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Abstract: Convolutive non-negative matrix factorization has been a dominant analytical technique
for deriving interpretable insights from data in speech processing, image analysis, data mining,
biomedicine, and other fields. In this paper, a sparse convolutive non-negative matrix factorization
model was introduced by incorporating an ℓ1 regularization on representation matrices. This
enhancement not only preserved the inherent characteristics of convolutive non-negative matrix
factorization, but also promoted sparse data representation, thereby facilitating more efficient data
storage and analysis. An alternating minimization algorithm for the presented model was proposed
by integrating the alternating direction method of multipliers with the accelerated iterative shrinkage-
thresholding algorithm. In addition, a convergence result was presented that the convergence point
of the algorithm necessarily constitutes a stable point of the problem. Experimental results showed
that the proposed algorithm yielded sparser solutions for synthetic data designed to simulate sparse
representation scenarios, and achieved practical applicability in speech dataset, validating its potential
for real-world signal processing tasks.

Keywords: convolutive non-negative matrix factorization; alternating direction method of
multipliers; convolutive basis; ℓ1 regularization; sparse optimization

1. Introduction

In the era of global informatization, the scale of complex systems has exhibited exponential
growth. Non-negative structured data, encompassing digital photographs, audio signals, and beyond,
are inherently formulated as non-negative high-dimensional matrices, however, this representation
underscores their physical interpretability in real-world applications. High-dimensional data matrices
are often subjected to decomposition to fulfill critical tasks including dimensionality reduction and
clustering. Independent component analysis (ICA) [1], principal component analysis (PCA) [2], and
singular value decomposition (SVD) remain among the most widely used matrix decomposition
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techniques. However, these methods are often limited in practical applications by the lack of physical
interpret-ability in negative elements, thus driving growing attention to non-negative matrix
factorization (NMF) (see [3, 4], for example).

The typical formulation of the standard NMF given a non-negative data matrix Z ∈ RF×N
≥0 is,

min
Y,A

D(Z | YA) s.t. Y ∈ RF×K
≥0 , A ∈ RK×N

≥0 , (1.1)

where D(· | ·) is a divergence function that represents the distance between observations Z and YA. A
comprehensive family of divergence functions is formally referred to as the β-divergence (see (1.2)),

Dβ(µ | ν) =


µβ

β(β−1) +
νβ

β
−
µνβ−1

β−1 , β ∈ R\{0, 1}

µ log µ
ν
− µ + ν, β = 1

µ

ν
− log µ

ν
− 1, β = 0

, (1.2)

to quantify the distance. The β-divergence function with β = 0, β = 1, and β = 2 correspond to
Itakura-Saito divergence (ISD), generalized Kullback-Leiberler divergence (KLD) and Euclidean
distance (ELD), respectively [5]. In this paper, we will only focus on the cost function based on
Euclidean distance. Specifically, we propose an alternating minimization approach for solving
NMF-related problems. It is worth noting that analogous algorithms can be derived for other models
or cost functions.

In the prestigious journal Nature in 1999, scientists Lee and Seung proposed the NMF
problem [6], which addresses objective functions based on Euclidean distance and Kullback-Leibler
divergence [5]. The original work also provided updating rules and convergence proofs for the
algorithm. As a matrix decomposition technique, NMF is renowned for its straightforward
mathematical structure and effective factorization performance in various applications [7]. A
high-dimensional data matrix is decomposed into two low-dimensional non-negative matrices, a
process that enables the extraction of interpretable latent features from complex datasets. Importantly,
the non-negative constraint in NMF induces inherent sparsity, meaning the factorized matrices contain
numerous zero elements. This property enables NMF to not only represent the original data
parsimoniously, but also reduce storage requirements, leveraging sparse representations for efficient
data modeling [8]. However, this inherent sparsity often proves insufficient in certain practical
applications. To address this, many studies focus on inducing an ℓ0, ℓ1, and other regularization terms
and sparse constraints to enhance the sparsity of the factorized matrices [8–11]. Sparse representation
refers to a theoretical framework for representing feature vectors over an overcomplete basis, wherein
each feature vector is expressed as a linear combination of a minimal number of basis elements to
ensure both representation accuracy and efficiency. This approach leverages the sparsity-inducing
property of such combinations to facilitate dimensionality reduction and feature extraction in complex
data modeling [12–17].

Traditional approaches often overlook the latent dependencies between speech frames and fail to
accurately model their temporal dynamics. Convolutive NMF (CNMF) has emerged as a
transformative extension of standard NMF by employing a set of time-shifted basis matrices
Y(t), t ∈ (0,T − 1), addressing critical limitations in modeling sequential or spatially structured
data [18]. For instance, CNMF effectively preserves inter-frame correlations in speech
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signals [19, 20]. This capability enables CNMF to be optimally applied to time-series problems, such
as audio source separation [21] and neural sequence identification [22].

While the non-negativity constraint of CNMF inherently induces some level of sparsity, this is
often insufficient for practical needs. Sparse CNMF (SCNMF) emerged as a refinement that integrates
sparsity constraints into the CNMF framework which addresses this limitation. SCNMF introduces
regularization terms (typically ℓ1-norm as a convex approximation of the non-convex ℓ0-norm) to
enforce sparsity in the coefficient matrix A which promotes more interpretable, discrete activations of
temporal-spectral bases [23, 24]. This sparsity constraint aligns with the physiological properties of
human auditory processing and the statistical characteristics of natural signals, where meaningful
structures tend to manifest as sparse activations of elementary components. In speech enhancement,
for instance, SCNMF outperforms traditional methods like multi-band spectral subtraction and
CNMF under non-stationary noise and low SNR conditions by leveraging sparse temporal-spectral
patterns to better distinguish speech from noise [25, 26]. Recent studies highlight the value of
advanced computational methods for addressing data sparsity and high-dimensionality, which is key
to extending the proposed SCNMF framework. For instance, nonlinear modeling and wavelet
transform integration can enhance performance on complex real-world data [27, 28], and feature
extraction/representation strategies excel at handling high-dimensional information [29, 30].
Specifically, in biomedical and neuroimaging contexts, deep learning- and tensor factorization-based
methods have achieved remarkable success in tasks like disease diagnosis [31] which underscores the
potential of extending SCNMF to nonlinear settings or integrating it with complementary techniques
for broader utility.

Over the past several decades, numerous algorithms for addressing NMF-related problems have
been proposed and extensively applied across diverse fields, including machine learning, speech
processing, and image analysis [32–35]. For instance, Lee and Seung [36] proposed a multiplicative
update (MU) approach and applied it to image processing, while Lin [37] later analyzed the
convergence of this method. This method exhibits two major limitations: first, it suffers from slow
convergence and a pronounced tendency to converge to local minima; second, traditional NMF fails to
model the temporal dependencies among matrix columns, thereby limiting its applicability to
time-series data such as speech processing. The other popular algorithm for NMF is the alternating
nonnegative least squares (ANLS) method [38]. Its core idea lies in iteratively solving non-negativity
constrained least squares subproblems for each factor matrix while fixing the other factors. The
standard ANLS solvers often suffer from slow convergence when the data dimension is high and less
straightforward to extend to non-quadratic loss functions. Zhang [39] proposed another widely used
alternating direction method for NMF and conducted a series of well-designed numerical experiments
to compare its performance against the MU and ANLS algorithms. Their numerical results
demonstrate that this alternating direction algorithm tends to yield higher-quality solutions while
achieving faster computation speeds. In fact, this alternating direction method is more formally
known as the alternating direction method of multipliers (ADMM) (see, e.g., [40, 41]). A core
characteristic of ADMM is its ability to decompose constrained optimization problems into simpler
subproblems, which it accomplishes by introducing auxiliary variables and leveraging dual Lagrange
multipliers. This enables seamless incorporation of regularization terms (e.g., ℓ1 sparsity, group
sparsity, or spatial smoothness) without drastically increasing computational complexity. In addition,
ADMM offers greater adaptability to NMF variants, such as robust NMF and CNMF [23, 24].
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In summary, most existing algorithms for SCNMF frequently adopt a framework based on the
multiplicative update approach, which employs a component-wise update strategy. This is attributed
to the fact that the convolutive basis and sparsity constraints imposed by the model complicate the
problem from a computational perspective. Furthermore, prior work on ADMM has only been
explored for CNMF, sparse NMF, etc. In this paper, we focus primarily on addressing a type of
SCNMF problem incorporating the ℓ1-norm with respect to the Euclidean distance. We extend the
ADMM framework to tackle this SCNMF problem by introducing a novel variable separation
approach and efficient techniques for handling sparsity constraints, and subsequently analyze its
convergence properties. The structure of this paper is as follows: Section 2 introduces related work on
CNMF and ADMM. In Section 3, we propose a new algorithm for SCNMF with ℓ1-norm
regularization by extending the classic ADMM with acceleration techniques, and provide a simple
convergence result. Section 4 presents several sets of computational results to show the performance
of the proposed algorithm. Finally, Section 5 offers some concluding remarks.

2. Related works

In this section, we first outline the core preliminary models foundational to SCNMF, including NMF
and CNMF. Next, we review the classic ADMM algorithm and then extend it to NMF and CNMF by
appropriately introducing separable variables.

2.1. The standard NMF and CNMF

NMF decomposes a high-dimensional non-negative matrix Z into two low-dimensional
non-negative matrices Y and A, where Y denotes the basis matrix and A denotes the coefficient matrix.
Due to the non-uniqueness of NMF decomposition and the non-negative constraints imposed on
matrices Y and A, this decomposition is inherently approximate, meaning that matrix Z can only be
decomposed into Y and A in an approximate manner. To quantify the error between Z and the
reconstructed matrix YA, a cost function rooted in the Euclidean distance is introduced. The general
form of standard NMF [6] can be expressed as:

min
1
2
∥Z − YA∥2F s.t. Y ∈ RF×K

≥0 , A ∈ RK×N
≥0 , (2.1)

where ∥ · ∥2F is Frobenius norm of the matrix.
Convolutive non-negative matrix factorization extends traditional NMF to two-dimensional

domains, where each basis vector acquires an additional dimensionality and the basis matrix is
generalized into a tensor. Let T denote the number of time slices per basis. The reconstruction error
of CNMF is measured using the Euclidean distance, and the general formulation of standard
CNMF [34] is,

min
1
2

∥∥∥∥∥∥∥Z −
T−1∑
t=0

Y(t)
t→
A

∥∥∥∥∥∥∥
2

F

s.t. Y(t) ∈ RF×K
≥0 , ∀t,

t→
A∈ RK×N

≥0 , (2.2)

where Y(t) and A represent the basis matrix and coefficient matrix. The operator
t→
(·) denotes a column-

wise right shift, where each column is shifted right by t positions with zeros padded on the left.
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2.2. The classic ADMM

The ADMM method [42, 43] is a distributed convex optimization approach designed to tackle
complex problems. By decomposing the coordination process, ADMM breaks down large-scale
global challenges into smaller, more tractable local sub-problems, enabling efficient computation and
convergence to the optimal solution of the original problem. The classical ADMM is designed to
address the following convex optimization problem involving decoupled variables x and y,

min f (x) + g(y) s.t. Bx +Cy = z. (2.3)

Here, B, C, and z denote matrices and a vector of appropriate dimensions, while f and g are convex
functions. The augmented Lagrangian function for problem (2.3) can be expressed as,

L(x, y, µ) = f (x) + g(y) + µT (Bx +Cy − z) +
ρ

2
∥Bx +Cy − z∥22, (2.4)

where ρ is a penalty parameter and µ is a Lagrangian multipliers vector. While the framework of the
ADMM algorithm is analogous to that of the augmented Lagrangian method (ALM), ADMM updates
x and y alternately at each iteration, whereas ALM optimizes over x and y jointly. The core idea of
ADMM lies in variable splitting, which decomposes a single optimization variable into multiple
auxiliary variables through the introduction of equality constraints. This technique enables the
transformation of a complex, coupled optimization problem into simpler, decoupled sub-problems
that can be solved iteratively.

2.3. ADMM for NMF and CNMF

To align with the ADMM framework for solving the NMF problem defined in (2.1), auxiliary
variables W and H are introduced. Consequently, the original NMF problem can be reformulated as
the following equivalent problem:

min
1
2
∥Z − YA∥2F s.t. Y = W, A = H, W ∈ RF×K

≥0 ,H ∈ RK×N
≥0 . (2.5)

The corresponding augmented Lagrange function of (2.5) is

L(Y, A,W,H,Λ,Π) =
1
2
∥Z − YA∥2F + ⟨Λ,Y −W⟩

+
α

2
∥Y −W∥2F + ⟨Π, A − H⟩ +

β

2
∥A − H∥2F ,

(2.6)

where Λ and Π are the Lagrange Multipliers and α, β are penalty parameters. Although the objective
function is non-convex and non-separable with respect to variables Y and A, ADMM can be extended
to solve the NMF problem directly. Indeed, ADMM has demonstrated success in addressing numerous
non-convex problems, making it a versatile approach for such challenges. For instance, ADMM-
based NMF has demonstrated superior performance compared to multiplicative update methods, as
documented in [40].

To solve the CNMF problem via ADMM, we introduce variables W and H, which aligns with the
problem simplification strategy presented in [44]. Specifically, since matrix Y is generalized as a tensor
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with T time slices, we define a tensor U ∈ RF×K×T to decompose Z into T component tensors

Z =
T−1∑
t=0

U(t). (2.7)

In each iteration, U(t) ∈ RF×K is redefined to partition Z proportionally, with the constraint that the
sum of all time-slices in U exactly equals Z. Consequently, standard CNMF can be reformulated as a
composite optimization problem over a set of slices,

min
1
2

T−1∑
t=0

∥U(t) − Y(t)
t→
A ∥2F

s.t. Y(t) = W(t), A = H

W(t) ∈ RF×K
≥0 ,H ∈ RK×N

≥0 .

(2.8)

With the introduction of the variable tensor U, the augmented Lagrangian function for problem (2.8)
can be rewritten as,

L(Y, A,W,H,Λ,Π)

=
1
2

T−1∑
t=0

∥U(t) − Y(t)
t→
A ∥2F +

T−1∑
t=0

⟨Λ(t),Y(t) −W(t)⟩

+

T−1∑
t=0

α

2
∥Y(t) −W(t)∥2F + ⟨Π, A − H⟩ +

β

2
∥A − H∥2F ,

(2.9)

where Λ and Π denote Lagrange multipliers, while α and β prepresent penalty parameters. Then, the
ADMM for CNMF (2.8) is derived by successively minimizing the augmented Lagrangian
function (2.9) with respect to Y, A and (W,H), one at a time while fixing others at their most recent
values, and then updating the multipliers (Λ,Π) after each sweep of such alternating minimization.

3. An alternating minimization algorithm for SCNMF

This section presents the main work of this paper. We first introduce the SCNMF model with ℓ1-
norm regularization in Section 3.1. In Section 3.2, we propose an alternating minimization algorithm
for the SCNMF problem based on the ADMM framework. Finally, in Section 3.3, we provide a
convergence result under certain assumptions.

3.1. SCNMF with ℓ1-norm regularization

Sparse optimization has emerged as a popular research field in the past few decades, driven by its
remarkable success in applications such as compressive sensing, feature extraction, and image
processing. The sparsity constraints imposed on the basis and coefficient tensors encourage a more
interpretable representation by limiting the number of active elements, effectively extracting only the
most relevant features. Meanwhile, the convolutive aspect allows for the modeling of local temporal
or spatial dependencies, where basis components are convolved with the coefficient tensors instead of
being multiplied element-wise. This combination enables SCNMF to capture both the sparse nature
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of the underlying data patterns and the sequential or structural relationships between data elements,
making it a powerful tool for tasks like source separation, feature extraction, and data compression in
complex, high-dimensional datasets. For sparse NMF, many studies focus on inducing sparsity by
incorporating ℓ0, ℓ1, and other regularization terms into the NMF model. However, because CNMF
involves far more complex matrix convolution operations, which makes the design and optimization
of regularization terms more challenging, most studies on SCNMF have turned to ℓ1-norm
regularization as a practical solution to enforce sparsity (see [23–26] for example).

In this paper, we propose enforcing sparsity on the coefficient matrix by incorporating ℓ1-norm
regularization into the original objective function of CNMF, which aims to obtain a sparser
representation. The problem formulated in (3.1) corresponds to sparse convolutive non-negative
matrix factorization (SCNMF),

min
1
2

T−1∑
t=0

∥U(t) − Y(t)
t→
A ∥2F + λ∥A∥1

s.t. Y(t) = W(t), A = H

W(t) ∈ RF×K
≥0 ,H ∈ RK×N

≥0 ,

(3.1)

which constitutes the primary focus of this section.

3.2. An alternating minimization framework for SCNMF

Similar to (2.9), we can easily write the augmented Lagrangian of the SCNMF problem (3.1),

L(Y, A,W,H,Λ,Π)

=
1
2

T−1∑
t=0

∥U(t) − Y(t)
t→
A ∥2F + λ∥A∥1 +

T−1∑
t=0

⟨Λ(t),Y(t) −W(t)⟩

+

T−1∑
t=0

α

2
∥Y(t) −W(t)∥2F + ⟨Π, A − H⟩ +

β

2
∥A − H∥2F .

(3.2)

Consequently, the SCNMF problem (3.1) is transformed into a straightforward nonnegative constrained
optimization problem (3.3),

min L(Y, A,W,H,Λ,Π)
s.t. W(t) ∈ RF×K

≥0 ,H ∈ RK×N
≥0 .

(3.3)

In accordance with the ADMM approach, one sequentially solves (3.3) with respect to each original
variable (Y, A,W, and H), followed by an update of the Lagrange multipliers (Λ,Π). The details of this
process are elaborated as follows.

3.2.1. Update Y

Upon each update of Y(t), it suffices to optimize the Lagrange formula L in (13) with respect to
each Y(t), ∀t ∈ [0,T − 1]. Accordingly, the remaining Y(τ) terms and all other variables A, W, and
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H are treated as constants. Consequently, the subproblem of updating Y(t) simplifies to the following
unconstrained convex optimization problem,

min
Y(t)

1
2
∥U(t) − Y(t)

t→
A ∥2F + ⟨Λ(t),Y(t) −W(t)⟩ +

α

2
∥Y(t) −W(t)∥2F . (3.4)

Then, a closed-form solution of the Y(t) subproblem can be derived as

Y(t) = PY(t)
(
QY(t)

)−1 , (3.5)

with PY(t) and QY(t) defined as follows,

PY(t) = U(t)(
t→
A )T + αW(t) − Λ(t), (3.6)

QY(t) =
t→
A (

t→
A )T + αI, (3.7)

where I denotes a K × K-dimensional identity matrix.

3.2.2. Update A

While keeping the other variables fixed at their most recent values, the minimization of (3.2) with
respect to A can be reformulated as,

min
A

1
2

T−1∑
t=0

∥U(t) − Y(t)
t→
A ∥2F + λ∥A∥1 + ⟨Π, A − H⟩ +

β

2
∥A − H∥2F . (3.8)

Given that the ℓ1-norm does not admit a direct gradient, the unconstrained convex optimization problem
for A is solved via the accelerated proximal gradient method [45]. Now, we denote the objective of (3.8)
as F(A) = f (A) + g(A), where

f (A) =
1
2

T−1∑
t=0

∥U(t) − Y(t)
t→
A ∥2F , (3.9)

and
g(A) = λ∥A∥1 + ⟨Π, A − H⟩ +

β

2
∥A − H∥2F . (3.10)

It is evident that g is a continuous, nonsmooth convex function, while f is a continuous, smooth
convex function. In fact, the Lipschitz continuity of f (A) can also be demonstrated through the
following derivation,

∥∇ f (A1) − ∇ f (A2)∥F

=

∥∥∥∥∥∥∥
T−1∑
t=0

(−Y(t))T
(t←
U (t) − Y(t)A1

)
−

T−1∑
t=0

(−Y(t))T
(t←
U (t) − Y(t)A2

)∥∥∥∥∥∥∥
F

=

∥∥∥∥∥∥∥
T−1∑
t=0

(Y(t))T Y(t)A1 −

T−1∑
t=0

(Y(t))T Y(t)A2

∥∥∥∥∥∥∥
F

≤ λmax

T−1∑
t=0

(Y(t))T Y(t)

 ∥A1 − A2∥F ,

(3.11)
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where λmax

(∑T−1
t=0 (Y(t))T Y(t)

)
denotes the maximum eigenvalue of the matrix

∑T−1
t=0 (Y(t))T Y(t). Denote

Qη(A, X) = f (X) + ⟨A − X,∇ f (X)⟩ +
η

2
∥A − X∥2F + g(A), (3.12)

where η ≥ λmax

(
T−1∑
t=0

(Y(t))T Y(t)
)
. Therefore, the objective F(A) can be approximated by Qη(A, X),

which is derived from a second-order approximation of f (A) at X. Furthermore, we can establish the
following lemma, which describes the relationship between F(A) and Qη(A, X).

Lemma 1. For any η ≥ λmax

(
T−1∑
t=0

(Y(t))T Y(t)
)
, and A, X, we have F(A) ≤ Qη(A, X).

Proof.

Qη(A, X) − F(A)

= f (X) − f (A) + ⟨A − X,∇ f (X)⟩ +
η

2
∥A − X∥2F

≥
η

2
∥A − X∥2F −

λmax

(
T−1∑
t=0

(
(Y(t))T Y(t)

)
2

∥A − X∥2F

≥ 0.

(3.13)

Regarding the optimization of matrix A, minimizing the function Qη(A, X) appears to be more
computationally feasible than minimizing F(A). This problem can be effectively addressed using the
iterative shrinkage-thresholding algorithm (ISTA) [45], which leverages the proximal operator to
handle ℓ1-norm regularization. Specifically, the A-subproblem (3.8) can be approximated by
minimizing Qη(A, X) through the following steps. First, we reformulate the objective function into the
standard form of a proximal mapping problem for the ℓ1-norm, enabling efficient iterative solution via
soft-thresholding operations.

Pη(X) = arg min
A

Qη(A, X)

= arg min
A

〈
A − X,

T−1∑
t=0

[
−(Y(t))T (

←t
U (t) − Y(t)X)

]〉
+
η

2
∥A − X∥2F + ⟨Π, A − H⟩ +

β

2
∥A − H∥2F + λ∥A∥1

= arg min
A

η

2

∥∥∥∥∥∥∥A − X −
1
η

T−1∑
t=0

(Y(t))T (
←t
U (t) − Y(t)X)

∥∥∥∥∥∥∥
2

F

+
β

2

∥∥∥∥∥A − H +
1
β
Π

∥∥∥∥∥2

F
+ λ∥A∥1

= arg min
A

β + η

2
∥A − h(X)∥2F + λ∥A∥1,

(3.14)
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where h(X) = 1
β+η

[
ηX +

T−1∑
t=0

(Y(t))T
←t
U (t) −

T−1∑
t=0

(Y(t))T Y(t)X + βH − Π
]
. Second, we employ the fast

iterative shrinkage-thresholding algorithm (FISTA) to tackle the subsequent problem (3.14):

Āk = S λ(β+η)−1 (h (Ak)) ,

tk+1 =
1 +

√
1 + 4t2

k

2
,

Ak+1 = Āk +

(
tk − 1
tk+1

) (
Āk − Āk−1

)
,

(3.15)

where S α(·) : Rm×n → Rm×n denotes the contraction operator acting element-wise on a matrix, which is
explicitly defined as:

S α(X) = sign(X) ⊗ (|X| − α)+, (3.16)

where the symbol ⊗ denotes the Hadamard product (also commonly referred to as the element-wise
product) of two matrices. This accelerated optimization technique enhances the convergence rate by
incorporating a momentum term, making it particularly suitable for efficiently solving large-scale
sparse recovery problems with ℓ1-norm regularization. By leveraging FISTA, we can expedite the
minimization process while maintaining the theoretical guarantees of the iterative
shrinkage-thresholding framework.

3.2.3. Update W(t) and H

Since the Lagrangian function (3.2) is separable with respect to variables W and H, the subproblems
of (3.3) concerning W and H can be solved simultaneously as shown in (3.17),

min
W(t)≥0

⟨Λ(t),Y(t) −W(t)⟩ +
α

2
∥Y(t) −W(t)∥2F ,

min
H≥0

⟨Π, A − H⟩ +
β

2
∥A − H∥2F .

(3.17)

Actually, both the W(t) subproblem and the H subproblem reduce to simple projections onto
nonnegative structures. Their update formulas are listed below,

W(t) = max
(
Y(t) +

1
α
Λ(t), 0

)
,

H = max
(
A +

1
β
Π, 0

)
.

(3.18)

3.2.4. Update Λ and Π

The Lagrange multipliers are updated using the classical form of the augmented Lagrangian method,

Λ(t)← Λ(t) + α(Y(t) −W(t)),
Π← Π + β(A − H).

(3.19)

Next, we outline the alternating minimization algorithmic framework for solving SCNMF in
Algorithm 1. It is easy to observe from Algorithm 1 that the main computations involve updating
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matrices Y and A in each iteration. Since the inverse matrices involved in updating Y(t) are both of
size K × K, the corresponding linear systems are relatively computationally inexpensive when K is
small (i.e., K ≪ N). In this scenario, the dominant computational tasks for each T consist of the
matrix multiplications required to compute PY and Y(t), which together account for approximately
O(FNK + FK2 + K3) arithmetic operations (i.e., scalar additions and multiplications). When updating
matrix A, the dominant computational task in each iteration consists solely of matrix multiplications,
accounting for approximately O(T FNK + NK2) arithmetic operations. Therefore, we conclude that
the total computational complexity of the proposed Algorithm 1 is on the order of
O(T FNK + T FK2 + T K3 + NK2).

Algorithm 1: An alternating minimization algorithm for SCNMF with ℓ1-norm
Input: Z ∈ RF×N , integers T > 0, maxiter > 0.
Output: Y ∈ RF×K×T and A ∈ RK×N .

1 Set α, β > 0.
2 Set W,H,Λ,Π to zero matrices of appropriate sizes, and A to a random matrix.

3 Initialize:
T−1∑
t=0

U(t) = Z.

4 for k = 1 : maxiter do
5 for t = 0 :T − 1 do

6 PY = U(t)(
t→
A )T + αW(t) − Λ(t),

7 QY =
t→
A (

t→
A )T + αI,

8 Y(t) = PY (QY )−1 .

9 end

10 Set η ≥ λmax

(
T−1∑
t=0

(Y(t))T Y(t)
)
,

11 hA = 1
β+η

[
ηA +

T−1∑
t=0

(Y(t))T
←t
U (t) −

T−1∑
t=0

(Y(t))T Y(t)A + βH − Π
]
,

12 Ā+ = S λ(β+η)−1 (hA),

13 tk+1 =
1+
√

1+4t2
k

2 ,
14 A← Ā+ +

(
tk−1
tk+1

) (
Ā+ − Ā

)
.

15 for t = 0 :T − 1 do
16 W(t) = max

(
Y(t) + 1

α
Λ(t), 0

)
,

17 Λ(t)← Λ(t) + α(Y(t) −W(t)).

18 end
19 H = max

(
A + 1

β
Π, 0

)
,

20 Π← Π + β(A − H).
21 if stopping criterion (3.20) is met then
22 output Y, A, and exit.
23 end
24 end
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To ensure practical convergence, the following stopping criterion is employed in Algorithm 1: for a
predefined tolerance threshold tol, the iterative process terminates when

min
{
| fk − fk+1|

| fk|
,max

(
∥Yk − Yk+1∥F

∥Yk∥F
,
∥Ak − Ak+1∥F

∥Ak∥F

)}
≤ tol, (3.20)

where fk = ∥Z −
∑T−1

t=0 Yk(t)
t→
Ak ∥F .

3.3. Convergence analysis

Global convergence is guaranteed when the classical ADMM is applied to two-block convex
programs in the form of (2.3). However, to the best of our knowledge, there exists no general global
convergence theory for non-convex programming or convex systems involving three or more blocks.
It is important to note that problem (3.1) is non-convex, and its updates involve three blocks with
respect to Y , A and (W,H). Given these limitations, we derive a convergence analysis for the proposed
alternating minimization framework, which holds under specific assumptions.

A tuple (Y, A,W,H) meets the KKT conditions corresponding to problem (3.1) provided that there
exist Λ and Π satisfying the following conditions:

(U(t) − Y(t)
t→
A )(−

t→
A )T + Λ(t) = 0, (3.21a)

T−1∑
t=0

(−Y(t))T (
t←
U (t) − Y(t)A) + Π + λv = 0, (3.21b)

Y(t) −W(t) = 0, (3.21c)
A − H = 0, (3.21d)

Λ(t) ≤ 0 ≤ W(t), Λ(t) ⊙W(t) = 0, (3.21e)
Π ≤ 0 ≤ H, Π ⊙ H = 0, (3.21f)

where v ∈ ∂∥A∥1, and ⊙ denotes element multiplication. To simplify the presentation, all variables in
problem (3.1) are grouped as a single entity, denoted by:

V := (Y, A,W,H). (3.22)

Theorem 1. Let {(Vk,Λk,Πk)} denote the sequence generated by the alternating minimization
Algorithm 1. If {(Λk,Πk)} is a bounded sequence of Lagrange multipliers [46] satisfying

∞∑
k=0

(
∥Λk+1 − Λk∥

2
F + ∥Πk+1 − Πk∥

2
F

)
< ∞, (3.23)

then every accumulation point of {Vk} satisfies the KKT conditions for problem (3.1).

Proof. First and foremost, we establish that the sequences satisfy the following convergence properties:

∥Vk+1 − Vk∥ → 0, ∥ (Λk+1,Πk+1) − (Λk,Πk) ∥ → 0. (3.24)
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To substantiate this claim, we first note that the observation L(V,Λ,Π) is bounded from below. This
can be inferred from:

L(V,Λ,Π) =
1
2

T−1∑
t=0

∥U(t) − Y(t)
t→
A ∥2F + λ ∥A∥1

+

T−1∑
i=0

α

2

∥∥∥∥∥Y(t) −W(t) +
Λ(t)
α

∥∥∥∥∥2

F
−

1
2α

T−1∑
i=0

∥Λ(t)∥2F

+
β

2

∥∥∥∥∥A − H +
Π

β

∥∥∥∥∥2

F
−

1
2β
∥Π∥2F ,

(3.25)

and {(Λ,Π)} is bounded. Furthermore, the augmented Lagrangian L is strongly convex with respect to
each variable Y, A, W, H. Specifically, for any Y(t) and ∆Y(t), the following inequality holds

L(Y(t) + ∆Y(t)) − L(Y(t)) ≥ ⟨∂Y(t)L(Y(t)),∆Y(t)⟩ + α∥∆Y(t)∥2F . (3.26)

Additionally, since Y∗(t) minimizes L with respect to Y , the following inequality holds for any feasible
∆Y∗(t),

⟨∂Y(t)L (Y∗(t)) ,∆Y∗(t)⟩ ≥ 0. (3.27)

Accordingly, we have the following inequality:

L (Yk(t)) − L (Yk+1(t)) ≥ α ∥Yk(t) − Yk+1(t)∥2F . (3.28)

By the same reasoning, analogous results holds for A, W and H,

L (Ak) − L (Ak+1) ≥ β ∥Ak − Ak+1∥
2
F ,

L (Wk(t)) − L (Wk+1(t)) ≥ α ∥Xk(t) − Xk+1(t)∥2F ,
L (Hk) − L (Hk+1) ≥ β ∥Hk − Hk+1∥

2
F .

(3.29)

Let c := min{α, β}, the difference in the augmented Lagrangian values between two consecutive
iterations can be readily bounded,

L (Vk,Λk,Πk) − L (Vk+1,Λk+1,Πk+1)

= L (Vk,Λk,Πk) − L (Vk+1,Λk,Πk)

+ L (Vk+1,Λk,Πk) − L (Vk+1,Λk+1,Πk+1)

≥ c ∥Vk − Vk+1∥
2
F −

1
c

[
∥Λk − Λk+1∥

2
F + ∥Πk − Πk+1∥

2
F

]
.

(3.30)

As a result of the boundedness of both {(Λ,Π)} and L(V,Λ,Π), it follows that

T−1∑
t=0

c ∥Vk − Vk+1∥
2
F < ∞. (3.31)

According to the update formulas (3.18) and (3.19), we can derive

Yk(t) +
Λk(t)
α
= max

(
0,Yk(t) +

Λk(t)
α

)
+min

(
0,Yk(t) +

Λk(t)
α

)
= Wk(t) +

Λk+1(t)
α
. (3.32)
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Given the convergence of the Lagrange multipliers Λ and Π, we directly obtain

Yk(t) −Wk(t)→ 0, (3.33)

and in the same way, it follows that
Ak − Hk → 0. (3.34)

At this point, the equality constraints within the KKT systems (3.21c) and (3.21d) are derived.
Since Yk+1(t) is the minimizer of the Y(t)-subproblem (3.4), the first-order optimality condition

given below is satisfied,

Yk+1(t)
[ t→
Ak (

t→
Ak)T + αI

]
− U(t)(

t→
Ak)T − αWk(t) + Λk(t) = 0. (3.35)

By adding and subtracting the term Yk(t)[
t→
Ak (

t→
Ak)T + αI] and rearranging the resulting expression, we

can obtain

(Yk+1(t) − Yk(t))
[ t→
Ak (

t→
Ak)T + αI

]
= (U(t) − Yk(t)

t→
Ak)(

t→
Ak)T + α(Wk(t) − Yk(t)) − Λk(t)

= 0.

(3.36)

According to (3.33) and the convergence property of Yk, the following holds:

(U(t) − Yk(t)
t→
Ak)(

t→
Ak)T − Λk(t)→ 0. (3.37)

Evidently, the first equation (3.21a) in the KKT condition is satisfied at any accumulation point.
Next, we turn our attention to the update rule for A in Algorithm 1 and the reformulated form (3.14).

For simplicity, we denote
Ak+1 = Pη(A) = arg min

A
Qη(A, Ak). (3.38)

Thus, by invoking the first-order necessary condition, we obtain

T−1∑
t=0

(−Yk+1(t))T (
←t
U (t) − Yk+1(t)Ak+1) + Πk + η(Ak+1 − Ak) + β (Ak+1 − Hk) + λvk+1 = 0, vk+1 ∈ ∂∥Ak+1∥1.

(3.39)
Given the convergence properties of Ak, Πk, together with Eq (3.34), we derive

T−1∑
t=0

(−Yk+1(t))T (
←t
U (t) − Yk+1(t)Ak+1) + Πk+1 + λvk+1 → 0. (3.40)

Clearly, the KKT conditions (3.21b) holds as well.
The nonnegativity of W(t) and H is guaranteed by the algorithm’s construction. Thus, we only need

to verify the non-positivity of Λ(t) and Π, as well as the complementarity between W(t) and Λ(t), and
between H and Π. We now examine the update formulas (3.18) of W(t) and H:

W(t) = max
(
Y(t) +

1
α
Λ(t), 0

)
,H = max

(
A +

1
β
Π, 0

)
.

Electronic Research Archive Volume 33, Issue 12, 7841–7865.



7855

Obviously, if Hi j = Ai j = 0, this implies max
(

1
β
Πi j, 0

)
= 0, which in turn yields Πi j ≤ 0. Conversely, if

Hi j = Ai j > 0, we can drive Πi j = 0. This establishes both the non-positivity of Π and the
complementarity between H and Π. Due to their identical structure, the same reasoning applies to
W(t) and Λ(t), thereby confirming the non-positivity of Λ(t) and the complementarity between W(t)
and Λ(t).

This completes the proof.

The following corollary is an immediate consequence.

Corollary 1. Whenever the sequence {(Vk,Λk,Πk)}∞k converges, its limit is a KKT point.

While the above simple result is far from satisfactory, it nonetheless provides some assurance
regarding the behavior of the ADMM-like algorithm when applied to the non-convex SCNMF
problem. Further theoretical investigations in this direction are certainly warranted.

4. Numerical experiments

In this section, we conduct numerical experiments to evaluate the performance of the proposed
SCNMF algorithm. All numerical experiments were run under Matlab version R2023b on a PC with
an Intel Core i9 processor at 3.3 GHz with 32 GB RAM.

4.1. Synthetic dataset

In this section, we specify the synthetic dataset for each test instance as well as the basic
default settings of the algorithm. First, we randomly generate a non-negative matrix with dimensions
F = 200 and K = 50 as the oracle tensor base Y∗, and a non-negative oracle coefficient matrix A∗ with
dimensions K = 50 and N = 1000. Following the method for randomly synthesizing datasets
described in [44], we select three cases for the value of T (T = 2, 5, or 10), and then construct the data
matrix Z with dimensions F = 200 and N = 1000 as

Z =
T−1∑
t=0

Y∗(t)
t→
A∗ . (4.1)

Unless otherwise specified, we set the maximum number of iterations as maxiter = 1000 and the
tolerance as tol = 1e − 6.

4.2. Validation of the proposed algorithm’s convergence

To demonstrate the effectiveness of our Algorithm 1, we conduct a series of tests using synthetic
data to examine the algorithm’s behavior under different values of penalty parameters (α, β), regularizer
λ and different settings of T (where T = 2, 5, 10). In this section, we first fix the ℓ1 regularizer λ = 1
and discuss the impact of different ratios of α to β as well as individual values of α(β). We then explore
the performance of the proposed algorithm with varying λ.

4.2.1. Test for different ratios of α to β

We fix β = 1 and test on 6 pairs of initial penalty parameter values with different ratio k

α = k ∗ β, k = 0.1, 0.5, 1, 2, 5, 10.
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The history of objective values of SCNMF problem, considering different lengths T of the convolutive
bases, is plotted in Figure 1. It should be evident from Figure 1 that the algorithm 1 converges for all
6 pairs of penalty parameters when T = 2, 5 and 10. Moreover, the proposed algorithm is not sensitive
to the ratio of these penalty parameters. For instance, the curves of objective values almost coincide
before approximately 200 iterations and then begin to diverge slightly. Nevertheless, the iterations
terminate with objective values of a similar magnitude. This observation represents a major advantage
of robustness to penalty parameters with different ratio scales. In practice, we typically set α = β (or
α = 2β), as a tradeoff within an appropriate range.
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Figure 1. Convergence history of objective values produced by Algorithm 1 with different
ratios of penalty parameters when T = 2, 5 and 10.

4.2.2. Test for different initial α(β)

Here, we initialize α(= 2β) to the default value ranging from 1e-5 to 1, respectively, and evaluate
the algorithm’s performance. Over many randomized runs with different random starting points, we
present a set of typical convergence history results in Figure 2. As shown by the convergence history
curves in Figure 2, the proposed algorithm can always converge effectively within a certain range of
penalty parameters. In addition, for T = 2, 5 and 10, the behavior of our algorithm appears consistent
with respect to different settings of the parameter α. However, as observed from Figure 2, the curves
of objective function values generally appear sequentially from top to bottom as α varies from 1 to
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1e-5. Actually, α and β denote the weights of the term ∥Y −W∥2F and the term ∥A − H∥2F , respectively,
in the augmented Lagrangian function (3.2). These weights penalize the equation constraints Y = W
and A = H, respectively. Specifically, a larger α assigns a larger weight to the penalty term, which
in turn results in a slightly larger objective value and causes the algorithm to terminate earlier (e.g.,
when α = 1 in Figure 3(a)). However, for T = 5 and T = 10, the proposed algorithm does not exhibit
significant differences across different magnitude scales of α.
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Figure 2. Convergence history of objective values produced by Algorithm 1 with different
penalty parameters when T = 2, 5 and 10.

4.2.3. Test for different λ

In this experiment, we utilize the proposed algorithm to SCNMF with varying values of the
regularizer λ. Specifically, we fix α = β = 0.001 and adjust λ within the range of 0.01 to 10. The
reconstruction error across iterations is presented in Figure 3. From Figure 3, it can be observed that
the output curves exhibit qualitatively similar behavior for T = 2, 5 and 10. That is, the algorithm
terminates earlier for larger values of λ, which requires fewer iterations to meet the same tolerance.
Conversely, it is found that λ < 1 tends to result in similar reconstruction errors. Specifically, as λ
decreases below 1, across numerous randomized runs, the number of instances where the algorithm
attains an indistinct objective value increases significantly. Additionally, it should be noted that the
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reconstruction error tends to decrease as the regularizer λ becomes smaller. Indeed, this observation is
theoretically consistent, as a stronger regularization term in the SCNMF model diminishes the weight
assigned to the fidelity term.
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Figure 3. Convergence history of objective values produced by Algorithm 1 with different λ
when T = 2, 5 and 10.

4.3. Comparison of sparse solutions between SCNMF and CNMF

Early studies have indicated that algorithms based on ADMM tend to generate sparse solutions, a
property that is desirable in numerous applications [40, 44]. In this section, we employ the ADMM
algorithm to solve CNMF and SCNMF respectively, and compare the sparsity of their solutions under
different penalty parameters (α, β), regularizer λ, and temporal slices T . Since the CNMF problem (2.8)
lacks ℓ1 regularization of A and shares the same constraints as the SCNMF problem (3.1), the ADMM
algorithm for CNMF adopts the same framework as Algorithm 1, except for the update formula of A.
We now focus on the A-subproblem within the ADMM framework for the CNMF problem,

min
A

1
2

T−1∑
t=0

∥U(t) − Y(t)
t→
A ∥2F + ⟨Π, A − H⟩ +

β

2
∥A − H∥2F . (4.2)

More straightforwardly, a closed-form update for A can be derived as

A = (QA)−1 PA, (4.3)

where,

PA =

T−1∑
t=0

(Y(t))T ←t
U (t) + βH − Π, (4.4)
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QA =

T−1∑
t=0

(Y(t))T Y(t) + βI. (4.5)

In this test, we select three different settings of penalty parameters: α = β = 0.001, 0.002 and 0.005,
along with different regularizer values λ = 0.01, 0.1, 0.5, 1, 2, 5 and 10. Each experiment is repeated
ten times, and the average percentage of zero entries in H are calculated. The results are presented in
Table 1.

Table 1. The proportion of zero values in matrix H obtained by both CNMF and SCNMF.

T α CNMF
SCNMF
λ = 0.01 λ = 0.1 λ = 0.5 λ = 1 λ = 2 λ = 5 λ = 10

2
0.001 7.02 7.64 8.88 10.38 14.94 17.07 23.52 40.20
0.002 7.30 7.69 8.05 10.25 14.59 16.47 22.71 38.90
0.005 7.38 7.56 8.32 9.83 14.31 15.99 22.22 34.24

5
0.001 7.79 8.29 9.06 12.28 13.71 15.27 21.92 28.98
0.002 8.10 8.19 9.19 11.51 14.03 15.30 22.00 28.91
0.005 7.78 8.80 9.72 11.20 13.01 14.83 21.70 28.36

10
0.001 8.45 10.62 12.10 12.69 13.93 14.48 19.16 24.24
0.002 7.67 9.84 9.93 13.24 14.30 14.58 18.44 22.87
0.005 6.56 8.27 8.99 12.63 12.98 13.75 16.37 21.18

From Table 1, it can be observed that the percentage of zero values in the results generated by
SCNMF is consistently higher than that in CNMF. This finding confirms that our proposed algorithm
is indeed capable of achieving a significant sparsity effect. In addition, we find that a larger value of λ
leads to increased sparsity in H, especially when λ > 1. In contrast, the penalty parameters (α, β) do
not have a distinct impact on sparsity. For varying convolution slices T , it is apparent that an increase
in the number of slices T leads to a slight reduction in sparsity for SCNMF when λ > 1.

Table 2. The proportion of zero values in tensor W obtained by both CNMF and SCNMF.

T α CNMF
SCNMF
λ = 0.01 λ = 0.1 λ = 0.5 λ = 1 λ = 2 λ = 5 λ = 10

2
0.001 3.22 3.19 4.71 5.05 5.42 4.10 5.95 4.89
0.002 3.41 4.72 4.64 4.53 4.55 4.25 6.91 5.37
0.005 4.35 4.49 4.31 5.34 3.34 4.47 5.59 4.83

5
0.001 11.21 11.92 10.34 10.81 15.99 11.92 9.52 9.03
0.002 9.35 9.19 10.12 9.55 14.12 9.77 9.83 8.89
0.005 6.72 6.89 7.47 10.20 13.02 8.59 9.72 8.51

10
0.001 17.19 17.08 17.53 17.15 17.38 17.82 17.43 13.44
0.002 16.15 16.11 16.82 17.13 18.37 18.08 15.69 14.86
0.005 14.81 13.78 14.02 15.35 16.01 16.31 12.76 10.03
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In fact, similar to all NMF-based models, both CNMF and SCNMF are also capable of inducing
sparsity in the basis matrix. We computed the average proportion of zero values in the tensor W output
by CNMF and SCNMF, respectively. These results are presented in Table 2.

It should be noted that the sparsity in W does not appear to differ significantly between CNMF
and SCNMF, even when varying penalty parameters and regularizers. In construct, it is interesting to
observe that the percentage of zeros in W decreases slightly as λ increases (for instance, when λ = 10).

4.4. Experiments on real-world speech dataset

In this section, we evaluate the proposed algorithm on a real-world speech dataset. Following the
experimental setup in [44], 50 sentences are randomly selected from the TIMIT database [47]
(sampling rate: 16 kHz) to formulate the training database. A Hamming window of 512 samples
(i.e., 32 ms) and a frame shift of 128 points (i.e., 8 ms) are used to compute the short-time
Fourier transform (STFT) magnitude. From this process, a non-negative matrix of size 257 × 22,395
is obtained. Following the settings, 40 convolutive bases of length T = 10 are learned from
the observation.

The performance of the proposed algorithm is compared against several recently proposed ADMM
algorithms from [44] and the majorization-minimization algorithm from [20], including the heuristic
approach from [33] and two MM algorithms. Since [20] claims that the sequential MM algorithm
(MM2) yields the best overall trade-off between computation time and performance, only MM2 is
adopted in this experiment. All algorithms adopt the same initialization for Y and A, thus sharing the
same initial objective function value. The results of objective value with respect to time consumption
are shown in Figure 4.
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Figure 4. Comparisons of objective values in terms of time consumption: proposed
algorithm (SCNMF) vs. baseline methods (Heuristic [33], MM [20], ADMM [44]) for a
speech dataset.
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As shown in the experimental results, both the proposed SCNMF algorithm and the two ADMM
algorithms (from [44]) successfully terminate within the default tolerance for the relative change in the
objective value. By contrast, the heuristic method and the MM algorithm exhibit a slower decreasing
rate and fail to converge to local optimal points even after 1000 seconds. For comparison, the two
ADMM algorithms decrease faster than the proposed algorithm, and ADMM seq achieves the lowest
objective values in the early initial stages. Subsequently, the proposed algorithm converges abruptly
(after 100 seconds) and ultimately attains the best objective value among all tested algorithms. In
terms of running time, the ADMM and SCNMF require much less time than the others; however, the
ADMM is not as good as SCNMF in terms of fidelity. This experiment demonstrates that the proposed
algorithm outperforms the baseline methods in terms of running time and accuracy.

5. Conclusions

This paper addresses the sparse feature extraction challenge in CNMF tasks by proposing an
SCNMF model integrated with ℓ1-norm regularization. To efficiently solve the model, we design an
alternating minimization algorithm based on the ADMM framework and FISTA, leveraging ADMM’s
strength in handling complex constrained optimization and FISTA’s efficiency in solving
ℓ1-regularized subproblems.

Theoretically, under mild technical assumptions, we establish rigorous convergence results for the
proposed algorithm, filling the gap in theoretical analysis of ADMM-based methods for non-convex
SCNMF problems and providing explicit guarantees for the algorithm’s reliability. Computationally,
the algorithm decomposes complex optimization problems into tractable subproblems solvable via
closed-form or efficient iterative methods. Numerical experiments on synthetic and real-world
datasets demonstrate its robust convergence with reasonable penalty parameters (avoiding precise
tuning), significantly sparser solutions than standard CNMF, and excellent performance in signal
fidelity and computational efficiency for large-scale speech data.

Future work will focus on enhancing the algorithm via dynamic parameter tuning to improve
adaptability to diverse datasets and extend its application to complex speech processing tasks (e.g.,
speech enhancement and separation), aiming to advance the practical application of SCNMF in
speech processing and related domains.
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