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Abstract: We establish the well-posedness of linear elliptic equations with critical-order drifts in L4
and positive zero-order coefficients in L! or L#2, where classical methods are often too restrictive. Our
approach relies on a divergence-free transformation and a structural condition on the drift vector field,
which admits a decomposition into a regular component and another whose weak divergence belongs
to L7 for some g > % This condition is essential for constructing a suitable weight function p via the
weak maximum principle and the Harnack inequality. Within this framework, we prove the existence
and uniqueness of weak solutions, significantly relaxing the regularity assumptions on the zero-order
coefficients in L?.
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1. Introduction

This paper establishes the well-posedness (existence and uniqueness of weak solutions) (cf.
Definition 2.1) of the following Dirichlet problem for a linear elliptic equation in divergence form,
defined on a bounded open subset U ¢ R? with d > 3:

{_ div(AVu) + (H,Vu) + cu = f in U, (1.1)

u=0 onoU,

where A is uniformly strictly elliptic and bounded on U (see (1.3)). The well-posedness of (1.1) was
established in [1] not by the conventional bilinear form methods, but by employing weak convergence
techniques combined with a divergence-free transformation, under the assumptions that H € L (U, RY)
with p € (d, ), ¢ € L'(U), and f € LI(U) with ¢ € (£,00). It is therefore a natural problem to
investigate whether the condition H € L?(U,R?) can be relaxed to the critical case H € LY(U,RY).
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However, under the sole assumption H € LY(U, R?), an extension of the result to the cases ¢ € L' (U) or
cE€E L%(U ) cannot be achieved directly by either the standard bilinear form methods or the approach
in [1].

The well-posedness of (1.1) via bilinear form methods based on the Lax-Milgram theorem
originates from G. Stampacchia’s work [2], where it was proved that there exists a constant y > 0,
depending only on A, H, and d, such that the problem (1.1) admits a unique weak solution whenever
c > yand c € L%(U) with d > 3. Similar results, under certain restrictions on the zero-order
coefficients, are treated in [3]. In [4] (cf. [5, Section 8.2]), N. S. Trudinger established the
well-posedness of (1.1) by developing a weak maximum principle under the assumptions
H € LYURY), ¢ € LY(U) with ¢ > 0, and f € L#2(U). In the absence of the classical coercivity
property, the well-posedness of (1.1) has also been obtained via a duality argument in [6]. For another
reference on non-coercive linear equations with coefficients in Lorentz spaces, [7] establishes the
well-posedness of the dual problem associated with (1.1). For further results beyond the
L*(U)-regularity of Vu, or for corresponding results concerning non-divergence type counterparts of
(1.1), we refer to [1] and references therein.

To understand the technical challenge in the critical case of the drift coefficients, we first revisit
the approach of [1] under the assumptions H € L?(U,R?) for some p € (d, o) and ¢ € L'(U) with
¢ > 0. In [1], to apply a divergence-free transformation, one first constructs a strictly positive function
p € H2(U) N C(U) and a divergence-free vector field pB € L*(U,R¢), which then transforms the
original equation (1.1) into the form shown in (1.2) (see Theorem 4.3):

(1.2)

—div(pAVu) + (B, Vu) + pcu = pf in U,
u=0 onaU.

This reformulation enables the derivation of a priori H'? and L*-bounds, and through a delicate
application of weak compactness methods and a duality argument, one can obtain the existence and
uniqueness of a weak solution u € HS’Z(U )to (1.1).

In the critical case where H € LYU,R?), the lack of regularity makes it difficult to construct the
function p € H"*(U) N C(U) and the vector field pB as in the approach described above. The first
reason is that under the condition H € L¢(U, RY), obtaining the key estimate in Lemma 3.7 may not be
directly derived but requires delicate computations and the use of a partition of unity. The second
reason is that the method employed in [1] relies on the construction of a function p satisfying an
elliptic Harnack inequality and Holder continuity. However, such a construction is significantly
restricted under the assumption H € LY(U,R?) (see Remark 4.2), which justifies the necessity of
imposing additional conditions on H in LYU,RY). Indeed, we show that the divergence-free
transformation can still be successfully carried out if H admits a decomposition where one component
has a sufficiently regular divergence in L7 for some § € (% 00).

Before stating our main result, let us present the main assumption in this paper:

B (T) U is a bounded open subset of R? with d > 3, and B.(xy) is an open ball in RY such that
U C B.(xo). H, € LP(B.(x0),RY) for some p € (d, ), and H, € L(B.(xy),R?) satisfies the following
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distributional identity (see Definition 2.2): there exists he Li(B,(x0)) with § € (£, 00) such that
f (H,, Vi) dx = — f hydx  for all y € C3(B.(xo)),
By(x0) By (x0)

i.e, divHy = I € LY(B.(x)). H := H; + Hy € LYB.(x0),RY). A = (aij)1<ij<a is a (possibly non-
symmetric) matrix of measurable functions on RY such that there exist constants M > 0 and 1 >
0 satisfying

max la;;(x0)] < M, (A(XE,6) 2 AN fora.e. x e RY and all € € RY. (1.3)
<i,j<

The following is the main theorem of this paper, which shows that the conclusion of [1, Theorem
1.1] remains robust under the assumption of an L?-drift.

Theorem 1.1. Assume that (T) holds. Let ¢ € L' (U) with ¢ > 0 in U. Then, the following
statements hold:

(i) Letv € H(l)’z(U) with cv € L' (U) be such that
f{AVV, V) + (B, Vv + evpdx =0 forally € Cy(U). (1.4)
U
Then, v = 0.

(ii) Let f € LY(U) for some q > %. Then, there exists a unique weak solution u € Hé’z(U) N L2(U) to
(1.1). Moreover, u satisfies

”M”H(l)»z(y) < KSHfHL%(U)’ (15)
and
ull=y < Kell fllzawy, (1.6)

where Ks = K\ K3, Ko = K K4, Ky > 0 is a constant as in Theorem 4.1, depending only on d, A, M,
B,(x0), p, g, H, the constant K3 > 0 depends only on d, KA| |U|, and the constant K4 > 0 depends
only on d, %, \U\, q. In particular, if « > 0 is a constant, ¢ > ain U, and f € L°(U) N LI(U) with
0 € [1, 0o], then u satisfies the following contraction estimate:

K
lull ooy < jnfnmw. (1.7)

(iii) Let ¢ € L%(U) and [ € L%(U). Then there exists a unique weak solution u € H(l)’z(U) to
(1.1). Moreover, u satisfies (1.5). In particular, if « > 0 is a constant, c > «a in U, and f €
LY(U) N L#2(U) with 6 € [1, o], then u satisfies (1.7).

Although the main result of the paper concerns the existence and uniqueness of weak solutions,
it is particularly noteworthy that no additional structural conditions, such as the VMO assumption
on the matrix of functions A, are imposed. Furthermore, the main result Theorem 1.1 challenges
the conventional belief that the optimal regularity condition for the zero-order term is ¢ € L:(U) by
demonstrating that the weaker assumptions ¢ € L'(U) or ¢ € L%(U ) are sufficient. This observation
suggests the possibility of further developments that could partially relax the regularity condition on
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the zero-order coefficient, namely ¢ € L%(U ), in order to obtain the well-posedness results for non-
divergence form equations as established in [8,9].

This paper is organized as follows: Section 2 introduces the essential notations and definitions used
throughout the paper. Section 3 establishes fundamental inequalities and shows Lemma 3.10, a crucial
inequality for this paper. Section 4 sets up the divergence-free transformation and completes the proof
of Theorem 1.1. Section 5 concludes with a discussion.

2. Notations and definitions

In this paper, we work within the d-dimensional Euclidean space R, where d > 1, equipped with the
standard inner product {-, -) and the corresponding Euclidean norm || - ||. For a point x, € R and radius
r > 0, we denote by B,(x,) the open ball {x € R : ||x — xo|| < r}, and we write B, := {x € R : ||x|| < r}.
The Lebesgue measure on R¢ is denoted by dx, and for a measurable set E C RY, dx(E) is written as |E]|.
The indicator function of a set W is denoted by 1y. Let U be an open subset of R¢. We denote by C(U)
and C(U) the spaces of continuous functions on U and its closure U, respectively. For k € N U {co},
the space C¥(U) consists of functions that are k-times continuously differentiable on U, while C{;(U )
denotes the subspace of C¥(U) consisting of functions with compact support in U. Let s € [, co].
We denote by L°(U) the standard Lebesgue space with norm || - |15, and by L°(U, RY) the space of
R¢-valued functions whose components lie in L*(U), equipped with the norm ||F|| vy = FNLsw)-
Foreachi e {1,2,...d}, 0; denotes the weak partial derivative with respect to the i-th component. The
weak gradient of a function u is denoted by Vu := (0,u, ..., 8,u). The Sobolev space H'*(U) consists
of functions in L*(U) whose weak partial derivatives also belong to L*(U). The space H(I)’Q( U) denotes
the closure of C;’(U) in the H'2(U)-norm. By the Poincaré inequality, we write ”””H(I)*Z(U) = IVull 2.

The dual space of Hé’Z(U ) is denoted by H™'*(U), and the duality pairing is represented by (-, -)y-12().

Definition 2.1. Let A = (a;j)1<ij<a be a matrix of bounded and measurable functions on Re.  Let
H € LX(U,RY), c € L'(U), and f € L'(U). We say that u is a weak solution to (1.1) ifu € Hy*(U) and
cu € L'(U), and the following identity holds:

f(AVu,Vt//) + (H, Vu)y + cuy dx = f fudx forally € Cy(U). 2.1)
U U

Definition 2.2. For a vector field H € LIIOC(U, RY), its divergence div H is understood in the weak sense.
That is, if h € L (U) satisfies

f(H, Vp)dx = — f hpdx forall ¢ € Cy(U),
U U
we write divH = h in U. A vector field H is called divergence-free if divH = 0.
3. Fundamental inequalities
In this section, we mainly assume the condition (T1) below, which is weaker than (T).
(T1): U is a bounded open subset of R? withd > 3, H € LY(U,R%), and A = (@ij)1<i,j<a IS a (possibly
non-symmetric) matrix of measurable functions on R? such that there exist constants M > 0 and 1 > 0

satisfying (1.3).
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Proposition 3.1. Under the assumption (T1), define a bilinear form B : Hé’z(U) X Hé’z(U) — R
given by

B(f,g) := f(AVf+fH, Vg)dx, f.ge€H*U). (3.1)
U
Then, the following statements hold:
(i)
1B(f, o) < KIIVfllzwylVellzw),  forall f,g € Hy*(U), (3.2)
2(d -1
Where K = dM + ( — 2 )HHllLd(U)
(ii) Let N > 0 be a constant such that
2
T2 (d=2\
LygsmH|[dx] < =|—=] . 3.3
(j; {||H||_N}|| | X) 16 (a’— l) (3.3)
Then,
B(f, f) + N—2||f||2 > AV ARy, forall f € HU) (3.4)
9 /l L2(U) = 2 LZ(U) 0 a 0 . .

Proof. (i)Let f,g € Hé’z(U ). By the Sobolev inequality [10, Section 5.6, Theorem 1] (cf. [11, Theorem
4.8]), we obtain

2(d-1)
I8ll, 24 ) S == IV8llew): (3.5

Applying the Cauchy—Schwarz inequality and the Holder inequality, we have

< ”H”L"(U)”f”L%(U)||Vg||L2(U)

S2(d—1)
d-2

f(fH, Vg)dx
U

=l eIV A2y V€l 2 w)-

In addition, we estimate

f(AVf, Vg)dx| < de VAVl dx < dMIIV fll 2w IVEllz2 )
U U
Hence, the desired estimate (3.2) follows.

(i1) Let f € Hé’z(U ). Using the Cauchy—Schwarz inequality and Young’s inequality, we obtain

f (V) f d < f | £V £l dx
U U
A 1
<2 f IV fPdx + - f HIPIf P (3.6)
U U

Define the function ¢ : [0, c0) — R by

AU

é(s) := (f 1{||H||2s}||H||ddx) , s€[0,00).
U
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Since |[H|| € LYU) and is finite almost everywhere, it follows from the Lebesgue dominated
convergence theorem that
lim ¢(s) = 0.

Now choose N > 0 such that

d—-1
Using again the Holder inequality, (3.7), and the Sobolev inequality (3.5), we estimate

A2 (d-2)\*
P(N) < E(—) : (3.7)

f||H||2|f|2dX2f1{|H||>N}||H||2|f|2dx+f1{||H||<N}||H||2|f|2dx
U U U

2
7
< (f 1{||H||>N}||H||ddx) AP 2 +N2f|f|2dx
U L3 W) U
/1_2 \vj 2 2 2
U

Substituting this into (3.6), we obtain
A N?
[@vnraxz=5 [ wapa- = [ ipas
U 2 Jy 4 Juy

f (AVF,Vfdx > A f 1 £,
U U

the desired estimate (3.4) follows. O

Since

The following existence result is well known and can be found in [2,5, 12]. For clarity and the
reader’s convenience, we state the details here.

Proposition 3.2. Assume (T1). Let B : H&’Z(U ) X Hé’z(U ) — R denote the bilinear form defined by
(3.1). Suppose that if w € Hé’z(U) satisfies

Bw,p) =0 forall p € HS’Z(U),
thenw = 0in U. Then, for each y € H'"*(U), there exists a unique uy € Hé’2(U) such that

Buy, @) = W, @12y forall p € HY*(U).

Proof. Let N > 0 be the constant appearing in (3.3), and define y := M Define a bilinear form

a1
B, : Hy*(U) x Hy*(U) — R given by

By(f’g) = B(f,g)+7£fgdx, /.8 GH(1)2(U)

By the Lax—Milgram theorem (cf. [13, Corollary 5.8]) and Proposition 3.1, for each v € H '*(U),
there exists a unique u, , € H(l)’z(U ) such that

B, (Uty . ) = (W, @12y forall p € Hy*(U). (3.8)
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Substituting ¢ = u,,, into (3.8) and applying Proposition 3.1(i1), we obtain

A

2
§||Vuy,zp||Lz(U) < By (Uyy, Uyy) = Wty y)u-r2wy < Wa-120) IVt yll2w)s

and hence, 5
Vi yll2wy < z”lﬂHH-M(U)- (3.9)

Define K : H™'2(U) — H,*(U) given by
Ky :=u,,, eH ). (3.10)
Then, by (3.9), we have
2 -12

”K'MIH&Z(U) < sz”H—l,Z(U) for all lﬁ e H " (U)
Define the operator J : Hé’Z(U) — H7'"2(U) by, for each u € Hé’z(U),

(J(W), @) 12 = f updx forall p € Hy*(U). (3.11)

U

By the Rellich-Kondrachov compactness theorem, J is a compact operator, and hence so is K o J. We

now state the following claim.
Claim: Letu € H(l)’z(U ) and y € H-"2(U). Then, the following statements (a)—(b) are equivalent:

u-y(Koldu=Ky inH>QU). (a)
(3.12)
B, ¢) = . uraw)  forall g € Hy (V). (b)
To prove the claim, first suppose that (a) holds. Then, we have
u= K@ +yJw).
By the definition of K (see (3.10) and (3.8)), it follows that
B, (u, ) = W + yJ W), )y-12y, forall p € Hy*(U), (3.13)

which is equivalent to (b) by (3.11). Conversely, assume that (b) holds. Then, (3.13) is satisfied, and
hence, by the definition of K, we obtain

u=K®W+yJu),

which implies (a) by (3.11). This completes the proof of the claim.

Let!: H(l)’Z(U ) > H(l)’Z(U ) denote the identity operator. Evaluating (a) with ¢ = 0, it follows from the
equivalence established in (3.12) that

ueE Hé’z(U) satisfies (I — y(K o J))u =0
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if and only if
B(u,p) =0 forall p € H)*(U).

Thus, by assumption, it follows that
{ue HY*(U) : (I = y(K o J))u = 0} = {0}.

Since y(K o J) Hé’z(U ) — Hé’2(U ) is a compact operator, the Fredholm alternative
(see [13, Theorem 6.6]) implies that for each ¢ € H~'*(U), there exists Uy € H(l)’z(U ) such that

(I—=v(Kod))u, = Ky.
Therefore, by the equivalence established in (3.12), the desired assertion follows. m]

Proposition 3.3. (Poincaré-type inequality) The following inequality holds:

2d-1)
U2V fllow,  for all f € HY(U).

2wy <

Proof. By applying the Gagliardo-Nirenberg-Sobolev inequality ( [10, Section 5.6, Theorem 1])
together with the Holder inequality, we obtain

d+2( —1) 2(d —1)
i =V Al, 34, <

Iz < U1V fll2y  forall £ € HY2(U).

d+

O

Lemma 3.4. Let ¢ € C'((—&, 0)) with & > 0 be such that $(0) = 0 and ¢’ € L((0, 0)). If v € Hy*(U)
with v > 0 in U, then ¢(v) € Hy*(U) and V(v) = ¢' w)Vv in U.

Proof. Extend ¢ to a function on R, denoted again by ¢, such that ¢ € C'(R) with ¢’ € L°(R). Let
(V=1 € C(U) be a sequence of functions such that lim,, .., v, = vin Hé’z(U ) such that

lim [[Vv, = V|| 2) = 0 (3.14)
and
lim v,(x) = v(x) forae. xe U. (3.15)

Then, by the chain rule, (¢(v,)),>1 C C(l)(U ) and
Vo(v,) =¢'(v,)Vv, inU foreachn > 1.
Moreover, by [11, Theorem 4.4(ii)], ¢(v) € H'*(U) satisfies V¢ (v) = ¢'(v)Vv. Thus, we have

IVo(v) = Vowllzw) = Ig" (Vv = ¢ ) Vvl 2wy
<@ MVY = &' V)Vl + 19 ) VY = &' (V) Yl )
< ||¢,(V)VV - ¢/(Vn)vv||L2(U) + ||¢/||L°°(R)||VV - VVn||L2(U)-

The first term converges to zero by the Lebesgue dominated convergence theorem and (3.15), and the
second term converges to zero by (3.14). Therefore, we have ¢(v) € Hé’z(U ). O
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The following weak maximum principle originates from N. S. Trudinger [14], and a reformulated
version is given in [12, Chapter 2] under the assumption that H € LP(U,R¢) for some p € (d, ).
However, the original result in [14] allows the critical case H € LU, RY). For the reader’s convenience,
we provide the precise statement and a detailed proof of this version below.

Proposition 3.5. (Weak maximum principle) Assume (T1). Let B : Hé’z(U ) X Hé’z(U ) — R denote
the bilinear form defined by (3.1). Let u € Hé’z(U) satisfy

Bu,¢) <0 forall g € Hy*(U) with >0in U. (3.16)

Then, u <0in U.

Proof. Let ¢ € C'((—&, o)) with & > 0 be such that ¢ > 0 on [0, ), ¢(0) = 0, and ¢’ € L((0, o0)).
By [11, Theorem 4.4] and Lemma 3.4, we have u* € H(l)’z(U) and ¢p(u™) € H(])’Z(U), with

Vou®) = ¢'u")Vu" = ¢'(u") 0 Vu € L (U, RY).

Substituting ¢ = ¢(u*) into (3.16), we obtain
f(AVu, &' ()0 Vu) dx + f(uH, ¢ ()0 Vuy dx < 0.
U U

Since 1,50) = (1450)* and 1,50V = Vu'*, it follows that
L(AVM, &' (W)VuTydx < L(—Lf“H, ¢ (wu)Vu®)dx. (3.17)
Given & > 0, define ¢, € C'((—&, o)) by
t
¢)i= ——. 1e[0,0)

Then, clearly ¢, > 0 on [0, 00), ¢.(0) = 0, and ¢, € L*((0, o0)), where

’ — 8 [o%)
o.(1) = —(t s for all ¢ € [0, 00).

Thus, substituting ¢ = ¢, into (3.17) yields
f ;(AVLFr Vu"ydx < f -u'H ;Vbﬁ dx (3.18)
U (u+ + 8)2 ’ - U ’ (u+ + 8)2 ’ )
For each & > 0, define y, € C!((—¢, )) by

Ua(t) = ln(l ; é) £ € [0, c0).

Then, ¥, € L*((0, o0)) satisfies
1
'(t) = —— forall t € [0, ).
VAG) o fora [0, c0)
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Again, by Lemma 3.4, y.(u*) € Hy*(U), and inequality (3.18) implies that

MW%WW@wpifMV%WWWWAM»Wr
U

< f < g, leg(u+)> dx
v\ut+¢

< Hll2@n IV ()l 20y

Hence,
1
IV ()l 20 < EIIHIIsz)-

By Proposition 3.3, it follows that

4d - 1)

-7ﬁrwﬂm2

2
||'7[’8(u+)”L2(U) S L2(U)'

Now, suppose there exists a measurable subset V c U with |[V| > 0 such that u*(x) > O for all x € V.
Then, by Fatou’s lemma,

A(d - 1)

2
35— U IHI,

w) < %

00 = f lim (i)nf|w8(u+)|2 dx < lim inf f () dx <
v 20" &0 Jy
which is a contradiction. Therefore, u™ = 0 a.e. in U, as desired. m]

Corollary 3.6. Assume (T1). Let B : H(1)’2(U) X Hé’z(U) — R denote the bilinear form defined by (3.1).
Let g € H™"*(U). Then, there exists a unique function u, € HOI’Z(U) such that

Blutg, @) = (8. QYp-12wy  Jorall o € Hy*(U).
Proof. Letw € Hé’z(U) satisfy
Bw,p) =0 forall ¢ € H*(U).

Then, by Proposition 3.5, w < 0 and —w < 0 in U, and hence w = 0 in U. Thus, the assertion follows
from Proposition 3.2. O

The following lemma provides a standard energy estimate, but due to the assumption that H €
LY(U,RY), a delicate use of partition of unity and compactness arguments is required. In contrast, if
one assumes H € LP(U,RY) for some p > d, the estimate could likely be derived more easily using
an interpolation inequality. We refer to [15] for the derivation of the H'9-estimate under appropriate
regularity assumptions on the coefficient matrix A and the domain U.

Lemma 3.7. Assume (T1). For eachn > 1, let A, = (a,j)1<i,j<a be a matrix of measurable functions
on RY, satisfying

max |a,;; (X)| < M, (A, ()& E) > AIE* forae. x e R and all € € R”. (3.19)

1<i,j<d
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Assume also that lim, . a,;j = a;j in L*(U) forall 1 < i,j < d. Let 1 be a standard mollifier on R¢,
and for each n > 1, define n, € Cy’(By,) given by n,(x) := n‘n(nx), x € R%. Define

Hn::H*nm nZl,

where H is the zero extension of H € LY(U,RY) to RY. Given g € H'2(U), let Uyg € Hé’Z(U) be the
unique function satisfying

f (AVityg + g H,, V) dx = (g, @) y12yy  for every ¢ € HY*(U), (3.20)
U

as in Corollary 3.6. Then, there exist constants cy,cy > 0 which only depend on d, A, M, H and U
(c1,c3 > 0 are independent of n and g) such that

||Vun,g||L2(U) < Cl||un,g||L2(U) + Cz||g||H-'12(U)~
Proof. First, note that for any open sets V, W with V c W,
IH vy < [HI|zaew) (3.21)

(see the proof of [10, Theorem 7, Appendices]). Let x € U and r, > 0 be such that

2(d-1)
d-2

IHl|zaB,, () < (3.22)

Z.
Let { € C(B,,(x)). Given g € H™'2(U), substituting ¢ = {?u,, € Hy*(U) in (3.20) and using (3.5),
we have

/1”4Vun,g||izw) S L(Anvun,g’ gzvun,g> dx
= - f(Anvun,ga zun,gé/vé/> dx — f(un,an’ 2{un,gvg> dx
U U

- f;(un,anv gzvun,g> dx + <g’ gzun,g>H’l’2(U)

< 2dM||§Vun,g||L2(U)||Mn,gV§||L2(U) + 2||Hn||Ld(B,x(x))||§Mn,g||L%(U)”un,gi”LZ(U)

2
+ ||Hn||L"(B,X(x))||{un,g” 2 NV gll2wy + 18lla-120 (||§ Vu,olli2wy + ||2§Mn,gV§||L2(U))

L33 (U)
4d-1)
< 2dM||§Vun,g||L2(U)||Un,gV§||L2(U) + d—2 ||Hn||Ld(B,x(x))||V(§un,g)||L2(U)||Mn,gV§||L2(U)
2(d-1)
+ ) Hll 22, op IV (Cutn 2 1€Vt gl 220y

+ gl g2 Il o @IV ttn gl 2wy + I8 a-1200) 128 | o Nt g VNl 221

Using Young’s inequality, we obtain that
A
EHé/Vun,g”iZ(U)
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8d2M?  40(d - 1)? 4d-1) > s
s( PR T LI 7 5, (x))+WHH”IIM(B,X(X»+2I|§IILM(U))|Iun,gV§||Lz(U)
2(d - 1)
( 1217y + )Ilgllle(U) I I i, oI Vit 172 - (3.23)

Applying (3.21) and (3.22) to (3.23),

||{Vun,g||iZ(U)
- 4 8d*>M? .\ 40(d - 1)2|| HI? 4(d— 1)
A /1(d —2)? v T Ty

”H”Ld(U) + 2||§||L°°(U)) ”V{”Lw(U)”un g||L2(U)

4 2
+/1 /l 2 ”g”le(U)

Since U is compact and {B, (x) : x € U} is an open cover of U, there exists xi, ..., xy € U such that

Therefore,
N N
Vitnellzy = || &Vingl| < D 6Vitnell,2q0,
i=1 LZ(U) i=1
< cillungllrzwy + callglla-120)s
where
N 1
2 (8d*M*  40(d — 1) 4d-1) 2 )
¢ = Z] 7( T gz Ml + gy Ml + 2||§i||Lw<U>) V&)
and

The following lemma is inspired by the compactness arguments in [10, Section 6.2, Theorem 6],
and its key feature is that the constant C > 0 remains independent of both the index n and the external
data g € H™'*(U), even though the coefficients are given as a sequence rather than a single function.
Different from [16, Lemma 3.3], the main feature here is that uniform estimates are obtained for the
mollifications of H, assuming H € L4(U, RY).
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Lemma 3.8. Assume (T1). For eachn > 1, let A, = (aj)1<i,j<a be a matrix of measurable functions
on RY satisfying (3.19). Assume also that lim,_,« a,;; = a;; in L*(U) forall 1 < i,j < d. Letnbe a
standard mollifier on RY, and for each n > 1, define n, € Cy(By,) given by n,(x) := n'n(nx), x € R%.
Define

Hn =H=x Mns
where H is the zero extension of H € LY(U,R) to R%. Given g € H™"*(U), let u,, € Hy*(U) be the
unique function satisfying

f(Anvun,g + Upg Hm V‘P> dx = <g’ ()0>H’1v2(U) fOl" every ¢ € Hé’Z(U)a
U

as in Corollary 3.6. Then, the following statements hold:

(i) There exists a constant C > 0 independent of n > 1 and g € H™"*(U) such that
tngllizwy < Cllglly-12y  foralln > 1 and g € H™"*(U). (3.24)

Moreover,
Vi ll2wy < (€1C + e)lIglla12w) (3.25)

where ¢y, ¢, > 0 are constants as in Lemma 3.7.
(ii) Given g € H-'"2(U), let Ug € H(I)’Z(U) be the unique function satisfying

f(AVug +u, H, Vo) dx = (g, p)g12@y) forevery ¢ € H(l)’z(U),
U

as in Corollary 3.6. Then, there exists a subsequence of (Ug),>1, say again (i, g)n>1 such that

lim u,, = u, weaklyin Hy*(U) and  limu,, =u, in L*(U). (3.26)
In particular,
lugll2wy < Cligllg-12wy  foralln > 1 and g € H'(U).

and
Vil < (e1C + e)llglla-120)s

where C > 0 is the constant as in (i) and ¢y, ¢, > 0 are constants as in Lemma 3.7.

Proof. (1) Suppose, by contradiction, that (3.24) does not hold. Then, for each k € N, there exist
8r € H'"2(U) and n; € N such that

et g 1220y > K&kl -12(0)-

Define _
8k _
g =———€H 1’Z(U).
”unk,gk”LZ(U)

By Corollary 3.6, it follows that
Un 3

Upgr = 77—
o ||Mnk,gk||L2(U)

Electronic Research Archive Volume 33, Issue 12, 7974-7998.



7987

Therefore,

ety g lli2y = 1 (3.27)
and .

lgxllg-12¢0) < % (3.28)

Meanwhile, we have

f(Ankvunk,gk + Uny.gi ana V‘P> dx = <gk9 ‘10>H‘1v2(U) for every ¢ € H(;’Z(U)
U
Using Lemma 3.7, (3.27) and (3.28), it follows that

Vi, o 2wy < cillungllizw) + cllglla-12w)
<c1 +cy, (329)

where ¢y, ¢; > 0 are constants which only depend on d, 4, M, H and U (¢4, ¢, are independent of n and

g)-
Case 1) Suppose that the set {n; : k > 1} is bounded. Then, there exists N € N and a subsequence

(kj)j>1 C (k)i=1 such that ny; = N for all j > 1. In this case, from (3.29), we deduce that

< | >
||VMN,gkj||Lz(U) <ci+c, forallj>1.

Moreover,
f (AnVung, + ung Hy, Vo) dx = (g, @12y forall g € Hy*(U) and j > 1. (3.30)
U J J

By the weak compactness of bounded sets in Hé’z(U ) and the Rellich-Kondrachov compactness
theorem, there exists a subsequence of (“N,gkj )j>1, which we denote again by (”N,gkj )j>1, and a function

ue Hé’2(U) such that

lim uyg, =u weakly in Hy*(U), ]11@0 Ung, =u in LXU). (3.31)

Jj—ooo

Passing to the limit in (3.30) along this subsequence and using the fact that g,, — 0 in H™"*(U) as
Jj — oo (see (3.28)), we obtain

f (AyVu +uHy, Voydx =0 forall ¢ € H)*(U).

U

By the uniqueness in Corollary 3.6, it follows that # = 0 in U. On the other hand, by (3.27) and (3.31),
1= lim g Nl = Nz, = 0.

which is a contradiction.
Case 2) Suppose now that the set {n; : kK > 1} is unbounded. Then, there exists a subsequence
(kj)jzl C (k)kzl such that
lim ;= o0

Jj—ooo
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and
f(Ankfvunkj,gkj + thny g, Ho s V) dX = (@i @12y for all € Hy(U). (3.32)
g .

By (3.29), we have
”Vunkj,gijLz(U) <cp+ oo

Consequently, there exists a subsequence of (”nkj.gkj)jzl’ say again (”nkj,gk,.)jzla and a function
ue Hé’z(U) such that

lim u,, o, =u weakly in H)*(U), limu,, o, =u inL*(U). (3.33)
Jj—ooo v j—o S
Using (3.33), we now pass to the limit in the weak formulation in (3.32), and hence we get
f (AVu +uH,Veydx =0 forall p € H*(U).
U

By the uniqueness in Corollary 3.6, it follows that # = 0 in U. On the other hand, by (3.27) and (3.33),
1= }Lrg”unkj,gijLz(U) = |lullr2wy = 0.

Since both cases result in a contradiction, the initial assumption must be false. Thus, (3.24) does hold.
Therefore, (3.25) directly follows from Lemma 3.7.

(i1)) By the weak compactness of bounded subsets in H(;’Z(U ) and the Rellich-Kondrachov
compactness theorem applied to (3.25), there exists a subsequence of (u,4),>1, which we still denote
by (u,.4)n>1, such that (3.26) holds. The rest follows from the lower semi-continuity of the norm used
in the estimates (3.24) and (3.25). O

Remark 3.9. Assume (T1), where d > 3 is replaced by d = 2, and suppose that H € LP(U,R?) for
some p € (2,00). In analogy with the proofs of Propositions 3.1, 3.2, 3.5 and Corollary 3.6, we obtain
that for each g € H™"*(U), there exists a unique function u, € Hé’Z(U ) satisfying

f (AVug + u, H,Vpydx = (g, @) y12@, forall g € H*(U).
U

For eachn > 1, let A, = (an;j)1<i j<a be a matrix-valued function satisfying (3.19), and assume that
lim, o a,;j = a;j in L*(U) forall 1 <i,j <d. Let H, € LP(U,R?) be the mollification of the zero

extension of H to R as in Lemma 3.8. For each n > 1, let u,, € Hé’z(U ) be the unique function
satisfying
f (AVity g + ty g H,, Vo) dx = (g, @12y for all o € HY*(U).
U

Then, by a similar argument to that in the proof of Lemma 3.8, we obtain the results in Lemma 3.8.

The following lemma is a generalization of [16, Lemma 3.4], and in particular, it remains valid even
under the assumption H € L4(U, R?). Its proof requires a highly delicate approximation argument, in
which Lemma 3.8 plays a central role.
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Lemma 3.10. Assume (T1). Assume that u € H"*(U) satisfies
f(AVu +uH,Vp)ydx <0 forall p € C5(U), ¢ > 0.
U

Then, we have
‘f(AVuJr +uH,Vo)dx <0 forall p € Cy(U), ¢ > 0.
U

Proof. Let V be an arbitrary open subset of U with V ¢ U. To show the assertion, it is enough to
show that

f(AVM+ +u"H,Ve)dx <0 forall g € C5(V), ¢ > 0.
U
Let W be an open set with a smooth boundary such that

VcWcWcU.

Let B be an open ball such that U c B. By [11, Theorem 4.7], u € H"“?(W) can be extended to a
function it € Hé’z(B). Moreover, by [11, Theorem 4.4(iii)], we have &* € Hé’z(B) with

Extend H € LY(U, R?) to R by zero extension. Define
F := AV + aH € L*(RY,RY).

Let  be a standard mollifier on R?, and for each n > 1, define 1, € C(B1,) by na.(x) := nin(nx),
x€RY. Foreachn e Nand 1 <i, j < d, define

Anij = Qij ¥ Mpy Ay = (Ani<ijea» Hp:=H=xn, F,:=F=xn, on RY.
Then, a,;; € C*(RY), and H,, F, € C*(R?,RY) forall n > 1 and 1 < i, j < d, and it holds that

lim a,;; = a;; in L*(B,R%), limH, =H in L‘(B,RY), 1imF,=F in L*(B,R?).

n—oo n—oo

Furthermore, (3.19) holds. Choose & > 0 such that B;(x) ¢ W for all x € V. Pick N € N with # < 4.
Then, for any n > N and ¢ € C7(V) with ¢ > 0, we have ¢ * 1, € C3(W), ¢ x 17, > 0, and

f (Fn, Vo)dx = f (Fn, Vp)dx = f (F, V(g *1,))dx
U R4 Rd
= f (AVi+ aH, V(g * n,))dx = f(AVu + uH, V(¢ * 1,))dx < 0. (3.34)
Rd U
According to Corollary 3.6, there exists a unique function u, € Hé’z(B) such that
f(AnVu,, + u,H,,V@)dx = f(Fn, V@ydx forall g € C5'(B). (3.35)
B B
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By Lemma 3.8(i), we obtain

||un||1-1(1)v2(3) < (c1C + )IIF, 2 ray < (€1C + )IIF 2R,

where c¢y,c; > 0 are constants as in Lemma 3.7 and C > 0 is the constant as in Lemma 3.8(i). By
the weak compactness of bounded subsets in H(l)’z(B) and using [11, Theorem 4.4(iii)], there exist
e Hé’Z(B) and a subsequence (still denoted by u,) such that

limu, =% and limu =" weakly in H,*(B). (3.36)

n—00 n—00

Hence letting n — oo, we get

f (AVii + iH, V@)dx = f (F,V@)dx = f (AVii+ 0H,V@)dx for all § € C3(B).

B B B

By the uniqueness in Proposition 3.5, we conclude that &z = # in Hé’z(B). Thus, by (3.36), we have

limu, =0 and limu’ =a" weakly in H)*(B). (3.37)
Define the operator
d
Lty = ) @0ty + (H, + div Ay, V) + (div H, ).
i,j=1

Then from (3.34) and (3.35), we deduce that for all n > N and ¢ € C5°(V) with ¢ > 0,

- fﬁnun ~pdx = f(A,,Vu,, + u,H,, Vp)dx = f<F"’ Ve)dx <0,
14 14 U
which implies
L, >0 inV foralln > N. (3.38)

Let ¢ be a standard mollifier on R, and for each n > 1, define ¢, € Cj’(—1/n, 1/n) by ¢,(t) := np(nr)
for t € R. For each € > 0, define

V2 +e2—-¢ ifz>0,

f@) = {0 ifz<0.

Then, f, € C'(R) and its derivative f7 belongs to H*(R) N C(R). In particular, we have

L ifz>0 e ifz>0
‘() = d Ve ! *and f(2) = d TP ;
& 2) = . an & )= .
1) {0 ifz<0, Je @) {O ifz<O.
Observe that
lirélJr fo(z) =z", and lirgr fi(@) = le(z) forallzeR. (3.39)
Let fox := fe * ¢r. Then f/, > 0 and f} > 0 on R. Moreover,
]}im Sfex(uy) = fe(u,), and ]}im fox(n) = fi(u,) uniformly on U. (3.40)
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Thus, for any ¢ € C7(V) with ¢ > 0, it follows from (3.40) and (3.38) that
[ AT ) + B Tr = fim [ (A7 Fos) + st Vi
~tim (- [ i Lagds = [ f00AT 0 Tiods
- [ A Bt - e

s—fmﬂmuw—wmmwm
U

Since the right-hand side tends to zero as € — 0 by (3.39), we conclude from [11, Theorem 4.4(iii)]
and (3.39) that for all n > N,

fU<A,,Vu;r +u H,,Vo)dx <0 forallp € CJ(V), ¢ > 0.
Finally, by taking the weak limit of ;] in (3.37) as n — co, we obtain
f(AVu+ +u"H,Vo)dx <0 forall g € C;(V), ¢ =0,
U
which completes the proof. O
4. Proof of main result

The following theorem is a key result of this paper, which corresponds to [1, Theorem 3.1] but
weakens the assumption on H from LP(U,R¢) to LY(U,R%) by taking advantage of the additional
structure on its divergence. This additional structure allows us to apply Holder regularity and the
Harnack inequality. The idea of the proof originates from [17, Theorem 1] (cf. [12, Chapter 2]),
where the coefficient matrix A is assumed to lie in VMO.

Theorem 4.1. Assume that (T) holds. Then the following statements hold:

(i) Let x; € U. Then, there exists p € H"(B,(xy)) N C(B,(xy)) with p(x) > 0 for all x € B.(x,) and
p(x1) = 1 such that

f (ATVp + pH,V)dx =0, forall ¢ € Cy (B1(x0)). 4.1
By (x0)

(ii) Let p be as in Theorem 4.1(i). Then, there exists a constant K; > 1 which only depends on d, A,
M, B,.(xy), p, G and H such that

1 <maxp < K, minp < K.
U U

Proof. (1) By Corollary 3.6, there exists v € Hol’z(Br(xo)) such that

f (ATVy + vH, Vp)dx = — f (H,Vg)dx forall p € H)*(B,(x0)). (4.2)
Br(xO)

B, (x0)
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Letw = v+ 1 € H"*(B,(xy)). Let 7 : H"*(B,(xy)) — L*(0B,(x0)) be the trace operator as in [11,
Theorem 4.6]. Then,

TwW)=TW)+1=1 inL*B.(xy)). 4.3)
Observe that from (4.2)
f (ATVw + wH, Vp)dx = 0 for all ¢ € H}*(B,(xo)). (4.4)
By (x0)
Meanwhile, —-w = —v — 1 < —v in B,(xy), and hence 0 < (-w)"™ < (-v)" in B,(xp). Since

(-v)* e Hé’Z(B,(xO)), it follows by [1, Proposition A.9] that (—w)* € Hé’z(B,(xo)). Therefore, applying
Lemma 3.10 to (4.4) where w is replaced by —w, we have

f (ATV(=w)" + (—w)"H, Vp)dx <0 forall p € Hé’z(B,(xo)) with ¢ > 0.
B, (x0)

By Proposition 3.5, (—w)* < 0 in B,(x(), which implies
w >0 in B,(xgp). 4.5)

Let w, € C(B,(xo)) be such that lim, ., w, = w in Hy*(B,(xo)). For each ¢ € C3(B,(xo)), we have

f (wWH, V) dx = f (wH, Vo) dx + f (wWwH,, Vo) dx
B, (x0) B, (x0)

By(x0)

= f (wHy, V) dx + lim (f H,, V(w,)) dx — f (Hy, oVw,) dx)
B,(x0) 7% \J B, (x0) B,(x0)

= f (wWHy, V) dx + lim (— f fzwngo dx — f (Ha, oVw,) dx)
Br(x0) e Br(x0) Br(x0)

= f (wWHy, Vo) dx — f (Hy, Vw)p dx — f ﬁwgo dx.
B:(x0) By(x0) B,(xo)

Thus, (4.4) implies that

f (ATVw + wH;, V)dx — f ((Ha, Vw) + hw)dx =0 forall g € Hy*(B.(x0)).  (4.6)
Br(x())

By(x0)

Since H; € LP(B,(x0),RY), H, € LYB,(x0),R% and h € LI(B.(xy)) with § € (4, ), it follows
by [2, Théoreme 7.2] that w has a continuous version in B.(xp), say again
w € H"(B,(x0)) N C(B,(xo)) (indeed, w has a locally Holder continuous version in B,(x)). Moreover,
it follows from (4.5) that w(x) > 0O for all x € B,(xp).

Claim: w(x) > 0 for every x € B,(x).

To show the claim, we proceed by contradiction. Suppose there exists yy € B,(x() such that w(y,) =
0. Then, applying the Harnack inequality (see [2, Théoreme 8.1]) to (4.6), we deduce that w must
vanish identically on Bg(xg) for all R € (|[yo — xoll, ). Given that R is arbitrary, it follows that w = 0
on B,(xy), which implies 7 (w) = 0 on L*(0B,(x,)). This, however, contradicts (4.3). Therefore, we
conclude that our claim holds.
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Let x; € U. Since w(x;) > 0, we define the normalized function p € H'?(B,(x;)) N C(B,(xy)) by

1
p(x) := —w(x), x € B(xo).
wi(x)

Thus, (4.1) is fulfilled by (4.4).
(i1) Observe that by (4.6),

f (A"Vp + pH,, V)dx — f ((H, Vp) + ip)pdx =0 forall p € Hy*(Bi(xp).  (4.7)

B (x0) B;(x0)

Since p(x1) = 1, by applying the Harnack inequality ( [2, Théoreme 8.1]) to (4.7), the assertion follows.
O

Remark 4.2. Whether the conclusion of Theorem 4.1 can be derived under the assumption of (T1)
remains an open question. However, at the very least, our current proof method for Theorem 4.1 is not
sufficient to establish the result under assumption (T1). The main difficulty arises from the fact that
the assumption H € LY(B,(xy), R?) does not allow the solution to be locally bounded. To illustrate this
point, consider d > 3 and the function

1 1
wx):=—1In|l+—]|, xeB :={xeR’:|x| <1} (4.8)
In2 [|x]|

Then, w(x) > 0 for all x € B, \ {0}, and w € H'*(B;) N C(B, \ {0}). Moreover;, we have
T(w)=1 inL*0B)),

where T Hé’2(B]) — L*(0B)) is the trace operator as in [11, Theorem 4.6]. Now define the vector
field H : By — R? by
H(x) := -VInw(x), x¢€ B;.

Then, H € L4B;,RY), but H ¢ U petd,o0) LP(B;,RY). Direct computation shows that w satisfies (4.4)
with B,(xy) replaced by B, and that w is in fact the unique function satisfying both 7 (w) = 1 and
(4.4). However, the function w defined in (4.8) does not admit a locally bounded version in By. This
demonstrates that the local boundedness of the solution cannot, in general, be deduced under the
sole assumption H € LB, RY). (IfH € LP(B,,R?) with p € (d, ), then the local boundedness
of a solution follows by [4, Theorem 5.1]. Indeed, one can check that divH € L (By), but divH ¢
U ped oo L (B)). Therefore, to obtain the local boundedness of solutions in case of H € L(B;,R?), the
condition (T) regarding H is essential.

Below, we present the core method of this paper, which transforms a general vector field into a
divergence-free vector field. We shall refer to this as the divergence-free transformation. In particular,
we present here a simplified form of [1, Theorem 3.2].

Theorem 4.3. (Divergence-free transformation) Assume that (T) holds. Let p € H L2(U)yn C(U) be
a strictly positive function on U constructed as in Theorem 4.1. Define the vector field

1
B:=H+-A"Vp inU. (4.9)
P
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Then pB € L>(U,R?) and satisfies
f{pB, Voydx =0 forall p € Cy(U). (4.10)
U

Let f € L"U), and u € HS’Z(U) with cu € L'(U). Then the following two statements are equivalent:

(i) The function u satisfies (2.1).
(ii) The function u satisfies

f(pAVu, Vo) + (0B, Vu)p + pcup dx = fpfgodx forall ¢ € Cy(U).
U U

In other words, u is a weak solution to (1.1), if and only if u is a weak solution to (1.2).
Proof. The proof is identical to that of [1, Theorem 3.2] in the case where F = 0. |

The following two lemmas, which play a supporting role in the proof of the main result, are adapted
from [1] and [18], respectively.

Lemma 4.4. Assume d > 3. Let 1 > 0 be a constant, and let A = (&; i<i j<a be a matrix of bounded
and measurable functions on RY such that

(AX)E, € = AEIP forae x e R and all ¢ € RY. 4.11)

Let B € L*(U,R?) be a vector field satisfying
f (B,Voydx =0 forall p € CY(U). (4.12)
U

Let & € L\(U) with ¢ > 0, and let f € LY(U) for some q € (%, oo). Then, the following statements hold:

(i) There exists a weak solution it € Hé’z(U) NL*U) to

—div(AVa) + B, Vay+én=f inU,
(AVi) + ¢ ) i / 4.13)
=0 onoU,
i.e., i € Hy*(U) with ¢it € L'(U) satisfies
f (AVii, Vo) + (B, Vityp + iip dx = f fedx forall p € CT(U).
U U
Moreover, the following estimates hold:
o, < Kl 24, (4.14)
|~y < Kall oo, (4.15)

where K3 > 0 depends only on d, A, and |U|, and K,>0 depends only on d, A, q, and |U|.
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(i) Let v € Hy*(U) with &b € L'(U) be such that
f(AVf/, Vo) + (B, Vd)g + édodx =0 forall p € Cy(U).
U

Then Vv = 0in U. In particular, the solution it in (i) is unique.
(iii) Let a > 0 and 0 € [1, o], and assume that ¢ > « andf € L°(U) N LY(U). Then i in (i) satisfies

i 1oy
lall oy < E”f”L"(U)- (4.16)

Proof. The assertion follows from [1, Theorem 3.3] in the case where F = 0. |

Lemma 4.5. Assume d > 3. Let 1 > 0 be a constant, and let A = (@ij)<i j<a be a matrix of bounded
and measurable functions on R? satisfying (4.11). Let B € L2(U,R?) be a vector field satisfying (4.12).
Let ¢ € L%(U) with ¢ > 0, and let f € L%(U). Then the following statements hold:

(i) There exists a unique solution it € Hé’z(U ) to (4.13), and 0 satisfies the estimate (4.14).
(ii) Let « > 0 and 6 € [1, o], and assume that ¢ > « andf e L%(U)n L%(U). Then the solution it in
(i) satisfies (4.16).

Proof. (1) The existence and uniqueness of the solution i to (4.13), as well as the estimate (4.14),
follow from [18, Theorem 1.1(1)].
(i1) The assertion follows from [18, Theorem 1.1(ii)]. |

Now, we present the proof of the main result stated in the Introduction.

Proof of Theorem 1.1

(i) Let p € H"2(U) N C(U) be a strictly positive function on U constructed as in Theorem 4.1, and
define the vector field B as in (4.9). Then (4.10) is satisfied. Let v € H(l)’Z(U ) with cv € L'(U) be such
that (1.4) holds. By Theorem 4.3, we obtain

f(pAVv, Vo) + (B, Vv)p + pcvpdx =0 forall ¢ € C;(U).
U
Then, by Lemma 4.4(ii), it follows that v = 0in U.

(i) Let f € LI(U) for some g € (£, ). By Lemma 4.4(i), there exists a unique function u € Hé’Z(U )N
L>*(U) satistying

f(pAVu, Vo) + (0B, Vu)p + pcup dx = fpf(p dx forallp € Cy(U), 4.17)
U U
and (4.14), (4.15) and Theorem 4.1(ii) imply

< < . < KK y i
lull 12y < K3||fP||L%(U) < Kj mUaXP ||f||L%(U) < K3K1||f||L%(U), (4.18)

lull oy < Kallfollawy £ Kamaxp - || fllpawy < KaKill fllawy-
U
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By Theorem 4.3, u is a weak solution to (1.1), so that (1.5) and (1.6) follow. The uniqueness follows
from (i). Note that since pc > a ming p > 0, we may apply Lemma 4.4(iii) to (4.17) to obtain

1 maxg o K,
el ooy £ ————llofllvwy £ ———fllw) £ —Wf ey
@ ming p @ ming p a

(iii)) By Lemma 4.5(i), there exists u € H(I)’Z(U ) satisfying both (4.17) and the estimate (4.18). Again,
by Theorem 4.3, u is a weak solution to (1.1), and the uniqueness follows from part (i). Since pc >
aming p > 0, the contraction estimate follows from Lemma 4.5(i1).
O
The following provides an explicit example of a vector field H € L4(B,(xy),R?) that satisfies
condition (T) but does not belong to | ,e(g,00) L7 (B(X0), RY).

Example 4.6. Let B, := {x € R? : ||x]| < 1}, and define ® : B, — R by

1
O(x) := lnln(l + —), x € By.
||

Then VO € LY(By,R?), but VO ¢ | ye(s00) L(B1, RY). By symmetry, for each i € {1,...,d},

8,0 € LUB,), but 6D ¢ U L7(B)).
pe(d,)

Let H, € LP(B,,R%) be an arbitrary vector field, and define H, : B, — R? by
H2 = (8dq),0, ey —BICD) on Bl.

Then H, € LYB,,RY), but H, ¢ Upew,o0) L7 (B1, RY). In particular;, for all ¢ € Cy(By),

f (H,, VQO> dx = f 8d(D éhcp - 81613 ad(,D dx = f (I)(—é?d@lgo + aladgo) dx =0,

B B B

and hence divH, = 0 € Li(B)) for any ¢ € (£, 00). Thus, the vector field H := H, + H, € LY(B;,RY)
satisfies condition (T) but does not belong to | J ye(4..) L”(B1, RY).

5. Conclusions and discussion

This paper establishes the existence and uniqueness of weak solutions to homogeneous boundary
value problems for linear elliptic equations with drift coefficients H € L4(U, R¢), under the assumption
that H satisfies a suitable divergence-type condition. The argument fundamentally relies on the elliptic
regularity results (Holder regularity and the Harnack inequality) of G. Stampacchia [2], which remain
applicable even in the critical case. A key analytical observation is that both the Harnack inequality
and Holder continuity hold despite the limited regularity of the drift term.

In contrast to the framework developed in [1], the present work does not provide quantitative control
over the constants appearing in the a priori estimates. For instance, the constant K; > 1 in Theorem 4.1
depends on the drift H itself rather than its norm in a specific function space. It remains unclear whether
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such constants remain stable under mollification or other approximation procedures for H, and further
investigation is needed to address this issue.

Another natural question is whether the results extend beyond the critical case H € LY(U, R?) to the
subcritical setting H € L*(U, R¢). Although some special cases have been studied, such as divergence-
free drifts [19] and drifts with nonnegative divergence [18], the general case with drifts in L? or L?
remains open. Addressing this problem would likely require a more delicate analysis.

Finally, the methods developed in this paper are not confined to the context of linear divergence-
form equations. They may also be applicable to regularity theory for double-divergence form equations
and to the study of invariant measures for stochastic analysis, as in [20].

Use of AI tools declaration

The author declares that he has not used Artificial Intelligence (Al) tools in the creation of this
article.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (RS-2025-16070171).

Conflict of interest

The author declares there is no conflict of interest.

References

1. H. Lee, Analysis of linear elliptic equations with general drifts and L!-zero-order terms, J. Math.
Anal. Appl., 548 (2025), 129425. https://doi.org/10.1016/j.jmaa.2025.129425

2. G. Stampacchia, Le probleme de Dirichlet pour les équations elliptiques du second ordre a
coeflicients discontinus, Ann. Inst. Fourier, 15 (1965), 189-257. https://doi.org/10.5802/aif.204

3. 0. A. Ladyzhenskaya, N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic
Press, New York-London, 1968.

4. N. S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup.
Pisa Cl. Sci., 27 (1973), 265-308.

5. D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of
the 1998 edition, Springer-Verlag, Berlin, 2001.

6. J. Droniou, Non-coercive linear elliptic problems, Potential Anal., 17 (2002), 181-203.
https://doi.org/10.1023/A:1015709329011

7. G. Moscariello, Existence and uniqueness for elliptic equations with lower-order terms, Adv. Calc.
Var, 4 (2011), 421-444.

8. C. Vitanza, W*P-regularity for a class of elliptic second order equations with discontinuous
coeflicients, Le Mat., 47 (1992), 177-186.

Electronic Research Archive Volume 33, Issue 12, 7974-7998.


https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2025.129425
https://dx.doi.org/https://doi.org/10.5802/aif.204
https://dx.doi.org/
https://dx.doi.org/
https://dx.doi.org/
https://dx.doi.org/https://doi.org/10.1023/A:1015709329011
https://dx.doi.org/
https://dx.doi.org/

7998

9. N. V. Krylov, Elliptic equations with VMO a,b € L;, and ¢ € Ly, Trans. Am. Math. Soc., 374
(2021), 2805-2822. https://doi.org/10.1090/tran/8282

10. L. C. Evans, Partial Differential Equations, 2nd edition, American Mathematical Society, 2010.

11. L. C. Evans, Measure Theory and Fine Properties of Functions, revised edition, Textbooks in
Mathematics, CRC Press, Boca Raton, FL, 2015.

12. V. I. Bogachev, N. V. Krylov, M. Rockner, S. Shaposhnikov, Fokker-Planck-Kolmogorov
equations, in Mathematical Surveys and Monographs, American Mathematical Society, (2015),
482.

13. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 1st edition,
Springer, New York, 2011.

14. N. S. Trudinger, Maximum principles for linear, non-uniformly elliptic operators with measurable
coefficients, Math. Z., 156 (1977), 291-301.

15. S. V. Shaposhnikov, On Morrey’s estimate for the Sobolev norms of solutions of elliptic equations,
Math. Notes, 79 (2006), 413—430. https://doi.org/10.1007/s11006-006-0046-2

16. H. Lee, G. Trutnau, Existence and regularity of infinitesimally invariant measures, transition
functions and time-homogeneous It6-SDEs, J. Evol. Equations, 21 (2021), 601-623.
https://doi.org/10.1007/s00028-020-00593-y

17. V. 1. Bogachev, M. Rockner, S. Shaposhnikov, On positive and probability solutions
of the stationary Fokker-Planck-Kolmogorov equation, Dokl. Math., 85 (2012), 350-354.
https://doi.org/10.1134/S1064562412030143

18. H. Lee, On the contraction properties for weak solutions to linear elliptic equations
with L2-drifts of negative divergence, Proc. Am. Math. Soc., 152 (2024), 2051-2068.
https://doi.org/10.1090/proc/16672

19. M. Kontovourkis, On Elliptic Equations with Low-Regularity Divergence-Free Drift Terms and
the Steady-State Navier-Stokes Equations in Higher Dimensions, Ph.D thesis, University of
Minnesota, 2007.

20. H. Lee, Local elliptic regularity for solutions to stationary Fokker-Planck equations via Dirichlet
forms and resolvents, Bound. Value Probl., 2025 (2025). https://doi.org/10.1186/s13661-025-
02056-0
i ©2025 the Author(s), licensee AIMS Press. This

A/I : : is an open access article distributed under the

amms A[MS P >
EE; eSS

terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 33, Issue 12, 7974-7998.


https://dx.doi.org/https://doi.org/10.1090/tran/8282
https://dx.doi.org/
https://dx.doi.org/
https://dx.doi.org/
https://dx.doi.org/
https://dx.doi.org/
https://dx.doi.org/https://doi.org/10.1007/s11006-006-0046-2
https://dx.doi.org/https://doi.org/10.1007/s00028-020-00593-y
https://dx.doi.org/https://doi.org/10.1134/S1064562412030143
https://dx.doi.org/https://doi.org/10.1090/proc/16672
https://dx.doi.org/
https://dx.doi.org/https://doi.org/10.1186/s13661-025-02056-0
https://dx.doi.org/https://doi.org/10.1186/s13661-025-02056-0
https://creativecommons.org/licenses/by/4.0

	Introduction
	Notations and definitions
	Fundamental inequalities
	Proof of main result
	Conclusions and discussion

