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Abstract: In this work, the analytical pricing of maximum and minimum options under the integrated
scenario of interdependent stochastic volatility and jump, and the stochastic interest rate, were inves-
tigated by means of the composite Mellin transform approach. The analytic expressions of Mellin
transform functions of the price of the maximum put option, minimum call option, and the exchange
option were derived by different partial differential-integral equations (PDIEs). Meanwhile, the explicit
price of other maximum and minimum options were obtained by means of the payoff decomposition
technique and the parity relation of max-min and exchange options. In addition, the convergence
of solutions of PDIEs was further demonstrated by transform techniques and decomposition skills.
The simulation of the price process of two underlying assets was given to present the effectiveness
and uniqueness of the proposed model. Finally, numerical analysis was implemented to examine the
accuracy of the PDIE method and the validity of key parameters.
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1. Introduction

With the rapid development of the global financial market, new types of financial derivatives are
constantly emerging. As an important and flexible bivariate option, the maximum or minimum options
have always attracted the attention of scholars and practitioners. Compared with standard European
options, the payoff functions of maximum or minimum options are affected by the two underlying assets
that drive different stochastic processes. Therefore, the payoff structure of the option is richer, and it can
satisfy the requirement of financial investment and risk hedging for more traders. However, the pricing of
the maximum or minimum options is much more complex than the standard European option, especially
in the integrated scenarios of stochastic volatility, stochastic interest rate, and interdependent jumps.
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Because bivariate options are considered an excellent product for hedging risk in practice, their
pricing method plays a crucial role in academic circles. Following the great structure of Black and
Scholes (B-S) [1], Stulz [2] first discussed the pricing of options on the minimum or maximum of two
risky assets. Johnson [3] further studied the valuation of maximum or minimum options of several
assets. Kim [4] studied the pricing problem of exchange options under geometric Brownian motion and
provided an exact analytical solution with credit risk. However, it is ideal to assume that the underlying
assets are subject to geometric Brownian motion. On the one hand, by embedding the compound
Poisson process to the B-S model, Menton [5] pioneered the jump diffusion process to simulate asset
prices. It described the effect of rare events on asset prices through a stochastic jump. Wenhan [6]
further investigated the pricing of bivariate exchange options under jump-diffusion processes. On the
other hand, by replacing the constant volatility with the mean-revert stochastic volatility, Heston [7]
established the square-root stochastic volatility model to illustrate the leptokurtic, fat-tail, and smile
properties of the volatility rate. Based on Merton and Heston’s work, a great deal of literature has shown
that the extended and improved form of jump diffusion and stochastic volatility can effectively explain
various characteristics of option data in real financial markets [8].

However, it is very difficult to obtain the analytical solution of the improved model through the
traditional probabilistic technique [9]. A reliable alternative is the characteristic function approach or
Fourier transform. Carr and Madan [10] deduced the characteristic function of the log-price of the
underlying asset, and the asymptotic solution of the European option was obtained by the FFT for the
first time. Zhang and Wang [11] applied a similar method to derive an approximated pricing expression
of European options in cases with stochastic interest rates. Further, under the assumption of the regime-
swithing stochastic volatility model, Lin [12] and Xie [13] solved the pricing of forward options and
vulnerable options separately by establishing discounted characteristic functions and implementing the
algorithm of the FFT. A better choice is to obtain the solution to the partial differential equation (PDIE)
or partial integro-differential equation (PDIE) that the option price satisfies. Fortunately, the Mellin
transform approach has excellent performance with simplifying PDE and PDIE. Brychkov [14] provided
the general introduction on several transformations including the Mellin transform. Frontczak [15]
first applied the Mellin transform to the option pricing problem driven by the jump diffusion process.
Through single and double Mellin transform approaches, Yoon [16, 17] investigated European options
and vulnerable options under the stochastic interest rate and verified the feasibility of this method.
Further, Jeon [18] derived the analytic closed-form solution for lookback options, and expanded the
application domain of the Mellin transform. Li [19] applied the Mellin transform to the jump-diffusion
model, and presented the analytical price of vulnerable options under two jump structures.

Empirical studies have consistently confirmed that the volatility and instantaneous jump of the
two interacting underlying assets are interdependent, and the market interest rate has certain random
variability. Inspired by the above thinking, we intend to apply the Mellin transform to further explore the
analytical pricing problem of maximum and minimum options in complex cases (stochastic volatility,
stochastic interest rate, interdependent jump). It is difficult to price directly through expectation
computation with partial differential equation theory. An analytical expression of the joint transform
function for the price of two underlying assets is derived by utilizing the Mellin transform. Further,
the decomposition technique is applied to verify the property of convergence for the pricing formula
(inverse Mellin transform). On account of its availability and efficiency, this method draws special
attention of many scholars and practitioners.
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In this paper, we concentrate on the valuation of maximum and minimum options with stochastic
volatility, stochastic interest, and an interdependent jump. Since their design and proposal, maximum
and minimum options have been favored by financial practitioners and market investors. On the one
hand, they can meet the personalized needs of investors with different risk preferences in the market. For
example, high-risk-preference investors can choose maximum call options or minimum put options for
investment and trading; low-risk-preference investors can choose minimum call options or maximum put
options for investment and trading. On the other hand, for market risk hedgers, extreme value options
are powerful and reliable risk hedging tools, and they can also hedge nonlinear risks in the financial
market to a certain extent. Therefore, it is of profound significance to study the pricing problem of
extreme value options in a relatively complex financial market environment. The remainder of this work
is presented in the following order. First, the evolution mechanism of all stochastic factors involved
in option pricing is given, including the price process of the underlying asset, interest rate process,
and volatility process in Section 2. Second, the single and double Mellin transforms and the option
parity relations are used jointly to generate the analytic pricing formula for the above options and the
absolute integrability of solutions is demonstrated by a decomposition technique in Section 3. Third,
numerical experiments are designed to examine the uniqueness of price model and the stability of the
Mellin transform in Section 4. Finally, a summary of this study is given in Section 5.

2. Model formulation

In this section, we use the framework of the interdependent stochastic volatility jump-diffusion model
for maximum and minimum options but replace the constant interest rate by the stochastic interest
rate, and replace independent with interdependent jumps. Meanwhile, the partial differential equation
satisfied by the option price is derived below.

2.1. A brief description of the price dynamics

Let S it(i = 1, 2) be the values of the underlying assets at time t. Under the no-arbitrage condition
and risk-neutral measure P, the price of assets S it consists of three components: the drift term rtdt of
the risk-free interest rate, the Itô integral term σi

√
vtdWit of stochastic volatility, and the compensatory

compound Poisson process term (eJi − 1)d(N0t + N1t) − (λ0 + λi)midt of stochastic jumps, satisfying the
following stochastic differential equations:

dS 1t

S 1t
= (rt − (λ0 + λ1)m1)dt + σ1

√
vtdW1t + (eJ1 − 1)d(N0t + N1t), (2.1)

dS 2t

S 2t
= (rt − (λ0 + λ2)m2)dt + σ2

√
vtdW2t + (eJ2 − 1)d(N0t + N2t), (2.2)

dvt = kv(θv − vt)dt + σv
√

vtdWvt, (2.3)
drt = kr(θr − rt)dt + σrdWrt. (2.4)

where rt is the riskless expected return rate of the two assets and vt is the stochastic volatility rate of the
two assets. rt and vt are the processes driving the mean-reverting rate. Here, we have σi (the coefficient
of volatility of S it’s return ), kr (the coefficient of mean-reversion speed of the interest process rt ), kv

(the coefficient of the mean-reversion speed of the variance process vt), θr (the coefficient of the mean
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level of the interest process rt ), θv (the coefficient of the mean level of the variance process vt), and
kvθv > σ

2
v . The correlation structure of the Brownian motions involved in the above model is given by

d⟨W1t,W2t⟩ = ρ12dt,

d⟨W1t,Wvt⟩ = ρ1vdt,

d⟨W2t,Wvt⟩ = ρ2vdt,

d⟨W1t,Wrt⟩ = d⟨W2t,Wrt⟩ = d⟨Wvt,Wrt⟩ = 0,

λ j( j = 0, 1, 2) is the intensity of the Poisson process N jt, mi = E[eJi − 1](i = 1, 2) is the average jump
amplitude of the underlying asset price process S it. The joint jump vector (J1, J2) is independent of all
Brownian motions (W1t,W2t,Wvt,Wrt), Poisson processes (N0t,N1t,N2t), and vt, rt. To characterize the
interdependence of jumps, we assume that the jump vector (J1, J2) follows two possible distributions.
Situation 1 is that the jump size (J1, J2) is subject to joint log-normal distribution N(µ1, µ2;σ2

J1
, σ2

J1
; ρ);

Situation 2 is that it is subject to joint asymmetric double-exponential distribution [20] with the following
marginal density and distribution functions:

fJi(x) = piξieξi x1{x<0} + qiηie−ηi x1{x>0}, pi + qi = 1, ηi > 1, ξi > 0.

FJi(x) = pieξi x1{x<0} + (1 − qie−ηi x)1{x>0}, pi + qi = 1.

Since the analytical density and analytical expectation of the double-exponential jump distribution do
not exist under general correlation, in the following chapters of this paper, we derived the analytical
expectation formulas for the double-exponential jump distribution in three special cases (perfect
positive correlation, independence, and perfect negative correlation), providing the upper and lower
bounds for pricing the extremum options under the double-exponential distribution. Notice that the
interdependence of the double-exponential distributions will be further clarified in the next section of
this paper. Meanwhile, in this paper, the two types of jump distribution functions are used separately
and not in combination.

2.2. PDIE of maximum and minimum options

In this work, the payoff function of maximum or minimum options is given by hi(S 1T , S 2T ). The
payoff function of the maximum (call and put) option is given by

h1(S 1T , S 2T ) = (max{S 1T , S 2T } − K)+,
h2(S 1T , S 2T ) = (K −max{S 1T , S 2T })+.

Similarly, the payoff function of the minimum (call and put) option is given by

h3(S 1T , S 2T ) = (min{S 1T , S 2T } − K)+,
h4(S 1T , S 2T ) = (K −min{S 1T , S 2T })+.

The payoff function of the max-min option is given by

h5(S 1T , S 2T ) = max{S 1T , S 2T } −min{S 1T , S 2T }.

Without loss of generality, let P(t,T ; r) denote the value of a zero coupon bond at time t paying one unit
at the maturity T , and then define P(t,T ; r) as

P(t,T ; r) := EQ[e−
∫ T

t rsds|rt = r]. (2.5)
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Lemma 2.1. Suppose that the dynamics of process rt is a mean-reverting process given by Eq (2.4), and
then P(t,T ; r) is given by

P(t,T ; r) = eE(τ)+F(τ)r, (2.6)

where τ = T − t, E(τ) = −θr(F(τ) + τ) − σ
2
r

4kr
F2(τ) + σ

2
r

2k2
r
(F(τ) + τ), F(τ) = 1

kr
(e−krτ − 1). Meanwhile, the

conditions for the boundedness of the expression P(t,T, r) are kr > 0 and θr > 0.

Proof. If the interest process rt is a mean-reverting process driven by Eq (2.4), then from the Feynman-
Kac formula, the zero coupon bond price P(t,T ; r) satisfies a partial differential equation given by
(τ = T − t)

−rP − ∂P
∂τ
+ kr(θr − r)∂P

∂r +
1
2σ

2
r
∂2P
∂r2 = 0

with the boundary condition P(T,T ; r) = 1.
Assume that P(t,T ; r) is of the form P(t,T ; r) = eE(τ)+F(τ)r. Then, we obtain

∂E
∂τ
= krθrF(τ) + 1

2σ
2
r F2(τ),

∂F
∂τ
= −krF(τ) − 1

with the boundary condition E(0) = F(0) = 0. Their solutions are given by the above Lemma 2.1.
From the pricing formula of zero coupon bonds P(t,T ; r), the condition for the boundedness of

P(t,T ; r) can be obtained as the boundedness of E(τ) and F(τ). kr > 0 ensures the boundedness of F(τ),
and θr > 0 ensures the boundedness of E(τ). □

According to the principle of risk-neutral pricing, the option price P(t, s1, s2, v, r) is defined by

P(t, s1, s2, v, r) := E[e−
∫ T

t rsdsh(S 1T , S 2T )|S 1t = s1, S 2t = s2, vt = v, rt = r].

Theorem 2.1. If the prices S 1t, S 2t of the two assets follow Eqs (2.1)–(2.4), P(t, s1, s2, v, r) satisfies a
partial differential-integral equation given by (τ = T − t)

−∂P
∂τ
+ (r − (λ0 + λ1)m1)s1

∂P
∂s1
+ (r − (λ0 + λ2)m2)s2

∂P
∂s2
+ kv(θv − v)∂P

∂v

+kr(θr − r)∂P
∂r +

1
2σ

2
1vs2

1
∂2P
∂s2

1
+ 1

2σ
2
2vs2

2
∂2P
∂s2

2
+ 1

2σ
2
vv∂

2P
∂v2 +

1
2σ

2
r
∂2P
∂r2

+ρ12σ1σ2vs1s2
∂2P
∂s1∂s2

+ ρ1vσ1σvvs1
∂2P
∂s1∂v
+ ρ2vσ2σvvs2

∂2P
∂s2∂v

+λ1E[P(t, s1eJ1 , s2, v, r)] + λ2E[P(t, s1, s2eJ2 , v, r)] + λ0E[P(t, s1eJ1 , s2eJ2 , v, r)]

−(r + λ0 + λ1 + λ2)P = 0

(2.7)

with the initial condition P(T, s1, s2, v, r) = hi(s1, s2), i = 1, 2, 3, 4, 5.

Proof. As is well known, the discounted price of financial derivatives is a martingale. According to the
Ito formula,

d(e−
∫ t

0 rsdsP(t, s1, s2, v, r))
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= P(t, s1, s2, v, r)de−
∫ t

0 rsds + e−
∫ t

0 rsdsdP(t, s1, s2, v, r)

= e−
∫ t

0 rsds

[
−rP(t, s1, s2, v, r) −

∂P
∂τ
+ (r − (λ0 + λ1)m1)s1

∂P
∂s1
+ (r − (λ0 + λ2)m2)s2

∂P
∂s2

+kv(θv − v)
∂P
∂v
+ kr(θr − r)

∂P
∂r
+

1
2
σ2

1vs2
1
∂2P
∂s2

1

+
1
2
σ2

2vs2
2
∂2P
∂s2

2

+
1
2
σ2

vv
∂2P
∂v2 +

1
2
σ2

r
∂2P
∂r2

+ρ12σ1σ2vs1s2
∂2P
∂s1∂s2

+ ρ1vσ1σvvs1
∂2P
∂s1∂v

+ ρ2vσ2σvvs2
∂2P
∂s2∂v

]
dt

+e−
∫ t

0 rsds(σ1
√

vt
∂P
∂s1

dW1t + σ2
√

vt
∂P
∂s2

dW2t + σv
√

vt
∂P
∂v

dWvt + σr
√

rt
∂P
∂r

dWrt)

+e−
∫ t

0 rsds(P(t, s1eJ1 , s2eJ2 , v, r) − P(t, s1, s2, v, r))dN0t

+e−
∫ t

0 rsds(P(t, s1eJ1 , s2, v, r) − P(t, s1, s2, v, r))dN1t

+e−
∫ t

0 rsds(P(t, s1, s2eJ2 , v, r) − P(t, s1, s2, v, r))dN2t

= e−
∫ t

0 rsds

[
−(r + λ0 + λ1 + λ2)P −

∂P
∂τ
+ (r − (λ0 + λ1)m1)s1

∂P
∂s1
+ (r − (λ0 + λ2)m2)s2

∂P
∂s2

+kv(θv − v)
∂P
∂v
+ kr(θr − r)

∂P
∂r
+

1
2
σ2

1vs2
1
∂2P
∂s2

1

+
1
2
σ2

2vs2
2
∂2P
∂s2

2

+
1
2
σ2

vv
∂2P
∂v2 +

1
2
σ2

r
∂2P
∂r2

+ρ12σ1σ2vs1s2
∂2P
∂s1∂s2

+ ρ1vσ1σvvs1
∂2P
∂s1∂v

+ ρ2vσ2σvvs2
∂2P
∂s2∂v

+λ1E[P(t, s1eJ1 , s2, v, r)] + λ2E[P(t, s1, s2eJ2 , v, r)] + λ0E[P(t, s1eJ1 , s2eJ2 , v, r)]
]

dt

+e−
∫ t

0 rsds(σ1
√

vt
∂P
∂s1

dW1t + σ2
√

vt
∂P
∂s2

dW2t + σv
√

vt
∂P
∂v

dWvt + σr
√

rt
∂P
∂r

dWrt)

+e−
∫ t

0 rsds(P(t, s1eJ1 , s2eJ2 , v, r)dN0t − λ0E[P(t, s1eJ1 , s2eJ2 , v, r)]dt)

+e−
∫ t

0 rsds(P(t, s1eJ1 , s2, v, r)dN1t − λ1E[P(t, s1eJ1 , s2, v, r)]dt)

+e−
∫ t

0 rsds(P(t, s1, s2eJ2 , v, r)dN2t − λ2E[P(t, s1, s2eJ2 , v, r)]dt)

−e−
∫ t

0 rsdsP(t, s1, s2, v, r)) [(dN0t − λ0dt) + (dN1t − λ1dt) + (dN2t − λ2dt)] .

Finally, since the Ito integral, the compensating Poisson process, and the compensating compound
Poisson process are all martingales, the core content of the theorem can be derived. □

Unfortunately, the direct Mellin transform of h1(S 1T , S 2T ), h4(S 1T , S 2T ), and h5(S 1T , S 2T ) does not
exist. In order to price these options, it is required to price the exchange option with the option parity
relation. Considering that h6(S 1T , S 2T ) = (S 1T − S 2T )+ and h7(S 1T , S 2T ) = (S 2T − S 1T )+ have the linear
property, i.e., h6(S 1T , S 2T ) = S 2T h6( S 1T

S 2T
, 1) and h7(S 1T , S 2T ) = S 2T h7(1, S 1T

S 2T
), let

Zt :=
S 1t

S 2t
, z :=

s1

s2
,

and then, according to pricing unit conversion technology, we define and derive the exchange option
price P(t, s1, s2, v, r) given by

P(t, s1, s2, v, r) = E[e−
∫ T

t rsds(S 1T − S 2T )+|S 1t = s1, S 2t = s2, vt = v, rt = r]
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= s2EP2[(ZT − 1)+|Zt = z, vt = v, rt = r]
= s2 p(t, z, v, r),

where the measure transformation is

dP2
dP |Ft =

S 2T /S 2t

e
∫ T
0 rsds/e

∫ t
0 rsds

= exp{σ2

∫ T

t

√
vsdW2s −

1
2σ

2
2

∫ T

t
vsds +

∫ T

t
J2d(N0s + N2s) − (λ0 + λ2)m2(T − t)}

= exp{σ2

∫ T

t

√
vsdW2s −

1
2σ

2
2

∫ T

t
vsds} · exp{(λ0 − λ0(m2 + 1))(T − t)}

N0T∏
i=N0t+1

λ0(m2+1)
λ0

eJ2
m2+1 f (J2)

f (J2)

· exp{(λ2 − λ2(m2 + 1))(T − t)}
N2T∏

i=N2t+1

λ2(m2+1)
λ2

eJ2
m2+1 f (J2)

f (J2)

Under the new measure P2, W̃2t = W2t −
∫ t

0
σ2
√

vsds is a standard Brownian motion, the intensity of
the compound Poisson process N0t is λ0(m2 + 1), the intensity of the compound Poisson process N2t is
λ2(m2 + 1), and the jumping amplitude follows the probability density ex

m2+1 f (x).

Theorem 2.2. If the prices S 1t, S 2t of the two assets follow Eqs (2.1)–(2.4), p(t, z, v, r) satisfies a partial
differential-integral equation given by (τ = T − t)

−
∂p
∂τ
+ ((λ0 + λ2)m2 − (λ0 + λ1)m1)z∂p

∂z +
1
2 (σ2

1 − 2ρ12σ1σ2 + σ
2
2)vz2 ∂2 p

∂z2

+(kvθv − (kv − ρ2vσ2σv)v)∂p
∂v +

1
2σ

2
vv∂

2 p
∂v2 + kr(θr − r)∂p

∂r +
1
2σ

2
r
∂2 p
∂r2

+(ρ1vσ1 − ρ2vσ2)σvvz ∂
2 p
∂z∂v + λ1E[p(t, zeJ1 , v, r)] + λ2E[eJ2 p(t, ze−J2 , v, r)]

+λ0E[eJ2 p(t, zeJ1−J2 , v, r)] − (λ0 + λ1 + λ2 + (λ0 + λ2)m2)p = 0

(2.8)

with the initial condition p(T, z, v, r) = h6(z, 1) or h7(1, z).

Proof. First, under the risk-neutral measure P, by applying Itô’s formula to derive the stochastic
differential equation that Zt satisfies, we obtain

dZt =
1

S 2t
dS 1t −

S 1t
S 2

2t
dS 2t +

S 1t

S 3
2t

dS 2tdS 2t −
1

S 2
2t

dS 2tdS 1t

= Zt[(rt − (λ0 + λ1)m1)dt + σ1
√

vtdW1t − (rt − (λ0 + λ2)m2)dt − σ2
√

vtdW2t + σ
2
2vtdt

−ρ12σ1σ2vtdt] + Zt[(eJ1−J2 − 1)dN0t + (eJ1 − 1)dN1t + (e−J2 − 1)dN2t]
= Zt{[((λ0 + λ2)m2 − (λ0 + λ1)m1)dt + σ2(σ2 − ρ12σ1)vtdt + σ1

√
vtdW1t − σ2

√
vtdW2t]

+[(eJ1−J2 − 1)dN0t + (eJ1 − 1)dN1t + (e−J2 − 1)dN2t]}.

Based on the relevant equations of Brownian motion, that is, d⟨W1t,W2t⟩ = ρ12dt, d⟨W1t,Wvt⟩ = ρ1vdt,
d⟨W2t,Wvt⟩ = ρ2vdt, we can quickly obtain the following decomposition:

W2t,W1t = ρ12W2t+

√
1 − ρ2

12W̃1t,Wvt = ρ2vW2t+
ρ1v − ρ2vρ12√

1 − ρ2
12

W̃1t+

√
1 − ρ2

12 − ρ
2
1v − ρ

2
2v + 2ρ1vρ2vρ12√

1 − ρ2
12

W̃vt.
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Immediately afterward, under the new measurement P2, it can be concluded that

dW2t = dW̃2t + σ2
√

vtdt,

dW1t = ρ12dW̃2t + ρ12σ2
√

vtdt +
√

1 − ρ2
12dW̃1t,

dWvt = ρ2vdW̃2t + ρ2vσ2
√

vtdt + ρ1v−ρ2vρ12√
1−ρ2

12

dW̃1t +

√
1−ρ2

12−ρ
2
1v−ρ

2
2v+2ρ1vρ2vρ12

√
1−ρ2

12

dW̃vt.

By substituting it into the stochastic differential equation satisfied by Zt and vt, we obtain

dZt = Zt{[((λ0 + λ2)m2 − (λ0 + λ1)m1)dt

+ρ12σ1
√

vtdW̃2t +

√
1 − ρ2

12σ1
√

vtdW̃1t − σ2
√

vtdW̃2t]
+[(eJ1−J2 − 1)dN0t + (eJ1 − 1)dN1t + (e−J2 − 1)dN2t]},

dvt = kv(θv − vt)dt + ρ2vσ2σvvtdt + ρ2vσv
√

vtdW̃2t +
ρ1v−ρ2vρ12√

1−ρ2
12

σv
√

vtdW̃1t

+

√
1−ρ2

12−ρ
2
1v−ρ

2
2v+2ρ1vρ2vρ12

√
1−ρ2

12

σv
√

vtdW̃vt.

Finally, according to Ito’s lemma, the differential form p(t, z, v, r) satisfies is

d(p(t, z, v, r))

=

[
−
∂p
∂τ
+ ((λ0 + λ2)m2 − (λ0 + λ1)m1)z

∂p
∂z
+

1
2

(σ2
1 − 2ρ12σ1σ1 + σ

2
2)z2∂

2 p
∂z2

+kv((θv − v) + ρ2vσ2σvvt)
∂p
∂v
+

1
2
σ2

vv
∂2P
∂v2 + kr(θr − r)

∂p
∂r
+

1
2
σ2

r
∂2 p
∂r2

(ρ1vσ1 − ρ2vσ2)σvvz
∂2 p
∂z∂v

]
dt

+(σ1
√

vt
∂p
∂z

d(ρ12dW̃2t +

√
1 − ρ2

12dW̃1t) − σ2
√

vt
∂p
∂z

dW̃2t + σr
√

rt
∂p
∂r

dWrt)

+σv
√

vt
∂p
∂v

d(ρ2vdW̃2t +
ρ1v − ρ2vρ12√

1 − ρ2
12

dW̃1t +

√
1 − ρ2

12 − ρ
2
1v − ρ

2
2v + 2ρ1vρ2vρ12√

1 − ρ2
12

dW̃vt)

+(p(t, zeJ1−J2 , v, r) − p(t, z, v, r))dN0t + (p(t, zeJ1 , v, r) − p(t, z, v, r))dN1t

+(p(t, ze−J2 , v, r) − p(t, z, v, r))dN2t

=

[
−
∂p
∂τ
+ ((λ0 + λ2)m2 − (λ0 + λ1)m1)z

∂p
∂z
+

1
2

(σ2
1 − 2ρ12σ1σ1 + σ

2
2)z2∂

2 p
∂z2

+kv((θv − v) + ρ2vσ2σvvt)
∂p
∂v
+

1
2
σ2

vv
∂2P
∂v2 + kr(θr − r)

∂p
∂r
+

1
2
σ2

r
∂2 p
∂r2

(ρ1vσ1 − ρ2vσ2)σvvz
∂2 p
∂z∂v

+ λ1EP2[p(t, zeJ1 , v, r)] + λ2(m2 + 1)EP2[p(t, ze−J2 , v, r)]

+λ0(m2 + 1)EP2[p(t, zeJ1−J2 , v, r)] − (λ0 + λ1 + λ2 + (λ0 + λ2)m2)p
]

dt

+(σ1
√

vt
∂p
∂z

d(ρ12dW̃2t +

√
1 − ρ2

12dW̃1t) − σ2
√

vt
∂p
∂z

dW̃2t + σr
√

rt
∂p
∂r

dWrt)
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+σv
√

vt
∂p
∂v

d(ρ2vdW̃2t +
ρ1v − ρ2vρ12√

1 − ρ2
12

dW̃1t +

√
1 − ρ2

12 − ρ
2
1v − ρ

2
2v + 2ρ1vρ2vρ12√

1 − ρ2
12

dW̃vt)

+(p(t, zeJ1−J2 , v, r)dN0t − λ0(m2 + 1)EP2[p(t, zeJ1−J2 , v, r)]dt)
+(p(t, zeJ1 , v, r)dN1t − λ1EP2[p(t, zeJ1 , v, r)]dt)
+(p(t, ze−J2 , v, r)dN2t − λ2(m2 + 1)EP2[p(t, ze−J2 , v, r)]dt)
−p(t, s1, s2, v, r)) [(dN0t − λ0(m2 + 1)dt) + (dN1t − λ1dt) + (dN2t − λ2(m2 + 1)dt)] .

Based on the relationship between the risk-neutral measure P and the new measure P2, the following
equation can be derived:

λ1EP2[p(t, zeJ1 , v, r)] = λ1E[p(t, zeJ1 , v, r)],
λ2(m2 + 1)EP2[p(t, ze−J2 , v, r)] = λ2E[eJ2 p(t, ze−J2 , v, r)],
λ0(m2 + 1)EP2[p(t, zeJ1−J2 , v, r)] = λ0(m2 + 1)E[eJ2 p(t, zeJ1−J2 , v, r)].

Finally, since the Ito integral, the compensating Poisson process, and the compensating compound
Poisson process are all martingales, the core content of the theorem can be derived. □

3. Option price formulas

In this section, we solve the above PDIE by using the Mellin transform method. Let P̂(t, u1, u2, v, r)
and p̂(t, u, v, r) be Mellin transform functions of P(t, s1, s2, v, r) and p(t, z, v, r), respectively, so that

P̂(t, u1, u2, v, r) =
∫ +∞

0

∫ +∞

0
P(t, s1, s2, v, r)su1−1

1 su2−1
2 ds1ds2, (3.1)

p̂(t, u, v, r) =
∫ +∞

0
p(t, z, v, r)zu−1dz, (3.2)

where u1, u2, u are complex variables.
The reason why the Mellin transform is indispensable in the pricing of maximum and minimum

options is that the Mellin transform does not exist for the prices of many other exotic options, while
the compound Mellin transform of maximum and minimum options maintains continuous existence,
which is a concentrated characteristic not possessed by other options. Additionally, compared with
traditional characteristic functions or Fourier methods, the operation of the Mellin transformation is
easier. This is mainly reflected in the following two aspects. The first aspect, when applied to complex
options like maximum and minimum options, is that the characteristic function or Fourier transform
methods require the construction of multiple different and complicated new measures, and also need
to utilize the transformation relationship between the characteristic function and probability, making
the representation of option prices relatively complex. However, the result of the Mellin transform is
relatively simple. The second aspect is that the Fourier method generally requires the construction of
an appropriate fast Fourier transform algorithm, but due to the fact that the Fourier transform of some
functions does not exist and a damping coefficient needs to be added, the algorithm needs to consider
more issues. The Mellin transform does not require too many operations. It only needs to consider
the specific integral truncation interval. Therefore, from the implementation perspective, the Mellin
transform has simplicity and an ease of use.
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3.1. Some key theoretical preparation

First, we have the Mellin transforms of expectation terms.
According to the interchange property of integration, we have∫ +∞

0

∫ +∞
0

E[P(t, s1eJ1 , s2, v, r)]su1−1
1 su2−1

2 ds1ds2

= E[
∫ +∞

0

∫ +∞
0

P(t, s1eJ1 , s2, v, r)su1−1
1 su2−1

2 ds1ds2]

= E[e−u1 J1
∫ +∞

0

∫ +∞
0

P(t, s1eJ1 , s2, v, r)(s1eJ1)u1−1su2−1
2 d(s1eJ1)ds2]

= E[e−u1 J1]P̂(t, u1, u2, v, r).

Similarly, the other equations are given by∫ +∞
0

∫ +∞
0

E[P(t, s1, s2eJ2 , v, r)]su1−1
1 su2−1

2 ds1ds2 = E[e−u2 J2]P̂(t, u1, u2, v, r),∫ +∞
0

∫ +∞
0

E[P(t, s1eJ1 , s2eJ2 , v, r)]su1−1
1 su2−1

2 ds1ds2 = E[e−u1 J1−u2 J2]P̂(t, u1, u2, v, r),∫ +∞
0

E[p(t, zeJ1 , v, r)]zu−1dz = E[e−uJ1]p̂(t, z, v, r),∫ +∞
0

E[eJ2 p(t, ze−J2 , v, r)]zu−1dz = E[e(u+1)J2] p̂(t, z, v, r),∫ +∞
0

E[eJ2 p(t, zeJ1−J2 , v, r)]zu−1dz = E[e−uJ1+(u+1)J2]p̂(t, z, v, r).

Second, we have the Mellin transform of different payoff functions.
When P(T, s1, s2, v, r) = h2(s1, s2), then there is

P̂(T, u1, u2, v, r) =
Ku1+u2+1

u1u2(u1 + u2 + 1)
,Re(u1) ∈ (0,+∞),Re(u2) ∈ (0,+∞);

When P(T, s1, s2, v, r) = h3(s1, s2), then there is

P̂(T, u1, u2, v, r) = −
Ku1+u2+1

u1u2(u1 + u2 + 1)
,Re(u1) ∈ (−∞,−1),Re(u2) ∈ (−∞,−1);

When p(T, z, v, r) = h6(z, 1), then there is

p̂(T, u, v, r) =
1

u(u + 1)
,Re(u) ∈ (−∞,−1);

When p(T, z, v, r) = h7(1, z), then there is

p̂(T, u, v, r) =
1

u(u + 1)
,Re(u) ∈ (0,+∞),

where Re(·) represents the real part of a complex variable.
Notice that the above four payoff functions can be directly solved by single and double Mellin

transforms. However, when P(T, s1, s2, v, r) = h1(s1, s2), h4(s1, s2), or h5(s1, s2), then the Mellin
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transform functions of P(T, s1, s2, v, r) do not exist. It is required to combine the Mellin transform with
the price of exchange option. The parity relation of the max-min and exchange options is given by

h1(s1, s2) = h2(s1, s2) + h6(s1, s2) + s2 − K; (3.3)
h4(s1, s2) = h3(s1, s2) + h6(s1, s2) + K − s1; (3.4)
h5(s1, s2) = h6(s1, s2) + h7(s1, s2). (3.5)

Third, we have the expectation Expectation computation under two different jump dependence
distributions.
If (J1, J2) is subject to joint log-normal distribution, we have

E[e−u1 J1] = e−µ1u1+
1
2σ

2
J1

u2
1 ,

E[e−u2 J2] = e−µ2u2+
1
2σ

2
J2

u2
2 ,

E[e−u1 J1−u2 J2] = e−(µ1u1+µ2u2)+ 1
2 (σ2

J1
u2

1+2ρJσJ1σJ2 u1u2+σ
2
J2

u2
2)
.

(3.6)

If (J1, J2) is subject to asymmetric double-exponential distribution, we have

E[e−u1 J1] = p1ξ1
ξ1−u1
+

q1η1
η1−u1
,−η1 < Re(u1) < ξ1,

E[e−u2 J2] = p2ξ2
ξ2−u2
+

q2η2
η2−u2
,−η2 < Re(u2) < ξ2.

(3.7)

Case 1. (J1, J2) is an independent structure, and then

E[e−u1 J1−u2 J2] = ( p1ξ1
ξ1−u1
+

q1η1
η1−u1

)( p2ξ2
ξ2−u2
+

q2η2
η2−u2

). (3.8)

Case 2. (J1, J2) is a completely positive dependent structure, and then
when p1 > p2,

E[e−u1 J1−u2 J2] = ( p1
p2

)
u1
ξ1

p2ξ1ξ2
ξ1ξ2−u1ξ2−u2ξ1

+ p
u1
ξ1
1 q
−

u2
η2

2

∫ q2

q1
(1 − x)−

u1
ξ1 x

u2
η2 dx

+( q2
q1

)−
u2
η2

q1η1η2
η1η2+u1η2+u2η1

, Re(u1)
ξ1
+

Re(u2)
ξ2
< 1, Re(u1)

η1
+

Re(u2)
η2
> −1;

(3.9)

when p1 < p2,

E[e−u1 J1−u2 J2] = ( p2
p1

)
u2
ξ2

p1ξ1ξ2
ξ1ξ2−u1ξ2−u2ξ1

+ p
u2
ξ2
2 q
−

u1
η1

1

∫ q1

q2
(1 − x)−

u2
ξ2 x

u1
η1 dx

+( q1
q2

)−
u1
η1

q2η1η2
η1η2+u1η2+u2η1

, Re(u1)
ξ1
+

Re(u2)
ξ2
< 1, Re(u1)

η1
+

Re(u2)
η2
> −1;

(3.10)

when p1 = p2,

E[e−u1 J1−u2 J2] = p1ξ1ξ2
ξ1ξ2−u1ξ2−u2ξ1

+
q2η1η2

η1η2+u1η2+u2η1
,

Re(u1)
ξ1
+

Re(u2)
ξ2
< 1, Re(u1)

η1
+

Re(u2)
η2
> −1.

(3.11)

Case 3. (J1, J2) is a completely negative dependent structure, and then
when p1 > q2,

E[e−u1 J1−u2 J2] = ( q1
p2

)−
u2
ξ2

q1η1ξ2
η1ξ2+u1ξ2−u2η1

+ p
u1
ξ1
1 p

u2
η2
2

∫ p2

q1
(1 − x)−

u1
ξ1 x−

u2
ξ2 dx

+( q2
p1

)−
u1
ξ1

q2ξ1η2
ξ1η2−u1η2+u2ξ1

, Re(u1)
ξ1
−

Re(u2)
η2
< 1, Re(u1)

η1
−

Re(u2)
ξ2
> −1;

(3.12)
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when p1 < q2,

E[e−u1 J1−u2 J2] = ( q1
p2

)−
u1
η1

p2η1ξ2
η1ξ2+u1ξ2−u2η1

+ q
−

u1
η1

1 q
−

u2
η2

2

∫ q2

p1
(1 − x)

u1
η1 x

u2
η2 dx

+( q2
p1

)−
u2
η2

p1ξ1η2
ξ1η2−u1η2+u2ξ1

, Re(u1)
ξ1
−

Re(u2)
η2
< 1, Re(u1)

η1
−

Re(u2)
ξ2
> −1;

(3.13)

when p1 = q2,

E[e−u1 J1−u2 J2] = p2η1ξ2
η1ξ2+u1ξ2−u2η1

+
p1ξ1η2

ξ1η2−u1η2+u2ξ1
,

Re(u1)
ξ1
−

Re(u2)
η2
< 1, Re(u1)

η1
−

Re(u2)
ξ2
> −1.

(3.14)

Notice that the above Eqs (3.9)–(3.14) are proved in the Appendix. Due to the complexity of the
double-exponential distribution, it is difficult to give specific analytical expressions for other types of
dependence structures.

3.2. The solution of Mellin transform functions

Lemma 3.1. Let A, B,C, E be constants, and A , 0, B2 − 4AC , 0. Then the following ordinary
differential equations 

dy
dx
= Ay2 + By +C,

y|x=0 = E
(3.15)

have the solution that

y =
y1 −

E−y1
E−y2

y2edx

1 − E−y1
E−y2

edx
=

(E − y2)y1 − (E − y1)y2edx

E − y2 − (E − y1)edx ,

where

d =
√

B2 − 4AC, y1 =
−B + d

2A
, y2 =

−B − d
2A

.

Proof. Because of the condition B2 − 4AC , 0, obviously, the inequality y1 , y2 holds. Furthermore, at
least one of y1 and y2 is not equal to E. Let us assume that y2 , E. Since

Ay2 + By +C = A(y − y1)(y − y2),

then, when y , y1, y2,

1
(y − y1)(y − y2)

dy = Adx,

and when y , 0, integrating both sides of the equation gives

1
y1 − y2

ln
y − y1

y − y2
= Ax + D.
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Here, D is a constant. From the above equation, we can obtain

y − y1

y − y2
= eD(y1−y2)eAx(y1−y2).

Let c = eD(y1−y2). Considering that A(y1 − y2) = d, then

y − y1

y − y2
= cedx.

Therefore, we can obtain

y =
y1 − y2cedx

1 − cedx . (3.16)

Since y2 , E, it follows that y = y2 is not a solution to Eq (3.16). If c = 0 is allowed, then when
c = 0, y = y1, this equation is the general solution of differential equations. Using the initial condition
y|x=0 = E, we can solve for the constant c = E−y1

E−y2
. Substituting this into the equation gives the solution

to differential equations as

y =
y1 −

E−y1
E−y2

y2edx

1 − E−y1
E−y2

edx
=

(E − y2)y1 − (E − y1)y2edx

E − y2 − (E − y1)edx .

The lemma has been proved. □

According to the above three steps, full preparation has been made for the subsequent work. Next, in
the following Theorems 3.1 and 3.2, we will obtain the solution P̂(t, u1, u2, v, r), p̂(t, u, v, r) by variable
substitution and differential equation techniques, respectively.

Theorem 3.1. A solution of P̂(t, u1, u2, v, r) is given by

P̂(t, u1, u2, v, r) = P̂(T, u1, u2, v, r)eF(u1,u2)τ+A(τ,u1,u2)+B(τ,u1,u2)r+C(τ,u1,u2)v, (3.17)

where τ = T − t, F(u1, u2), A(τ, u1, u2), B(τ, u1, u2), and C(τ, u1, u2) are given by
F(u1, u2) = −(1 − m1u1 − m2u2 − E[e−u1 J1−u2 J2])λ0 − (1 − m1u1 − E[e−u1 J1])λ1

− (1 − m2u2 − E[e−u2 J2])λ2,
A(τ, u1, u2) = A1(τ, u1, u2) + A2(τ, u1, u2) + A3(τ, u1, u2),
A1(τ, u1, u2) = θrkr

(1 − e−krτ − krτ)(1 + u1 + u2),

A2(τ, u1, u2) = σ2
r

4k3
r
(−3 − e−krτ + 4e−krτ + 2krτ)(1 + u1 + u2)2,

A3(τ, u1, u2) = kvθv
σ2

v
[(b(u1, u2) + δ(u1, u2))τ − 2 ln(1−g(u1,u2)eδ(u1 ,u2)τ

1−g(u1,u2) )],

B(τ, u1, u2) = e−krτ−1
kr

(1 + u1 + u2),
C(τ, u1, u2) = b(u1,u2)+δ(u1,u2)

σ2
v

( 1−eδ(u1 ,u2)τ

1−g(u1,u2)eδ(u1 ,u2)τ ),
b(u1, u2) = kv + ρ1vσ1σvu1 + ρ2vσ2σvu2,
c(u1, u2) = σ2

1u1(u1 + 1) + 2ρ12σ1σ2u1u2 + σ
2
2u2(u2 + 1),

δ(u1, u2) =
√

b2(u1, u2) − σ2
vc(u1, u2), g(u1, u2) = b(u1,u2)+δ(u1,u2)

b(u1,u2)−δ(u1,u2) .
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Proof. From the property of the double Mellin transform, we can obtain

−∂P̂
∂τ
+ kr(θr − r)∂P̂

∂r +
1
2σ

2
r
∂2P̂
∂r2 + (kvθv − (kv + ρ1vσ1σvu1 + ρ2vσ2σvu2)v)∂P̂

∂v +
1
2σ

2
vv∂

2P̂
∂v2

+ {−(1 − m1u1 − m2u2 − E[e−u1 J1−u2 J2])λ0 − (1 − m1u1 − E[e−u1 J1])λ1 − (1 − m2u2 − E[e−u2 J2])λ2

− (1 + u1 + u2)r + 1
2 (σ2

1u1(u1 + 1) + 2ρ12σ1σ2u1u2 + σ
2
2u2(u2 + 1))v}P̂ = 0,

with the boundary condition P̂(T, u1, u2, v, r) = ĥ(u1, u2).
We use the following change of variable,

P̂(t, u1, u2, v, r) = P̂(T, u1, u2, v, r) exp{F(u1, u2)}Q(t, u1, u2, v, r),

and substitute it into the above PDIE. Then, the PDIE problem becomes a problem for Q(t, u1, u2, v, r)
as follows:
−
∂Q̂
∂τ
+ kr(θr − r)∂Q̂

∂r +
1
2σ

2
r
∂2Q̂
∂r2 + (kvθv − (kv + ρ1vσ1σvu1 + ρ2vσ2σvu2)v)∂Q̂

∂v +
1
2σ

2
vv∂

2Q̂
∂v2

+ {−(1 + u1 + u2)r + 1
2 (σ2

1u1(u1 + 1) + 2ρ12σ1σ2u1u2 + σ
2
2u2(u2 + 1))v}Q̂ = 0,

with the boundary condition Q̂(T, u1, u2, v, r) = 1.
Next, we assume that Q̂ is of the form

Q̂(t, u1, u2, v, r) = exp{A(τ, u1, u2) + B(τ, u1, u2)r +C(τ, u1, u2)v}.

Then, A(τ, u1, u2), B(τ, u1, u2), and C(τ, u1, u2) become solutions of Riccati differential equations

∂A
∂τ
= krθrB(τ, u1, u2) + 1

2σ
2
r B2(τ, u1, u2) + kvθvC(τ, u1, u2), A(τ, u1, u2) = 0;

∂B
∂τ
= −krB(τ, iu1, u2) − (1 + u1 + u2), B(τ, u1, u2) = 0;

∂C
∂τ
= 1

2σ
2
vC

2(τ, u1, u2) − b(u1, u2)C(τ, u1, u2) + 1
2c(u1, u2),C(τ, u1, u2) = 0,

respectively, whose solutions are given by the above. □

Theorem 3.2. A solution of p̂(t, u, v, r) is given by

p̂(t, u, v, r) = p̂(T, u, v, r)eF́(u)τ+Á(τ,u)+B́(τ,u)r+Ć(τ,u)v, (3.18)

where τ = T − t, F́(u), Á(τ, u), B́(τ, u), and Ć(τ, u) are given by
F́(u) = −(1 + m2 + (m2 − m1)u − E[e−uJ1+(u+1)J2])λ0 − (1 − m1u − E[e−uJ1])λ1

− (1 + m2 + m2u − E[e(u+1)J2])λ2,
Á(τ, u) = Á1(τ, u) + Á2(τ, u) + Á3(τ, u),
Á1(τ, u) = Á2(τ, u) = B́(τ, u) = 0,
Á3(τ, u) = kvθv

σ2
v

[(b́(u) + δ́(u))τ − 2 ln(1−ǵ(u)eδ́(u)τ

1−ǵ(u) )],

Ć(τ, u) = b́(u)+δ́(u)
σ2

v
( 1−eδ́(u)τ

1−ǵ(u)eδ́(u)τ ),

b́(u) = kv − (ρ2vσ2 − (ρ1vσ1 − ρ2vσ2)u)σv,
ć(u) = (σ2

1 − 2ρ12σ1σ2 + σ
2
2)u(u + 1),

δ́(u) =
√

b́2(u) − σ2
v ć(u), ǵ(u) = b́(u)+δ́(u)

b́(u)−δ́(u)
.

Proof. The proof of this theorem is similar to Theorem 3.1. □
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From inverse transform of the Mellin transform, we obtain

P(t, s1, s2, v, r) =
1

(2πi)2

∫ c2+i∞

c2−i∞

∫ c1+i∞

c1−i∞
P̂(t, u1, u2, v, r)s−u1

1 s−u2
2 du1du2, (3.19)

p(t, z, v, r) =
1

2πi

∫ c+i∞

c−i∞
p̂(t, u, v, r)z−udu. (3.20)

3.3. The convergence of the inverse Mellin transform

In the following Theorems 3.3 and 3.4, we will check that the right-hand sides in the above Eqs (3.17)
and (3.18) have the rigorous solutions of the proposed PDIES (Eqs (2.5) and (2.6)) and prove their
convergence to the left-hand side by term-by-term decomposition and an equivalent infinite-small technique.

Theorem 3.3. Let c1 and c2 be real numbers such that

E[e−c1 J1] < +∞, E[e−c2 J2] < +∞, E[e−c1 J1−c2 J2] < +∞,

and then the rigorous solution to the above PDIE for maximum or minimum options at any time t ≤ T is
given by

P(t, s1, s2, v, r) =
1

(2πi)2

∫ c2+i∞

c2−i∞

∫ c1+i∞

c1−i∞
P̂(t, u1, u2, v, r)s−u1

1 s−u2
2 du1du2. (3.21)

Proof. According to the inverse of the Mellin transform, it is easy to see that the boundary condition
P(T, s1, s2, v, r) = h2(s1, s2) or h3(s1, s2) holds. Next, we will finish the proof in two sections.

On the one hand, we prove the absolute integrability of P(t, u1, u2, v, r).
First, the following change of variables is used to P(t, u1, u2, v, r), that is, u1 = c1 + id1, u2 = c2 + id2.

Then, we obtain

1
(2πi)2

∫ c2+i∞

c2−i∞

∫ c1+i∞

c1−i∞
P̂(t, u1, u2, v, r)s−u1

1 s−u2
2 du1du2

= 1
(2π)2

∫ +∞
−∞

∫ +∞
−∞

P̂(T, c1 + id1, c2 + id2, v, r) exp{F(c1 + id1, c2 + id2)τ + A(τ, c1 + id1, c2 + id2)

+ B(τ, c1 + id1, c2 + id2)r +C(τ, c1 + id1, c2 + id2)v}s−c1−id1
1 s−c1−id1

2 dd1dd2.
Second, we prove the boundedness of terms P̂(T, u1, u2, v, r), eF(u1,u2)τ, eA1(τ,u1,u2), eA2(τ,u1,u2), and

eB(τ,u1,u2)r.
(1) The boundedness of P̂(T, u1, u2, v, r).
According to the absolute value inequality for the integral, the following inequality holds:

|P̂(T, c1 + id1, c2 + id2, v, r)|

= |
∫ +∞

0

∫ +∞
0

h(s1, s2)sc1+id1−1
1 sc1+id1−1

2 ds1ds2|

≤
∫ +∞

0

∫ +∞
0
|h(s1, s2)sc1+id1−1

1 sc1+id1−1
2 |ds1ds2

= P̂(T, c1, c2, v, r).

So P̂(T, c1, c2, v, r) is the boundary of P̂(T, u1, u2, v, r).
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(2) The boundedness of eF(u1,u2)τ, eA1(τ,u1,u2), and eB(τ,u1,u2)r .
It is easy to see

Re(B(τ, c1 + id1, c2 + id2)) = B(τ, c1, c2),

Re(A1(τ, c1 + id1, c2 + id2)) = A1(τ, c1, c2),

Re(F(c1 + id1, c2 + id2)) ≤ F(c1, c2).

So it is clear that eF(u1,u2)τ, eA1(τ,u1,u2), and eB(τ,u1,u2)r have a limit boundary.
(3) The boundedness of eA2(τ,u1,u2).
Notice that

Re(A2(τ, c1 + id1, c2 + id2))

=
σ2

r
2k2

r

∫ τ
0

(1 − e−krω)2dω · ((1 + c1 + c2)2 − (d1 + d2)2)

≤ A2(τ, c1, c2).

So eA2(τ,c1,c2) is the boundary of eA2(τ,u1,u2).
Third, we prove the boundedness and absolute integrability of eC(τ,u1,u2)v and eA3(τ,u1,u2).
1) The absolute integrability of eC(τ,u1,u2)v.
According to the above equation and the conjugate property of complex numbers, the following

equation is given by
∂C̄
∂τ
=

1
2
σ2

vC̄
2 − b(ū1, ū2)C̄ +

1
2

c(ū1, ū2), C̄(0) = 0.

Denote Re(C) = c+c̄
2 , the imaginary part ε = Im(C) = c−c̄

2i , and arrange the above equation to yield

∂Re(C)
∂τ

=
1
2
σ2

vRe2(C) − b(c1, c2)Re(C) +
1
2

c(c1, c2) −
1
2

l(ε),Re(C)(0) = 0,

with
l(ε) = σ2

vε
2 − 2(ρ1vσ1σvd1 + ρ2vσ2σvd2)ε + σ2

1d2
1 + 2ρ12σ1σ2d1d2 + σ

2
1d2

2.

i) Analyze the change law of function l(ε).
By calculating

∆(d1, d2) = 4(ρ1vσ1σvd1 + ρ2vσ2σvd2)2 − 4σ2
v(σ2

1d2
1 + 2ρ12σ1σ2d1d2 + σ

2
1d2

2)
= 4σ2

v((ρ2
1v − 1)σ2

1d2
1 + 2(ρ1vρ2v − ρ12)σ1σ2d1d2 + (ρ2

2v − 1)σ2
2d2

2),

[ ∂∆
∂d1
∂∆
∂d2

]
= 8σ2

v

[
(ρ2

1v − 1)σ2
1 (ρ1vρ2v − ρ12)σ1σ2

(ρ1vρ2v − ρ12)σ1σ2 (ρ2
2v − 1)σ2

2

] [
d1

d2

]
=

[
0
0

]
,

Λ =

 ∂2∆

∂d2
1

∂2∆
∂d1∂d2

∂2∆
∂d1∂d2

∂2∆

∂d2
2


Electronic Research Archive Volume 33, Issue 12, 7810–7840.



7826

=

[
(ρ2

1v − 1)σ2
1 (ρ1vρ2v − ρ12)σ1σ2

(ρ1vρ2v − ρ12)σ1σ2 (ρ2
2v − 1)σ2

2

]
.

Then we have det(Λ) = 8σ4
v det(ρ) > 0, ∆(d1, d2) < 0,∀d1,∀d1, and the following conclusion

∇(d1, d2) = min l(ε) = (1 − ρ2
1v)σ

2
1d2

1 − 2(ρ1vρ2v − ρ12)σ1σ2d1d2 + (1 − ρ2
2v)σ

2
2d2

2 ≥ 0.

ii) Analyze the structure of function Re(C(τ, u1, u2)).
It is clear that Re(C(τ, u1, u2)) also is solution of Riccati differential equations. So we have the

following result:

Re(C(τ, c1 + id1, c2 + id2)) =
b(c1, c2) + δR

σ2
v

1 − eδRτ

1 − gReδRτ
,

where

δR =

√
b2(c1, c2) − σ2

v(c(c1, c2) − l(ε)) =
√

b2(c1, c2) − σ2
vc(c1, c2) + σ2

vl(ε), gR =
b + δR

b − δR
.

Obviously, δR ≥
√
δ(c1, c2)2 + σ2

v∇(d1, d2). So when d1 → ±∞ or d2 → ±∞, then ∇(d1, d2) →
+∞, δR → +∞. Notice that Re(C) is a continuous function with respect to δR , and δR → +∞,Re(C)→
−∞. So it is clear that eRe(C(τ,u1,u2))v is a bounded continuous function with respect to d1, d2, and when
d1 → ±∞ or d2 → ±∞, then eRe(C(τ,u1,u2))v → 0.

iii) Prove the absolute integrability of eC(τ,u1,u2)v.
By applying the equivalent infinitesimal theory in calculus, the following equations are given by

Re(C) ∼ −δR
σ2

v
, eRe(C)v ∼ e

2b(c1 ,c2)−δR
σ2

v
v
,

d1 → ±∞, d2 → ±∞.

So the absolute integrability of eRe(C)v is the same as e
2b(c1 ,c2)−δR

σ2
v

v
.

Further, in light of the three following equations:

e
2b(c1 ,c2)−δR

σ2
v

v
≤ e

2b(c1 ,c2)−
√
σ2

v∇(d1 ,d2)

σ2
v

v
,

∫ +∞
−∞

∫ +∞
−∞

e
2b(c1 ,c2)−σv

√
∇(d1 ,d2)

σ2
v

v
dd1dd2 < +∞,∫ +∞

−∞

∫ +∞
−∞

dn
1dm

2 e
2b(c1 ,c2)−σv

√
∇(d1 ,d2)

σ2
v

v
dd1dd2 < +∞,

then the absolute integrability of eC(τ,u1,u2)v is verified.
2) The boundedness of eA3(τ,u1,u2).
In consideration of the continuity and convergence of eRe(A3(τ,u1,u2)), and

Re(A3(τ, u1, u2)) = kvθv

∫ τ

0
Re(C(ω, u1, u2)))dω,

it is clear that eRe(A3(τ,u1,u2)) has a limit boundary.
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To sum up the above results, we obtain

| 1
(2πi)2

∫ c2+i∞

c2−i∞

∫ c1+i∞

c1−i∞
P̂(t, u1, u2, v, r)s−u1

1 s−u2
2 du1du2|

≤ 1
(2π)2 P̂(T, c1, c2, v, r)s−c1

1 s−c2
2 exp{F(c1, c2)τ + A1(τ, c1, c2) + A2(τ, c1, c2) + B(τ, c1, c2)r}

·
∫ +∞
−∞

∫ +∞
−∞

exp{Re(A3(τ, c1 + id1, c2 + id2)) + Re(C(τ, c1 + id1, c2 + id2))v}dd1dd2

< +∞.

On the other hand, we prove that P(t, u1, u2, v, r) satisfies the PDIE.
In the light of the differentiation theorem of a parametric integral and substituting P(t, u1, u2, v, r)

into the PDIE, the equation can be verified and written:
1

(2πi)2

∫ c2+i∞

c2−i∞

∫ c1+i∞

c1−i∞
P̂(t, u1, u2, v, r)s−u1

1 s−u2
2 [−(F(u1, u2) + ∂A

∂τ
+ ∂B
∂τ

r + ∂C
∂τ

v) − (r − (λ0 + λ1)m1)u1

+ 1
2σ

2
1vu1(u1 + 1) − (r − (λ0 + λ2)m2)u2 +

1
2σ

2
2vu2(u2 + 1) + kv(θv − v)C + 1

2σ
2
vvC2 + kr(θr − r)B + 1

2σ
2
r B2

+ ρ12σ1σ2vu1u2 − ρ1vσ1σvvu1C − ρ2vσ2σvvu2C + λ1E[e−u1 J1] + λ2E[e−u2 J2] + λ0E[e−u1 J1−u2 J2]

− (r + λ0 + λ1 + λ2)]du1du2 = 0,
by Eq (2.5).

The proof is finished. □

Theorem 3.4. Let c be a real number such that

E[e−cJ1] < +∞, E[e(c+1)J2] < +∞, E[e−cJ1+(c+1)J2] < +∞,

and then the rigorous solution to the above PDIE for some binary options at any time t ≤ T is given by

p(t, z, v, r) =
1

2πi

∫ c+i∞

c−i∞
p̂(t, z, v, r)z−udu. (3.22)

Proof. The proof of this theorem is similar to Theorem 3.3. □

4. Numerical analysis

In the following section, numerical experiments are applied to examine the performance of the Mellin
transform method. The values of the remaining parameters for numerical examples are presented in
Table 1. Without loss of generality, the following numerical experiments are implemented in MATLAB
R2022a. In addition, it should be pointed out that the values of key parameters in this paper come from
Ruijter and Oosterlee [21].

First, to depict the price mechanism of two underlying assets under the proposed model, we utilize
the following scheme to discretize stochastic differential equations:

S 1ti = S 1ti−1 + S 1ti−1[(rti−1 − (λ0 + λ1)m1)△t + σ1
√

vti−1

√
△t · ϵ1 + (eJ1 − 1)(N0△t + N1△t)],

S 2ti = S 2ti−1 + S 2ti−1[(rti−1 − (λ0 + λ2)m2)△t + σ2
√

vti−1

√
△t · (ρ12ϵ1 +

√
1 − ρ2

12ϵ2)
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+ (eJ2 − 1)(N0△t + N2△t)],

vti = vti−1 + kv(θv − vti−1)△t + σv
√

vti−1△t(ρ1vϵ1 +
ρ2v−ρ1vρ12√

1−ρ2
12

ϵ2 +

√
1−ρ2

12−ρ
2
1v−ρ

2
2v+2ρ1vρ2vρ12

√
1−ρ2

12

ϵ3),

rti = kr(θr − rti−1)△t + σr
√
△t · ϵ4,

where ϵi ∼ N(0, 1), i = 1, 2, 3, 4; N j△t ∼ P(λ j), j = 0, 1, 2;△t = τ
250 . If N0△t > 0, then generate the jump

vector (J1, J2) randomly using pseudo-random numbers. If N1△t > 0, then we generate the jump variable
J1 randomly using pseudo-random numbers. If N2△t > 0, then we generate the jump variable J2. It
should be noted that in the entire generation process of the compound Poisson process, specific jump
times do not directly appear; instead, attention is focused on the possible number of jumps and the scale
of the jumps.

Table 1. Parameter values for the numerical experiments.

Parameter r v s1 s2 σ1 σ2 kv θv σv

Value 0.05 0.2 10 10 0.1 0.15 0.3 0.2 0.01
Parameter kr θr σr K τ λ0 λ1 λ2 p1

value 1.2 0.3 0.01 10 1 2 3 3 0.6
Parameter ξ1 η1 p2 ξ2 η2 µ1 µ2 σ2

J1
σ2

J2

Value 12 4 0.64 18 21 0 0 0.1 0.1

To verify the reliability of the Mellin transform, we introduced the Monte Carlo simulation pricing
algorithm. Through experiments, it was found that in cases with fewer paths, the convergence of the
algorithm was poor. To ensure the accuracy of the Monte Carlo reference algorithm, in the following
comparative experiments, we adopted a higher path count N = 2000. From the perspective of the initial
price, as the price increases, the leverage of the corresponding option also increases, the stability of the
price decreases, and the requirements of the algorithm also increase. From the efficiency perspective,
the Monte Carlo algorithm often spends more computing time under high-precision requirements, while
the Mellin transformation method compared next gives the analytical expression of the option, so the
cost of computing time is very small, which is also the main advantage of this paper for conducting
corresponding theoretical arguments. It should be noted that this paper uses the command integral2 in
MATLAB to implement the inversion of the Mellin transform formulas (3.19) and (3.20).

Before conducting the numerical analysis for pricing the extremum options using the Mellin trans-
form, the last point that needs to be further explained is the selection of c1 and c2. Since not all types of
extremum options have corresponding Mellin transformations, the selection ranges of c1 and c2 vary for
different option types. However, they all need to satisfy the conditions of boundary integrability and the
existence of jump expectations. Otherwise, it will result in an unfeasible Mellin transformation. For
more details, please refer to the preparatory work described in the beginning of Chapter 3 of this article.
Additionally, it is best to choose c1 and c2 away from the boundaries of the existing range, that is, away
from the singular points of the integral.
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(c) ρ12 = −1

Figure 1. The sample path of underlying assets s1t and s2t under different correlations.

Figure 1 illustrates the sample path of the underlying assets s1t and s2t under ρ12 = −1, ρ12 = 0, and
ρ12 = 1. On the one hand, from the analysis of a single path, the large volatility of each path comes
from the stochastic volatility and Poisson jump. Due to the rapid reverting of the Heston model, the
large volatility is gradually transformed into small volatility in each path. On the other hand, from the
analysis of two paths, it is clear that s1t and s2t show high positive (negative) correlation under ρ12 = 1
(ρ12 = −1), but not completely because of the log-normal jump.

Further, we construct the maximum likelihood estimator and solve for the estimators of the relevant
parameters. The likelihood function of the parameter group is as follows:

l(kv, kr; θv, θr;σv, σr) =
∏

i

1
√

2π
e−
ζ21i
2 ·

1
√

2π
e−
ζ22i
2 ,

where ζ1i =
vti−vti−1−kv(θv−vti−1 )△t

σv
√vti−1

√
△t

, ζ2i =
rti−rti−1−kr(θr−rti−1 )△t

σr
√
△t

. Then, the log-likelihood function of the parameter
group is calculated as well:

Lnl(kv, kr; θv, θr;σv, σr) = −n ln(2π) −
1
2

∑
i

ζ2
1i −

1
2

∑
i

ζ2
2i,

and the corresponding stability point equation is as follows:

∂Lnl
∂kv
=

√
△t
σv

∑
i

ζ1i
(θv − vti−1)
√

vti−1

= 0,
∂Lnl
∂θv
=

kv
√
△t
σv

∑
i

ζ1i
√

v1ti−1

= 0,
∂Lnl
∂σv

=
1
σv

∑
i

ζ2
1i = 0;

∂Lnl
∂kr
=

√
△t
σr

∑
i

ζ2i(θr − rti−1) = 0,
∂Lnl
∂θr
=

kr
√
△t
σr

∑
i

ζ2i = 0,
∂Lnl
∂σr

=
1
σr

∑
i

ζ2
2i = 0.

Finally, by narrowing down the time interval for discretization, more optimal parameter estimators can
be obtained. At the same time, other parameters of the two-asset prices are set, and using nonlinear
regression techniques, specific parameter estimates of the asset common volatility can be obtained. It
should be noted that other parameters in the two asset price model, such as stochastic scale (σ1, σ2),
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jump intensity (λ0, λ1, λ2), and jump vector (J1, J2), can all obtain consistent parameter estimators
through the maximum likelihood estimation method, and this will not be elaborated further here.

Next, we consider that in the financial market, traders and practitioners often use the implied
volatility [22, 23] to assess the value of options. Therefore, under the method of the Mellin transforma-
tion provided in this paper, a calculation method for implied volatility v is established, which offers a
practical tool for traders who rely on the volatility surface for hedging.

Based on the Mellin transform inversion formula for maximum and minimum option prices and the
exchange option price, the volatility is expanded using a Taylor series. The specific formula is as follows:

P(t, s1, s2, v, r) = 1
(2πi)2

∫ c2+i∞

c2−i∞

∫ c1+i∞

c1−i∞
P̂(t, u1, u2, v, r)s−u1

1 s−u2
2 du1du2

= 1
(2πi)2

∫ c2+i∞

c2−i∞

∫ c1+i∞

c1−i∞
P(T, s1, s2, v, r)eF(u1,u2)τ+A(τ,u1,u2)+B(τ,u1,u2)r+C(τ,u1,u2)vs−u1

1 s−u2
2 du1du2

=
+∞∑
n=0

vn

(2πi)2

∫ c2+i∞

c2−i∞

∫ c1+i∞

c1−i∞
eF(u1,u2)τ+A(τ,u1,u2)+B(τ,u1,u2)rCn(τ, u1, u2)s−u1

1 s−u2
2 du1du2

=
+∞∑
n=0

Pn(t, s1, s2, r)vn,

p(t, z, v, r) = 1
2πi

∫ c+i∞

c−i∞
p̂(t, u, v, r)z−udu

= 1
2πi

∫ c+i∞

c−i∞
p̂(T, u, v, r)eF́(u)τ+Á(τ,u)+B́(τ,u)r+Ć(τ,u)vz−udu

=
+∞∑
n=0

vn

2πi

∫ c+i∞

c−i∞
p̂(T, u, v, r)eF́(u)τ+Á(τ,u)+B́(τ,u)rĆn(τ, u)z−udu

=
+∞∑
n=0

pn(t, z, r)vn,

where P0(t, s1, s2, r) and p0(t, z, r) are option prices under constant volatility, and n!Pn(t, s1, s2, r) and
n!pn(t, z, r) are the nth derivative ∂P

∂v , ∂p
∂v of the option, respectively.

Depending on the precision requirements for different estimates of implied volatility, the following
specific estimation methods can be employed.
First-order approximate estimator:

v ≈ P(t,s1,s2,v,r)−P0(t,s1,s2,r)
P1(t,s1,s2,r) ,

v ≈ p(t,z,v,r)−p1(t,z,r)
p1(t,z,r) ;

Second-order approximate estimator:

v ≈
−P1(t,s1,s2,r)+

√
P2

1(t,s1,s2,r)−4P2(t,s1,s2,r)(P0(t,s1,s2,r)−P(t,s1,s2,v,r))
2P2(t,s1,s2,r) ,

v ≈
−p1(t,z,r)+

√
p2

1(t,z,r)−4p2(t,z,r)(p0(t,s1,s2,r)−p(t,z,v,r))
2p2(t,z,r) ;

n-order approximate estimator:

v ≈ arg max{|P(t, s1, s2, v, r) −
+∞∑
i=0

Pi(t, s1, s2, r)vi|2},

v ≈ arg max{|p(t, z, v, r) −
+∞∑
i=0

pi(t, z, r)vi|2};
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where the optimal problem here can be calculated using the multi-part method that extends the binary
method.

Table 2. Option values under the Heston model with different volatility v using MC and
Mellin (ML).

P(v) Exchange Max-Call Max-Put Min-Call Min-Put Max-Min
P (0.05) (ML) 0.9467 0.9816 0.0349 0.5535 1.5002 1.8934
P (0.05) (MC) 0.9489 0.9795 0.0350 0.5557 1.4883 1.8784
APE (%) 0.23 0.22 0.33 0.41 0.79 0.80
P (0.1) (ML) 1.0463 1.0848 0.0386 0.6117 1.6579 2.0925
P (0.1) (MC) 1.0417 1.0871 0.0386 0.6138 1.6516 2.0781
APE (%) 0.44 0.21 0.02 0.35 0.38 0.69
P (0.15) (ML) 1.1563 1.1989 0.0426 0.6760 1.8323 2.3126
P (0.15) (MC) 1.1549 1.1959 0.0426 0.6771 1.8391 2.3026
APE (%) 0.12 0.25 0.00 0.16 0.37 0.43
P (0.2) (ML) 1.2779 1.3250 0.0471 0.7471 2.0250 2.5558
P (0.2) (MC) 1.2751 1.3191 0.0470 0.7454 2.0321 2.5659
APE (%) 0.22 0.45 0.23 0.23 0.35 0.39
P (0.25) (ML) 1.4123 1.4644 0.0521 0.8257 2.2380 2.8246
P (0.25) (ML) 1.4180 1.4619 0.0519 0.8274 2.2309 2.8301
APE (%) 0.40 0.17 0.23 0.21 0.31 0.19
P (0.3) (ML) 1.5608 1.6184 0.0575 0.9125 2.4733 3.1217
P (0.3) (MC) 1.5587 1.6226 0.0577 0.9112 2.4700 3.1254
APE (%) 0.14 0.26 0.34 0.14 0.13 0.12
P (0.35) (ML) 1.7250 1.7886 0.0636 1.0085 2.7335 3.4500
P (0.35) (MC) 1.7293 1.7835 0.0633 1.0059 2.7352 3.4389
APE (%) 0.25 0.28 0.45 0.26 0.06 0.32
P (0.4) (ML) 1.9064 1.9767 0.0703 1.1145 3.0209 3.8128
P (0.4) (MC) 1.9093 1.9712 0.0705 1.1127 3.0237 3.8114
APE (%) 0.15 0.28 0.39 0.16 0.09 0.04

Table 2 presents the results of the compound Mellin transform pricing and Monte Carlo simulation
pricing for six options under the Heston model with different volatility levels. Overall, it can be
observed that as the initial volatility changes, the prices of all options show an upward trend, and the
difference between the two pricing methods is small, which to some extent verifies the effectiveness
of the composite Mellin transform method proposed in this paper. From an individual perspective,
the influence of the initial volatility on the pricing behavior of options varies. Specifically, the price
of the maximum option increases at a faster rate as the volatility increases. The swap option and the
minimum option have the same trend of change, that is, as the volatility increases, the price of the option
steadily increases. The minimum option has a characteristic phenomenon; when the volatility increases
to an extreme level, it shows an S-shaped form of change. These facts indicate that volatility plays
an important role in the pricing of extreme value options and is a highly sensitive parameter. Finally,
although the Mellin transform does not exist for some options and their prices are obtained indirectly
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through the parity relationship with the swap option, from the comparison of Table 2 with the Monte
Carlo simulation algorithm, it can be seen that this does not significantly affect the stability of the Mellin
transform pricing, which further verifies the reliability and stability of the composite Mellin transform.

Table 3. Option values under the Heston model with different s1 and s2 using MC and
Mellin (ML).

P(s1, s2) Exchange Max-Call Max-Put Min-Call Min-Put Max-Min
P (6,6) (ML) 0.2636 0.2608 0.0981 0.1506 4.1568 0.5218
P (6,6) (MC) 0.2659 0.2600 0.0964 0.1495 4.1282 0.5184
APE (%) 0.90 0.31 0.82 0.76 0.69 0.66
P (7,7) (ML) 0.5107 0.5196 0.0904 0.3014 3.5821 1.0071
P (7,7) (MC) 0.5115 0.5130 0.0890 0.3041 3.4965 1.0012
APE (%) 0.17 0.29 0.62 0.88 2.45 0.59
P (8,8) (ML) 0.7977 0.8218 0.0799 0.4667 3.0911 1.5779
P (8,8) (MC) 0.8060 0.8178 0.0780 0.4639 3.0896 1.5579
APE (%) 0.03 0.50 0.32 0.59 0.70 0.29
P (9,9) (ML) 1.0458 1.1011 0.0682 0.5701 2.8745 2.0799
P (9,9) (MC) 1.0413 1.0835 0.0681 0.5782 2.8352 2.0910
APE (%) 0.45 0.63 0.08 0.40 0.39 0.53
P (10,10) (ML) 1.2836 1.3051 0.0581 0.7007 2.4579 2.5071
P (10,10) (MC) 1.2992 1.2959 0.0572 0.7125 2.4453 2.4984
APE (%) 0.77 0.27 0.55 0.66 0.76 0.55
P (11,11) (ML) 1.4975 1.6525 0.0470 0.9018 1.9876 3.2055
P (11,11) (MC) 1.5040 1.6440 0.0461 0.8939 1.9848 3.2580
APE (%) 0.39 0.75 0.65 0.03 0.14 0.61
P (12,12) (ML) 1.8148 1.7679 0.0396 1.0549 1.6069 3.5961
P (12,12) (MC) 1.8117 1.7676 0.0393 1.0522 1.5977 3.6032
APE (%) 0.38 0.11 0.73 0.19 0.34 0.30
P (13,13) (ML) 1.9635 2.1456 0.0294 1.1708 1.2840 3.9935
P (13,13) (MC) 1.9830 2.1397 0.0292 1.1735 1.2708 3.9947
APE (%) 0.98 0.28 0.85 0.08 1.84 0.03
P (14,14) (ML) 2.2955 2.3323 0.0198 1.3459 0.8282 4.6390
P (14,14) (MC) 2.3009 2.3454 0.0197 1.3271 0.8188 4.6560
APE (%) 0.39 -0.41 0.41 0.42 0.40 0.82
P (15,15) (ML) 2.5563 2.7037 0.0100 1.5379 0.4214 4.9955
P (15,15) (MC) 2.5170 2.6967 0.0098 1.5676 0.4167 5.0074
APE (%) 0.41 0.39 0.60 0.90 0.12 0.24

Table 3 presents the comparison results of compound Mellin transform pricing and Monte Carlo
simulation under the Heston model, with the price of the underlying asset as the variable. In terms of the
pricing error, the difference between the two pricing methods is relatively small, indicating the stability
of the compound Mellin transformation pricing method. Considering the computing time of the Monte
Carlo simulation, it can be seen that, under the premise of a small pricing distance, the Monte Carlo
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simulation requires a much greater multiple of computing time consumption. The reason is that the
compound Mellin transformation pricing obtains the analytical formula price of the option, while each
path simulation in the Monte Carlo method requires process iteration (without counting the countless
generation of normal random numbers). In other words, to achieve the same convergence, the Monte
Carlo simulation must pay more simulation times and longer computing time. From the content of
Table 3, except for the maximum put option and the minimum call option, the prices of other options
increase with the increase of the asset price, and overall present different forms of return structures, which
is also the intrinsic reason why the extreme value options have become active financial derivatives.

Second, we investigate the influence of some core parameters on the prices of maximum or minimum
options, such as ρ12, kv, θv, kr, θr. In the next numerical experiments, the values of maximum or
minimum options will be changed to test the effect of one or two parameters taking different values. In
the meantime, the values of other parameters are constant in Table 1.

Table 4. Option values under different ρ12.

ρ12 Exchange Max-Call Max-Put Min-Call Min-Put Max-Min
-1 1.2968 1.3387 0.0419 0.7149 2.0117 2.5936
-0.8 1.2930 1.3359 0.0429 0.7213 2.0143 2.5861
-0.6 1.2893 1.3332 0.0439 0.7277 2.0169 2.5785
-0.4 1.2855 1.3304 0.0450 0.7341 2.0196 2.5710
-0.2 1.2817 1.3277 0.0460 0.7406 2.0223 2.5634
0 1.2779 1.3250 0.0471 0.7471 2.0250 2.5558
0.2 1.2741 1.3223 0.0482 0.7537 2.0277 2.5481
0.4 1.2702 1.3195 0.0493 0.7603 2.0305 2.5405
0.6 1.2664 1.3168 0.0504 0.7669 2.0333 2.5328
0.8 1.2625 1.3141 0.0516 0.7736 2.0362 2.5250
1 1.2586 1.3114 0.0527 0.7804 2.0390 2.5173

Table 4 shows the variation of maximum or minimum option prices with respect to ρ12. Notice that
the valuation of the exchange option, maximum-put option, and minimum-call option are calculated
by the the Mellin transformation, and the valuation of the maximum-call option, minimum-put option,
and maximum-minimum option are calculated by Equation . The data in Table 1 show that the price of
the Maximum-Put and Minimum-Call options change in the same direction, while the other options
change in the opposite direction as the correlation coefficient changes. In addition, the maximum option
price has the lowest order of magnitude, because the driving mechanism of the two underlying asset
prices is asymmetric, and the probability of upward breakthrough is much greater than the probability
of downward breakthrough.

Table 5 and Figure 2 illustrate the comprehensive influence of kv and θv with respect to option prices.
As is present in Table 3, the price of every maximum or minimum option is increasing with respect to the
parameter of long-term volatility θv, whereas according to Figure 2, only the price of the minimum-call
option is decreasing with respect to the parameter of reverting speed kv. Notice that when θv = v = 0.2,
the price of every option is constant with respect to different kv. The reason is that initial volatility has
entered the equilibrium of the Heston volatility, so kv does not affect the price of the option. This is the
peculiar phenomenon of the Heston model.
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Table 5. Option values under different kv, θv.

kv θv Exchange Max-Call Max-Put Min-Call Min-Put Max-Min
0.3 0.2 1.2779 1.3250 0.0471 0.7471 2.0250 2.5558
0.3 0.4 1.2835 1.3313 0.0478 0.7464 2.0299 2.5670
0.3 0.6 1.2891 1.3375 0.0484 0.7457 2.0348 2.5781
0.3 0.8 1.2946 1.3437 0.0491 0.7450 2.0396 2.5892
0.6 0.2 1.2779 1.3250 0.0471 0.7471 2.0250 2.5558
0.6 0.4 1.2881 1.3364 0.0483 0.7458 2.0339 2.5762
0.6 0.6 1.2982 1.3477 0.0495 0.7446 2.0428 2.5964
0.6 0.8 1.3082 1.3589 0.0508 0.7434 2.0516 2.6164
0.9 0.2 1.2779 1.3250 0.0471 0.7471 2.0250 2.5558
0.9 0.4 1.2919 1.3406 0.0488 0.7453 2.0372 2.5837
0.9 0.6 1.3057 1.3561 0.0505 0.7437 2.0494 2.6113
0.9 0.8 1.3193 1.3714 0.0521 0.7421 2.0614 2.6386

(a) Exchange (b) Max-Call (c) Max-Put

(d) Min-Call (e) Min-Put (f) Max-Min

Figure 2. Option value surfaces under different kv, θv (x–kv, y–θv, z–P).

Table 6 and Figure 3 depict the price of maximum or minimum options under different kr and θr.
Since the exchange option and maximum-minmum option can be converted through the unit of account,
the prices of both are not affected by the interest rate rt. As is shown in Table 4, the prices of every
minimum-call or minimum-put option are increasing with respect to the parameter of long-term interest
rate θr, whereas according to Figure 3, the prices of maximum-call and maximum-put options are
decreasing; with respect to the parameter of reverting speed kr, the prices of options have a similar
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conclusion. Moreover, when θr = r = 0.05, it does not have the same phenomenon as the above Heston
model. The reason is that the mechanism by which stochastic interest rates affect option prices is not
the same or even more complex than that of stochastic volatility. This is a point worthy of further
research and attention in this paper. The invariance of swap option prices with respect to short-term
interest rate parameters is an interesting phenomenon in the pricing of financial derivatives. From a
formal perspective, this invariance stems from the linearity of the swap option payoff function. Similar
linear option types also exhibit this phenomenon, such as floating Asian options, etc. From an economic
perspective, the cause of this invariance is the use of an internal valuation unit conversion technique,
which ensures that the price of the option is not directly influenced by short-term interest rates. From a
probabilistic perspective, this invariance arises from the strong Markov property of the underlying asset
price, meaning that the future price changes of the underlying asset are only related to the current price.

Table 6. Option values under different kr, θr.

kr θr Max-Call Max-Put Min-Call Min-Put
0.6 0.05 1.4890 0.2111 0.2963 1.5742
0.6 0.2 1.4175 0.1396 0.4033 1.6812
0.6 0.35 1.3677 0.0898 0.5335 1.8114
0.6 0.5 1.3342 0.0563 0.6860 1.9639
1.2 0.05 1.4458 0.1679 0.3534 1.6313
1.2 0.2 1.3582 0.0803 0.5688 1.8467
1.2 0.35 1.3136 0.0357 0.8456 2.1235
1.2 0.5 1.2927 0.0148 1.1716 2.4495
1.8 0.05 1.4233 0.1454 0.3918 1.6697
1.8 0.2 1.3324 0.0545 0.6965 1.9744
1.8 0.35 1.2961 0.0182 1.0935 2.3714
1.8 0.5 1.2834 0.0055 1.5502 2.8281
2.4 0.05 1.4106 0.1327 0.4172 1.6951
2.4 0.2 1.3194 0.0415 0.7909 2.0688
2.4 0.35 1.2891 0.0112 1.2781 2.5560
2.4 0.5 1.2805 0.0026 1.8256 3.1035

Third, we will research the influence of dependent jumps on the prices of maximum or minimum
options. In the next numerical experiments, the values of maximum or minimum options will be changed
to test the effect of a log-normal jump in Table 5 and asymmetric double-exponential distribution in
Table 6.

Table 7 illustrates the prices of maximum or minimum options with a log-normal jump under different
ρJ. It is worth noting that the correlation of Poisson jumps has important implications for option pricing.
To be more specific, the prices of maximum-put or minimum-call options increase with respect to
different ρJ, whereas the prices of other options decrease. It has the same phenomenon as the above ρ12

because normal distribution is symmetric.
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(a) Max-Call (b) Max-Put

(c) Min-Call (d) Min-Put

Figure 3. Option value surfaces under different kr, θr (x–kr, y–θr, z–P).

Table 7. Option values under different ρJ.

ρJ Exchange Max-Call Max-Put Min-Call Min-Put Max-Min
-1 1.4853 1.5033 0.0179 0.5689 2.0542 2.9707
-0.8 1.4469 1.4692 0.0224 0.6029 2.0497 2.8937
-0.6 1.4070 1.4346 0.0276 0.6375 2.0446 2.8141
-0.4 1.3657 1.3991 0.0334 0.6730 2.0387 2.7315
-0.2 1.3228 1.3627 0.0399 0.7094 2.0322 2.6455
0 1.2779 1.3250 0.0471 0.7471 2.0250 2.5558
0.2 1.2308 1.2858 0.0550 0.7863 2.0171 2.4616
0.4 1.1811 1.2447 0.0636 0.8274 2.0085 2.3623
0.6 1.1283 1.2014 0.0730 0.8708 1.9991 2.2567
0.8 1.0716 1.1551 0.0834 0.9171 1.9887 2.1432
1 1.0095 1.1047 0.0951 0.9675 1.9770 2.0191

Table 8. Option values under different ρJ.

ρJ Exchange Max-Call Max-Put Min-Call Min-Put Max-Min
-1 1.7217 1.7489 0.0272 0.4442 2.1659 4.6924
0 2.5665 2.6559 0.0894 0.8179 3.3844 5.4602
1 2.1743 2.2913 0.1170 0.9210 3.0953 4.9884
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Table 8 depicts the variation of maximum or minimum option prices with an asymmetric double-
exponential jump under different ρJ. Considering the complexity and diversity of the correlation structure
of the double-exponential normal distribution, three case of complete negative dependence, mutual
independence, and complete positive dependence are derived in this paper. As is shown in Table 6, the
prices of minimum-call or minimum-put options are increasing with respect to ρJ, whereas the prices
of other options achieve maximum values under the case of mutual independence. It indicates that the
performance of double-exponential jumps is more sensitive and less predictable than log-normal jumps.
The correlation of Poisson jumps has important implications for option pricing. To be more specific, the
prices of maximum-put or minimum-call options increase with respect to different ρJ, whereas the prices
of other options decrease. It has the same phenomenon as the above ρ12 because normal distribution is
symmetric. Without doubt, the main source of all this is the asymmetric nature of the double-exponential
distribution. In Table 6, the different behaviors under the asymmetric double-exponential jump are
related to the asymmetry of the double-exponential distribution. What it reflects is the complex changes
in investors’ psychology in the financial market. When the price of the underlying asset rises, investors
generally show an optimistic attitude; when the price of the underlying asset falls, investors generally
show a pessimistic attitude. However, the downward panic effect is more prominent and obvious. That is,
the degree of panic that investors feel about the price decline is far greater than the degree of excitement
they feel about the price increase. Therefore, the double-exponential reflects this asymmetric effect
of the financial market. However, since the joint normal distribution is linear, it does not have the
construction ability to describe nonlinear risks, especially asymmetric risks.

5. Conclusions

This paper solves the pricing problem of a class of complex options, namely maximum and minimum
options, in complex scenarios based on the composite Mellin transform method, and provides a method
reference for the pricing of other complex financial derivatives. In the future, under the condition
that the Mellin transform does not exist, various decomposition techniques can be utilized to convert
complex payoff functions into cases where the Mellin transform is applicable, to complete the pricing of
complex financial derivatives, and further expand the pricing space and pricing capacity of the Mellin
transform. Under the combined assumptions of stochastic volatility, the stochastic interest rate, and
interdependent jumps, analytical pricing formulas for maximum and minimum options and exchange
options are derived. The single and double Mellin transforms are jointly utilized to simplify the option
price equation, and the affine structures with variable substitution are applied to deduce the solution
of the joint Mellin transform function. An analytical formula of maximum or minimum option prices
is obtained by the inverse Mellin transform method and a decomposition technique. Simulation and
numerical examples indicate that the price dynamics and pricing method constructed in this paper are
unique and effective.
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Appendix: The proofs of Eqs (3.9)–(3.14)

Given the similarity of the proofs for Eqs (3.9)–(3.14), here we just prove Eq (3.9).
According to J1 having complete positive correlation with J2, then there must be a strictly monotoni-

cally increasing function g that satisfies P{J1 = g(J1)} = 1. At the same time, we obtain

fJ1(g(y))g′(y) = fJ2(y),

FJ1(x) = P{J1 ≤ x} = P{g(J2) ≤ x} = P{J2 ≤ g−1(x)} = FJ2(g
−1(x)),

FJ2(y) = P{J2 ≤ y} = P{g(J2) ≤ g(y)} = P{J1 ≤ g(y)} = FJ1(g(y)).

When y ∈ (−∞, 0], due to FJ2(0) = FJ1(g(0)) = P2 < p1, then g(0) = 1
ξ1

ln p2
p1

. Therefore, we obtain
the ordinary differential equation

p1ξ1eξ1g(y)g′(y) = p2ξ2eξ2y,
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with the boundary condition g(0) = 1
ξ1

ln p2
p1

. The solution of the above equation is

g(y) =
1
ξ1

ln
p2

p1
+
ξ2
ξ1

y.

When y ∈ [0, g−1(0)], due to FJ1(0) = FJ2(g
−1(0)) = p1 > p2, then g−1(0) = 1

η2
ln q2

q1
> 0. Therefore,

we obtain the ordinary differential equation

p1ξ1eξ1g(y)g′(y) = q2η2e−η2y,

with the boundary conditions g−1(0) = 1
η2

ln q2
q1
, g(0) = 1

ξ1
ln p2

p1
. The solution of the above equation is

g(y) =
1
ξ1

ln
1 − q2e−η2y

p1
.

When y ∈ [g−1(0),+∞), due to FJ1(0) = FJ2(g
−1(0)) = p1 > p2, then g−1(0) = 1

η2
ln q2

q1
> 0. Therefore,

we obtain the ordinary differential equation

q1η1e−η1g(y)g′(y) = q2η2e−η2y,

with the boundary condition g−1(0) = 1
η2

ln q2
q1

. The solution of the above equation is

g(y) =
1
η1

ln
q1

q2
+
η2

η1
y.

Based on the above results, it can be obtained that

g(y) =


1
ξ1

ln p2
p1
+
ξ2
ξ1

y if y < 0,
1
ξ1

ln 1−q2e−η2y

p1
if 1
ξ1

ln p2
p1
≤ y ≤ 1

η2
ln q2

q1
,

1
η1

ln q1
q2
+
η2
η1

y if y > 1
η2

ln q2
q1
.

Finally, the technique of piecewise integration is applied to the following equation:

E[e−u1 J1−u2 J2] = E[e−u1g(J2)−u2 J2],

and it is easy to obtain Eq (3.9).
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