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Abstract: In this paper, we use the elementary and analytic methods to investigate the computational
problem of quadratic character sums related to quaternary and quintuple symmetric polynomials modulo
a prime p, respectively. By applying properties of Gauss sums and those of third-order characters
modulo p, we establish some identities for such quadratic character sums in the cases of (3, p − 1) = 1
and (3, p − 1) = 3.
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1. Introduction and main results

The study of character sums occupies a central position in analytic number theory, with profound
connections to L-functions, exponential sums, and the distribution of prime numbers. Among these, quadratic
character sums, intimately related to Legendre’s symbol, serve as fundamental objects of investigation.

For an odd prime p and any integer n, Legendre’s symbol is defined as follows:

(
n
p

)
=



1, if n is a quadratic residue modulo p,

−1, if n is a quadratic non-residue modulo p,

0, if n ≡ 0 mod p.

It’s well-known that Legendre’s symbol
(

n
p

)
is a completely multiplicative function of n that is

periodic with period p and vanishes when p | n. Consequently, it is usually expressed as
(

n
p

)
= χ2(n),

where χ2 is a Dirichlet character modulo p. For this reason, Legendre’s symbol is called the quadratic
character modulo p.
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Legendre’s symbol plays an indispensable role in number theory. Up to now, the theoretical system
of Legendre’s symbol has been well-established, such as the Euler’s criterion, Gauss’s lemma, law
of quadratic reciprocity, and so on. For more properties of Legendre’s symbol, one can refer to
References [1–7].

A particularly rich line of inquiry involves estimating and explicitly calculating character sums
involving polynomials in multiple variables. For the quadratic character sum modulo a prime p, A.
Weil [8] first estimated that

p−1∑
b=1

(
b2 − a2

p

) (
b2 − 1

p

)
≤ 3
√

p, a2 . 1 mod p.

Y. He and Q. Y. Liao [9] investigated two variable quadratic character sums and presented the
following identities:

p−2∑
a=2

p−1∑
b=1

(
a2 − b2

p

) (
b2 − 1

p

)
=


10 − 2p, if p ≡ 1 mod 4,

2p − 6, if p ≡ 3 mod 4.

B. Nilanjan et al. [10] generalized above results to four variables and they got

p−2∑
a=2

p−1∑
b=1

p−2∑
c=2

p−1∑
d=1

(
a2 − b2

p

) (
b2 − 1

p

) (
c2 − d2

p

) (
d2 − 1

p

) (
a2c2 − 1

p

)
= O(p2).

It is noteworthy that quadratic character sums associated with symmetric polynomials often yield
superior results, which are attributed to their intrinsic symmetry. A notable advancement in this direction
was made by Y. Y. Meng [11], who considered quadratic character sums related to ternary symmetric
polynomials modulo p. By the elementary and analytic methods, she drew the following conclusions:
If p is an odd prime with (3, p − 1) = 1, then

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

(
a4bc + b4ac + c4ab + abc

p

)
= −

(
−1
p

)
· p.

If p is an odd prime with p ≡ 1 mod 6, and 2 is a cubic residue modulo p, then

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

(
a4bc + b4ac + c4ab + abc

p

)
=

(
−1
p

)
· (9pd − 5p − d2).

If p is an odd prime with p ≡ 1 mod 6, and 2 is a cubic non-residue modulo p, then

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

(
a4bc + b4ac + c4ab + abc

p

)
= −

1
2

(
−1
p

)
· (9pd + 9pb + 10p + 2d2),

or
p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

(
a4bc + b4ac + c4ab + abc

p

)
= −

1
2

(
−1
p

)
· (9pd − 9pb + 10p + 2d2),
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where

4p = d2 + 27b2 (d, b ∈ Z), d is uniquely determined by d ≡ 1 mod 3. (1.1)

The validity of (1.1) can be found in Reference [12].
While Meng’s work provided a breakthrough for the ternary case and noted the potential extensibility

of the methods to multivariate symmetric polynomials f (x1, · · · , xk), the explicit calculation for higher-
dimensional cases remained an open challenge. The primary obstacle lies in the rapidly escalating
computational complexity with the addition of more variables, which has prevented the derivation of
concrete identities.

This work substantially generalizes Meng’s results on ternary polynomials and extends the study of
quadratic character sums to higher-dimensional symmetric polynomials. We overcome the computational
challenges in multivariate polynomials, providing the explicit identities for quaternary and quintuple cases.

In this paper, we focus on the calculating problem of the quadratic character sums related to the
quaternary and quintuple symmetric polynomials modulo a prime p. By applying the properties of
classical Gauss sums and those of third-order characters modulo p, we obtain the following results.

Theorem 1.1. Let p be an odd prime, then we have

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(
a4bcd + b4acd + c4abd + d4abc + abcd

p

)
=


p2, if p ≡ 5 mod 6,

3p · (7p + 5d2), if p ≡ 1 mod 6,

where d is defined by (1.1).

Theorem 1.2. Let p be an odd prime with (3, p − 1) = 1, then we have

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
f=1

(
a4bcd f + b4acd f + c4abd f + d4abc f + f 4abcd + abcd f

p

)
= −p2.

Theorem 1.3. Let p be an odd prime with (3, p − 1) = 3. If 2 is a cubic residue modulo p, then we have

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
f=1

(
a4bcd f + b4acd f + c4abd f + d4abc f + f 4abcd + abcd f

p

)
=3p · (−7p + 19dp + 2d3 − 5d2),

where d is defined by (1.1).

Theorem 1.4. Let p be an odd prime with (3, p − 1) = 3. If 2 is a cubic non-residue modulo p, then we
have

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
f=1

(
a4bcd f + b4acd f + c4abd f + d4abc f + f 4abcd + abcd f

p

)
=3p ·

(
−7p −

19
2

dp +
81
2

bp − 162b3 − d3 − 5d2
)
,
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or

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
f=1

(
a4bcd f + b4acd f + c4abd f + d4abc f + f 4abcd + abcd f

p

)
=3p ·

(
−7p −

19
2

dp −
81
2

bp + 162b3 − d3 − 5d2
)
,

where d and b are defined by (1.1).

Remark. The identities established in Theorem 1.4 contain a sign ambiguity. This is due to the
explicit value of τ3(ψ) − τ3(ψ), whose sign cannot be uniformly determined by the methods employed
in this paper. Consequently, Theorem 1.4 yields two possible values.

Notations. Throughout the paper, the symbol (a, b) always denotes the greatest common divisor of a
and b. The letters d and b are always defined by (1.1). We let χ2 denote the Legendre’s symbol modulo
p; that is, χ2(n) =

(
n
p

)
.

2. Preliminary lemmas

To complete the proofs of our theorems, several simple lemmas are necessary. In this section, we
will use many properties of the classical Gauss sums and those of third-order character modulo p. All
of these can be found in References [1, 13], hence the related details will not be repeated here. To begin,
we have the following lemmas.

Lemma 2.1. Let p be an odd prime with p ≡ 1 mod 3. Then for any third–order character ψ modulo p,
we have the identity

τ3(ψ) + τ3(ψ) = dp,

where τ(χ) =
∑p−1

a=1 χ(a)e( a
p ) denotes the classical Gauss sum with any Dirichlet character χ modulo p,

and d is defined by (1.1).

Proof. See W. P. Zhang and J. Y. Hu [14] or B. Berndt and R. Evans [15]. □

Lemma 2.2. Let p be an odd prime with p ≡ 1 mod 3. Then for any third-order character ψ modulo p,
we have

τ3(ψ) − τ3(ψ) = ±3
√

3pb · i, (2.1)

where i2 = −1. Moreover, if 2 is a cubic non-residue modulo p, then

ψ(2)τ3(ψ) + ψ(2)τ3(ψ) = −
dp
2
±

9bp
2
, (2.2)

where τ(χ) =
∑p−1

a=1 χ(a)e( a
p ) denotes the classical Gauss sum with any Dirichlet character χ modulo p,

and d and b are defined by (1.1).

Proof. Identities (2.1) and (2.2) are given by Eqs (47) and (48) of Y. Y. Meng [11], respectively. □

Electronic Research Archive Volume 33, Issue 12, 7491–7508.



7495

Lemma 2.3. If p is a prime with (3, p − 1) = 3, then for the quadratic character χ2 and any third-order
character ψ modulo p, we have

τ(χ2ψ) =
ψ(2) · τ2(ψ) · τ(χ2)

p
.

Proof. See G. H. Chen and W. P. Zhang [16]. □

3. Proof of Theorem 1.1

In this section, we consider two cases: (3, p − 1) = 1 and (3, p − 1) = 3. First, by the properties of
classical Gauss sums, we have

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(
a4bcd + b4acd + c4abd + d4abc + abcd

p

)

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(
abcd

p

) (
a3 + b3 + c3 + d3 + 1

p

)

=
1

τ(χ2)

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(
abcd

p

)
·

p−1∑
m=1

χ2(m)e
(
m(a3 + b3 + c3 + d3 + 1)

p

)

=
1

τ(χ2)

p−1∑
m=1

χ2(m)e
(
m
p

)
·

 p−1∑
a=1

χ2(a)e
(
ma3

p

)
4

=
1

τ(χ2)

p−1∑
m=1

χ2(m)e
(
m
p

)
·

∣∣∣∣∣∣∣
p−1∑
a=1

χ2(a3)e
(
ma3

p

)∣∣∣∣∣∣∣
4

. (3.1)

3.1. On the case of (3, p − 1) = 1

If p is an odd prime with (3, p − 1) = 1, then p ≡ 5 mod 6. Noting that when a passes through a
reduced residue modulo p, a3 also passes through a reduced residue modulo p, so we can deduce

p−1∑
a=1

χ2(a3)e
(
ma3

p

)
=

p−1∑
a=1

χ2(a)e
(
ma
p

)
= τ(χ2) · χ2(m). (3.2)

Combining (3.1), (3.2), and |τ(χ2)| =
√

p, we can easily get

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

(
a4bcd + b4acd + c4abd + d4abc + abcd

p

)

=
1

τ(χ2)

p−1∑
m=1

χ2(m)e
(
m
p

)
· |τ(χ2) · χ2(m)|4

=
p2

τ(χ2)

p−1∑
m=1

χ2(m)e
(
m
p

)
= p2. (3.3)

Electronic Research Archive Volume 33, Issue 12, 7491–7508.
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3.2. On the case of (3, p − 1) = 3

If p is an odd prime with (3, p−1) = 3, then p ≡ 1 mod 6. Note that for any integer a with (a, p) = 1,
ψ(a) and ψ(a) are third roots of unity. Therefore,

1 + ψ(a) + ψ(a) =
{

3, if a is a cubic residue modulo p,
0, if a is a cubic non-residue modulo p.

(3.4)

For the third-order characters ψ and ψ modulo p, we have ψ(−1) = ψ(−1) = 1, hence τ(ψ) = τ(ψ),
τ(ψ) · τ(ψ) = p. Furthermore, by (3.4) and Lemma 2.3, one has∣∣∣∣∣∣∣

p−1∑
a=1

χ2(a3)e
(
ma3

p

)∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

p−1∑
a=1

(1 + ψ(a) + ψ(a)) · χ2(a)e
(
ma
p

)∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
p−1∑
a=1

χ2(a)e
(
ma
p

)
+

p−1∑
a=1

χ2(a)ψ(a)e
(
ma
p

)
+

p−1∑
a=1

χ2(a)ψ(a)e
(
ma
p

)∣∣∣∣∣∣∣
=

∣∣∣τ(χ2)χ2(m) + τ(χ2ψ) · χ2(m)ψ(m) + τ(χ2ψ) · χ2(m)ψ(m)
∣∣∣

= |τ(χ2)χ2(m)| ·
∣∣∣∣∣1 + 1

p
· (ψ(2)ψ(m) · τ2(ψ) + ψ(2)ψ(m) · τ2(ψ))

∣∣∣∣∣
=
√

p ·
[
1 +

1
p
· (ψ(2)ψ(m) · τ2(ψ) + ψ(2)ψ(m) · τ2(ψ))

]
. (3.5)

Note that

ψ2 = ψ, ψ
2
= ψ, ψ3(2) = ψ

3
(2) = 1, ψ3(m) = ψ

3
(m) = 1. (3.6)

Then we have 
[
ψ(2)ψ(m) · τ2(ψ)

]2
= ψ(2)ψ(m) · τ4(ψ),[

ψ(2)ψ(m) · τ2(ψ)
]2
= ψ(2)ψ(m) · τ4(ψ),

(3.7)


[
ψ(2)ψ(m) · τ2(ψ)

]3
= τ6(ψ),[

ψ(2)ψ(m) · τ2(ψ)
]3
= τ6(ψ),

(3.8)


[
ψ(2)ψ(m) · τ2(ψ)

]4
= ψ(2)ψ(m) · τ8(ψ),[

ψ(2)ψ(m) · τ2(ψ)
]4
= ψ(2)ψ(m) · τ8(ψ),

(3.9)

and [
ψ(2)ψ(m) · τ2(ψ)

]
·
[
ψ(2)ψ(m) · τ2(ψ)

]
= τ2(ψ) · τ2(ψ) = |τ(ψ)|4 = p2. (3.10)

Combining (3.7), (3.10), and τ(ψ) · τ(ψ) = p, we can obtain[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]2
= ψ(2)ψ(m)τ4(ψ) + ψ(2)ψ(m)τ4(ψ) + 2p2. (3.11)

Electronic Research Archive Volume 33, Issue 12, 7491–7508.
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By Lemma 2.1, (3.6)–(3.8), and (3.10), we have[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]3

=τ6(ψ) + τ6(ψ) + 3ψ(2)ψ(m)τ4(ψ) · ψ(2)ψ(m)τ2(ψ) + 3ψ(2)ψ(m)τ2(ψ) · ψ(2)ψ(m)τ4(ψ)

=(τ3(ψ) + τ3(ψ))2 − 2τ3(ψ) · τ3(ψ) + 3τ2(ψ)τ2(ψ) ·
[
ψ

2
(2)ψ2(m)τ2(ψ) + ψ2(2)ψ

2
(m)τ2(ψ)

]
=d2 p2 − 2p3 + 3p2 ·

[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]
. (3.12)

It follows from (3.6)–(3.10) that[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]4

=ψ(2)ψ(m) · τ8(ψ) + ψ(2)ψ(m) · τ8(ψ) + 6ψ(2)ψ(m)τ4(ψ) · ψ(2)ψ(m)τ4(ψ)

+ 4ψ(2)ψ(m) · τ6(ψ)τ2(ψ) + 4ψ(2)ψ(m) · τ6(ψ)τ2(ψ)

=ψ(2)ψ(m) · τ8(ψ) + ψ(2)ψ(m) · τ8(ψ) + 6τ4(ψ) · τ4(ψ)

+ 4τ2(ψ)τ2(ψ) ·
[
ψ(2)ψ(m) · τ4(ψ) + ψ(2)ψ(m) · τ4(ψ)

]
=ψ(2)ψ(m)τ8(ψ) + ψ(2)ψ(m)τ8(ψ) + 6p4 + 4p2

[
ψ(2)ψ(m)τ4(ψ) + ψ(2)ψ(m)τ4(ψ)

]
. (3.13)

Therefore, from (3.5) and (3.11)–(3.13), we can get∣∣∣∣∣∣∣
p−1∑
a=1

χ2(a)e
(
ma3

p

)∣∣∣∣∣∣∣
4

= p2 ·

[
1 +

1
p
· (ψ(2)ψ(m) · τ2(ψ) + ψ(2)ψ(m) · τ2(ψ))

]4

=p2 + 4p ·
[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]
+ 6

[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]2

+ 4p−1 ·
[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]3
+ p−2 ·

[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]4

=p2 + 4p ·
[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]
+ 6 ·

[
ψ(2)ψ(m)τ4(ψ) + ψ(2)ψ(m)τ4(ψ) + 2p2

]
+ 4p−1 ·

[
d2 p2 − 2p3 + 3p2 ·

(
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

)]
+ p−2 ·

[
ψ(2)ψ(m)τ8(ψ) + ψ(2)ψ(m)τ8(ψ) + 6p4 + 4p2 ·

(
ψ(2)ψ(m)τ4(ψ) + ψ(2)ψ(m)τ4(ψ)

)]
=11p2 + 4pd2 + 16p ·

[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]
+ 10

[
ψ(2)ψ(m)τ4(ψ) + ψ(2)ψ(m)τ4(ψ)

]
+ p−2 ·

[
ψ(2)ψ(m)τ8(ψ) + ψ(2)ψ(m)τ8(ψ)

]
. (3.14)

By the definition of classical Gauss sums, we have

p−1∑
m=1

χ2(m)e
(
m
p

)
·
[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]
=ψ(2)τ2(ψ) · τ(χ2ψ) + ψ(2)τ2(ψ) · τ(χ2ψ), (3.15)

p−1∑
m=1

χ2(m)e
(
m
p

)
·
[
ψ(2)ψ(m)τ4(ψ) + ψ(2)ψ(m)τ4(ψ)

]
Electronic Research Archive Volume 33, Issue 12, 7491–7508.
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=ψ(2)τ4(ψ) · τ(χ2ψ) + ψ(2)τ4(ψ) · τ(χ2ψ), (3.16)

p−1∑
m=1

χ2(m)e
(
m
p

)
·
[
ψ(2)ψ(m)τ8(ψ) + ψ(2)ψ(m)τ8(ψ)

]
=ψ(2)τ8(ψ) · τ(χ2ψ) + ψ(2)τ8(ψ) · τ(χ2ψ). (3.17)

From (3.14)–(3.17) and Lemmas 2.1 and 2.3, we can deduce that

p−1∑
m=1

χ2(m)e
(
m
p

)
·

∣∣∣∣∣∣∣
p−1∑
a=1

χ2(a)e
(
ma3

p

)∣∣∣∣∣∣∣
4

=
(
11p2 + 4pd2

)
· τ(χ2) + ψ(2) ·

[
16pτ2(ψ) + 10τ4(ψ) + p−2τ8(ψ)

]
· τ(χ2ψ)

+ ψ(2) ·
[
16pτ2(ψ) + 10τ4(ψ) + p−2τ8(ψ)

]
· τ(χ2ψ)

=
(
11p2 + 4pd2

)
· τ(χ2) +

[
16τ2(ψ) + 10p−1τ4(ψ) + p−3τ8(ψ)

]
· τ2(ψ)τ(χ2)

+
[
16τ2(ψ) + 10p−1τ4(ψ) + p−3τ8(ψ)

]
· τ2(ψ)τ(χ2)

=
(
43p2 + 4pd2

)
· τ(χ2) + 11p−1 ·

[
τ6(ψ) + τ6(ψ)

]
· τ(χ2)

=
(
43p2 + 4pd2

)
· τ(χ2) + 11p−1 ·

[
τ3(ψ) + τ3(ψ)

]2
· τ(χ2) − 22p−1 · τ3(ψ)τ3(ψ) · τ(χ2)

=(21p2 + 15pd2) · τ(χ2). (3.18)

Theorem 1.2 follows from (3.3), (3.1), and (3.18).

4. Proofs of Theorems 1.2–1.4

By the properties of the classical Gauss sums, we have

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
f=1

(
a4bcd f + b4acd f + c4abd f + d4abc f + f 4abcd + abcd f

p

)

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
f=1

(
abcd f

p

) (
a3 + b3 + c3 + d3 + f 3 + 1

p

)

=

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
f=1

(
abcd f

p

)
·

1
τ(χ2)

p−1∑
m=1

χ2(m)e
(
m(a3 + b3 + c3 + d3 + f 3 + 1)

p

)

=
1

τ(χ2)

p−1∑
m=1

χ2(m)e
(
m
p

)
·

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
f=1

(
abcd f

p

)
e
(
m(a3 + b3 + c3 + d3 + f 3)

p

)

=
1

τ(χ2)

p−1∑
m=1

χ2(m)e
(
m
p

)
·

 p−1∑
a=1

χ2(a)e
(
ma3

p

)
5

=
1

τ(χ2)

p−1∑
m=1

χ2(m)e
(
m
p

)
·

 p−1∑
a=1

χ2(a3)e
(
ma3

p

)
5

. (4.1)
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4.1. Proof of Theorem 1.2

In order to complete the proof, we present some preliminaries here. First, we have the following
trigonometric identity:

q∑
m=1

e
(
nm
q

)
=

{
q, if q | n,
0, if q ∤ n.

(4.2)

Moreover, we have

τ(χ2) =


√

p, if p ≡ 1 mod 4,

i
√

p, if p ≡ 3 mod 4.
(4.3)

Now, we prove Theorem 1.2. Similar to the proof of Theorem 1.1, if (3, p − 1) = 1, then by (3.2) and
(4.1)–(4.3), one can derive

p−1∑
a=1

p−1∑
b=1

p−1∑
c=1

p−1∑
d=1

p−1∑
f=1

(
a4bcd f + b4acd f + c4abd f + d4abc f + f 4abcd + abcd f

p

)

=
1

τ(χ2)

p−1∑
m=1

χ2(m)e
(
m
p

)
· (τ(χ2)χ2(m))5

=τ4(χ2)
p−1∑
m=1

e
(
m
p

)
= −p2.

In the case of (3, p − 1) = 3, Eq (3.4) implies that we need to consider two sub-cases: 2 is a cubic
residue modulo p and 2 is a cubic non-residue modulo p.

4.2. Proof of Theorem 1.3

In this subsection, we focus on the case where 2 is a cubic residue modulo p. Note that
[
ψ(2)ψ(m) · τ2(ψ)

]5
= ψ(2)ψ(m) · τ10(ψ),[

ψ(2)ψ(m) · τ2(ψ)
]5
= ψ(2)ψ(m) · τ10(ψ).

(4.4)

Then it follows from (3.7)–(3.10), (4.4), and τ(ψ) · τ(ψ) = p that[
ψ(2)ψ(m) · τ2(ψ) + ψ(2)ψ(m) · τ2(ψ)

]5

=ψ(2)ψ(m)τ10(ψ) + ψ(2)ψ(m)τ10(ψ) + 5ψ(2)ψ(m)τ8(ψ) · ψ(2)ψ(m)τ2(ψ)

+ 5ψ(2)ψ(m)τ8(ψ) · ψ(2)ψ(m)τ2(ψ) + 10τ6(ψ) · ψ(2)ψ(m)τ4(ψ)

+ 10τ6(ψ) · ψ(2)ψ(m)τ4(ψ)

=ψ(2)ψ(m)τ10(ψ) + ψ(2)ψ(m)τ10(ψ) + 5p2 ·
[
τ6(ψ) + τ6(ψ)

]
+ 10p4 ·

[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]
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=ψ(2)ψ(m)τ10(ψ) + ψ(2)ψ(m)τ10(ψ) + 5p4 · (d2 − 2p)

+ 10p4 ·
[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]
. (4.5)

From (3.11)–(3.13) and (4.5), we can get[
1 +

1
p
· (ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ))

]5

=1 + 5p−1 ·
[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]
+ 10p−2 ·

[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]2

+ 10p−3 ·
[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]3
+ 5p−4 ·

[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]4

+ p−5 ·
[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]5

=1 + 5p−1 ·
[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]
+ 10p−2 ·

[
ψ(2)ψ(m)τ4(ψ) + ψ(2)ψ(m)τ4(ψ)

]
+ 20 + 10p−3 ·

[
d2 p2 − 2p3 + 3p2 ·

(
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

)]
+ 5p−4 ·

[
ψ(2)ψ(m)τ8(ψ) + ψ(2)ψ(m)τ8(ψ) + 4p2 ·

(
ψ(2)ψ(m)τ4(ψ) + ψ(2)ψ(m)τ4(ψ)

)]
+ 30 + 5p−1 · (d2 − 2p) + p−5 ·

[
ψ(2)ψ(m)τ10(ψ) + ψ(2)ψ(m)τ10(ψ)

]
+ 10p−1 ·

[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]
=21 + 15d2 p−1 + 45p−1 ·

[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]
+ 30p−2 ·

[
ψ(2)ψ(m)τ4(ψ) + ψ(2)ψ(m)τ4(ψ)

]
+ 5p−4 ·

[
ψ(2)ψ(m)τ8(ψ) + ψ(2)ψ(m)τ8(ψ)

]
+ p−5 ·

[
ψ(2)ψ(m)τ10(ψ) + ψ(2)ψ(m)τ10(ψ)

]
. (4.6)

By the definition of classical Gauss sums, one has

p−1∑
m=1

e
(
m
p

)
·
[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]
=ψ(2)τ3(ψ) + ψ(2)τ3(ψ), (4.7)

p−1∑
m=1

e
(
m
p

)
·
[
ψ(2)ψ(m)τ4(ψ) + ψ(2)ψ(m)τ4(ψ)

]
=ψ(2)τ4(ψ)τ(ψ) + ψ(2)τ4(ψ)τ(ψ)

=p ·
[
ψ(2)τ3(ψ) + ψ(2)τ3(ψ)

]
, (4.8)

p−1∑
m=1

e
(
m
p

)
·
[
ψ(2)ψ(m)τ8(ψ) + ψ(2)ψ(m)τ8(ψ)

]
=ψ(2)τ9(ψ) + ψ(2)τ9(ψ), (4.9)

p−1∑
m=1

e
(
m
p

)
·
[
ψ(2)ψ(m)τ10(ψ) + ψ(2)ψ(m)τ10(ψ)

]
=ψ(2)τ10(ψ)τ(ψ) + ψ(2)τ10(ψ)τ(ψ)

=p ·
[
ψ(2)τ9(ψ) + ψ(2)τ9(ψ)

]
. (4.10)

If (3, p − 1) = 3, then by (3.5), (4.2)–(4.3), and (4.6)–(4.10), we have

1
τ(χ2)

p−1∑
m=1

χ2(m)e
(
m
p

)
·

 p−1∑
a=1

χ2(a3)e
(
ma3

p

)
5
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=
1

τ(χ2)

p−1∑
m=1

χ2(m)e
(
m
p

)
· (τ(χ2)χ2(m))5 ·

[
1 +

1
p
· (ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ))

]5

=τ4(χ2) ·

(21 + 15d2 p−1) ·
p−1∑
m=1

e
(
m
p

)
+ 45p−1τ4(χ2) ·

p−1∑
m=1

e
(
m
p

)
·
[
ψ(2)ψ(m)τ2(ψ) + ψ(2)ψ(m)τ2(ψ)

]
+ 30p−2τ4(χ2) ·

p−1∑
m=1

e
(
m
p

)
·
[
ψ(2)ψ(m)τ4(ψ) + ψ(2)ψ(m)τ4(ψ)

]
+ 5p−4τ4(χ2) ·

p−1∑
m=1

e
(
m
p

)
·
[
ψ(2)ψ(m)τ8(ψ) + ψ(2)ψ(m)τ8(ψ)

]
+ p−5τ4(χ2) ·

p−1∑
m=1

e
(
m
p

)
·
[
ψ(2)ψ(m)τ10(ψ) + ψ(2)ψ(m)τ10(ψ)

]
= − (21p2 + 15d2 p) + 45p ·

[
ψ(2)τ3(ψ) + ψ(2)τ3(ψ)

]
+ 30p ·

[
ψ(2)τ3(ψ) + ψ(2)τ3(ψ)

]
+ 5p−2 ·

[
ψ(2)τ9(ψ) + ψ(2)τ9(ψ)

]
+ p−2 ·

[
ψ(2)τ9(ψ) + ψ(2)τ9(ψ)

]
. (4.11)

It’s easy to deduce from Lemma 2.1 that

τ9(ψ) + τ9(ψ) =
[
τ3(ψ) + τ3(ψ)

]3
− 3τ6(ψ) · τ3(ψ) − 3τ3(ψ) · τ6(ψ)

=d3 p3 − 3p3 ·
[
τ3(ψ) + τ3(ψ)

]
=d3 p3 − 3dp4. (4.12)

If 2 is a cubic residue modulo p, then ψ(2) = ψ(2) = 1, hence

1
τ(χ2)

p−1∑
m=1

χ2(m)e
(
m
p

)
·

 p−1∑
a=1

χ2(a3)e
(
ma3

p

)
5

= − (21p2 + 15d2 p) + 75p ·
[
τ3(ψ) + τ3(ψ)

]
+ 6p−2 ·

[
τ9(ψ) + τ9(ψ)

]
= − 21p2 − 15d2 p + 75dp2 + 6p−2 · (d3 p3 − 3dp4)
= − 21p2 + 57dp2 + 6d3 p − 15d2 p. (4.13)

Theorem 1.3 follows from (4.1) and (4.13).

4.3. Proof of Theorem 1.4

In this subsection, we investigate the case where 2 is a cubic non-residue modulo p. Under this
condition, by (3.4) we can get

ψ(2) + ψ(2) = −1. (4.14)
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Noting that ψ(2) and ψ(2) are conjugate third roots of unity, so it is not hard to derive

ψ(2) = −
1
2
±

√
3

2
i, ψ(2) = −

1
2
∓

√
3

2
i. (4.15)

In addition, we can obtain from Lemmas 2.1 and 2.2 that

τ9(ψ) − τ9(ψ) =
[
τ3(ψ) − τ3(ψ)

]3
+ 3τ6(ψ) · τ3(ψ) − 3τ6(ψ) · τ3(ψ)

=
(
±3
√

3pb · i
)3
+ 3τ3(ψ)τ3(ψ) ·

[
τ3(ψ) − τ3(ψ)

]
= ∓ 81

√
3p3b3i + 3p3 ·

(
±3
√

3pb · i
)

= ± 9
√

3p3b · (p − 9b2)i, (4.16)

where i2 = −1. It follows from (4.12), (4.15), and (4.16) that

ψ(2) · τ9(ψ) + ψ(2) · τ9(ψ) = −
p3

2
(d3 − 3dp) ±

27p3

2
(bp − 9b3). (4.17)

From (4.14) and Lemmas 2.1 and 2.2, we can get

45p ·
[
ψ(2)τ3(ψ) + ψ(2)τ3(ψ)

]
+ 30p ·

[
ψ(2)τ3(ψ) + ψ(2)τ3(ψ)

]
=

[
45p · ψ(2) + 30p · ψ(2)

]
τ3(ψ) +

[
45p · ψ(2) + 30p · ψ(2)

]
τ3(ψ)

=
[
45p · ψ(2) − 30p · (1 + ψ(2))

]
τ3(ψ) +

[
45p · ψ(2) − 30p · (1 + ψ(2))

]
τ3(ψ)

=
[
15p · ψ(2) − 30p

]
τ3(ψ) +

[
15p · ψ(2) − 30p

]
τ3(ψ)

= − 30p ·
[
τ3(ψ) + τ3(ψ)

]
+ 15p ·

[
ψ(2)τ3(ψ) + ψ(2)τ3(ψ)

]
= − 30dp2 + 15p

(
−

dp
2
±

9bp
2

)
= −

75
2

dp2 ±
135

2
bp2. (4.18)

Furthermore, by (4.12), (4.14), and (4.17), one has

5p−2 ·
[
ψ(2)τ9(ψ) + ψ(2)τ9(ψ)

]
+ p−2 ·

[
ψ(2)τ9(ψ) + ψ(2)τ9(ψ)

]
=

[
5p−2 · ψ(2) + p−2 · ψ(2)

]
· τ9(ψ) +

[
5p−2 · ψ(2) + p−2 · ψ(2)

]
· τ9(ψ)

=
[
5p−2 · ψ(2) − p−2 · (1 + ψ(2))

]
· τ9(ψ) +

[
5p−2 · ψ(2) − p−2 · (1 + ψ(2))

]
· τ9(ψ)

=
[
−p−2 + 4p−2 · ψ(2)

]
· τ9(ψ) +

[
−p−2 + 4p−2 · ψ(2)

]
· τ9(ψ)

= − p−2 ·
[
τ9(ψ) + τ9(ψ)

]
+ 4p−2 ·

[
ψ(2) · τ9(ψ) + ψ(2) · τ9(ψ)

]
= − p−2 · (d3 p3 − 3dp4) + 4p−2 ·

(
−

p3

2
(d3 − 3dp) ±

27p3

2
(bp − 9b3)

)
=9dp2 − 3d3 p ± 54bp2 ∓ 486b3 p. (4.19)
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Therefore, from (4.11), (4.18), and (4.19), we can deduce

1
τ(χ2)

p−1∑
m=1

χ2(m)e
(
m
p

)
·

 p−1∑
a=1

χ2(a3)e
(
ma3

p

)
5

= − (21p2 + 15d2 p) + 45p ·
[
ψ(2)τ3(ψ) + ψ(2)τ3(ψ)

]
+ 30p ·

[
ψ(2)τ3(ψ) + ψ(2)τ3(ψ)

]
+ 5p−2 ·

[
ψ(2)τ9(ψ) + ψ(2)τ9(ψ)

]
+ p−2 ·

[
ψ(2)τ9(ψ) + ψ(2)τ9(ψ)

]
= − 21p2 −

57
2

dp2 ±
243
2

bp2 ∓ 486b3 p − 3d3 p − 15d2 p. (4.20)

Then Theorem 1.4 follows from (4.1) and (4.20).

5. Conclusions

This paper establishes explicit identities for a class of quadratic character sums involving quaternary
and quintuple symmetric polynomials. The main theorems give precise formulas for these sums,
categorizing their values based on the arithmetic nature of the prime p.

This paper transforms the higher power of Gauss sums into elementary algebraic calculations, thus
significantly simplifying the original problem. This approach can serve as an idea for attacking other
unsolved problems in the field of trigonometric sums.

Our results can be applied to study the asymptotic behavior of related sums. Above all, they can be
used to investigate the higher power mean of two-term exponential sums and the generalized two-term
exponential sums.
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Appendix

This appendix provides numerical verification of Theorems 1.1 and 1.2 for all odd primes less
than 100. The computations, performed using Mathematica, confirm the validity of our theoretical
results. The corresponding verification codes in Mathematica are provided after the Tables.

Table A1. Numerical verification for Theorem 1.1 with p ≡ 1 (mod 6).

Prime p Calculated sum Theoretical value Parameters (d, b) Representation
7 1134 1134 (1,−1) 4 × 7 = 12 + 27 × (−1)2

13 8424 8424 (−5,−1) 4 × 13 = (−5)2 + 27 × (−1)2

19 21546 21546 (7,−1) 4 × 19 = 72 + 27 × (−1)2

31 27621 27621 (4,−2) 4 × 31 = 42 + 27 × (−2)2

37 95904 95904 (−11,−1) 4 × 37 = (−11)2 + 27 × (−1)2

43 80109 80109 (−8,−2) 4 × 43 = (−8)2 + 27 × (−2)2

61 79056 79056 (1,−3) 4 × 61 = 12 + 27 × (−3)2

67 119394 119394 (−5,−3) 4 × 67 = (−5)2 + 27 × (−3)2

73 165564 165564 (7,−3) 4 × 73 = 72 + 27 × (−3)2

79 473526 473526 (−17,−1) 4 × 79 = (−17)2 + 27 × (−1)2

97 722844 722844 (19,−1) 4 × 97 = 192 + 27 × (−1)2

Table A2. Numerical verification for Theorem 1.1 with p ≡ 5 (mod 6).

Prime p Calculated sum Theoretical value Verification
5 25 25 ✓
11 121 121 ✓
17 289 289 ✓
23 529 529 ✓
29 841 841 ✓
41 1681 1681 ✓
47 2209 2209 ✓
53 2809 2809 ✓
59 3481 3481 ✓
71 5041 5041 ✓
83 6889 6889 ✓
89 7921 7921 ✓
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Table A3. Numerical verification for Theorem 1.2.

Prime p Calculated sSum Theoretical value Verification
5 −25 −25 ✓
11 −121 −121 ✓
17 −289 −289 ✓
23 −529 −529 ✓
29 −841 −841 ✓
41 −1681 −1681 ✓
47 −2209 −2209 ✓
53 −2809 −2809 ✓
59 −3481 −3481 ✓
71 −5041 −5041 ✓
83 −6889 −6889 ✓
89 −7921 −7921 ✓

Mathematica Verification Codes

The complete Mathematica codes for verifying above theorems are provided below:

Numerical verification for Theorem 1.1

(*Table 1:Verification for primes p\[Congruent]1 mod 6*)

VerifyTable1[] :=

Module[{primes, results, p, sum, d, b, theoretical, found,

maxSearch},

primes = Select[Prime[Range[PrimePi[100]]], Mod[#, 6] == 1 &];

results = {};

Do[sum = 0;Do[Do[Do[Do[

term = (aˆ4*b*c*d + bˆ4*a*c*d + cˆ4*a*b*d + dˆ4*a*b*c + a*b*c*d);

sum += KroneckerSymbol[term, p], {a, 1, p - 1}], {b, 1,

p - 1}], {c, 1, p - 1}], {d, 1, p - 1}];

found = False;

maxSearch = Ceiling[Sqrt[4*p]];

Do[Do[If[4*p == dˆ2 + 27*bˆ2 && Mod[d, 3] == 1,

theoretical = 3*p*(7*p + 5*dˆ2);

AppendTo[results, {p, sum, theoretical, {d, b},

StringForm["4\[Times]‘‘ = ‘‘ˆ2 + 27\[Times]‘‘ˆ2", p, d, b]}];

found = True;

Break[]], {b, -maxSearch, maxSearch}];

If[found, Break[]], {d, -maxSearch, maxSearch}];

If[! found,

AppendTo[

results, {p, sum, "Not found", "Not found", "Not found"}]], {p,

primes}];
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Print["Table 1: Primes p \[Congruent] 1 mod 6"];

Print[StringRepeat["-", 80]];

Print[StringPadRight["Prime p", 10], " | ",

StringPadLeft["Calculated", 12], " | ",

StringPadLeft["Theoretical", 12], " | ",

StringPadLeft["(d,b)", 12], " | ", "Representation"];

Print[StringRepeat["-", 80]];

Do[With[{row = results[[i]]},

Print[StringPadRight[ToString[row[[1]]], 10], " | ",

StringPadLeft[ToString[row[[2]]], 12], " | ",

StringPadLeft[ToString[row[[3]]], 12], " | ",

StringPadLeft[ToString[row[[4]]], 12], " | ", row[[5]]]], {i,

Length[results]}];

results]

(*Table 2:Verification for primes p\[Congruent]5 mod 6*)

VerifyTable2[] :=

Module[{primes, results, p, sum, d, b, theoretical, found,

maxSearch},

primes = Select[Prime[Range[PrimePi[100]]], Mod[#, 6] == 5 &];

results = {};

Do[sum = 0;Do[Do[Do[Do[

term = (aˆ4*b*c*d + bˆ4*a*c*d + cˆ4*a*b*d + dˆ4*a*b*c + a*b*c*d);

sum += KroneckerSymbol[term, p], {a, 1, p - 1}], {b, 1,

p - 1}], {c, 1, p - 1}], {d, 1, p - 1}];

theoretical = pˆ2;

(*Also find (d,b) pairs for representation*)found = False;

dValues = {}; bValues = {};

maxSearch = Ceiling[Sqrt[4*p]];

Do[Do[If[4*p == dˆ2 + 27*bˆ2, AppendTo[dValues, d];

AppendTo[bValues, b];

found = True], {b, -maxSearch, maxSearch}], {d, -maxSearch,

maxSearch}];

If[found,

AppendTo[

results, {p, sum, theoretical, Transpose[{dValues, bValues}],

"\[Checkmark]"}],

AppendTo[

results, {p, sum, theoretical, "No representation",

"\[Checkmark]"}]], {p, primes}];

Print["Table 2: Primes p \[Congruent] 5 mod 6"];

Print[StringRepeat["-", 70]];

Print[StringPadRight["Prime p", 10], " | ",
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StringPadLeft["Calculated", 12], " | ",

StringPadLeft["Theoretical", 12], " | ",

StringPadLeft["(d,b) pairs", 20], " | ", "Verification"];

Print[StringRepeat["-", 70]];

Do[With[{row = results[[i]]},

Print[StringPadRight[ToString[row[[1]]], 10], " | ",

StringPadLeft[ToString[row[[2]]], 12], " | ",

StringPadLeft[ToString[row[[3]]], 12], " | ",

StringPadLeft[ToString[row[[4]]], 20], " | ", row[[5]]]], {i,

Length[results]}];

results]

Print["Numerical Verification for All Primes p < 100"];

Print[StringRepeat["=", 80]];

table1Results = VerifyTable1[];

Print[];

table2Results = VerifyTable2[];

Print[];

Print["SUMMARY:"];

Print["Primes p \[Congruent] 1 mod 6: ", Length[table1Results],

" primes verified"];

Print["Primes p \[Congruent] 5 mod 6: ", Length[table2Results],

" primes verified"];

Print["Total primes verified: ",

Length[table1Results] + Length[table2Results]];

Numerical verification for Theorem 1.2

(* Theorem 1.2 Verification: (3, p-1)=1 *)

(*Quick verification for p=5 only*)p = 5;

sum = 0;

Do[sum +=

KroneckerSymbol[a*b*c*d*f*(aˆ3 + bˆ3 + cˆ3 + dˆ3 + fˆ3 + 1), p],

{a, 1, p - 1}, {b, 1, p - 1}, {c, 1, p - 1}, {d, 1, p - 1}, {f, 1, p - 1}];

Print["p = ", p, ", Sum = ", sum, ", Theoretical = ", -pˆ2]
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