2
0 (U). (3.8)
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Substituting φ = uγ,ψ into (3.8) and applying Proposition 3.1(ii), we obtain

λ

2
∥∇uγ,ψ∥2L2(U) ≤ Bγ(uγ,ψ, uγ,ψ) = ⟨ψ, uγ,ψ⟩H−1,2(U) ≤ ∥ψ∥H−1,2(U)∥∇uγ,ψ∥L2(U),

and hence,

∥∇uγ,ψ∥L2(U) ≤
2
λ
∥ψ∥H−1,2(U). (3.9)

Define K : H−1,2(U)→ H1,2
0 (U) given by

Kψ := uγ,ψ, ψ ∈ H−1,2(U). (3.10)

Then, by (3.9), we have

∥Kψ∥H1,2
0 (U) ≤

2
λ
∥ψ∥H−1,2(U) for all ψ ∈ H−1,2(U).

Define the operator J : H1,2
0 (U)→ H−1,2(U) by, for each u ∈ H1,2

0 (U),

⟨J(u), φ⟩H−1,2(U) =

∫
U

uφ dx for all φ ∈ H1,2
0 (U). (3.11)

By the Rellich-Kondrachov compactness theorem, J is a compact operator, and hence so is K ◦ J. We
now state the following claim.

Claim: Let u ∈ H1,2
0 (U) and ψ ∈ H−1,2(U). Then, the following statements (a)–(b) are equivalent:

u − γ
(
K ◦ J

)
u = Kψ in H1,2

0 (U). (a)

B(u, φ) = ⟨ψ, φ⟩H−1,2(U) for all φ ∈ H1,2
0 (U). (b)

(3.12)

To prove the claim, first suppose that (a) holds. Then, we have

u = K
(
ψ + γJ(u)

)
.

By the definition of K (see (3.10) and (3.8)), it follows that

Bγ(u, φ) = ⟨ψ + γJ(u), φ⟩H−1,2(U) for all φ ∈ H1,2
0 (U), (3.13)

which is equivalent to (b) by (3.11). Conversely, assume that (b) holds. Then, (3.13) is satisfied, and
hence, by the definition of K, we obtain

u = K
(
ψ + γJ(u)

)
,

which implies (a) by (3.11). This completes the proof of the claim.

Let I : H1,2
0 (U) → H1,2

0 (U) denote the identity operator. Evaluating (a) with ψ = 0, it follows from the
equivalence established in (3.12) that

u ∈ H1,2
0 (U) satisfies

(
I − γ(K ◦ J)

)
u = 0
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if and only if
B(u, φ) = 0 for all φ ∈ H1,2

0 (U).

Thus, by assumption, it follows that{
u ∈ H1,2

0 (U) :
(
I − γ(K ◦ J)

)
u = 0

}
= {0}.

Since γ(K ◦ J) : H1,2
0 (U) → H1,2

0 (U) is a compact operator, the Fredholm alternative
(see [13, Theorem 6.6]) implies that for each ψ ∈ H−1,2(U), there exists uψ ∈ H1,2

0 (U) such that(
I − γ(K ◦ J)

)
uψ = Kψ.

Therefore, by the equivalence established in (3.12), the desired assertion follows. □

Proposition 3.3. (Poincaré-type inequality) The following inequality holds:

∥ f ∥L2(U) ≤
2(d − 1)

d
|U |

1
d ∥∇ f ∥L2(U) for all f ∈ H1,2

0 (U).

Proof. By applying the Gagliardo-Nirenberg-Sobolev inequality ( [10, Section 5.6, Theorem 1])
together with the Hölder inequality, we obtain

∥ f ∥L2(U) ≤

2d
d+2 (d − 1)

d − 2d
d+2

∥∇ f ∥
L

2d
d+2 (U)

≤
2(d − 1)

d
|U |

1
d ∥∇ f ∥L2(U) for all f ∈ H1,2

0 (U).

□

Lemma 3.4. Let ϕ ∈ C1((−ε,∞)) with ε > 0 be such that ϕ(0) = 0 and ϕ′ ∈ L∞((0,∞)). If v ∈ H1,2
0 (U)

with v ≥ 0 in U, then ϕ(v) ∈ H1,2
0 (U) and ∇ϕ(v) = ϕ′(v)∇v in U.

Proof. Extend ϕ to a function on R, denoted again by ϕ, such that ϕ ∈ C1(R) with ϕ′ ∈ L∞(R). Let
(vn)n≥1 ⊂ C∞0 (U) be a sequence of functions such that limn→∞ vn = v in H1,2

0 (U) such that

lim
n→∞
∥∇vn − ∇v∥L2(U) = 0 (3.14)

and
lim
n→∞

vn(x) = v(x) for a.e. x ∈ U. (3.15)

Then, by the chain rule, (ϕ(vn))n≥1 ⊂ C1
0(U) and

∇ϕ(vn) = ϕ′(vn)∇vn in U for each n ≥ 1.

Moreover, by [11, Theorem 4.4(ii)], ϕ(v) ∈ H1,2(U) satisfies ∇ϕ(v) = ϕ′(v)∇v. Thus, we have

∥∇ϕ(v) − ∇ϕ(vn)∥L2(U) = ∥ϕ
′(v)∇v − ϕ′(vn)∇vn∥L2(U)

≤ ∥ϕ′(v)∇v − ϕ′(vn)∇v∥L2(U) + ∥ϕ
′(vn)∇v − ϕ′(vn)∇vn∥L2(U)

≤ ∥ϕ′(v)∇v − ϕ′(vn)∇v∥L2(U) + ∥ϕ
′∥L∞(R)∥∇v − ∇vn∥L2(U).

The first term converges to zero by the Lebesgue dominated convergence theorem and (3.15), and the
second term converges to zero by (3.14). Therefore, we have ϕ(v) ∈ H1,2

0 (U). □
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The following weak maximum principle originates from N. S. Trudinger [14], and a reformulated
version is given in [12, Chapter 2] under the assumption that H ∈ Lp(U,Rd) for some p ∈ (d,∞).
However, the original result in [14] allows the critical case H ∈ Ld(U,Rd). For the reader’s convenience,
we provide the precise statement and a detailed proof of this version below.

Proposition 3.5. (Weak maximum principle) Assume (T1). Let B : H1,2
0 (U) × H1,2

0 (U) → R denote
the bilinear form defined by (3.1). Let u ∈ H1,2

0 (U) satisfy

B(u, φ) ≤ 0 for all φ ∈ H1,2
0 (U) with φ ≥ 0 in U. (3.16)

Then, u ≤ 0 in U.

Proof. Let ϕ ∈ C1((−ε,∞)) with ε > 0 be such that ϕ ≥ 0 on [0,∞), ϕ(0) = 0, and ϕ′ ∈ L∞((0,∞)).
By [11, Theorem 4.4] and Lemma 3.4, we have u+ ∈ H1,2

0 (U) and ϕ(u+) ∈ H1,2
0 (U), with

∇ϕ(u+) = ϕ′(u+)∇u+ = ϕ′(u+)1{u>0}∇u ∈ L2(U,Rd).

Substituting φ = ϕ(u+) into (3.16), we obtain∫
U
⟨A∇u, ϕ′(u+)1{u>0}∇u⟩ dx +

∫
U
⟨uH, ϕ′(u+)1{u>0}∇u⟩ dx ≤ 0.

Since 1{u>0} = (1{u>0})2 and 1{u>0}∇u = ∇u+, it follows that∫
U
⟨A∇u+, ϕ′(u+)∇u+⟩ dx ≤

∫
U
⟨−u+H, ϕ′(u+)∇u+⟩ dx. (3.17)

Given ε > 0, define ϕε ∈ C1((−ε,∞)) by

ϕε(t) :=
t

t + ε
, t ∈ [0,∞).

Then, clearly ϕε ≥ 0 on [0,∞), ϕε(0) = 0, and ϕ′ε ∈ L∞((0,∞)), where

ϕ′ε(t) =
ε

(t + ε)2 for all t ∈ [0,∞).

Thus, substituting ϕ = ϕε into (3.17) yields∫
U

1
(u+ + ε)2 ⟨A∇u+, ∇u+⟩ dx ≤

∫
U

〈
−u+H,

1
(u+ + ε)2∇u+

〉
dx. (3.18)

For each ε > 0, define ψε ∈ C1((−ε,∞)) by

ψε(t) := ln
(
1 +

t
ε

)
, t ∈ [0,∞).

Then, ψ′ε ∈ L∞((0,∞)) satisfies

ψ′ε(t) =
1

t + ε
for all t ∈ [0,∞).
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Again, by Lemma 3.4, ψε(u+) ∈ H1,2
0 (U), and inequality (3.18) implies that

λ∥∇ψε(u+)∥2L2(U) ≤

∫
U
⟨A∇ψε(u+), ∇ψε(u+)⟩ dx

≤

∫
U

〈
−u+

u+ + ε
H, ∇ψε(u+)

〉
dx

≤ ∥H∥L2(U)∥∇ψε(u+)∥L2(U).

Hence,

∥∇ψε(u+)∥L2(U) ≤
1
λ
∥H∥L2(U).

By Proposition 3.3, it follows that

∥ψε(u+)∥2L2(U) ≤
4(d − 1)2

λ2d2 |U |
2
d ∥H∥2L2(U).

Now, suppose there exists a measurable subset V ⊂ U with |V | > 0 such that u+(x) > 0 for all x ∈ V .
Then, by Fatou’s lemma,

∞ =

∫
V

lim inf
ε→0+

|ψε(u+)|2 dx ≤ lim inf
ε→0+

∫
V
|ψε(u+)|2 dx ≤

4(d − 1)2

λ2d2 |U |
2
d ∥H∥2L2(U) < ∞,

which is a contradiction. Therefore, u+ = 0 a.e. in U, as desired. □

Corollary 3.6. Assume (T1). Let B : H1,2
0 (U)×H1,2

0 (U)→ R denote the bilinear form defined by (3.1).
Let g ∈ H−1,2(U). Then, there exists a unique function ug ∈ H1,2

0 (U) such that

B(ug, φ) = ⟨g, φ⟩H−1,2(U) for all φ ∈ H1,2
0 (U).

Proof. Let w ∈ H1,2
0 (U) satisfy

B(w, φ) = 0 for all φ ∈ H1,2
0 (U).

Then, by Proposition 3.5, w ≤ 0 and −w ≤ 0 in U, and hence w = 0 in U. Thus, the assertion follows
from Proposition 3.2. □

The following lemma provides a standard energy estimate, but due to the assumption that H ∈
Ld(U,Rd), a delicate use of partition of unity and compactness arguments is required. In contrast, if
one assumes H ∈ Lp(U,Rd) for some p > d, the estimate could likely be derived more easily using
an interpolation inequality. We refer to [15] for the derivation of the H1,q-estimate under appropriate
regularity assumptions on the coefficient matrix A and the domain U.

Lemma 3.7. Assume (T1). For each n ≥ 1, let An = (an,i j)1≤i, j≤d be a matrix of measurable functions
on Rd, satisfying

max
1≤i, j≤d

|an,i j(x)| ≤ M, ⟨An(x)ξ, ξ⟩ ≥ λ∥ξ∥2 for a.e. x ∈ Rd and all ξ ∈ Rd. (3.19)
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Assume also that limn→∞ an,i j = ai j in L2(U) for all 1 ≤ i, j ≤ d. Let η be a standard mollifier on Rd,
and for each n ≥ 1, define ηn ∈ C∞0 (B1/n) given by ηn(x) := ndη(nx), x ∈ Rd. Define

Hn := H ∗ ηn, n ≥ 1,

where H is the zero extension of H ∈ Ld(U,Rd) to Rd. Given g ∈ H−1,2(U), let un,g ∈ H1,2
0 (U) be the

unique function satisfying∫
U
⟨An∇un,g + un,g Hn,∇φ⟩ dx = ⟨g, φ⟩H−1,2(U) for every φ ∈ H1,2

0 (U), (3.20)

as in Corollary 3.6. Then, there exist constants c1, c2 > 0 which only depend on d, λ, M, H and U
(c1, c2 > 0 are independent of n and g) such that

∥∇un,g∥L2(U) ≤ c1∥un,g∥L2(U) + c2∥g∥H−1,2(U).

Proof. First, note that for any open sets V , W with V ⊂ W,

∥Hn∥Ld(V) ≤ ∥H∥Ld(W) (3.21)

(see the proof of [10, Theorem 7, Appendices]). Let x ∈ U and rx > 0 be such that

2(d − 1)
d − 2

∥H∥Ld(B2rx (x)) ≤
λ

4
. (3.22)

Let ζ ∈ C∞0 (Brx(x)). Given g ∈ H−1,2(U), substituting φ = ζ2un,g ∈ H1,2
0 (U) in (3.20) and using (3.5),

we have

λ∥ζ∇un,g∥
2
L2(U) ≤

∫
U
⟨An∇un,g, ζ

2∇un,g⟩ dx

= −

∫
U
⟨An∇un,g, 2un,gζ∇ζ⟩ dx −

∫
U
⟨un,gHn, 2ζun,g∇ζ⟩ dx

−

∫
U
⟨un,gHn, ζ

2∇un,g⟩ dx + ⟨g, ζ2un,g⟩H−1,2(U)

≤ 2dM∥ζ∇un,g∥L2(U)∥un,g∇ζ∥L2(U) + 2∥Hn∥Ld(Brx (x))∥ζun,g∥L
2d

d−2 (U)
∥un,g∇ζ∥L2(U)

+ ∥Hn∥Ld(Brx (x))∥ζun,g∥L
2d

d−2 (U)
∥ζ∇un,g∥L2(U) + ∥g∥H−1,2(U)

(
∥ζ2∇un,g∥L2(U) + ∥2ζun,g∇ζ∥L2(U)

)
≤ 2dM∥ζ∇un,g∥L2(U)∥un,g∇ζ∥L2(U) +

4(d − 1)
d − 2

∥Hn∥Ld(Brx (x))∥∇(ζun,g)∥L2(U)∥un,g∇ζ∥L2(U)

+
2(d − 1)

d − 2
∥Hn∥Ld(Brx (x))∥∇(ζun,g)∥L2(U)∥ζ∇un,g∥L2(U)

+ ∥g∥H−1,2(U)∥ζ∥L∞(U)∥ζ∇un,g∥L2(U) + ∥g∥H−1,2(U)∥2ζ∥L∞(U)∥un,g∇ζ∥L2(U).

Using Young’s inequality, we obtain that

λ

2
∥ζ∇un,g∥

2
L2(U)
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≤

(
8d2M2

λ
+

40(d − 1)2

λ(d − 2)2 ∥Hn∥
2
Ld(Brx (x)) +

4(d − 1)
d − 2

∥Hn∥Ld(Brx (x)) + 2∥ζ∥2L∞(U)

)
∥un,g∇ζ∥

2
L2(U)

+

(
2
λ
∥ζ∥2L∞(U) +

1
2

)
∥g∥2H−1,2(U) +

2(d − 1)
d − 2

∥Hn∥Ld(Brx (x))∥ζ∇un,g∥
2
L2(U). (3.23)

Applying (3.21) and (3.22) to (3.23),

∥ζ∇un,g∥
2
L2(U)

≤
4
λ

(
8d2M2

λ
+

40(d − 1)2

λ(d − 2)2 ∥H∥
2
Ld(U) +

4(d − 1)
d − 2

∥H∥Ld(U) + 2∥ζ∥2L∞(U)

)
∥∇ζ∥2L∞(U)∥un,g∥

2
L2(U)

+
4
λ

(
2
λ
+

1
2

)
∥g∥2H−1,2(U).

Since U is compact and {Brx(x) : x ∈ U} is an open cover of U, there exists x1, . . . , xN ∈ U such that

U ⊂
N⋃

i=1

Brxi
(xi).

Let (ζi)N
i=1 be the smooth partition of unity with supp(ζi) ⊂ Brxi

(xi) such that

N∑
i=1

ζi = 1 on U.

Therefore,

∥∇un,g∥L2(U) =

∥∥∥∥∥∥∥
N∑

i=1

ζi∇un,g

∥∥∥∥∥∥∥
L2(U)

≤

N∑
i=1

∥∥∥ζi∇un,g

∥∥∥
L2(U)

≤ c1∥un,g∥L2(U) + c2∥g∥H−1,2(U),

where

c1 =

N∑
i=1

2
√
λ

(
8d2M2

λ
+

40(d − 1)2

λ(d − 2)2 ∥H∥
2
Ld(U) +

4(d − 1)
d − 2

∥H∥Ld(U) + 2∥ζi∥
2
L∞(U)

) 1
2

∥∇ζi∥L∞(U)

and

c2 =
2N
√
λ

(
2
λ
+

1
2

) 1
2

.

□

The following lemma is inspired by the compactness arguments in [10, Section 6.2, Theorem 6],
and its key feature is that the constant C > 0 remains independent of both the index n and the external
data g ∈ H−1,2(U), even though the coefficients are given as a sequence rather than a single function.
Different from [16, Lemma 3.3], the main feature here is that uniform estimates are obtained for the
mollifications of H, assuming H ∈ Ld(U,Rd).
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Lemma 3.8. Assume (T1). For each n ≥ 1, let An = (an,i j)1≤i, j≤d be a matrix of measurable functions
on Rd satisfying (3.19). Assume also that limn→∞ an,i j = ai j in L2(U) for all 1 ≤ i, j ≤ d. Let η be a
standard mollifier on Rd, and for each n ≥ 1, define ηn ∈ C∞0 (B1/n) given by ηn(x) := ndη(nx), x ∈ Rd.
Define

Hn := H ∗ ηn,

where H is the zero extension of H ∈ Ld(U,Rd) to Rd. Given g ∈ H−1,2(U), let un,g ∈ H1,2
0 (U) be the

unique function satisfying∫
U
⟨An∇un,g + un,g Hn,∇φ⟩ dx = ⟨g, φ⟩H−1,2(U) for every φ ∈ H1,2

0 (U),

as in Corollary 3.6. Then, the following statements hold:

(i) There exists a constant C > 0 independent of n ≥ 1 and g ∈ H−1,2(U) such that

∥un,g∥L2(U) ≤ C∥g∥H−1,2(U) for all n ≥ 1 and g ∈ H−1,2(U). (3.24)

Moreover,
∥∇un,g∥L2(U) ≤ (c1C + c2)∥g∥H−1,2(U), (3.25)

where c1, c2 > 0 are constants as in Lemma 3.7.
(ii) Given g ∈ H−1,2(U), let ug ∈ H1,2

0 (U) be the unique function satisfying∫
U
⟨A∇ug + ug H,∇φ⟩ dx = ⟨g, φ⟩H−1,2(U) for every φ ∈ H1,2

0 (U),

as in Corollary 3.6. Then, there exists a subsequence of (un,g)n≥1, say again (un,g)n≥1 such that

lim
n→∞

un,g = ug weakly in H1,2
0 (U) and lim

n→∞
un,g = ug in L2(U). (3.26)

In particular,
∥ug∥L2(U) ≤ C∥g∥H−1,2(U) for all n ≥ 1 and g ∈ H−1,2(U).

and
∥∇ug∥L2(U) ≤ (c1C + c2)∥g∥H−1,2(U),

where C > 0 is the constant as in (i) and c1, c2 > 0 are constants as in Lemma 3.7.

Proof. (i) Suppose, by contradiction, that (3.24) does not hold. Then, for each k ∈ N, there exist
g̃k ∈ H−1,2(U) and nk ∈ N such that

∥unk ,g̃k∥L2(U) > k∥g̃k∥H−1,2(U).

Define
gk :=

g̃k

∥unk ,g̃k∥L2(U)
∈ H−1,2(U).

By Corollary 3.6, it follows that
unk ,gk =

unk ,g̃k

∥unk ,g̃k∥L2(U)
.
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Therefore,
∥unk ,gk∥L2(U) = 1 (3.27)

and
∥gk∥H−1,2(U) <

1
k
. (3.28)

Meanwhile, we have∫
U
⟨Ank∇unk ,gk + unk ,gk Hnk ,∇φ⟩ dx = ⟨gk, φ⟩H−1,2(U) for every φ ∈ H1,2

0 (U).

Using Lemma 3.7, (3.27) and (3.28), it follows that

∥∇unk ,gk∥L2(U) ≤ c1∥un,g∥L2(U) + c2∥g∥H−1,2(U)

≤ c1 + c2, (3.29)

where c1, c2 > 0 are constants which only depend on d, λ, M, H and U (c1, c2 are independent of n and
g).

Case 1) Suppose that the set {nk : k ≥ 1} is bounded. Then, there exists N ∈ N and a subsequence
(k j) j≥1 ⊂ (k)k≥1 such that nk j = N for all j ≥ 1. In this case, from (3.29), we deduce that

∥∇uN,gk j
∥L2(U) ≤ c1 + c2 for all j ≥ 1.

Moreover,∫
U
⟨AN∇uN,gk j

+ uN,gk j
HN ,∇φ⟩ dx = ⟨gk j , φ⟩H−1,2(U) for all φ ∈ H1,2

0 (U) and j ≥ 1. (3.30)

By the weak compactness of bounded sets in H1,2
0 (U) and the Rellich-Kondrachov compactness

theorem, there exists a subsequence of (uN,gk j
) j≥1, which we denote again by (uN,gk j

) j≥1, and a function
u ∈ H1,2

0 (U) such that

lim
j→∞

uN,gk j
= u weakly in H1,2

0 (U), lim
j→∞

uN,gk j
= u in L2(U). (3.31)

Passing to the limit in (3.30) along this subsequence and using the fact that gk j → 0 in H−1,2(U) as
j→ ∞ (see (3.28)), we obtain∫

U
⟨AN∇u + u HN ,∇φ⟩ dx = 0 for all φ ∈ H1,2

0 (U).

By the uniqueness in Corollary 3.6, it follows that u = 0 in U. On the other hand, by (3.27) and (3.31),

1 = lim
j→∞
∥uN,gk j

∥L2(U) = ∥u∥L2(U) = 0,

which is a contradiction.
Case 2) Suppose now that the set {nk : k ≥ 1} is unbounded. Then, there exists a subsequence

(k j) j≥1 ⊂ (k)k≥1 such that
lim
j→∞

nk j = ∞
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and ∫
U
⟨Ank j
∇unk j ,gk j

+ unk j ,gk j
Hnk j

,∇φ⟩ dx = ⟨gk j , φ⟩H−1,2(U) for all φ ∈ H1,2
0 (U). (3.32)

By (3.29), we have
∥∇unk j ,gk j

∥L2(U) ≤ c1 + c2.

Consequently, there exists a subsequence of (unk j ,gk j
) j≥1, say again (unk j ,gk j

) j≥1, and a function
u ∈ H1,2

0 (U) such that

lim
j→∞

unk j ,gk j
= u weakly in H1,2

0 (U), lim
j→∞

unk j ,gk j
= u in L2(U). (3.33)

Using (3.33), we now pass to the limit in the weak formulation in (3.32), and hence we get∫
U
⟨A∇u + u H,∇φ⟩ dx = 0 for all φ ∈ H1,2

0 (U).

By the uniqueness in Corollary 3.6, it follows that u = 0 in U. On the other hand, by (3.27) and (3.33),

1 = lim
j→∞
∥unk j ,gk j

∥L2(U) = ∥u∥L2(U) = 0.

Since both cases result in a contradiction, the initial assumption must be false. Thus, (3.24) does hold.
Therefore, (3.25) directly follows from Lemma 3.7.

(ii) By the weak compactness of bounded subsets in H1,2
0 (U) and the Rellich-Kondrachov

compactness theorem applied to (3.25), there exists a subsequence of (un,g)n≥1, which we still denote
by (un,g)n≥1, such that (3.26) holds. The rest follows from the lower semi-continuity of the norm used
in the estimates (3.24) and (3.25). □

Remark 3.9. Assume (T1), where d ≥ 3 is replaced by d = 2, and suppose that H ∈ Lp(U,R2) for
some p ∈ (2,∞). In analogy with the proofs of Propositions 3.1, 3.2, 3.5 and Corollary 3.6, we obtain
that for each g ∈ H−1,2(U), there exists a unique function ug ∈ H1,2

0 (U) satisfying∫
U
⟨A∇ug + ug H,∇φ⟩ dx = ⟨g, φ⟩H−1,2(U) for all φ ∈ H1,2

0 (U).

For each n ≥ 1, let An = (an,i j)1≤i, j≤d be a matrix-valued function satisfying (3.19), and assume that
limn→∞ an,i j = ai j in L2(U) for all 1 ≤ i, j ≤ d. Let Hn ∈ Lp(U,R2) be the mollification of the zero
extension of H to Rd as in Lemma 3.8. For each n ≥ 1, let un,g ∈ H1,2

0 (U) be the unique function
satisfying ∫

U
⟨An∇un,g + un,g Hn,∇φ⟩ dx = ⟨g, φ⟩H−1,2(U) for all φ ∈ H1,2

0 (U).

Then, by a similar argument to that in the proof of Lemma 3.8, we obtain the results in Lemma 3.8.

The following lemma is a generalization of [16, Lemma 3.4], and in particular, it remains valid even
under the assumption H ∈ Ld(U,Rd). Its proof requires a highly delicate approximation argument, in
which Lemma 3.8 plays a central role.
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Lemma 3.10. Assume (T1). Assume that u ∈ H1,2(U) satisfies∫
U
⟨A∇u + uH,∇φ⟩dx ≤ 0 for all φ ∈ C∞0 (U), φ ≥ 0.

Then, we have ∫
U
⟨A∇u+ + u+H,∇φ⟩dx ≤ 0 for all φ ∈ C∞0 (U), φ ≥ 0.

Proof. Let V be an arbitrary open subset of U with V ⊂ U. To show the assertion, it is enough to
show that ∫

U
⟨A∇u+ + u+H,∇φ⟩dx ≤ 0 for all φ ∈ C∞0 (V), φ ≥ 0.

Let W be an open set with a smooth boundary such that

V ⊂ W ⊂ W ⊂ U.

Let B be an open ball such that U ⊂ B. By [11, Theorem 4.7], u ∈ H1,2(W) can be extended to a
function û ∈ H1,2

0 (B). Moreover, by [11, Theorem 4.4(iii)], we have û+ ∈ H1,2
0 (B) with

∇û+ =

∇û a.e. on {û > 0},
0 a.e. on {û ≤ 0}.

Extend H ∈ Ld(U,Rd) to Rd by zero extension. Define

F := A∇û + ûH ∈ L2(Rd,Rd).

Let η be a standard mollifier on Rd, and for each n ≥ 1, define ηn ∈ C∞0 (B1/n) by ηn(x) := ndη(nx),
x ∈ Rd. For each n ∈ N and 1 ≤ i, j ≤ d, define

an,i j := ai j ∗ ηn, An := (an,i j)1≤i, j≤d, Hn := H ∗ ηn, Fn := F ∗ ηn on Rd.

Then, an,i j ∈ C∞(Rd), and Hn, Fn ∈ C∞(Rd,Rd) for all n ≥ 1 and 1 ≤ i, j ≤ d, and it holds that

lim
n→∞

an,i j = ai j in L2(B,Rd), lim
n→∞

Hn = H in Ld(B,Rd), lim
n→∞

Fn = F in L2(B,Rd).

Furthermore, (3.19) holds. Choose δ > 0 such that Bδ(x) ⊂ W for all x ∈ V . Pick N ∈ N with 1
N < δ.

Then, for any n ≥ N and φ ∈ C∞0 (V) with φ ≥ 0, we have φ ∗ ηn ∈ C∞0 (W), φ ∗ ηn ≥ 0, and∫
U
⟨Fn,∇φ⟩dx =

∫
Rd
⟨Fn,∇φ⟩dx =

∫
Rd
⟨F,∇(φ ∗ ηn)⟩dx

=

∫
Rd
⟨A∇û + ûH,∇(φ ∗ ηn)⟩dx =

∫
U
⟨A∇u + uH,∇(φ ∗ ηn)⟩dx ≤ 0. (3.34)

According to Corollary 3.6, there exists a unique function un ∈ H1,2
0 (B) such that∫

B
⟨An∇un + unHn,∇φ̃⟩dx =

∫
B
⟨Fn,∇φ̃⟩dx for all φ̃ ∈ C∞0 (B). (3.35)
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By Lemma 3.8(i), we obtain

∥un∥H1,2
0 (B) ≤ (c1C + c2)∥Fn∥L2(B,Rd) ≤ (c1C + c2)∥F∥L2(B,Rd),

where c1, c2 > 0 are constants as in Lemma 3.7 and C > 0 is the constant as in Lemma 3.8(i). By
the weak compactness of bounded subsets in H1,2

0 (B) and using [11, Theorem 4.4(iii)], there exist
ũ ∈ H1,2

0 (B) and a subsequence (still denoted by un) such that

lim
n→∞

un = ũ and lim
n→∞

u+n = ũ+ weakly in H1,2
0 (B). (3.36)

Hence letting n→ ∞, we get∫
B
⟨A∇ũ + ũH,∇φ̃⟩dx =

∫
B
⟨F,∇φ̃⟩dx =

∫
B
⟨A∇û + ûH,∇φ̃⟩dx for all φ̃ ∈ C∞0 (B).

By the uniqueness in Proposition 3.5, we conclude that ũ = û in H1,2
0 (B). Thus, by (3.36), we have

lim
n→∞

un = û and lim
n→∞

u+n = û+ weakly in H1,2
0 (B). (3.37)

Define the operator

Lnun :=
d∑

i, j=1

an,i j∂i∂ jun + ⟨Hn + div An,∇un⟩ + (div Hn)un.

Then from (3.34) and (3.35), we deduce that for all n ≥ N and φ ∈ C∞0 (V) with φ ≥ 0,

−

∫
V
Lnun · φdx =

∫
V
⟨An∇un + unHn,∇φ⟩dx =

∫
U
⟨Fn,∇φ⟩dx ≤ 0,

which implies
Lnun ≥ 0 in V for all n ≥ N. (3.38)

Let ϕ be a standard mollifier on R, and for each n ≥ 1, define ϕn ∈ C∞0 (−1/n, 1/n) by ϕn(t) := nϕ(nt)
for t ∈ R. For each ε > 0, define

fε(z) :=


√

z2 + ε2 − ε if z ≥ 0,
0 if z < 0.

Then, fε ∈ C1(R) and its derivative f ′ε belongs to H1,∞(R) ∩C(R). In particular, we have

f ′ε(z) =

 z
√

z2+ε2 if z ≥ 0,

0 if z < 0,
and f ′′ε (z) =

 ε2

(z2+ε2)3/2 if z > 0,

0 if z < 0.

Observe that
lim
ε→0+

fε(z) = z+, and lim
ε→0+

f ′ε(z) = 1(0,∞)(z) for all z ∈ R. (3.39)

Let fε,k := fε ∗ ϕk. Then f ′ε,k ≥ 0 and f ′′ε,k ≥ 0 on R. Moreover,

lim
k→∞

fε,k(un) = fε(un), and lim
k→∞

f ′ε,k(un) = f ′ε(un) uniformly on U. (3.40)
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Thus, for any φ ∈ C∞0 (V) with φ ≥ 0, it follows from (3.40) and (3.38) that∫
U
⟨An∇ fε(un) + fε(un)Hn,∇φ⟩dx = lim

k→∞

∫
U
⟨An∇ fε,k(un) + fε,k(un)Hn,∇φ⟩dx

= lim
k→∞

(
−

∫
U

f ′ε,k(un)Lnunφ dx −
∫

U
f ′′ε,k(un)⟨An∇un,∇un⟩φ dx

−

∫
U

div Hn
(
fε,k(un) − un f ′ε,k(un)

)
φ dx

)
≤ −

∫
U

div Hn
(
fε(un) − un f ′ε(un)

)
φ dx.

Since the right-hand side tends to zero as ε → 0+ by (3.39), we conclude from [11, Theorem 4.4(iii)]
and (3.39) that for all n ≥ N,∫

U
⟨An∇u+n + u+n Hn,∇φ⟩dx ≤ 0 for all φ ∈ C∞0 (V), φ ≥ 0.

Finally, by taking the weak limit of u+n in (3.37) as n→ ∞, we obtain∫
U
⟨A∇u+ + u+H,∇φ⟩dx ≤ 0 for all φ ∈ C∞0 (V), φ ≥ 0,

which completes the proof. □

4. Proof of main result

The following theorem is a key result of this paper, which corresponds to [1, Theorem 3.1] but
weakens the assumption on H from Lp(U,Rd) to Ld(U,Rd) by taking advantage of the additional
structure on its divergence. This additional structure allows us to apply Hölder regularity and the
Harnack inequality. The idea of the proof originates from [17, Theorem 1] (cf. [12, Chapter 2]),
where the coefficient matrix A is assumed to lie in V MO.

Theorem 4.1. Assume that (T) holds. Then the following statements hold:

(i) Let x1 ∈ U. Then, there exists ρ ∈ H1,2(Br(x0)) ∩ C(Br(x0)) with ρ(x) > 0 for all x ∈ Br(x0) and
ρ(x1) = 1 such that ∫

Br(x0)
⟨AT∇ρ + ρH,∇φ⟩dx = 0, for all φ ∈ C∞0 (Br(x0)). (4.1)

(ii) Let ρ be as in Theorem 4.1(i). Then, there exists a constant K̃1 ≥ 1 which only depends on d, λ,
M, Br(x0), p, q̃ and H such that

1 ≤ max
U

ρ ≤ K̃1 min
U
ρ ≤ K̃1.

Proof. (i) By Corollary 3.6, there exists v ∈ H1,2
0 (Br(x0)) such that∫

Br(x0)
⟨AT∇v + vH,∇φ⟩dx = −

∫
Br(x0)
⟨H,∇φ⟩ dx for all φ ∈ H1,2

0 (Br(x0)). (4.2)
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Let w = v + 1 ∈ H1,2(Br(x0)). Let T : H1,2(Br(x0)) → L2(∂Br(x0)) be the trace operator as in [11,
Theorem 4.6]. Then,

T (w) = T (v) + 1 = 1 in L2(∂Br(x0)). (4.3)

Observe that from (4.2)∫
Br(x0)
⟨AT∇w + wH,∇φ⟩dx = 0 for all φ ∈ H1,2

0 (Br(x0)). (4.4)

Meanwhile, −w = −v − 1 ≤ −v in Br(x0), and hence 0 ≤ (−w)+ ≤ (−v)+ in Br(x0). Since
(−v)+ ∈ H1,2

0 (Br(x0)), it follows by [1, Proposition A.9] that (−w)+ ∈ H1,2
0 (Br(x0)). Therefore, applying

Lemma 3.10 to (4.4) where w is replaced by −w, we have∫
Br(x0)
⟨AT∇(−w)+ + (−w)+H,∇φ⟩dx ≤ 0 for all φ ∈ H1,2

0 (Br(x0)) with φ ≥ 0.

By Proposition 3.5, (−w)+ ≤ 0 in Br(x0), which implies

w ≥ 0 in Br(x0). (4.5)

Let wn ∈ C∞0 (Br(x0)) be such that limn→∞ wn = w in H1,2
0 (Br(x0)). For each φ ∈ C∞0 (Br(x0)), we have∫

Br(x0)
⟨wH,∇φ⟩ dx =

∫
Br(x0)
⟨wH1,∇φ⟩ dx +

∫
Br(x0)
⟨wH2,∇φ⟩ dx

=

∫
Br(x0)
⟨wH1,∇φ⟩ dx + lim

n→∞

(∫
Br(x0)
⟨H2,∇(wnφ)⟩ dx −

∫
Br(x0)
⟨H2, φ∇wn⟩ dx

)
=

∫
Br(x0)
⟨wH1,∇φ⟩ dx + lim

n→∞

(
−

∫
Br(x0)

h̃wnφ dx −
∫

Br(x0)
⟨H2, φ∇wn⟩ dx

)
=

∫
Br(x0)
⟨wH1,∇φ⟩ dx −

∫
Br(x0)
⟨H2,∇w⟩φ dx −

∫
Br(x0)

h̃wφ dx.

Thus, (4.4) implies that∫
Br(x0)
⟨AT∇w + wH1,∇φ⟩dx −

∫
Br(x0)

(
⟨H2,∇w⟩ + h̃w

)
φ dx = 0 for all φ ∈ H1,2

0 (Br(x0)). (4.6)

Since H1 ∈ Lp(Br(x0),Rd), H2 ∈ Ld(Br(x0),Rd) and h̃ ∈ Lq̃(Br(x0)) with q̃ ∈ (d
2 ,∞), it follows

by [2, Théorème 7.2] that w has a continuous version in Br(x0), say again
w ∈ H1,2(Br(x0)) ∩C(Br(x0)) (indeed, w has a locally Hölder continuous version in Br(x0)). Moreover,
it follows from (4.5) that w(x) ≥ 0 for all x ∈ Br(x0).

Claim: w(x) > 0 for every x ∈ Br(x0).
To show the claim, we proceed by contradiction. Suppose there exists y0 ∈ Br(x0) such that w(y0) =

0. Then, applying the Harnack inequality (see [2, Théorème 8.1]) to (4.6), we deduce that w must
vanish identically on BR(x0) for all R ∈ (∥y0 − x0∥, r). Given that R is arbitrary, it follows that w = 0
on Br(x0), which implies T (w) = 0 on L2(∂Br(x0)). This, however, contradicts (4.3). Therefore, we
conclude that our claim holds.
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Let x1 ∈ U. Since w(x1) > 0, we define the normalized function ρ ∈ H1,2(Br(x0)) ∩C(Br(x0)) by

ρ(x) :=
1

w(x1)
w(x), x ∈ Br(x0).

Thus, (4.1) is fulfilled by (4.4).

(ii) Observe that by (4.6),∫
Br(x0)
⟨AT∇ρ + ρH1,∇φ⟩dx −

∫
Br(x0)

(
⟨H2,∇ρ⟩ + h̃ρ

)
φ dx = 0 for all φ ∈ H1,2

0 (Br(x0)). (4.7)

Since ρ(x1) = 1, by applying the Harnack inequality ( [2, Théorème 8.1]) to (4.7), the assertion follows.
□

Remark 4.2. Whether the conclusion of Theorem 4.1 can be derived under the assumption of (T1)
remains an open question. However, at the very least, our current proof method for Theorem 4.1 is not
sufficient to establish the result under assumption (T1). The main difficulty arises from the fact that
the assumption H ∈ Ld(Br(x0),Rd) does not allow the solution to be locally bounded. To illustrate this
point, consider d ≥ 3 and the function

w(x) :=
1

ln 2
ln

(
1 +

1
∥x∥

)
, x ∈ B1 := {x ∈ Rd : ∥x∥ < 1}. (4.8)

Then, w(x) > 0 for all x ∈ B1 \ {0}, and w ∈ H1,2(B1) ∩C(B1 \ {0}). Moreover, we have

T (w) = 1 in L2(∂B1),

where T : H1,2
0 (B1) → L2(∂B1) is the trace operator as in [11, Theorem 4.6]. Now define the vector

field H : B1 → R
d by

H(x) := −∇ ln w(x), x ∈ B1.

Then, H ∈ Ld(B1,R
d), but H <

⋃
p∈(d,∞) Lp(B1,R

d). Direct computation shows that w satisfies (4.4)
with Br(x0) replaced by B1, and that w is in fact the unique function satisfying both T (w) = 1 and
(4.4). However, the function w defined in (4.8) does not admit a locally bounded version in B1. This
demonstrates that the local boundedness of the solution cannot, in general, be deduced under the
sole assumption H ∈ Ld(B1,R

d). (If H ∈ Lp(B1,R
d) with p ∈ (d,∞), then the local boundedness

of a solution follows by [4, Theorem 5.1]. Indeed, one can check that div H ∈ L
d
2 (B1), but div H <⋃

p∈( d
2 ,∞) Lp(B1). Therefore, to obtain the local boundedness of solutions in case of H ∈ Ld(B1,R

d), the
condition (T) regarding H is essential.

Below, we present the core method of this paper, which transforms a general vector field into a
divergence-free vector field. We shall refer to this as the divergence-free transformation. In particular,
we present here a simplified form of [1, Theorem 3.2].

Theorem 4.3. (Divergence-free transformation) Assume that (T) holds. Let ρ ∈ H1,2(U) ∩ C(U) be
a strictly positive function on U constructed as in Theorem 4.1. Define the vector field

B := H +
1
ρ

AT∇ρ in U. (4.9)
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Then ρB ∈ L2(U,Rd) and satisfies∫
U
⟨ρB,∇φ⟩ dx = 0 for all φ ∈ C∞0 (U). (4.10)

Let f ∈ L1(U), and u ∈ H1,2
0 (U) with cu ∈ L1(U). Then the following two statements are equivalent:

(i) The function u satisfies (2.1).
(ii) The function u satisfies∫

U
⟨ρA∇u,∇φ⟩ + ⟨ρB,∇u⟩φ + ρcuφ dx =

∫
U
ρ fφ dx for all φ ∈ C∞0 (U).

In other words, u is a weak solution to (1.1), if and only if u is a weak solution to (1.2).

Proof. The proof is identical to that of [1, Theorem 3.2] in the case where F = 0. □

The following two lemmas, which play a supporting role in the proof of the main result, are adapted
from [1] and [18], respectively.

Lemma 4.4. Assume d ≥ 3. Let λ̂ > 0 be a constant, and let Â = (âi j)1≤i, j≤d be a matrix of bounded
and measurable functions on Rd such that

⟨Â(x)ξ, ξ⟩ ≥ λ̂∥ξ∥2 for a.e. x ∈ Rd and all ξ ∈ Rd. (4.11)

Let B̂ ∈ L2(U,Rd) be a vector field satisfying∫
U
⟨B̂,∇φ⟩ dx = 0 for all φ ∈ C∞0 (U). (4.12)

Let ĉ ∈ L1(U) with ĉ ≥ 0, and let f̂ ∈ Lq(U) for some q ∈
(

d
2 ,∞

)
. Then, the following statements hold:

(i) There exists a weak solution û ∈ H1,2
0 (U) ∩ L∞(U) to− div(Â∇û) + ⟨B̂,∇û⟩ + ĉû = f̂ in U,

û = 0 on ∂U,
(4.13)

i.e., û ∈ H1,2
0 (U) with ĉû ∈ L1(U) satisfies∫

U
⟨Â∇û,∇φ⟩ + ⟨B̂,∇û⟩φ + ĉûφ dx =

∫
U

f̂φ dx for all φ ∈ C∞0 (U).

Moreover, the following estimates hold:

∥û∥H1,2
0 (U) ≤ K̂3∥ f̂ ∥L 2d

d+2 (U)
, (4.14)

∥û∥L∞(U) ≤ K̂4∥ f̂ ∥Lq(U), (4.15)

where K̂3 > 0 depends only on d, λ̂, and |U |, and K̂4 > 0 depends only on d, λ̂, q, and |U |.
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(ii) Let v̂ ∈ H1,2
0 (U) with ĉv̂ ∈ L1(U) be such that∫

U
⟨Â∇v̂,∇φ⟩ + ⟨B̂,∇v̂⟩φ + ĉv̂φ dx = 0 for all φ ∈ C∞0 (U).

Then v̂ = 0 in U. In particular, the solution û in (i) is unique.
(iii) Let α > 0 and θ ∈ [1,∞], and assume that ĉ ≥ α and f̂ ∈ Lθ(U) ∩ Lq(U). Then û in (i) satisfies

∥û∥Lθ(U) ≤
1
α
∥ f̂ ∥Lθ(U). (4.16)

Proof. The assertion follows from [1, Theorem 3.3] in the case where F = 0. □

Lemma 4.5. Assume d ≥ 3. Let λ̂ > 0 be a constant, and let Â = (âi j)1≤i, j≤d be a matrix of bounded
and measurable functions on Rd satisfying (4.11). Let B̂ ∈ L2(U,Rd) be a vector field satisfying (4.12).
Let ĉ ∈ L

2d
d+2 (U) with ĉ ≥ 0, and let f̂ ∈ L

2d
d+2 (U). Then the following statements hold:

(i) There exists a unique solution û ∈ H1,2
0 (U) to (4.13), and û satisfies the estimate (4.14).

(ii) Let α > 0 and θ ∈ [1,∞], and assume that ĉ ≥ α and f̂ ∈ Lθ(U) ∩ L
2d

d+2 (U). Then the solution û in
(i) satisfies (4.16).

Proof. (i) The existence and uniqueness of the solution û to (4.13), as well as the estimate (4.14),
follow from [18, Theorem 1.1(i)].
(ii) The assertion follows from [18, Theorem 1.1(ii)]. □

Now, we present the proof of the main result stated in the Introduction.

Proof of Theorem 1.1
(i) Let ρ ∈ H1,2(U) ∩ C(U) be a strictly positive function on U constructed as in Theorem 4.1, and
define the vector field B as in (4.9). Then (4.10) is satisfied. Let v ∈ H1,2

0 (U) with cv ∈ L1(U) be such
that (1.4) holds. By Theorem 4.3, we obtain∫

U
⟨ρA∇v,∇φ⟩ + ⟨ρB,∇v⟩φ + ρcvφ dx = 0 for all φ ∈ C∞0 (U).

Then, by Lemma 4.4(ii), it follows that v = 0 in U.
(ii) Let f ∈ Lq(U) for some q ∈ (d

2 ,∞). By Lemma 4.4(i), there exists a unique function u ∈ H1,2
0 (U) ∩

L∞(U) satisfying∫
U
⟨ρA∇u,∇φ⟩ + ⟨ρB,∇u⟩φ + ρcuφ dx =

∫
U
ρ fφ dx for all φ ∈ C∞0 (U), (4.17)

and (4.14), (4.15) and Theorem 4.1(ii) imply

∥u∥H1,2
0 (U) ≤ K3∥ fρ∥L 2d

d+2 (U)
≤ K3 max

U
ρ · ∥ f ∥

L
2d

d+2 (U)
≤ K3K̃1∥ f ∥L 2d

d+2 (U)
, (4.18)

∥u∥L∞(U) ≤ K4∥ fρ∥Lq(U) ≤ K4 max
U

ρ · ∥ f ∥Lq(U) ≤ K4K̃1∥ f ∥Lq(U).
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By Theorem 4.3, u is a weak solution to (1.1), so that (1.5) and (1.6) follow. The uniqueness follows
from (i). Note that since ρc ≥ αminU ρ > 0, we may apply Lemma 4.4(iii) to (4.17) to obtain

∥u∥Lθ(U) ≤
1

αminU ρ
∥ρ f ∥Lθ(U) ≤

maxU ρ

αminU ρ
∥ f ∥Lθ(U) ≤

K̃1

α
∥ f ∥Lθ(U).

(iii) By Lemma 4.5(i), there exists u ∈ H1,2
0 (U) satisfying both (4.17) and the estimate (4.18). Again,

by Theorem 4.3, u is a weak solution to (1.1), and the uniqueness follows from part (i). Since ρc ≥
αminU ρ > 0, the contraction estimate follows from Lemma 4.5(ii).

□
The following provides an explicit example of a vector field H ∈ Ld(Br(x0),Rd) that satisfies

condition (T) but does not belong to
⋃

p∈(d,∞) Lp(Br(x0),Rd).

Example 4.6. Let B1 := {x ∈ Rd : ∥x∥ < 1}, and define Φ : B1 → R by

Φ(x) := ln ln
(
1 +

1
∥x∥

)
, x ∈ B1.

Then ∇Φ ∈ Ld(B1,R
d), but ∇Φ <

⋃
p∈(d,∞) Lp(B1,R

d). By symmetry, for each i ∈ {1, . . . , d},

∂iΦ ∈ Ld(B1), but ∂iΦ <
⋃

p∈(d,∞)

Lp(B1).

Let H1 ∈ Lp(B1,R
d) be an arbitrary vector field, and define H2 : B1 → R

d by

H2 := (∂dΦ, 0, . . . ,−∂1Φ) on B1.

Then H2 ∈ Ld(B1,R
d), but H2 <

⋃
p∈(d,∞) Lp(B1,R

d). In particular, for all φ ∈ C∞0 (B1),∫
B1

⟨H2,∇φ⟩ dx =
∫

B1

∂dΦ ∂1φ − ∂1Φ ∂dφ dx =
∫

B1

Φ(−∂d∂1φ + ∂1∂dφ) dx = 0,

and hence div H2 = 0 ∈ Lq̃(B1) for any q̃ ∈ (d
2 ,∞). Thus, the vector field H := H1 + H2 ∈ Ld(B1,R

d)
satisfies condition (T) but does not belong to

⋃
p∈(d,∞) Lp(B1,R

d).

5. Conclusions and discussion

This paper establishes the existence and uniqueness of weak solutions to homogeneous boundary
value problems for linear elliptic equations with drift coefficients H ∈ Ld(U,Rd), under the assumption
that H satisfies a suitable divergence-type condition. The argument fundamentally relies on the elliptic
regularity results (Hölder regularity and the Harnack inequality) of G. Stampacchia [2], which remain
applicable even in the critical case. A key analytical observation is that both the Harnack inequality
and Hölder continuity hold despite the limited regularity of the drift term.

In contrast to the framework developed in [1], the present work does not provide quantitative control
over the constants appearing in the a priori estimates. For instance, the constant K̃1 ≥ 1 in Theorem 4.1
depends on the drift H itself rather than its norm in a specific function space. It remains unclear whether
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such constants remain stable under mollification or other approximation procedures for H, and further
investigation is needed to address this issue.

Another natural question is whether the results extend beyond the critical case H ∈ Ld(U,Rd) to the
subcritical setting H ∈ L2(U,Rd). Although some special cases have been studied, such as divergence-
free drifts [19] and drifts with nonnegative divergence [18], the general case with drifts in L2 or Ld

remains open. Addressing this problem would likely require a more delicate analysis.
Finally, the methods developed in this paper are not confined to the context of linear divergence-

form equations. They may also be applicable to regularity theory for double-divergence form equations
and to the study of invariant measures for stochastic analysis, as in [20].
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