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Abstract: This paper has studied a predator-prey model that incorporates a nonlocal fear effect
and nonlinear cross-diffusion under homogeneous Neumann boundary conditions. We have derived
necessary and sufficient conditions for Turing instability in the presence of both nonlocal fear and
nonlinear cross-diffusion by means of linear stability analysis. Moreover, we have investigated steady-
state bifurcations induced by the nonlocal fear effect using the Lyapunov-Schmidt reduction.
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1. Introduction

Predator-prey interactions play a crucial role in maintaining ecosystem equilibrium. Although it is
generally believed that predators predominantly affect prey populations through direct hunting, a 2011
study by Zanette et al. [1] on song sparrows showed that even without direct predation, the perceived
predation risk could lead to a 40% reduction in their offspring. To quantify the cost of the risk, in 2016,
Wang et al. [2] proposed a predator-prey model incorporating a fear factor to quantify the defense costs
induced by fear perception. The model is presented as follows.

{ du — yyfk,v) — du — au® — puv,

& _ (1.1)
= = cpuv — my.

Here f(k,v) = ﬁ, and k stands for the level of fear that incites the prey to exhibit anti-predator
behaviors. The results showed that the high fear levels stabilize the system by excluding periodic
solutions, while low levels induce multiple limit cycles via subcritical Hopf bifurcations.

Fear of predators increases the survival probability of prey but leads to a cost of prey reproduction.

Wang and Zou proposed a predator-prey model with the cost of fear and adaptive avoidance of
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predators. Mathematical analyses have shown that the fear effect can interplay with maturation delay
between juvenile prey and adult prey in determining the long-term population dynamics [3]. And
then, some experts and scholars focused on the effects of fear on some predator-prey models, such as
the three-species food chain model [4], the predator-prey model incorporating the prey refuge [5], the
prey-predator model of the crowding effect in predators [6], and so on. In addition, some experts and
scholars have also discussed the effects of white noise and fear effects on predator-prey models [7].

Many experts and scholars also considered the influence of the spatial factor and fear on the
dynamic behaviors of some prey-predator models, such as the nonexistence of nonconstant positive
steady states [8] and high co-dimensional bifurcation (Hopf-Hopf bifurcation [9] and Turing-Hopf
bifurcation [10]). Han et al. [11] investigated a cross-diffusive Leslie-Gower predator-prey model with
the fear effect. They revealed that high fear leads to stripe patterns, low fear leads to spot patterns, and
intermediate fear leads to a mix of both. In addition, pattern formations of a spatial fractional
diffusive predator-prey system with refuge and fear [12] were investigated, and high-codimension
bifurcation of some predator-prey systems with chemotaxis and fear effect [13, 14] was studied.

In 1989, Furter and Grinfeld [15] hypothesized that the presence of a predator at a given spatial
location is determined not only by its local characteristics but also by the density of predators in
adjacent regions. This consideration led to the incorporation of nonlocal interactions into the
single-species population dynamics. And then they studied the local bifurcation structure by the
Lyapunov-Schmidt reduction. Since then, there have been many works concerned with the dynamical
behaviors of some reaction-diffusion systems with nonlocal effects. Based on the hypothesis in [15],
Dong and Niu [16] introduced the nonlocal fear effect f(k, V) into a predator-prey model, where v is
the nonlocal term. In addition, in 2023, Sun [17] investigated the implications of the nonlocal fear
effect within a diffusive predator-prey model. The results showed that the fear effect in the system can
alter the stability of the constant steady state and lead to spatially nonhomogeneous steady states.
Moreover, high-level fear can stabilize the model by excluding periodic solutions. Hence, the
model (1.1) with the nonlocal fear effect and spatial diffusion reads as follows.

u _ o _ 2 _
5 = diAu+ 5= —du—au” — puv,x € Q,1 > 0,

% = d)Au + cpuv — myv — mv,xeQ,t>0,

ou _ o _
6—n—0,0—n—0,x€6§2,t>0,

u(x,0) = ug(x), v(x, 0) = vyp(x), x € Q,

(1.2)

where v = |15| fQ v(x, t)dx, u(x, t), and v(x, t) represent the density of the prey and the predator at time ¢
and location x € Q, respectively. The d;,d, > 0 are the diffusion rates. Other parameters are positive
values; for their specific biological interpretations, please refer to [16]. Q € R" is a bounded domain
with a smooth boundary and n being the outward unit normal vector over dQ2. The initial data u, vy
are continuous functions.

Taking into account the effects of the nonlocal fear effect, the prey species tend to avoid regions
with high-predator density. This pattern can be mathematically represented by the term aA(uv), where
a < 0 quantifies the avoidance intensity. Furthermore, the population pressure of predator species
may weaken in the high density location of prey species, which can be modeled by A :ﬁu, where S is
a saturation coefficient [18]. Furthermore, recent research efforts have extended to analyzing systems
with general incidence rate [19]. For instance, Li et al. [20] established criteria for exponential stability
in a multi-stage epidemic system featuring a discontinuous incidence rate. Hence, as analyzed above,
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we study the following system.

& = Al(d) + av)ul + 2 — du — au® — puv,x € Q,1 > 0,

v _ 1 2

? = A[(adz + 1+ﬁu)v] + cpuv —mpy —mpv,x € Q,t > 0, (1.3)
m=0,5.=0,x€dQ,r>0,

u(x,0) = up(x), v(x, 0) = vo(x), x € Q.

Turing’s pioneering work was that a system of coupled reaction-diffusion equations could be used
to describe spatiotemporal patterns in biological systems in 1952 [21]. From this theory, the diffusion
could destabilize an otherwise stable equilibrium point and cause spatial patterns. Such instability is
often referred to as diffusion-driven instability or Turing instability. Recently, there have been many
works focused on Turing instability of reaction-diffusion models by taking into account the effect of
cross-diffusion and nonlocal terms [22, 23]. For example, Liu et al. [24] introduced the super
cross-diffusion terms in a predator-prey system and studied the Turing instability and pattern
formation in such a system with Michaelis-Menten-type predator harvesting. Liu and Guo [25]
introduced the nonlinear cross-diffusion terms in a Lotka-Volterra competition model and mainly
studied the nonexistence of nonconstant solutions and sufficient conditions ensuring the existence of
nonconstant solutions by using Leray-Schauder degree theory. Fu et al. [26] introduced the
cross-diffusion and nonlocal terms in an activator-inhibitor (depletion) model and studied the Turing
instability and the existence of bifurcating solutions by using bifurcation theory. For more related
works, please refer to [27] and the references therein.

The structure of this paper follows this organizational framework. Section 2 analyzes the stability
conditions of positive constant steady-state solutions, examining how nonlinear diffusion influences
their stability properties and triggers Turing instability. Section 3 employs the Lyapunov-Schmidt
reduction to investigate steady-state bifurcation near the trivial steady-state E,. Numerical simulations
and illustrative cases are presented in Section 4 to validate the theoretical results.

2. Turing instability of the positive stationary solution

In this section, one studies the stability of constant steady-state solutions of system (1.3). Clearly,
the system (1.3) has three constant steady states: (i) £y = (0,0); (ii) E, = (’O_d,O)(ro > d); (iii) an

a
am;

interior positive constant steady state E, = (u*,v") if and only if r > d + o where

s _ —(kepd+akmy+cp*+ama)+ VA 4 _ my+mpv*
- 2k(cp?+amy) U - cp and A
4k(cp? + amy)(cpd + am; — rocp).

Based on the analysis of [16], one has the following lemma.

= (kepd + akm; + cp* + amy)*—

14

Lemma 2.1. [16] (i) Ey is always unstable.
(ii) If @ < my, then the positive constant steady-state E\ is locally asymptotically stable.
Conversely, it is unstable.

(iii) If r > d + %, then the positive constant steady-state E, exists and is locally asymptotically
stable.

Linearizing the system (1.3) at the constant equilibrium E; gives

0 H:DA

<

u u
+J + Ji
4 Uv v

<l

at |v

], (2.1
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where
2
d, + ae we —ae — pe _ e
D = : ez ’ 1 1 U= ! p ! 9‘][_/ = O (1+k62)2 9(615 62) € Xz'
T (14Be1)? dy + 1+fey cper — mMmeéz 0 0

Substitute (z) = Z( Zi )go,-(x) into (2.1), where ¢; are eigenfunctions of the following
i=0\ i

eigenvalue problem
—Au = Adu, x € (0,In),u’(0) = u'(Ir) = 0.

The eigenvalues are A; = ;—z with corresponding eigenfunctions ¢;(x) = cos(’%),i € Ny.
The operator is defined as follows.

o[ —dudi+ fu  —dpdi+ 5
Lie.i) = ( —dydi+ g —dpli+g, |’

where
_ fu+ fi =0,
fu = .
Jus i#0.
Hence, when i = 0, one gets

oo () =13 )

when i # 0, one gets

a;

X — AtrL(a, 0) - ) + detL(a, 0) ) = 0,

L(a, i) (

Taking i = 0, thus A satisfies the equation

where

trL(a, 0)s oy = —au™ — mpv",
kr(u*)?
detL(a,0) . = amu™Vv' + cpu™ | —————— + pu”].
(@, 0)qu ) 2 p ((1+kv*)2 p

Taking i # 0, thus A satisfies the equation

= ArL(a, i) oy + detL(a, i) = 0, (2.2)

where trL(a, i) ) = —(d; + dy + av* + %ﬁu*)ﬂi —au* — myv*, detL(a, i), = AA> + BA; + C, here,
* 1 v * 1 * * % * *

A=(d +av )(d2+m)+(ff;—uf)z,B:au (dr + 757) + mav'(dy + V") + acpu™v* + pu (lfﬁ+*)2,C:

(amy + cp)u™v*.
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Remark 2.2. If a > 0, trL(a, i)y ) < 0 and detL(a, i)+, > 0 always hold. Then, the characteristic
equation (2.2) has two negative roots, so the constant steady state E, is always asymptotically stable.
When a < 0, trL(a, i), < 0 and detL(a, i) ,+) < 0 may hold, the characteristic equation (2.2) has
one positive root, and then the instability may occur.

Theorem 2.3. Assume that r > d + “’"' holds, if
a<ar and A; > Air

hold, then the nonlinear diffusion may induce the Turing instability to the positive constant steady-state

E, of the system (1.3), where ar = _v*(ld il[;f()l[;ﬁ?ﬁ;;])ﬁffﬁiv Air = max{A,|A2? + BA; + C = 0.

Proof. Under r > d + %, by Lemma 2.1, the unique interior equilibrium point E, is stable without the

nonlinear diffusion.
afu*v*

(1+Bu*)?

In addition, after a simple calculation, A = (d; + au*)(d, + ——) + < 0, then @ < a7. Here,

di[dry(1+Bu*)+1](1+Bu*)
v (1+pu*)[dr(1+Bu*)+1]+Lu*v* *

1 +,Bu

ar = —
lim detL(a, i)+ = lim(AA; + BA; + C) = —

with A < 0,C > 0, then detL(a, i)+, = 0 has at least one positive root. Let A;7 = max{/liIA/ll.2 + BA; +
C = 0}, one can deduce that detL(e, i),y < 0 when A; > A;r for a fixed [, which implies that the
characteristic equation (2.2) has a positive root. i.e., as @ decreases, the nonlinear diffusion can induce
Turing instability to the trivial steady-state E;.

Theorem 2.4. If a. < a < @r, @y := min{ay, a,}, then system (1.3) undergoes Turing instability at the
positive constant steady-state E,.

Proof. By Theorem 2.3, suppose that A < 0 always holds (o < a7), then detL(«a, i), = 0 only has

a positive root, which is 4; = —£* 'Bz € Hence, in order to get the Turing instability, one must have

/ll' > 1, i.e.,

B+ VB2 -4AC

— > 1.
2A -
3 Q2d+au*)(dr+—— l+ﬂ4<u* )+dympv* +(1]1[Z;ui)2 i
If -2A > B,ie., a < a, =: — P e B ,then A + B+ C > 0. Through simple
V¥ 2+1+ﬁ*u* +mo(v* (l+ﬁ*u*)2
calculation, one obtains that
(dy + au*)(d;, + l+,Bu ——=) +dymyv* + ﬁ—*:w + (amy + cp)u*v*
a > Q. :=—
u-v
v¥(dy + 1+,8u —)+ (]ﬁlﬁu*)z + myV*v' + cputv*

Hence, if @, < @ < @7 holds, Turing instability may occur at the trivial steady-state E,, where @y =
min{ar, a,}.
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3. Existence of non-constant steady-state solutions

In this section, we mainly aim to investigate the existence of nonconstant steady-state solutions near
the positive constant steady-state £, under the condition r > d + %.

0 = Al(d, + av)u] + 2~ — du — au® — puv,

1+kv
0=A[d, + H]W)v] + cpuv — myv — myV?, (3.1
e =0,8=0,x€0Q

The first Fréchet derivative of system (3.1) at E, can be given as follows:

dinA—a dpA—-a
R, :=| ¢ 11 12 12| 3.2)
dyA+ay  dpA-ap
Moreover, the adjoint operator R;, of R, reads as follows:
R = dinA—ay  dyA+ay
¢ dipA—ap  dnA-axn
whered;; = d\+av*,d, = au’,dy = —(H_’B;M*)z,dzg = d2+%ﬁu*,an =au’,ap = pu*+%h—]*,a2] =

cpvi,ay =mpyv', Jgxu = fQ u(x, t)dx.
To investigate the existence of nonconstant steady-state solutions near trivial steady-state E,, one
chooses « as the bifurcation parameter and gives the following hypothesis.

(Hy,) : a < ar,detL(d;,,a") = 0,detL(A,,a") # 0,¥s € No\{ir}.

From the condition (H;,) and (3.2), we have

didp A2 +(arndy—ay1dy—dian) i, +C
CZO — 2 2

(dopv*+dy) M“)/l,g2 +au*—anv*)ii,
Let K = KerR o, K* = KerRZO, S = spani{q;,¢i,},S* = span{p;,$i,}
q _[ d /11+ ) p _(dzz/liz_am)
ih — —di14iy+ai s Pip — .
: m : ap —dpd;,
In addition, g;, - pi;, = ar1 + ax — (di1 + dxn)4d;, and
Ko = qi, - Rypi, = det(A;,, @) = A/ll-z2 + B, + C.

To find the bifurcating solutions near the trivial steady-state E, of system (1.3), define
G = (Gl,Gz)T :X2xR — Y? by

rou
1+ kv

Gi(u,v) =A[(d; + av)u] + —du — au® - puv,

Gy(u,v) =A[(d, + W]+ cpuv — myv — myv?,

1
1+ Bu
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for E = (u,v)T € X? and @ € R. Then, one objective is to find other solutions for the equation
G(E,a) = Owhen E — E, € X>and @ — ap € R. Forany ¢ = (51,)7,& = (£,&)" and
= (01,6)" € K. The Fréchet derivative forms of d*F.(s, &) and d°F,(g, &, (), respectively.

+A5(5186 + $261) + Assrls
A5(A)s1€E1 + As(A) (6162 + 6261) + A7,
Bi(61&:0 + $60) + Bo5rérdn )
B3 (A)(16241 + 26181 + 616180) + Ba(D)sié1dy |-

Aigi&r + Ar(A)(1& + 62€1)
d’F(s,6) = ,

d’F(s,£0) = (

Here,
A= =2,A:(A) = (@A - p), As = 2o Ay = 2,
_ B _ B _
As(zA) 2(“5 )gA% ,Ag(A) = (cp— W A),A7 = =2my,
By = 2k = 6 B(A) = 2L A By(A) = —6-L2

(1+kv )*’ e (1+,3 A+Bu*)} (1+Bu*)

One has the following decompositions:

:S@Xiz,YzzS*@YiQ

and

Xiz :{lﬂ € le <¢i2’ Pi, W>}»
Yiz :{lﬁ € Yzl <¢i2’ qi, * W>}

Based on the analysis of [28], one knows that R,, : X? — Y?is a Fredholm operator with zero index,
and Ra|X,~2 : X;, = Y, is invertible and has a bounded inverse. Suppose M and I — M are the projection
operators from Y? to Y;, and S*, respectively. Then for every u(x) € Y,

ME = E(x) - <"”2 s E>¢lz i

for all E € X2.
Hence, G(E, @) = 0 is equivalent to the system reading as

MG(E,a)=0,(I - M\)G(E,a) = 0. (3.3)
For every E € X2, there is a unique decomposition.
E = E; + z¢,pi, + W,

where z € Rand w € X,,.
Hence, the first equation of (3.3) can be rewritten as

MG(E; + z¢i,pi, + w, ) =
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A map MF : K X X;, X R — Y,;,, which satisfies the conditions of the implicit function theorem:
MG(E,,a) = 0, MG, (E,, @) = MR, = R,. Therefore, one obtains a unique continuously differentiable
map w = (w;, w»)” in two open neighborhoods ¢ of 0 in R? and & of a” in R respectively, which satisfies

forall (z,a) € 6 X ,w(0,a) = 0.
Substituting u = u* + zg;, + w(z, @) into the first equation of (3.3), then
Y(z,@) € 6 X &, MG(u* + 2, pi, + W(z, @), @) = 0. (3.4)

In addition, {¢;,, p;, - w(z,@)) = 0.
Therefore, Y(z,a) € 6 X &,

G + z¢i,pi, + W(z, @), @) € K*. 3.5)
Substituting w = w(z, @) into the second equation of (3.3), then
Gz a) = - MG +z¢;,pi, + W(z, @), @) = 0.

From (3.4), then

Wz @) = 3w+ gwsd -,
wo = —(Rw)'d*F(¢1,qi,» $1xqir)s
where
(R 0)_1 _ 1 dpA+ay —dpA-ap

detR 0 —d21A — ay d11A+a11

Calculating the inner product of (3.5) with g;,¢;,, derive that

1 1
G'(z@) = 2o + SKiz + gkzzz) +o(la — °, |zI*),

where
_ 2
K1 = <¢i27 qiz . d FZ(¢i2pi2a ¢i2pi2)> 5
Ky = <¢iza qi, - d3FZ(¢i2pi2’ ¢i2piz7 ¢i2pi2)> +3 <¢iz’ qi, * d2Fz(¢izpi2’ ¢i2pizﬂ sz(o’ aO))> .

If k; # 0, by the implicit function theorem, one obtains a unique continuously differentiable map
a — z(a) in two open neighborhoods, 6 of 0 in R, £ of a” in R, which satisfies G*(z, @) = 0 and

2
(@) = -2 4 ola - ).
K]

i.e., the system (3.1) has a non-constant steady-state E, = E, + z(@)pi,¢i, + w(z(@), @).
For simplicity, for any ¢ > 0, one defines the following intervals, read as

L(a,68) ={(@® = 6,a° + 6) : ko > 0},
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L(a,6) ={(@° - 6,a° + 6) : kg < 0}.

If x, = 0,k, < O (respectively > 0), then there exists 6 > 0 and two continuously differentiable
mappings z* from I,(a,9) (respectively, I(a,0)) to R such that system (3.1) has two nontrivial
solutions E* € X?, where

Ez = E2 + Zi(a)pi2¢i2 + W(Zi(a)’ Q)a

when @ — %, E* — E,.

Theorem 3.1. If the assumption (H;,) holds.

(i) If ky # 0, there exists a continuously differentiable map a — 7z, in (0—6,0+6) € R, (@’ —¢&,a’ +¢) €
R, satisfing that system (3.1) near E,; there exists has only one nonconstant steady-state solution
E, = E> + z(@)p,¢;, + w(z(@), @). In addition, limo E,=E,.

a—a

(ii) If k1 = 0,k < O (respectively > 0), then there exist 6 > 0 and two continuously differentiable
mapping 7+ from I,(a, 0) (respectively, I,(a,d)) to R such that (3.1) has two nontrivial solutions E;, €
X2, where

E; = E> + 25 (@)pi¢i, + W@ (@), @),
when a — o, EX - E,.

4. Numerical simulation

In this section, numerical simulations are carried out to demonstrate the Turing instability and the
existence of nonconstant steady-states for system (1.3) in the one-dimensional spatial domain (0, /)
based on the theoretical results in Sections 2 and 3.

Taking the parameters as follows: d = 1.1,r = 1.2,p = 1.1,m; = 0.1,my, = 0.2,¢c = 1.1, and

B = 0.1. By direct calculation, %_d) = my; according to Lemma 2.1, the E; exists provided a < 1.21.

Letd, = 0.1,d, = 0.2,a = 0.2,/ = 5; then the constant steady-state £, = (0.0857,0.0184). By
Theorems 2.3 and 2.4, one gets @, = —=7.5811,a@r = —5.6305. Hence, when @ = —1, E; is locally
asymptotically stable. As shown in Figure 1. When a. < @ = -5.7 < a7, E; is unstable, i.e., Turing
instability occurs. As shown in Figure 2. However, when choosing k = 10, the other parameters
remain unchanged; the critical parameters of Turing instability are @, = —20.4872,ar = —15.3135.
When @ = -5.5, by Theorems 2.3 and 2.4, the constant steady-state E; is also locally asymptotically
stable. The results show that a high level of the fear effect can eliminate the Turing instability when
the other parameters are fixed. As shown in Figure 3.
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(a) (b)
Figure 1. The initial conditions (ug,vo) = (0.0857 — 0.0001cos5,0.0184 — 0.0001cos%3).
When k =3, =—-1,and [ = 5, E, of system (1.3) is stable.

001854 plhe

0.018

prey u
predator v

0.0175

-0.1 0.017
100 100

50

times t 0 0 space x times t 0 o space x

(@) (b)
Figure 2. The initial conditions (ug,vo) = (0.0857 — 0.0001cos5,0.0184 — 0.0001cos%).
When k =3, = -5.7,and [ = 5, E; of system (1.3) is unstable, Turing instability occurs.
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2 00838
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time t [ space x time t 0 o

(a) (b)
Figure 3. The initial conditions (ug,vo) = (0.0838 — 0.0001cos%,0.0067 — 0.0001cos%3).
When k = 10, = =5.5,and [ = 5, E; of system (1.3) is stable.

space x

Letd;, = 0.1,d, = 0.2,a = 0.2, and [ = 100. By Theorem 3.1, there exists a A; such that the
hypothesis H 2, holds, and «x; # 0, then system (1.3) has one nonconstant steady-state solution, as
shown in Figure 4.
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0.01835 |

predator v

0.0183

0.01825
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200 //ﬁ 300
(a) (b)
Figure 4. The initial conditions (uo, vo) = (0.0857 — 0.0001cos755,0.0184 — 0.0001cos55),

When k = 3,a = 5.5, and [ = 100, system (1.3) has a nonconstant steady-state solution.

x10°

prey u
predator v

4
/ 300

200
100

‘ l
200
100
0

times t 0 space x times t 0 o space x

(a) (b)
Figure 5. The initial conditions (ug, vo) = (0.0838 — 0.000lcosﬁ, 0.0067 — 0.0001c0sﬁ ,
When k£ = 10, = -5.5, and [ = 100, system (1.3) has a nonconstant steady-state solution.

5. Discussion and conclusions

Turing instability leading to spatial pattern formation occurs exclusively when the prey avoidance
coeflicient satisfies @ < 0 within the critical range o, < @ < @y. This instability arises from nonlinear
cross-diffusion destabilizing the homogeneous equilibrium E;, provided the spatial wavenumber A;
exceeds a threshold A;7. Crucially, the nonlocal fear effect (k) exhibits dual roles: while low fear
levels permit pattern emergence under suitable @, high fear levels suppress Turing instability by
elevating the critical threshold |a.|, thereby stabilizing E,. Numerical simulations validate this
antagonistic mechanism (Figures 1-3), showing that increased k eliminates instability even at fixed a.
Furthermore, steady-state bifurcation analysis via Lyapunov-Schmidt reduction confirms the
existence of spatially heterogeneous solutions near E, (Figures 4 and 5), extending pattern formation
beyond linear instability. Ecologically, @ < 0 models prey aggregation induced by predator-avoidance
behavior, whereas high k reduces prey fitness, mediating stability-perturbation trade-offs.
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