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Abstract: The gamma distribution is an essential distribution for modeling data in different areas
such as insurance, finance, reliability, and many fields of engineering. This study proposes a
new sophisticated distribution as an alternative to the gamma distribution with tractable properties.
Mathematical characteristics and the parameter estimation process of the newly defined model are
studied. Two datasets from two different disciplines, education and finance, are used to demonstrate
the importance of the new model. Moreover, the WMLdist cloud-based application is developed to
simplify and spread the use of the proposed distribution.
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1. Introduction

Right-skewed and positively defined random variables are modeled with gamma or Weibull
distributions. Many generalizations of these distributions and competitive models have been studied
by many authors. The Maxwell-Boltzmann-exponential (MBE) distribution of [1], the extended
gamma distribution of [2], the generalized exponential distribution of [3], and the generalized gamma
distribution of [4] can be viewed as alternative distributions to gamma and Weibull distributions.
These distributions have a wide range of applications in finance, insurance, hydrology and life
expectancy modeling. Wang et al. [5] studied the features of gusty wind with four probability
distributions and found that the gamma model provided the best result. Chen et al. [6] investigated the
optimal wind speed distribution for China and European regions and emphasized that the Weibull
distribution is the best among the others; however, when the data have extreme values, the gamma and
generalized extreme value distributions provide more accurate results than those of the Weibull
distribution. Lencastre et al. [7] also examined other alternative distributions, especially the Weibull
distribution, in modelling wind data, and interestingly, showed that the Gaussian distribution gives
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better results. Mykhailenko et al. [8] carried out a very comprehensive study and calculated the wind
energy potential with 10 different distributions. Their study [8] showed that the best distribution is the
Weibull distribution.

Gamma and Weibull distributions have a wide range of applications in insurance. Marambakuyana
and Shongwe [9] analyzed the risk of insurance claims under 19 different loss distributions.
Hengcharoensuk and Moumeesri [10] calculated the ruin probability of an automobile insurance
company using a new generalization of the gamma distribution. For other applications of the gamma
distribution in insurance, the following studies can be examined: [11–14].

The gamma distribution is also used to analyze landslide and flood risks. Zhou and Zhang [15]
analyzed flow duration curves using the gamma distribution for China. Montes-Pajuelo et al. [16] used
the extreme value and gamma distributions to model extreme rainfall data. Shah and Pan [17] modeled
the flood frequency distribution in India using the gamma distribution. Johar et al. [18] carried out an
important study on modeling rainfall distribution using the gamma model.

Karuppusamy et al. [19] introduced a one-parameter modified Lindley (MoL) distribution and
showed that the MoL distribution provides better results than the famous Lindley distribution. The
fact that the MoL distribution gives better results than the Lindley distribution motivates us to
introduce a weighted version of the MoL distribution. The Lindley distribution can be expressed as a
mixture distribution of the exponential and gamma random variables with a fixed shape parameter
value. Therefore, the flexibility of both the MoL and Lindley distributions is limited. To gain more
flexibility in terms of bimodality and skewness, we use the weighted distribution approach to add one
shape parameter to the baseline distribution, MoL. We call the proposed distribution the weighted
MoL (WML) distribution. In this case, the resulting distribution has two parameters: One controls the
shape of the distribution and the other one controls the range of the distribution.

The WML distribution is a more powerful distribution than the gamma distribution. The WML
distribution has bimodal structures for the probability density function (PDF) and provides wider
ranges for the dispersion measures than those of the gamma distribution. As in gamma distribution,
the WML distribution has explicit mathematical expressions for its location and dispersion measures.
Therefore, the WML distribution can be a good competitor of the gamma distribution in many applied
fields such as hydrology, insurance, and renewable energy modeling.

In many applied fields, empirical data often display shapes that cannot be adequately captured
by classical one-parameter or strictly unimodal lifetime distributions. Practical problems in reliability
engineering, environmental sciences, biomedical studies, and risk modeling frequently involve datasets
that exhibit heavier tails or bimodal behavior caused by heterogeneous subpopulations. The WML
distribution is specifically designed to address these challenges. Its additional shape parameter allows
the distribution to adapt to non-standard hazard patterns and multimodal structures while preserving
analytical tractability. Such flexibility is especially valuable in reliability and survival.

The bimodal distribution is not a theoretical property but is a phenomenon that arises in real-life
problems. For example, in mechanical systems, two distinct failure modes generate bimodal lifetime
distributions. Similarly, in medical survival data, patients may belong to distinct risk groups, resulting
in two characteristic survival peaks. Environmental variables such as daily wind speeds also
commonly show dual or multi-regime behavior linked to seasonal or meteorological factors.
Traditional unimodal models misrepresent such datasets and lead to biased parameter estimates and
unreliable risk assessments. Therefore, the WML distribution provides an interpretable framework
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that is capable of modeling complex, bimodal patterns that arise in real applications.
The rest of the paper is organized as follows: Section 2 deals with the properties of the WML

distribution. In Section 3, the parameter estimation is analyzed with three different methods. In
addition, these methods are compared for different sample sizes by a simulation study. In Section 4,
the WML distribution is compared with popular distributions such as the gamma and Weibull
distributions using two real data sets. In Section 5, the WMLdist program developed for the WML
distribution is introduced. Section 6 concludes the study by emphasizing the important results of
the model.

2. Modified weighted Lindley

We begin with the weighted Lindley (WL) distribution that was proposed by [20]. The PDF of the
WL is

f (x;α, b) =
αb+1

(α + b)Γ (b)
xb−1 (1 + x) exp (−αx) , (2.1)

where α, b, x > 0, and Γ (·) is the gamma function. Ghitany et al. [20] used the following mathematical
equation to introduce the WL distribution

f (x;α,ΦΦΦ) = Dxα−1 f (x;ΦΦΦ) , (2.2)

where f (x;ΦΦΦ) is the baseline distribution,ΦΦΦ is the parameter vector for the baseline model, and D is the
constant term. In (2.2), the parameter α is the additional shape parameter that increases the flexibility
of the baseline model. The baseline distribution is the Lindley distribution for the WL distribution.

Generating a weighted distribution in the form of (2.2) is useful when the baseline distribution has
a simple form. The MoL distribution has only one scale parameter. Therefore, the development of a
weighted form of the MoL distribution provides a flexible model with a high modeling capacity. Let X
be a random variable following the MoL distribution with the following PDF:

f (x; θ) =
θ4

θ3 + 6

(
1 + x3

)
exp (−θx) , (2.3)

where θ > 0 is the scale parameter. We have the following proposition for the construction of the
WML distribution.

Proposition 1. The WML is defined by

f (x;α, θ) =

(
x3 + 1

)
θα+3xα−1 exp (−θx)

Γ (α)
(
α3 + 3α2 + 2α + θ3) , (2.4)

where α > 0 is an additional shape parameter and Γ (·) is the gamma function.

Proof. The constant term, D, is obtained by

Electronic Research Archive Volume 33, Issue 12, 7791–7809.



7794

D−1 =

∞∫
0

xα−1 θ4

θ3 + 6

(
1 + x3

)
exp (−θx)dx,

=

∞∫
0

θ4xα−1 exp (−θx)
θ3 + 6

dx+

∞∫
0

θ4xα+2 exp (−θx)
θ3 + 6

dx,

=
θ4Γ (α)(
θ3 + 6

)
θα
+
θ4Γ (α + 3)(
θ3 + 6

)
θα+3 ,

=
θ7Γ (α) + θ4Γ (α + 3)(

θ3 + 6
)
θα+3 ,

=
θ4

(
θ3Γ (α) + Γ (α + 3)

)(
θ3 + 6

)
θα+3 ,

=
θ4

(
α3 + 3α2 + 2α + θ3

)
Γ (α)(

θ3 + 6
)
θα+3 . (2.5)

Therefore, the normalizing constant is

D =

(
θ3 + 6

)
θα+3

θ4 (
α3 + 3α2 + 2α + θ3)Γ (α)

. (2.6)

Using (2.2) and (2.6), we have

f (x;α, θ) =

(
x3 + 1

)
θα+3xα−1 exp (−θx)

Γ (α)
(
α3 + 3α2 + 2α + θ3) . (2.7)

The WML distribution has bimodal and right-skewed shapes. The WML distribution reduces to
MoL distribution for α = 1.

Proposition 2. The cumulative distribution function (CDF) of 2.4 is

F (x) =
θα+3(

α3 + 3α2 + 2α + θ3)Γ (α)

(
γ (α, θx)
θα

+
γ (α + 3, θx)

θα+3

)
, (2.8)

where γ (·, ·) is the lower incomplete gamma function.

Proof. Let A = θα+3

(α3+3α2+2α+θ3)Γ(α)
, we have

F(x) = A

x∫
0

(
1 + t3

)
tα−1 exp (−θt) dt,

= A


x∫

0

tα−1 exp (−θt) dt

︸                  ︷︷                  ︸
I

+

x∫
0

tα+2 exp (−θt) dt

︸                  ︷︷                  ︸
II


. (2.9)
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Consider the first integral integral

I(x) =
∫ x

0
tα−1e−θt dt. (2.10)

Let u = θt and du = θdt. When t = 0, u = 0 and when t = x, u = θx. Using these changes in the
variables, the integral is

I(x) =
∫ θx

0

(u
θ

)α−1
e−u du

θ
,

= θ−(α−1)θ−1
∫ θx

0
uα−1e−u du,

= θ−α
∫ θx

0
uα−1e−u du. (2.11)

The lower incomplete gamma function is defined as

γ(α, z) =
∫ z

0
uα−1e−u du.

Therefore, the integral in (2.11) is ∫ x

0
tα−1e−θt dt = θ−α γ(α, θx).

Consider the second integral

I(x) =
∫ x

0
tα+2e−θt dt. (2.12)

Using the same change in variables, we have

I(x) =
∫ θx

0

(u
θ

)α+2
e−u du

θ
,

= θ−(α+2)θ−1
∫ θx

0
uα+2e−u du,

= θ−(α+3)
∫ θx

0
uα+2e−u du. (2.13)

Recall the lower incomplete gamma function

γ(s, z) =
∫ z

0
us−1e−u du.

Putting s = α + 3, we have
∫ θx

0
uα+2e−u du = γ(α + 3, θx). Therefore, the second part of the integral is∫ x

0
tα+2e−θt dt = θ−(α+3) γ(α + 3, θx).
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Inserting both integral results and putting A into (2.9), we have

F (x) =
θα+3(

α3 + 3α2 + 2α + θ3)Γ (α)

(
γ (α, θx)
θα

+
γ (α + 3, θx)

θα+3

)
. (2.14)
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Figure 1. PDF shapes.

The flexibility of the WML model in terms of PDF is shown in Figure 1. The WML distribution,
with the flexibility provided by the extra shape parameter, yields quite successful results in modelling
data with different characteristic properties.

2.1. Moments

The moments and related measures of the WML model are discussed. We have the following result
for the raw moments of the WML model.
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Proposition 3. The rth raw moment of X is

E (Xr) =
Γ (α + r) θ3 + Γ (α + (r + 3))
θrΓ (α)

(
α3 + 3α2 + 2α + θ3) . (2.15)

Proof. The rth raw moment of X is

E (Xr) = A

∞∫
0

xr
(
1 + x3

)
xα−1 exp (−θx)dx

= A


∞∫

0

xr+α−1 exp (−θx)dx +

∞∫
0

xr+α+2 exp (−θx)dx

 . (2.16)

Let u = θx and apply both integrals, we can obtain∫ ∞

0
xr+α−1e−θx dx = θ−(r+α)Γ(r + α), (2.17)∫ ∞

0
xr+α+2e−θx dx = θ−(r+α+3)Γ(r + α + 3). (2.18)

Combining both results, we have∫ ∞

0

(
xr+α−1e−θx + xr+α+2e−θx) dx = θ−(r+α)Γ(r + α) + θ−(r+α+3)Γ(r + α + 3). (2.19)

Inserting these results into (2.16), we have

E (Xr) =
θ3Γ (r + α) + Γ (r + α + 3)(
α3 + 3α2 + 2α + θ3)Γ (α) θr . (2.20)

Putting r = 1 and r = 2 in (2.15), we have

E (X) =
θ3Γ (1 + α) + Γ (α + 4)(

α3 + 3α2 + 2α + θ3)Γ (α) θ
, (2.21)

E
(
X2

)
=

θ3Γ (2 + α) + Γ (α + 5)(
α3 + 3α2 + 2α + θ3)Γ (α) θ2 . (2.22)

The variance of X is

Var (X) =
Γ (α + 2) θ3 + Γ (α + 5)

θ2 Γ (α)
(
α3 + 3α2 + 2α + θ3) −

(
Γ (α + 1) θ3 + Γ (α + 4)

)2

θ2 Γ (α)2 (
α3 + 3α2 + 2α + θ3)2 . (2.23)

Due to the complexity of the skewness and kurtosis equations in the WML model, these equations are
not presented here. Nevertheless, Figure 2 illustrates how the skewness and kurtosis values vary with
different parameter values. Furthermore, Figure 2 also analyzes the changes in the mean and variance
values in relation to the parameters. We have the following results.
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✓ As the parameter α increases, the mean and variance increase, while the skewness and kurtosis
decrease.

✓ As the parameter θ increases, the mean and variance decrease, while the skewness and kurtosis
increase.
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Figure 2. Plots for moments and related measures.

2.2. Lorenz curve

The Lorenz curve (LC) is defined by

L (x) =

x∫
0

t f (t) dt

µ
, (2.24)

where µ and f (·) are defined in (2.21) and (2.4). To calculate the LC for the WML, we use the expanded
form of the PDF, as follows:
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f (x;α, θ) =
θα+3xα−1 exp (−θx)

Γ (α)
(
θ3 + α (α + 1) (α + 2)

) + θα+3xα+2 exp (−θx)
Γ (α)

(
θ3 + α (α + 1) (α + 2)

) . (2.25)

Using (2.25), we have

x∫
0

t f (t) dt = A


x∫

0

tα exp (−θt)dt +

x∫
0

tα+3 exp (−θt)dt

 . (2.26)

Using the same change in the variables in Proposition 2 and the properties of the lower incomplete
gamma function, one can obtain

x∫
0

tα exp (−θt)dt =
γ (α + 1, θx)

θα+1 , (2.27)

x∫
0

tα+3 exp (−θt)dt =
γ (α + 4, θx)

θα+4 . (2.28)

Inserting these results into (2.26), we have

x∫
0

t f (t) dt =
θα+3(

α3 + 3α2 + 2α + θ3)Γ (α)

(
γ (α + 1, θx)

θα+1 +
γ (α + 4, θx)

θα+4

)
. (2.29)

Note that (2.29) is the first incomplete moments of the WML distribution. So, the LC is

L (x) =
θα+4

θ3Γ (1 + α) + Γ (α + 4)

(
γ (α + 1, θx)

θα+1 +
γ (α + 4, θx)

θα+4

)
. (2.30)

2.3. Hazard shapes

The hazard shapes of the WML distribution is investigated graphically. The hazard rate function
(HRF) of the WML is

h (x) =
θα+3

(
1 + x3

)
xα−1 exp (−θx)(

α3 + 3α2 + 2α + θ3)Γ (α) − θ3γ (α, θx) − γ (α + 3, θx)
. (2.31)

Figure 3 shows the hazard regions of the WML distribution for different parameter values. The results
show that the WML distribution has two different hazard structures. These are the increasing and
bathtub shapes.
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Figure 3. HRF shapes.

2.4. Data generation

We employ the inverse transform method to produce random variables derived from the WML
distribution. This technique relies on solving the equation F(x) = u, where u ∼ U (0, 1). In general,
an explicit solution for F(x) = u is not available. In such instances, a nonlinear equation solver is
utilized. In this context, we utilize the solve function in R to address the nonlinear equation F(x) =
u. The algorithm outlined below can be implemented to generate n random observations from the
WML distribution.

1) Determine the values of the α and θ.

2) Generate u from U (0, 1).

3) Solve the equation using the solve function in R.

θα+3(
α3 + 3α2 + 2α + θ3)Γ (α)

(
γ (α, θx)
θα

+
γ (α + 3, θx)

θα+3

)
− u = 0

4) Repeat Steps 2 and 3 n times.

3. Estimation and simulation

Three estimation methods are used. These are the maximum likelihood (ML), least squares (LS),
and weighted LS (WLS) methods. First, we begin with the ML estimation (MLE) method. The log-
likelihood function of the WML model is

ℓ (α, θ) =
n∑

i=1

log
(
x3

i + 1
)
+ n (α + 3) log (θ) + (α − 1)

n∑
i=1

log (xi) − θnx̄

− n logΓ (α) − n log
(
α3 + 3α2 + 2α + θ3

)
. (3.1)
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Partial derivatives of (3.1) are

Iα = n log θ +
n∑

i=1

log (xi) + nψ (α) − n
(

3α2 + 6α + 2
α3 + 3α2 + 2α + θ3

)
, (3.2)

Iθ =
3n (α + 3)

θ
− nx̄ − n

(
3θ2

α3 + 3α2 + 2α + θ3

)
, (3.3)

where ψ(α) is the digamma function. If the partial derivatives given in Eqs (3.2) and (3.3) are set equal
to 0 and solved simultaneously, MLEs are obtained. However, closed-form MLEs cannot be obtained
from the solution of these equations together. Therefore, it is necessary to maximize the function given
in Eq (3.1) to obtain MLEs.

The asymptotic standard errors of the estimated parameters of the WML model is obtained using
the observed information matrix (OIM). The elements of the OIM are given by

Iαα = n

(
3α2 + 6α + 2

) (
3α2 + 6α + 2

)
− (6α + 6)

(
α3 + 3α2 + 2α + θ3

)
(
α3 + 3α2 + 2α + θ3)2 + nψ(1) (α) , (3.4)

Iθθ = n


(
3α2 + 6α + 2

)
3θ2 − 6θ

(
α3 + 3α2 + 2α + θ3

)
(
α3 + 3α2 + 2α + θ3)2

 − 3n
θ2 , (3.5)

Iθα = Iαθ =
n
(
3α2 + 6α + 2

)
3θ2(

α3 + 3α2 + 2α + θ3)2 , (3.6)

where ψ(1) (α) is the first derivative of the digamma function. Besides the MLE method, the
effectiveness of the LS and WLS methods in deriving the parameter estimates of the WML
distribution is also investigated. The LS and WLS estimators of the parameters of the WML
distribution are obtained by minimizing the functions given in Eqs (3.7) and (3.8).

j∑
i=1

[
F

(
xi: j;α, θ

)
−

i
j + 1

]2

, (3.7)

j∑
i=1

( j + 1)2 ( j + 2)
i ( j − i + 1)

[
F

(
xi: j;α, θ

)
−

i
j + 1

]2

, (3.8)

where F
(
xi: j;α, θ

)
is in (2.8) and xi: j is the ith-order statistic.

3.1. Simulation

In the simulation section, the success of the MLE, LSE, and WLSE methods in the parameter
estimation process is compared. The number of simulation repetitions is set at 1000. Three cases are
investigated. These are as follows:

✓ Case I: α = 0.5, θ = 0.5,

✓ Case II: α = 0.5, θ = 2,
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✓ Case III: α = 3, θ = 3.

The results are given in Table 1. The simulation results are interpreted according to the bias and mean
squared error (MSE) values obtained as a result of 1000 repetitions. We have the following results.
For the first case, the MLE consistently exhibits the smallest MSE values for both parameters across
all sample sizes. Although the LSE and WLSE achieve slightly smaller bias in some cases, their
MSE values remain noticeably higher, especially for small and moderate samples. As expected, all
estimators show an improvement as the sample size increases, indicating convergence towards the true
parameter values. The WLSE performs better than the LSE in terms of MSE but remains inferior
to the MLE. Under the second case, a similar pattern persists. The MLE continues to dominate in
terms of MSE for both α and θ, while the LSE displays slightly lower bias for α at certain sample
sizes but at the cost of increased variability. In the third case, all estimators show increased bias and
MSE for n = 100, but performance stabilizes as the sample size grows. The MLE continues to yield
the smallest MSE for θ and is competitive for α particularly for n = 300 and n = 500. Although
the WLSE provides bias improvements in some instances, its overall MSE remains higher than that
of the MLE. Overall, the simulation results demonstrate that the MLE is the most efficient estimator
for the WML distribution, especially in terms of MSE, while the LSE and WLSE may offer marginal
bias reductions at the expense of greater variability. These findings support the use of the MLE as the
primary estimation method in practical applications of the WML distribution.

Table 1. Simulation results.

Cases Sample sizes Metrics
MLE LSE WLSE

α θ α θ α θ

I 100 Bias 0.06134 0.01086 0.03711 0.00382 0.04273 0.00608
MSE 0.03405 0.00177 0.06789 0.00299 0.05024 0.00229

300 Bias 0.01416 0.00327 0.00641 0.00128 0.00874 0.00201
MSE 0.00695 0.00044 0.01718 0.00088 0.01100 0.00061

500 Bias 0.01130 0.00184 0.02034 0.00319 0.01622 0.00264
MSE 0.00367 0.00024 0.01242 0.00054 0.00745 0.00036

II 100 Bias 0.01652 0.05196 0.00138 0.01311 0.00465 0.02265
MSE 0.00327 0.03475 0.00412 0.04091 0.00346 0.03469

300 Bias 0.01025 0.02857 -0.00065 0.00294 0.00308 0.01414
MSE 0.00111 0.01115 0.00144 0.01389 0.00112 0.01134

500 Bias 0.00959 0.02167 -0.00162 -0.00397 0.00313 0.00993
MSE 0.00064 0.00640 0.00076 0.00822 0.00059 0.00659

III 100 Bias 0.10461 0.07909 0.02692 0.02056 0.05411 0.04142
MSE 0.20806 0.10539 0.32000 0.15022 0.24564 0.11959

300 Bias 0.01359 0.00508 -0.01288 -0.01176 -0.00061 -0.00373
MSE 0.05717 0.02776 0.08496 0.04207 0.06561 0.03250

500 Bias 0.02412 0.01538 0.00955 0.00465 0.01628 0.00968
MSE 0.04037 0.01920 0.06157 0.02902 0.04803 0.02275
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4. Applications

Two real datasets are analyzed. The WML distribution is compared with the gamma, Weibull,
and WL distributions. Goodness-of-fit tests, Kolmogorov Smirnov (KS), Anderson Darling (AD),
and Cramer von-Mises (CVM), are implemented on the selected data sets. Moreover, two famous
information criteria, the Akaike information criterion (AIC) and the Bayesian information criterion
(BIC), are used to determine the best-fitted model.

4.1. Study time

The data used in the first application is related to the study time of 100 students. The dataset is
available at www.kaggle.com/datasets/yasserh/student-marks-dataset/data. The data are modeled with
WML, gamma, Weibull, and WL distributions and the results are given in Table 2. According to the
results obtained, the WML distribution gives more successful results than the other competitive models
in modeling the data. The model comparison metrics, such as AIC, BIC, AD, CVM, and KS, obtained
for the WML distribution are lower than those of other models. Therefore, the WML distribution is
chosen as the best model.

Table 2. Results for the study time data.
Models Parameter estimations −ℓ AIC BIC AD CVM KS p-value
WML (α, θ) 0.765 0.827 223.978 451.956 457.166 1.294 0.173 0.106 0.213

0.149 0.063
Gamma (α, θ) 1.701 0.417 233.271 470.542 475.753 2.912 0.453 0.145 0.030

0.221 0.063
Weibull (α, θ) 1.589 4.486

0.136 0.294 228.345 460.689 460.813 2.060 0.303 0.110 0.179
WL (α, b) 0.491 1.281

0.063 0.207 230.616 465.232 470.442 2.446 0.371 0.133 0.057
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Figure 4. Fitted densities for the study time data.
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In Figure 4, the estimated PDFs for all distributions are shown on the histogram data. On the right
side of Figure 4, the PDF, survival, and hazard functions, and probability-probability (PP) graphs
obtained for the WML distribution are given. These graphs show the adequate fit of the WML
distribution to the data.

4.2. Poverty rate

The dataset used for the second application is about the poverty rates of 14 Southern African and
Middle Eastern countries. The data can be accessed at www.kaggle.com/datasets/towhid121/sa-me-
happiness-index. This data are modeled with the same distributions as in the first application, and the
results are given in Table 3. Since the WML distribution has the lowest values of the model selection
criteria, it is selected as the best model for the second dataset. In addition, the results given in Figure 5
clearly demonstrate the excellent fit of the WML distribution to the data.

Table 3. Results for the poverty rate data.
Models Parameter estimations −ℓ AIC BIC AD CVM KS p-value
WML (α, θ) 0.081 0.157 52.879 109.757 111.035 0.426 0.069 0.153 0.850

0.106 0.025
Gamma (α, θ) 1.283 0.067 55.118 114.236 115.514 1.110 0.192 0.286 0.166

0.436 0.028
Weibull (α, θ) 1.341 20.498 54.589 113.178 114.456 0.974 0.168 0.246 0.310

0.292 4.225
WL (α, b) 0.080 0.641 53.886 111.772 113.050 0.821 0.141 0.265 0.235

0.027 0.370
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Figure 5. Fitted densities for the poverty rate data.
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5. Software

R Shiny is a powerful tool to make complex statistical models easy for the users. Many researchers
use the R Shiny program to develop user-friendly cloud-based applications such as LTPL by [21],
DataVis2 by [22], and SimBetaReg by [23].

In this section, the WMLdist web-tool is introduced. WMLdist is a cloud-based application
specially developed in R Shiny for WML distribution. Thanks to WMLdist, the application of the
WML distribution on a real data set can be done easily. The WMLdist is accessible at
https://gazistat.shinyapps.io/WMLdist/.

Figure 6 shows the data upload section of WMLdist. Here, the user can upload his/her own data or
choose one of the two available datasets. The datasets given here are the datasets used in the application
section of the study.

Figure 6. Upload data panel.

Figure 7. Parameter settings panel.
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WMLdist allows the applicability of three different parameter estimation methods. These are the
MLE, WLSE, and LSE methods. The Nelder-Mead algorithm is used for parameter estimation. This
algorithm is sensitive to the initial values of the parameters. In WMLdist, the user has the possibility
to change the initial values of the parameters (see Figure 7).

WMLdist also provides the descriptive statistics and some useful plots of the data used. The
empirical hazard structure of the data is analyzed with the total test time (TTT) plot [24], outliers are
analyzed with a violin plot, and skewness is analyzed with a histogram. In addition, descriptive
statistics for the data are also shown in WMLdist (see Figure 8).

Figure 8. Data summary panel.

The values of the estimated parameters and goodness-of-fit test results obtained with the MLE,
WLSE, and LSE methods are given in the Estimates section (see Figure 9).

Figure 9. Estimates panel.

After obtaining the parameter estimates, a graphical examination of the fit of the WML distribution
to the data is analyzed using density, hazard, and survival functions. The PP plot is also given (see
Figure 10).
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Figure 10. Graphical results panel.

Detailed information on the use of WMLdist is given in the help page (see Figure 11).

Figure 11. Help page panel.

6. Conclusions

In this study, a generalization of the MoL distribution is obtained with a weighted function, and the
new distribution is called the WML distribution. The parameter estimates and statistical properties of
the WML distribution are obtained, and the applications of the proposed distribution on real datasets
reveal the applicability of the distribution in real life. Although many new distributions have been
proposed, the applicability of these distributions is still limited. Thanks to the WMLdist web
application provided in the study, the proposed model is available to all practitioners.
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