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Abstract: Dental segmentation is a critical step in computer-aided orthodontic treatment planning, but
accurate segmentation still faces numerous challenges due to complex tooth morphology, ambiguous
gingival boundaries, and clinical issues such as malformed teeth, crowding, and malocclusion. This
paper proposes GFACNet, a network that integrates geometric features and anatomical constraints for
3D dental segmentation from intraoral scan data. Our method comprises three key innovations: 1) a
morphology-aware graph construction (MAGC) mechanism that adaptively constructs graph structures
based on dental geometric characteristics, 2) a multi scale transformer (MST) feature integration
module that processes features at different scales while capturing both local and global context, and 3) a
hierarchical anatomical constraint loss (HACL) that incorporates multi level anatomical features to guide
anatomically consistent segmentation. Experiments on real intraoral scanning datasets demonstrate
that GFACNet significantly outperforms existing methods in handling complex dental morphologies,
particularly in cases of malformed and missing teeth. Additionally, our method requires reduced
computational resources while providing a more practical solution for clinical applications.
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1. Introduction

Dental segmentation is a critical step in computer-aided orthodontic treatment planning, providing
clinicians with precise geometric information for orthodontic appliance design, tooth movement simula-
tion, and treatment planning [1-5]. However, accurate dental segmentation remains challenging due to
complex tooth morphology [6], ambiguous gingival boundaries [7], and common clinical issues such as
malformed teeth, crowding, and malocclusion [8]. In recent years, with the advancement of intraoral
scanning technology, 3D mesh-based dental models have become essential tools in clinical practice, yet
the quality of current segmentation methods often fails to meet clinical standards [9].

Traditional dental segmentation methods typically rely on geometric feature extraction and manually
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designed segmentation rules, including contour-based approaches, projection-based methods, and
curvature-based techniques [10]. These methods perform poorly when confronted with complex dental
morphologies and depend heavily on expert knowledge, limiting their widespread application in clinical
environments. With the development of deep learning technologies, automatic segmentation methods
based on neural networks have gradually emerged as research focal points, including transformation-
based methods that voxelize 3D meshes [11, 12], point cloud-based methods that process sampled point
data [13, 14], and mesh-based methods that directly operate on dental surfaces [15, 16].

Despite recent progress in mesh-based dental segmentation, existing methods face three fundamental
limitations that hinder their clinical deployment. First, uniform sampling strategies waste compu-
tational resources on geometrically simple regions while missing critical boundary details. Second,
separate branch processing or sequential refinement architectures limit feature interaction and parallel
computation efficiency. Third, purely data-driven approaches lack anatomical constraints, leading to
clinically implausible segmentations in challenging cases with missing or malformed teeth. Addition-
ally, these methods typically require numerous high-resolution mesh samples, creating barriers for
resource-constrained clinical settings [17].

To address these challenges, we propose GFACNet (geometric features and anatomical constraints
network) for 3D dental segmentation. Our method introduces three key innovations: 1) A morphology-
aware graph construction (MAGC) mechanism that adaptively allocates computational resources via
curvature-guided probabilistic sampling, achieving superior accuracy with 40% fewer sampling points
(1500 vs. 2500-3000); 2) A multi scale transformer (MST) feature integration module that enables uni-
fied cross-scale attention for simultaneous multi scale interaction, reducing computational cost by approx-
imately 50% compared to dual-branch and sequential refinement approaches; 3) A Hierarchical Anatom-
ical Constraint Loss (HACL) that explicitly incorporates dental anatomical knowledge—including
centroid positioning, shape consistency, and adaptive weighting for missing teeth—ensuring clinically
plausible results where purely data-driven methods struggle.

Experimental results on real intraoral scanning datasets demonstrate that GFACNet significantly
outperforms existing methods in handling complex dental morphologies, particularly for malformed
and missing teeth, while requiring reduced computational resources. Our approach exhibits superior
precision in processing dental boundary regions, which is crucial for subsequent orthodontic treatment
planning.

The main contributions of this paper are:

1) A morphology-aware adaptive graph construction mechanism that dynamically constructs graph
structures based on dental geometry, requiring significantly fewer sampling points than uniform sampling
approaches while better capturing complex boundaries.

2) A multi scale transformer feature integration module that captures both local details and global
context through unified cross-scale attention rather than separate branch processing or sequential
refinement.

3) A hierarchical anatomical constraint loss that integrates dental anatomical knowledge into network
training, providing robustness in clinically challenging scenarios where purely data-driven methods fail.

4) Extensive experiments that validate our method’s effectiveness, achieving state-of-the-art perfor-
mance with superior computational efficiency, particularly in handling anomalous dental conditions.
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2. Related works

2.1. 3D point cloud segmentation

Due to their unordered nature, point cloud data cannot be directly processed using standard convolu-
tional neural networks. Traditional methods typically convert 3D point clouds into processable forms,
such as view-based approaches that project point clouds onto 2D planes, inevitably resulting in spatial
information loss; or voxelization-based methods that discretize space into regular grids, introducing
high computational complexity and quantization error problems.

In recent years, methods for directly processing point clouds have made significant progress. Point-
Net [13], as pioneering work, processes unordered point sets through symmetric operations, but its
approach of treating each point independently limits the capture of local structural relationships. To
address this limitation, PointNet++ [14] introduced multi scale hierarchical structures and regional
feature aggregation mechanisms, enhancing the network’s ability to understand spatial relationships
between points. Other methods have explored applying convolution operations to point clouds, such as
PointCNN [18], which applies traditional convolutions after normalizing point clouds through learned
transformation matrices, while dynamic graph convolutional neural network (DGCNN) [19] treats point
clouds as dynamic graph structures, capturing local geometric features through EdgeConv.

With the rise of attention mechanisms, transformer architectures have also been introduced to the
field of point cloud processing. Point Transformer [20] and point cloud transformer (PCT) [21] proposed
self-attention frameworks suitable for point clouds, effectively capturing long-range dependencies.
PointMLP [22] adopts an efficient feed-forward network structure to process point cloud features, while
PointNeXt [23] revisits and optimizes the design strategies of PointNet++. Although these methods
perform well, most utilize only point coordinate information, neglecting the rich features that can be
extracted from the original geometric surfaces, thus limiting their performance potential.

2.2. 3D dental segmentation

3D dental mesh models generated by intraoral scanning technology possess rich geometric charac-
teristics. Traditional segmentation methods largely build upon geometric analysis: Curvature-based
methods utilize local curvature variations to identify dental boundaries [24]; projection-based methods
map 3D models to 2D planes for processing; and harmonic field-based methods construct potential fields
by solving Laplacian equations to guide segmentation [25]. However, these methods often perform
poorly when handling abnormal teeth and complex clinical scenarios [26].

Deep learning has brought new perspectives to dental segmentation. Early approaches convert 3D
dental models into regular representations: Voxelization-based methods apply 3D Convolutional Neural
Network (CNN) but may lose fine geometric details [27], while hierarchical methods are constrained by
inter-layer information transfer, making early error correction difficult. Point cloud-based approaches
downsample dental meshes for processing [28], but this simplification also results in loss of original
geometric information.

Mesh-based approaches directly process mesh data, avoiding transformation-induced information
loss. MeshSegNet [15] integrates graph-constrained learning modules for end-to-end dental labeling;
iMeshSegNet [11] optimizes computational efficiency through improved architectures; and MPCNet [16]
introduces local symmetric positional encoding to enhance feature representation.
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Recent sophisticated architectures have explored various strategies to improve segmentation quality.

Dual-branch architectures: DBGANet [29] employs separate processing streams for coordinate
and normal vector features, using geometric attention mechanisms to capture both local details and
global structure before late-stage fusion. While effective at capturing multi level geometric information,
eparate processing may lose fine-grained cross-scale correlations during early feature extraction, and
the dual-branch design increases computational overhead (8.33 GFLOPs).

Progressive refinement frameworks: TSeglab [30] adopts a multi stage hierarchical processing
approach that iteratively refines segmentation through successive stages. Although this progressive
strategy improves quality, the sequential architecture limits parallel computation and increases inference
time (51 ms), making real-time clinical deployment challenging.

Instance segmentation approaches: THISNet [31] highlights tooth regions using region proposal
mechanisms for tooth instance segmentation, while Teeth-SEG [32] develops an efficient framework
with multi scale aggregation specifically for orthodontic applications. These methods demonstrate
strong performance but typically employ uniform sampling strategies that allocate equal computational
resources across all regions—over-sampling geometrically simple areas while under-sampling critical
boundary regions.

Common limitations: Despite their achievements, these contemporary methods share several funda-
mental constraints. Most rely purely on data-driven learning without explicit anatomical constraints,
making them susceptible to producing segmentations that violate dental anatomical principles in chal-
lenging cases (e.g., missing teeth, severe malformations, extensive restorations). The lack of anatomical
guidance is particularly problematic for clinical deployment, where anatomically consistent results are
essential for treatment planning.

Beyond dental segmentation, related domains have demonstrated the value of incorporating domain-
specific constraints and multi-scale learning. Hierarchical constraint mechanisms with key point
sensitive loss have been successfully applied to sonar image classification [33], while transformer-based
multi scale approaches show promise in weakly-supervised pavement crack segmentation [34]. These
works validate the effectiveness of combining geometric analysis with learned features, though dental
geometry presents unique challenges requiring specialized anatomical constraints.

3. Methods

3.1. Overall architecture

We propose a method based on a geometric features and anatomical constraints network (GFACNet)
for 3D dental segmentation. Given a 3D dental model containing N mesh face, our goal is to label each
mesh face as one of C = 33 semantic categories (32 tooth classes and one gingival class). GFACNet
achieves accurate dental segmentation through three key modules:

1) Morphology-aware graph construction (MAGC): This module adaptively samples meshes based
on dental morphology and constructs dynamic graph structures, paying special attention to high-
curvature regions such as dental boundaries, ensuring important areas receive more refined represen-
tations.

2) Multi scale transformer feature integration module (MST): This module employs a transformer
architecture to directly process features at different scales, capturing both local dependencies and
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global context, enabling effective integration of multi scale information.

3) Hierarchical anatomical constraint loss (HACL): This module considers multi level anatomical
features of teeth, combining centroid constraints, shape constraints, and relative position constraints
to guide the network in learning segmentation results that conform to dental anatomical structures.

GFACNet’s processing flow is illustrated in Figure 1. First, we extract 24-dimensional features
from the input 3D mesh model, where the first 12 dimensions represent the coordinates of the three
vertices and the mesh face, and the latter 12 dimensions represent the normal vectors of the vertices and
mesh face. Then, the MAGC module adaptively samples meshes based on curvature information and
constructs dynamic graph structures. Next, the MST module processes the sampled features, extracting
and integrating information across multiple scales. Finally, the network prediction results are optimized
through the HACL module, ensuring conformity to dental anatomical principles.

Our method effectively handles complex dental morphologies, demonstrating excellent performance
particularly in clinical common scenarios such as malformed teeth and missing teeth. Compared
to existing methods, GFACNet achieves higher segmentation accuracy using fewer sampled meshes
(reducing computation by approximately 40%), which is especially important for resource-constrained
medical environments.

3.2. Morphology-aware graph construction (MAGC)

The morphology-Aware graph construction (MAGC) module is one of our core innovations in
GFACNet, designed to address the limitations of traditional graph construction methods when processing
complex dental morphologies. Unlike traditional methods that use static sampling strategies, MAGC
can adaptively sample and construct graph structures based on the geometric characteristics of teeth,
with special attention to key regions such as dental boundaries.

3.2.1. Curvature-aware sampling

Traditional farthest point sampling (FPS) algorithms often struggle to capture key regions when
processing complex dental morphologies. To address this, we first calculate the principal curvatures K,
and K, for each mesh, then define curvature intensity as:

Ci= K%+ K2. 3.1)

Based on curvature intensity, we design a probability function to guide the sampling process:
Ci+e
SYCi+e)

where € = 0.01 is a small smoothing factor that prevents zero-curvature regions from being completely
ignored. Through this strategy, high-curvature regions (such as dental boundaries) receive higher
sampling probabilities, ensuring that the geometric details of these key regions can be fully learned by
the network.

In the actual sampling process, we use rejection sampling to select M center meshes (M = 1500)
according to the probability distribution P(f;), which is significantly reduced compared to the sampling
quantity used by traditional methods (typically 2500-3000), while maintaining segmentation accuracy.

P(fy) = (3.2)
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Figure 1. Overall architecture of GFACNet. The network takes a 3D dental mesh as in-
put and extracts 24-dimensional features, which are processed through three key modules:
morphology-aware graph construction (MAGC), multi scale transformer (MST), and hierar-
chical anatomical constraint Loss (HACL). The flowchart shows how coordinate features pass
through MAGC to generate centers and neighborhoods which are then processed by MST to
produce features of dimension M x 384. Meanwhile, normal features are processed through
1D convolution and combined with MST output features. Finally, the results are optimized
using the HACL module, which incorporates segmentation loss (L), centroid constraint
(Lcentroia), and shape constraint (L pe).

3.2.2. Dynamic neighborhood construction

For each sampled center mesh, traditional methods typically use k-nearest neighbors (KNN) al-
gorithms with fixed K values to construct neighborhood relationships, which lack flexibility when
processing dental regions of varying complexity. To address this, we designed a dynamic KNN
algorithm that automatically adjusts the number of neighbors K based on local geometric complexity:

K; = min(Kmax’ maX(Kmim |_CU -Cj +ﬁJ))’ (33)

where K,,;, = 16 and K,,,, = 48 are predefined minimum and maximum neighbor quantity boundaries,
and « and S are learnable parameters, initialized as @ = 20 and 8 = 10. This design enables the network
to allocate more neighbors to geometrically complex regions and fewer neighbors to simple regions,
thereby optimizing computational resource allocation.

3.2.3. Edge feature representation

In addition to node features, we also introduce edge feature representations to enhance the network’s
perception of dental boundaries. For each pair of connected meshes f; and f;, we define the edge
feature as:

€ij = é(fi, fj’ dija 9:‘1), (3.4)
where d;; = ¢; — ¢; is the position difference vector between the centers of the two meshes, 6;; is the
angle between the normal vectors of the two meshes, and ¢ is a feature encoding function implemented
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as a three-layer (multi layer perceptron) MLP network (input dimension 24 + 3 + 1 = 28, hidden layer
dimensions 64 and 32). This edge feature design can capture the geometric relationships and topological
structures between meshes, especially in key regions such as dental boundaries.

3.2.4. Adaptive feature aggregation

Finally, we use a graph attention mechanism to adaptively aggregate the features of the center mesh
and its neighbors:
W, = softmax(o([C — N; N))), 3.5

N =W, ®N, (3.6)

where C is the center mesh feature, N is the neighbor mesh feature, o is a lightweight MLP network,
and ® represents element-wise multiplication. This attention mechanism enables the network to
automatically adjust the importance of different neighbors based on feature differences, thereby more
effectively capturing local structural information.

3.3. Multi scale transformer feature integration module (MST)

The multi scale transformer feature integration module (MST) is a key component of GFACNet,
designed to address the inefficiency of traditional methods that process local and global features
separately before fusion. The MST module adopts a transformer-based architecture that can directly
process features at different scales while capturing both local dependencies and global context, achieving
effective integration of multi scale information.

3.3.1. Multi scale feature extraction

Traditional feature extraction methods often focus on information at a single scale, making it difficult
to comprehensively capture the complex structure of teeth. We first construct multi scale feature
representations.

Given the center mesh representation C and neighbor mesh representation N obtained from the
MAGC module, we construct feature representations at S = 4 different scales:

X, ={X", X%, X, X*). (3.7)
Each scale’s feature representation is obtained by aggregating features within different radius ranges:
X* = Aggregate(C, N, ry), (3.8)

where r; is the aggregation radius for the s-th scale. We set r; = 0.03, r, = 0.06, r; = 0.12, ry, = 0.24,
values experimentally verified to effectively cover multi scale information from local microscopic
structures to global macroscopic morphology. The Aggregate function is implemented as a graph
convolution operation, specifically defined as:

Aggregate(C, N, ry) = Z

JEN(rs

-MLP([C;; N;; C; — N;]), 3.9
NGy MEPACENE G -9

where N;(r,) represents the set of neighbors of center mesh i within radius ry, and MLP is a two-layer
perceptron network with output dimensions d; = 64, d, = 96, d; = 128, and dy = 192 to accommodate
the feature complexity needed for different scales.
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3.3.2. Self-attention mechanism

For each scale’s feature representation X*, we apply a self-attention mechanism to capture the
interrelationships between meshes:

s \T
A’ = softmax (%), (3.10)
k
7' =AV' + X%, (3.11)

where Q°, K*, and V* are the query, key, and value matrices, respectively, obtained from X* through
linear projections:
Q' =X'W,, K =X'Wg, V' =XW, (3.12)

where Wé, Wy, and W}, are learnable projection matrices, and dy is the feature dimension. Note that
we have added residual connections (+ X*), which helps alleviate the vanishing gradient problem in
deep networks.

To further enhance feature learning capability, we stack L = 3 self-attention layers at each scale,
forming a deep self-attention network:

Z; = SelfAttention(Z;_ ), [=1,2,3, (3.13)

Z} = LayerNorm(FFN(Z)) + Z}), (3.14)

where FFEN is a feed-forward neural network, containing two-layer MLP and gaussian error linear unit
(GELU) activation functions; LayerNorm is a layer normalization operation that helps stabilize the
training process.

3.3.3. Cross-scale feature fusion

Traditional methods often simply concatenate or sum features of different scales, which may lead to
information redundancy or loss of key information. We design a cross-scale attention mechanism to
adaptively fuse features of different scales:

First, we concatenate features of different scales.

Xeoncar = [Zl,ZZ,Z3,Z4]- (3.15)

Then, we calculate cross-scale attention:

choss = concutWQ,cross’ (316)
KCrOSS = XCOnCﬂtWK,CrOSS7 (3'17)
VCVOSS = COnCﬂtW‘/,CrDSS’ (3'1 8)
Cross KCVOSS T
A = softmax(u), (3.19)
Vd;
ZCrOSS = ACrOSSVCTOSS‘ (3'20)
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This design enables the network to learn the interrelationships between features at different scales,
thereby achieving more effective feature fusion. Specifically, we construct a fully connected attention
graph between different scales, where features at each scale can interact with features at all other scales.

Finally, we integrate all features through an MLP network:

F =MLP([Z",Z%,7°, Z*, Z.ros5))s (3.21)

where MLP is a three-layer perceptron network with hidden layer dimensions of 512 and 256, and an
output dimension of 384.

3.3.4. Feature upsampling and integration

The feature representation after MST processing is based on sampled meshes and needs to be
upsampled back to the original mesh size. We design a distance-weighted feature propagation algorithm:

F,‘ = ZWUFI’ (322)
jesS
_exp(=llpi = pjiPP/a?)
Ykes exp(=llpi = pill?/0?)’
where S is the set of sampled meshes, p; and p; are the spatial coordinates of original mesh i and sampled
mesh j respectively, and o is a smoothing factor (set to twice the average nearest neighbor distance).
This distance-based weighting strategy can maintain the spatial continuity of features, avoiding artifacts
that might result from hard assignments.

(3.23)

Wij

3.4. Hierarchical anatomical constraint loss (HACL)

The hierarchical anatomical constraint loss (HACL) is one of our key innovations in GFACNet,
aimed at integrating dental anatomical knowledge into the network training process to guide the model
in learning segmentation results that better conform to medical principles. Unlike traditional methods
that only use pixel-level segmentation losses, HACL considers dental anatomical features from multiple
levels, including tooth centroid positions, shape features, and relative spatial relationships.

3.4.1. Multi level anatomical constraints

We design three levels of anatomical constraints to constrain segmentation results from different
perspectives:

1) Centroid constraint: Constrains the centroid position of each tooth to ensure accurate overall spatial
positioning.

2) Shape constraint: Constrains the tooth shape to conform to anatomical priors, preventing unreason-
able segmentation results.

3) Relative position constraint: Constrains the relative position relationships between teeth, maintaining
the overall structure of the dental arch.

This multi level constraint design stems from clinical observations: Dentists, when making diagnoses,
consider not only the details of individual teeth but also the overall arrangement of teeth and their
interrelationships.
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3.4.2. Centroid constraint

The centroid constraint is based on a key observation: Even with individual variations in tooth
morphology, the centroid positions of each tooth class remain relatively stable. First, we calculate
pseudo-centroids for each tooth based on the segmentation results predicted by the network:

L; = argmax(P;), (3.24)

where P; is the class probability distribution of the i-th mesh, and L; is the class with the highest
probability, i.e., the pseudo-label. Then, based on these pseudo-labels, we extract meshes of different
classes and calculate the centroid coordinates for each tooth:

C = IMI > v (3.25)

JEM;

where M is the set of meshes classified as the i-th tooth, and p; is the center coordinate of mesh j.

To handle cases of missing teeth, we introduce an adaptive weighting mechanism. If the extraction
result for a certain tooth is empty (indicating it might be missing), its centroid coordinate is set to a zero
vector, and a lower weight is assigned in the loss calculation:

1.0, if M| >0,
W= if M (3.26)
0.2, otherwise,
where 6 is a set threshold (set to 10 in experiments).
The centroid constraint is defined as:
1<
Leenroia = 5 Z] willC; - G5, (3.27)

where C’,- is the ground truth value of the centroid of the i-th tooth, and 7 is the total number of tooth
classes (32). Through this weighted Euclidean distance metric, the network can learn to accurately
localize the position of each tooth while appropriately tolerating potentially missing teeth.

3.4.3. Shape constraint

In addition to centroid positions, tooth shapes also have class-specific characteristics. For example,
incisors typically are flat-shaped, while molars are cube-shaped. The shape constraint aims to make the
network learn these morphological features.

We first perform principal component analysis (PCA) on each tooth class to extract its characteristic
shape representation:

Si =PCA(p; - Cilj € M}). (3.28)

This representation captures the shape distribution of the tooth relative to its centroid. Then, we use the
Kullback-Leibler divergence to measure the difference between the predicted shape and the true shape:

1 ¢ .
Laape = 7 ), Drr(SilIS)), (3.29)
i=1

Electronic Research Archive Volume 33, Issue 12, 7736-7762.



7746

where S is the true shape representation of the i-th tooth. To practically calculate the KL divergence,
we model the shape representation as a multivariate Gaussian distribution:

oy 1 i
Dg(SillSi) =5 10gﬁ+tr(2 "5 + (B — ) E i - ) - d | (3.30)

where y; and X; are the mean and covariance matrix of the predicted distribution, f; and 3 are the
parameters of the true distribution, and d is the dimension of the distribution (we take the first 8 principal
components).

3.4.4. Total loss function

The total loss of HACL is combined by weighting the constraint terms:
Luacr = i Leeniroia + /lZLshape’ (331)

where A, and A, are hyperparameters that balance the importance of different constraints. Through
extensive experiments, we set 4; = 0.5 and 4, = 0.3, a combination that achieved the best performance
in our experiments.

The final total loss function of the network combines the standard segmentation loss and HACL.:

Ltaml = Lseg + /ILHACLa (332)

where Ly, is the negative log-likelihood segmentation loss:

1 N C
Lseg = —NZZ%, log(y;)), (3.33)

i=1 j=1

and A is a weight parameter balancing the two types of losses, set to 0.4. In the training process, we
adopt a staged strategy: For the first 100 epochs, only Ly, is used, then Lyac; 1s introduced for another
150 epochs of training. This strategy allows the network to first learn basic segmentation capabilities,
then gradually incorporate anatomical knowledge.

3.5. Implementation details

In this work, we follow the FDI (Fédération Dentaire Internationale) [35] tooth numbering system as
illustrated in Figure 2. The FDI system uses a two-digit notation: The first digit indicates the quadrant
(1: upper right, 2: upper left, 3: lower left, 4: lower right) and the second digit indicates the tooth
position (1-8, from central incisor to third molar). For example, tooth 11 is the upper right central
incisor, and tooth 48 is the lower right third molar.

For network implementation, we extract 24-dimensional features as input, where the first 12 dimen-
sions represent three vertices and mesh center coordinates, and the latter 12 dimensions represent the
corresponding normal vectors. The network architecture details are as follows:

e MAGC module:

— The number of sampling centers M is set to 1500.
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— Dynamic neighborhood with K,,;;, = 16 and K,,,,, = 48.
— Edge feature encoder: three-layer MLP (28—64—32—16).
— Curvature-based sampling with @ = 20 and 5 = 10.

e MST module:
— Four scales with radii r; = 0.03, r, = 0.06, r; = 0.12, r, = 0.24.
— Feature dimensions: d; = 64, d, = 96, d; = 128, dy = 192.
— Three stacked self-attention layers per scale with 8 attention heads.

— Cross-scale attention with projection dimension 256.
— Final feature fusion: three-layer MLP (480 + 256—512—256—384).

e HACL module:

— Centroid constraint with threshold § = 10 and weight 4, = 0.5.
— Shape constraint using PCA with 8 principal components and weight A4, = 0.3.
— Total loss weight 4 = 0.4.

e Prediction head: Four-layer MLP (384—256—128—64—33).
e Training strategy: First 100 epochs with only L, followed by 150 epochs with combined L;,;.

Figure 2. FDI tooth numbering system used in our work. The upper jaw contains teeth
numbered from 11 to 28 (from the central incisor to the third molar), while the lower jaw
contains teeth numbered from 31 to 48, following the same anatomical sequence.

4. Experimental

4.1. Dataset and experimental setup
4.1.1. Dataset

In this study, we utilized the 3DTeethSeg22 dataset comprising 1800 high-quality 3D intraoral scans
from 900 patients across collaborative clinics in France and Belgium. Patient demographics include
equal gender distribution (50% male, 50% female) with 70% patients under 16 years, 27% between 16
and 59 years, and 3% over 60 years. Half received orthodontic treatment while the other half underwent
restorative treatment. Data acquisition was performed by experienced orthodontists and dentists using
Primescan (Dentsply), Trios3 (3Shape), and iTero Element 2 Plus scanners with 10-90 micrometers
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accuracy and 30-80 points per square millimeter resolution. Each scan is manually annotated following
FDI numbering system with 33 semantic labels.

Preprocessing includes mesh cleaning, PCA-based coordinate centering, occlusal plane alignment,
and manual tooth cropping with UV mapping through harmonic parameterization. For missing teeth, the
annotation workflow supplements positional information through adjacent tooth arrangement patterns.
Malformed teeth are handled via manual boundary annotation with curvature feature identification, while
occlusion cases undergo occlusal plane alignment and clinical validation. All annotations are validated
by experienced specialists with iterative refinement for accuracy. We employed 5-fold cross-validation
with patient-level separation (70% training, 15% validation, 15% testing) to prevent data leakage.

4.1.2. Evaluation metrics

To comprehensively evaluate our proposed GFACNet and baseline methods, we employed three
widely-used evaluation metrics:
1) Overall accuracy (OA): measures the percentage of correctly classified mesh face across all classes,

calculated as:
€. TP;
A = 8 . “4.1)
io(TP; + FP))

2) Mean intersection over union (mloU): quantifies the average IoU across all tooth classes, calcu-
lated as:

TP,
IoU, = , 4.2)
TP, + FP, + FN,
1 C
mioU = Z:; ToU,, (4.3)

where TP., FP., and FN,. represent true positives, false positives, and false negatives for class c,
respectively, and C is the number of classes.
3) Mean accuracy (mAcc): represents the average per-class classification accuracy, calculated as:

TP,
Acc, = ————, 4.4
“Cc = TP, + FN, (4.4)
1 &
mAcc = C ; Acc,. 4.5)

These metrics comprehensively reflect clinical usability: OA indicates reliability for automated
workflows with minimal manual correction; mloU measures boundary precision critical for appliance
design requiring < 0.3 mm tolerance, directly impacting prosthetic fit accuracy; mAcc ensures balanced
performance across all tooth types, preventing systematic errors in specific regions (e.g., molars,
malformed teeth) that could compromise treatment planning.

4.1.3. Training configuration

All experiments were conducted on an NVIDIA RTX 3090 GPU with 24 GB memory. For network
training, we employed the Adam optimizer with 8; = 0.9, 8, = 0.999, an initial learning rate of 1 x 1073
and weight decay of 1 x 10™*. We adopted a cosine annealing learning rate schedule with a minimum
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learning rate of 1 x 107>. Additionally, we implemented a learning rate decay strategy that reduced the
rate by a factor of 0.5 every 20 epochs when validation loss plateaued.

The network was trained with a batch size of 4 dental models for a total of 250 epochs, following a
two-stage training strategy: The first 100 epochs utilized only the segmentation loss (L.,), while the
subsequent 150 epochs incorporated the full loss function (L), including our proposed hierarchical
anatomical constraint loss. This approach allowed the network to first learn basic segmentation
capabilities before gradually incorporating anatomical knowledge.

To enhance model robustness and generalization, we applied data augmentation during training
including random translation along X, Y, Z axes within ranges of [—-6, 6], [-8, 8], [-5, 5] mm respectively,
random rotation around Z-axis within [-n/10, 7/10] radians, random scaling with factors between 0.9
and 1.1, and Gaussian noise injection with o~ = 0.01 added to vertex coordinates.

4.2. Comparison with existing methods

We compared our proposed GFACNet with eight state-of-the-art 3D dental segmentation methods,
including point cloud-based methods (PointNet, PointNet++, Point Transformer) and mesh-based
methods (MeshSegNet, TSGCNet, SGTNet, DBGANet, TSegl.ab). To ensure fair comparison, all
methods were retrained and evaluated on the same dataset.

From Table 1, we can observe that our proposed GFACNet significantly outperforms existing methods
on all evaluation metrics. Compared to the current best performer SGTNet [36], GFACNet improves
OA, mloU, and mAcc by 1.54%, 2.87%, and 0.55%, respectively. When compared with the recently
proposed DBGANet [29] and TSegLab [30], our method achieves improvements of 1.32%/1.89%
and 0.98%/1.64% in OA and mloU, respectively, demonstrating superior performance over these
contemporary approaches. Notably, the Chamfer distance evaluation demonstrates our method’s
superior boundary precision, achieving 0.241 mm compared to SGTNet’s 0.285 mm, DBGANet’s
0.267 mm, and TSeglLab’s 0.273 mm, representing a 15.4%, 9.7%, and 11.7% improvement in boundary
accuracy, respectively.

Our method achieves 4.73 G FLOPs while delivering 88.15% mloU, significantly outperform-
ing competing methods: 47.0% and 51.1% FLOPs reduction compared to TSGCNet and SGTNet
respectively, 43.2% reduction compared to DBGANet, and 74.4% reduction compared to Point Trans-
former while achieving higher accuracy. Notably, although TSegl.ab achieves competitive accuracy
(86.51% mloU), our method outperforms it by 1.64% while requiring 38.5% fewer FLOPs (4.73 G
vs. 7.69 G), demonstrating better efficiency. These improvements are statistically significant, demonstrat-
ing the effectiveness of our method. Furthermore, GFACNet also shows advantages in inference speed,
being approximately 22% faster than SGTNet and 31% faster than DBGANet, which is particularly
important for clinical applications. Table 1 shows a comprehensive performance comparison of different
methods on the test set, including segmentation accuracy and computational efficiency. To analyze the
performance of different methods on various tooth categories in more detail, Table 2 shows the loU
values for all tooth categories.

Table 2 shows that GFACNet achieves the best results across almost all tooth categories. Particularly
in challenging anterior regions (such as T13/T43) and certain posterior regions (such as T15/T45), our
method improves over SGTNet by 3.2%/2.4% and 5.6%/7.0%, respectively. Compared to DBGANet,
our method shows consistent improvements across all tooth categories, with particularly notable gains
in challenging regions such as T15/T45 (3.2%/3.9%) and T28/T38 (0.9%/1.3%). Similarly, when
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compared to TSeglab, GFACNet demonstrates superior performance in complex tooth types, especially
for T15/T45 (2.4%/3.3%) and boundary-sensitive regions. This indicates that our method has better
adaptability when processing different types of teeth.

Table 1. Quantitative comparison with existing methods (5-fold cross-validation average

results).
Method OA (%) mloU (%) mAcc (%) CD (mm) Params (M) FLOPs (G) Inference time (ms)
PointNet 90.29 £ 0.04 75.68+0.16 82.08+0.21 0.453 1.82 2.84 47
PointNet++ 80.61 +0.22 56.61 £0.47 69.59 +0.44 0.521 0.97 3.67 53
Point Transformer  88.13 + 042 70.60 £ 0.73  78.55+0.81 0.389 19.39 18.45 65
MeshSegNet 88.30+0.15 67.89+0.29 76.05+0.19 0.367 1.79 5.21 78
TSGCNet 93.76 £ 0.09 86.53 +0.25 88.38+0.15 0.298 4.13 8.92 52
SGTNet 9324 £0.05 8528 +0.09 87.85+0.08 0.285 5.90 9.67 49
DBGANet 9346 +0.11 86.26+0.17 88.15+0.13 0.267 6.35 8.33 55
TSegLab 93.80 £ 0.08 86.51 +0.12 88.42+0.10 0.273 5.87 7.69 51
GFACNet (Ours) 9478 £ 0.07 88.15+0.13 88.93+0.11 0.241 5.09 4.73 38

Table 2. Detailed IoU values comparison for all tooth categories (%).
Tooth category DBGANet TSeglLab PointNet PointNet++ MeshSegNet TSGCNet SGTNet GFACNet

T11/T41 84.8/86.2  85.3/86.7 73.4/74.2 56.8/52.5 60.8/55.2 83.2/85.7 83.4/85.3 86.7/87.9
T12/T42 84.5/85.1 84.9/85.6 72.8/72.5 55.2/54.3 62.5/57.1 82.8/84.6  83.0/84.9 86.1/86.4
T13/T43 91.2/91.8 91.6/92.1 70.6/84.3 56.6/59.4 65.7/71.5 90.9/89.2  89.5/91.0 92.7/93.4
T14/T44 86.8/88.5  87.1/89.0 71.5/79.6 52.4/57.0 66.5/73.8 84.3/86.1 85.2/87.1 88.3/90.7
T15/T45 81.3/85.9  82.1/86.5 69.1/77.7 47.8/55.4 67.4/75.7 78.1/83.7 78.9/82.8 84.5/89.8
T16/T46 90.5/86.8  91.1/87.3 80.2/78.5 60.2/62.1 83.7/80.9 88.2/81.5 89.4/85.2 92.0/88.7
T17/T47 92.1/89.2  92.5/89.8 83.6/80.8 64.4/65.8 86.3/83.1 90.1/83.0 91.6/87.9 93.1/90.5
T18/T48 83.7/82.8  84.2/83.5 77.2/76.0 58.1/60.2 76.5/74.2 79.8/77.2 82.3/81.4 85.1/84.2
T21/T31 92.5/873 93.0/87.9 84.1/74.4 63.5/51.0 71.2/74.9 91.8/87.1 92.0/85.0 93.6/88.7
T22/T32 91.2/86.1  91.7/86.8 79.8/73.2 61.3/52.7 70.3/72.5 89.4/88.2  90.3/84.9 92.3/87.6
T23/T33 92.8/93.3  93.2/93.7 80.6/80.2 54.1/56.5 64.6/83.3 91.9/92.2  90.8/92.2 93.8/94.5
T24/T34 89.8/90.9  90.3/91.4 78.3/76.5 53.3/53.8 65.2/72.0 88.7/90.3 87.5/89.6 91.2/92.1
T25/T35 92.1/85.6  92.7/86.2 74.0/78.2 56.0/52.0 70.0/78.4 90.3/82.7 91.1/85.0 93.5/86.9
T26/T36 87.9/86.5  88.5/87.1 77.5/75.8 58.7/59.6 77.2/76.8 84.9/82.0 86.7/85.5 89.3/87.8
T27/T37 83.2/86.9  83.7/87.5 76.4/82.8 59.0/61.5 75.0/81.6 81.8/80.3 82.3/85.8 84.1/88.3
T28/T38 81.8/83.3  82.3/83.8 74.5/77.1 56.3/58.9 73.6/78.2 78.5/76.9  80.1/82.4 82.7/84.6

Figure 3 presents a visual comparison of segmentation results between our GFACNet and other
methods. As shown, our method produces results closest to the ground truth across three different
dental models. Particularly in tooth boundary regions and areas with complex morphology, GFACNet
demonstrates superior accuracy. In contrast, PointNet shows significant limitations in detail processing,
while MeshSegNet and TSGCNet, though improved, still exhibit segmentation errors at certain tooth
junctions. SGTNet performs well overall but lacks precision on some teeth with complex morphology.
DBGANet and TSegl.ab, while achieving competitive results, occasionally exhibit over-segmentation
in tightly crowded regions and under-segmentation in areas with subtle geometric variations. These
visualization results further validate the superior performance of our method in 3D dental segmentation
tasks.
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Figure 3. Qualitative comparison of segmentation results.

Figure 4 provides zoomed-in comparisons of challenging regions to better demonstrate GFACNet’s
advantages. The left case shows crowded anterior teeth where DBGANet exhibits boundary ambiguity,
while GFACNet maintains precise boundary delineation through curvature-aware sampling. The
right case presents a malformed tooth where DBGANet produces fragmented segmentation, whereas
GFACNet achieves anatomically consistent boundaries through anatomical constraints.

DBGANet GFACNet DBGANet GFACNet

Figure 4. Zoomed-in comparison in challenging regions. Left: Crowded teeth. Right:
Malformed tooth. Red boxes indicate magnified regions. GFACNet demonstrates superior
boundary accuracy and anatomical consistency.

4.3. Ablation studies

To validate the effectiveness of each component in GFACNet, we conducted comprehensive ablation
experiments examining both segmentation performance and computational efficiency. We designed the
following variants for comparison:

1) Baseline: Using original point features and traditional GCN structure without specialized modules.

2) GFACNet w/ FPS+KNN: Replacing the MAGC module with traditional farthest point sampling
(FPS) and fixed K-Nearest Neighbors (KNN).

3) GFACNet w/ self-attention: Replacing the MST module’s multi scale feature integration with
standard self-attention mechanism.
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4) GFACNet w/ GAT: Replacing the MST module with graph attention network (GAT).
5) GFACNet w/ CE loss: Using only cross-entropy loss without additional anatomical constraints.

6) GFACNet (full): Complete model.

4.3.1. Performance analysis

The ablation study results in Tables 3 and 4 demonstrate that each innovative component of GFACNet
contributes significantly to both segmentation accuracy and computational efficiency. The baseline
variant, while capable of basic dental segmentation, exhibits limited accuracy with an mloU of 84.61%.
This establishes the necessity for specialized architectural designs in dental segmentation tasks.

MAGC module effectiveness: Replacing our MAGC module with traditional FPS+KNN sampling
leads to notable performance degradation, with mloU dropping from 88.15% to 86.25%. More impor-
tantly, this traditional approach significantly increases computational cost, requiring 5.91 G FLOPs
compared to our method’s 4.73 G FLOPs (20.0% reduction) and consuming 10.84 GB GPU memory
versus 9.16 GB (15.5% improvement). This demonstrates that our morphology-aware adaptive graph
construction not only improves segmentation accuracy by focusing on geometrically important regions
such as dental boundaries, but also enhances computational efficiency.

MST module optimization: Our multi scale transformer feature integration proves superior to both
standard self-attention and GAT approaches. The MST module achieves 88.15% mloU compared to
86.73% with self-attention and 87.32% with GAT, while maintaining competitive computational cost
(4.73 G FLOPs vs. GAT’s 5.47 G FLOPs). This indicates that multi scale feature integration is crucial
for simultaneously understanding local details and global structures in complex dental morphologies.

HACL Impact: The hierarchical anatomical constraint loss provides significant accuracy improve-
ment, boosting mloU from 87.69% to 88.15% with minimal computational overhead. Since HACL
primarily affects the training phase through anatomical constraints rather than inference computation, it
delivers improved segmentation consistency for dental anatomical structures without compromising
efficiency.

To further validate the effectiveness of individual components within the MAGC module, we
conducted detailed ablation studies on its two key subcomponents: edge feature representation and
adaptive feature aggregation. Table 5 presents the results of this analysis.

As shown in Table 5, both subcomponents contribute significantly to the overall performance.
Removing the edge feature representation results in a 0.46% drop in mloU, demonstrating its importance
in capturing geometric relationships at tooth boundaries. The adaptive feature aggregation mechanism,
when removed, causes a 0.15% mloU decrease, indicating its role in selectively weighting neighbor
contributions. The full MAGC module, combining both components, achieves optimal performance
across all metrics, validating our design choices.

4.3.2. Computational efficiency analysis

The efficiency analysis reveals that each component contributes to both accuracy and computational
optimization. Our complete GFACNet achieves the best performance while requiring only 4.73 G
FLOPs and 9.16 GB GPU memory, with an inference time of 38 ms. This represents substantial
improvements over alternative approaches, particularly in handling challenging cases such as malformed
teeth and complex dental boundaries where traditional methods often fail.
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The results confirm that our architectural innovations work synergistically—the MAGC module’s
intelligent sampling reduces computational load while preserving critical geometric information, the
MST module efficiently integrates multi scale features, and the HACL ensures anatomically consistent
results without inference overhead.

Table 3. Ablation study results with computational efficiency analysis.

Method OA (%) mloU (%) mAcc (%) FLOPs (G) GPU memory (GB) Time (ms)
Baseline 92.38 84.61 86.27 4.89 8.73 42
GFACNet w/ FPS+KNN 93.42 86.25 87.45 591 10.84 46
GFACNet w/ Self-attention 93.85 86.73 87.96 5.28 9.45 43
GFACNet w/ GAT 94.10 87.32 88.24 5.47 9.72 44
GFACNet w/ CE Loss 94.45 87.69 88.61 4.73 9.16 38
GFACNet (Full) 94.78 88.15 88.93 4.73 9.16 38

Table 4. Component-wise performance and efficiency comparison.

Component comparison OA (%) mloU (%) mAcc (%) FLOPs(G) Memory (GB) Time (ms)
Standard graph construction 93.42 86.25 87.45 591 10.84 46
MAGC (Ours) 94.12 87.58 88.21 4.85 9.22 39
Vanilla transformer 93.85 86.73 87.96 5.28 9.45 43
MST (Ours) 94.31 87.94 88.67 4.79 9.18 39
Cross-entropy loss 94.45 87.69 88.61 4.73 9.16 38
HACL (Ours) 94.78 88.15 88.93 4.73 9.16 38
Table 5. Ablation study on MAGC sub-components.
Configuration OA (%) mloU (%) mAcc (%) CD (mm)
w/o Edge feature 93.89 87.12 88.35 0.259
w/o Adaptive aggregation 94.05 87.43 88.52 0.253
MAGC (Full) 94.12 87.58 88.21 0.248

4.3.3. Comparison with alternative multi scale fusion strategies

To validate the superiority of our MST module, we compared it against classical multi scale fusion
architectures: feature pyramid network (FPN) with top-down pathways and UNet++ with nested skip
connections. We replaced MST with these methods while keeping MAGC and HACL unchanged.
Table 6 presents the quantitative comparison.

As shown in Table 6, MST outperforms FPN by 1.26% in mloU with 8.7% lower FLOPs, and
surpasses UNet++ by 0.94% in mIoU with 16.1% fewer FLOPs. The inference time is also 13.6% and
19.1% faster than FPN and UNet++ respectively.

The superiority stems from architectural differences: FPN’s sequential top-down processing limits
cross-scale information flow, while UNet++’s dense connections introduce computational redundancy.
Our MST enables simultaneous interaction across all scales through unified cross-scale attention
(Egs (3.16)—(3.20)), capturing richer dependencies while maintaining efficiency for complex dental
geometry segmentation.
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Table 6. Performance comparison of different multi scale fusion strategies.
Fusion strategy OA (%) mloU (%) mAcc (%) FLOPs (G) Time (ms)

FPN 93.96 86.89 88.07 5.18 44
UNet++ 94.08 87.21 88.31 5.64 47
MST (Ours) 94.78 88.15 88.93 4.73 38

Table 7. Analysis of attention intensity in different regions.

Scale Boundary Non-boundary Ratio
ri =0.03 0.78 0.45 1.73
r, =0.06 0.72 0.51 1.41
r; =0.12 0.59 0.54 1.09
rs =024 053 0.52 1.02

4.4. Attention mechanism analysis

To gain deeper insights into the role of the attention mechanism in the MST module, we analyzed the
attention intensity at different scales, focusing on dental boundary regions and non-boundary regions.
The results are shown in Table 7.

Table 7 shows that attention at smaller scales has significantly higher intensity in boundary regions
compared to non-boundary regions, with a ratio of 1.73 at the smallest scale (r; = 0.03). This ratio
decreases as the scale increases, becoming nearly equal (1.02) at the largest scale (r4 = 0.24). These
findings indicate that the MST module automatically focuses on key regions in segmentation, with
smaller scales attending to detailed boundary features and larger scales capturing overall tooth structures.
This adaptive attention allocation mechanism is a key factor enabling GFACNet to accurately process
complex dental boundaries while maintaining global structural awareness.

To further validate the training stability of the dynamic KNN parameters o and S, we visualize
their learning trajectories throughout the training process in Figure 5. As shown, both parameters
converge smoothly after approximately 150 epochs, with « stabilizing around 22.3 and 8 around 11.7.
The convergence behavior aligns well with the validation mIoU improvement, demonstrating that the
learned parameters effectively capture optimal neighborhood size allocation based on local geometric
complexity. Notably, the parameters exhibit stable convergence without oscillation, confirming the
robustness of our adaptive graph construction mechanism.

4.5. Comparison of different sampling strategies

To further validate the effectiveness of the sampling strategy in the MAGC module, we compared the
impact of different sampling methods on segmentation performance, with results shown in Table 8.

As shown in Table 8, our proposed curvature-aware sampling strategy significantly outperforms
other sampling methods under the same number of sampling points (1500). The mIoU of our MAGC
module reaches 89.87%, which is 4.14%, 2.56%, and 1.45% higher than random sampling, FPS, and
density-based sampling, respectively. Notably, even compared to FPS with twice the number of sampling
points (3000), our method still achieves better segmentation performance (89.87% vs. 88.95%) while
substantially reducing computational overhead (38 ms vs. 58 ms inference time and 10,719 MB vs.
16,573 MB GPU memory).
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Figure 5. Learning trajectories of dynamic KNN parameters « and 8 during training.

Table 8. Performance comparison of different sampling strategies.

Sampling strategy Points mloU (%) Memory (MB) Time (ms)

Random 1500 85.73 9782 37
FPS 1500 87.31 10,215 38
Density-based 1500 88.42 10,564 38
Curvature-aware 1500 89.87 10,719 38
FPS 3000 88.95 16,573 58

This demonstrates the efficiency of the MAGC module, which intelligently allocates computational
resources to regions with rich geometric information while avoiding redundant computation. The results
indicate that sampling strategy has a significant impact on 3D dental segmentation performance, and our
proposed MAGC module effectively improves both segmentation accuracy and computational efficiency
through curvature-aware sampling.

4.6. Parameter sensitivity analysis

To validate the robustness of our method to hyperparameter variations and justify our parameter
choices, we conducted sensitivity analysis on key parameters including the curvature smoothing factor
€, dynamic KNN range, number of scales in MST module, attention heads, and loss weights in HACL
module. The results are presented in Table 9.

The sensitivity analysis demonstrates that our parameter choices are well-justified. The curvature
smoothing factor € = 0.01 achieves optimal performance by effectively balancing noise reduction and
geometric feature preservation. Values too small (e < 0.01) fail to adequately smooth geometric noise,
while larger values (€ > 0.02) over-smooth important geometric details. Similarly, the dynamic KNN
range K, = 16, K., = 48 provides the best trade-off between local detail capture and computational
efficiency.

For the MST module, using 4 scales (S = 4) achieves the best performance, as it effectively captures

Electronic Research Archive Volume 33, Issue 12, 7736-7762.



7756

multi scale information from local details to global structure. Fewer scales (2 and 3) miss important
geometric variations, while more scales (5) introduce redundant information without significant gains.
The choice of 8 attention heads balances model capacity and computational cost, with performance
degrading slightly at both lower (4, 6) and higher (12) values.

Table 9. Parameter sensitivity analysis.
Parameter ~ Setting Value OA (%) mloU (%) mAcc (%)

Setting 1 0.005 9452  87.89 88.67
Setting2  0.008 9471  88.02 88.81
€ Ours 0.01 9478  88.15 88.93
Setting 3 0.02 9469  87.98 88.79
Setting4  0.05 94.43  87.66 88.45
Setting 5 [8,24] 9421  87.43 88.29
Kramge  SCUing6  [12.36] 9456 8792 88.71
Ours [16,48] 9478  88.15 88.93
Setting 7 [20,60] 94.69  87.98 88.79
Setting 8 2 9423 8731 88.42
Sealeg g Scttingd 3 9451  87.76 88.68
Ours 4 9478  88.15 88.93
Setting 10 5 94.61  87.89 88.74
Setting 11 4 9445  87.68 88.59
Setting 12 6 94.62 8791 88.78
Attnheads 8 9478  88.15 88.93
Setting 13 12 9471  87.98 88.82
Setting 14 03,02 9459  87.81 88.71
e Setting 15 0.4,0.3 94.67  87.93 88.79
12 Ours 05,03 9478  88.15 88.93
Setting 16 0.6,0.4 94.63  87.87 88.76

Regarding the HACL loss weights, our selection of 4; = 0.5 and A, = 0.3 provides optimal balance
between centroid and shape constraints. Lower values (1; = 0.3 —0.4) underweight anatomical guidance,
while higher values (4; = 0.6, 1, = 0.4) over-constrain the model, limiting its flexibility in handling
anatomical variations. These results confirm that our hyperparameter configuration is robust and
well-tuned for dental segmentation tasks.

4.7. Failure case analysis

While GFACNet achieves strong overall performance, analyzing failure cases reveals important
limitations. Figure 6 illustrates two representative failure modes observed in our validation set.

The left case shows severe dental crowding with overlapping anterior teeth. GFACNet’s prediction
exhibits boundary ambiguity in the overlapped region (marked with red circles), where the model
struggles to accurately delineate the junction between tightly crowded teeth. This under-segmentation
occurs because extreme crowding (< 0.5 mm inter-tooth spacing) reduces geometric distinctiveness.
The right case presents extensive dental restorations (marked with red circles). The metallic or ceramic
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restorations introduce artificial geometric patterns that deviate from natural tooth morphology, causing
the MAGC module to incorrectly interpret restoration-induced surface variations as tooth boundaries,
leading to segmentation inconsistencies.

Quantitatively, these challenging scenarios account for 8.3% of validation cases where mIoU drops
below 80%. Extreme crowding cases (2.1% of dataset) achieve 76.4% mloU, while extensive restoration
cases (6.2% of dataset) achieve 78.9% mloU, compared to our overall 88.15% performance.

Despite these limitations, GFACNet maintains clinically acceptable performance (> 85% mloU)
for 91.7% of cases, confirming its practical utility while highlighting specific scenarios requiring
human oversight.

Ground Truth GFACNet Ground Truth GFACNet

Figure 6. Representative failure cases of GFACNet. Left: Severe crowding causes boundary
detection failures (red circles). Right: Extensive restorations introduce segmentation inconsis-
tencies (red circles). Ground truth vs. GFACNet prediction for each case.

4.8. Clinical application analysis

Beyond segmentation accuracy, practical clinical deployment requires consideration of computational
efficiency and workflow integration.

Our method’s computational efficiency directly benefits clinical practice. With 4.73 G FLOPs and
38 ms inference time, GFACNet enables real-time processing during patient consultations, completing
dental arch segmentation within seconds. The reduced computational requirements allow deployment
on mid-range workstations (e.g., NVIDIA RTX 3060), lowering hardware barriers for smaller clinics
compared to methods like Point Transformer (18.45 G FLOPs) or SGTNet (9.67 G FLOPs).

GFACNet integrates seamlessly with existing workflows. It accepts standard mesh formats (STL,
OBJ, PLY) from mainstream intraoral scanners including Primescan (Dentsply), Trios3 (3Shape), and
iTero Element, requiring no additional preprocessing. The FDI-based output (Figure 2) enables direct
use in orthodontic appliance design, treatment simulation, and patient communication tools.

The method handles common challenging scenarios effectively, including missing teeth, malforma-
tions, and crowding, as demonstrated by strong performance on difficult categories (T15/T45, T28/T38).
However, performance may degrade with extensive dental restorations or metal artifacts, which were
underrepresented in training data. Future work will address these limitations through dataset expansion
and clinic-specific adaptation techniques.

5. Conclusions

In this paper, we presented GFACNet, a novel deep learning approach for 3D dental scan segmentation
and labeling that integrates geometric features and anatomical constraints. Our method tackles the
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challenges of complex tooth morphology, ambiguous gingival boundaries, and patient-specific anomalies
through a structured three-stage pipeline.

First, our morphology-aware graph construction mechanism dynamically adapts to tooth geometry,
focusing computational resources on critical regions such as tooth boundaries. Second, our multi scale
transformer feature integration effectively captures both local details and global context, enabling pre-
cise crown delineation. Finally, our hierarchical anatomical constraint loss incorporates dental domain
knowledge into the learning process, producing segmentation results that respect natural tooth arrange-
ments and anatomical properties. Extensive experiments on the Teeth3DS benchmark demonstrated that
GFACNet significantly outperforms state-of-the-art methods across all evaluation metrics. Particularly,
our approach achieved higher accuracy while requiring approximately 40% fewer sampling points,
making it more computationally efficient for clinical applications. The performance advantages were
especially pronounced when handling challenging cases such as crowded dentition, malformed teeth,
and missing teeth, which are common in clinical practice. Future research directions include extending
the model to handle additional clinical scenarios, such as dental implants and orthodontic appliances, as
well as exploring the integration of our method with other dental imaging modalities for comprehensive
treatment planning. While GFACNet is specifically designed for dental segmentation, the core principles
of our MAGC mechanism—curvature-guided adaptive sampling and dynamic neighborhood construc-
tion—have potential applications in other non-rigid surface segmentation tasks. For instance, organs
with complex geometries (e.g., brain cortex, cardiac structures) or irregular anatomical structures (e.g.,
bone surfaces, vascular networks) could benefit from morphology-aware graph construction. Future
work will explore extending this approach to broader medical imaging domains and general 3D shape
analysis tasks.
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