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Abstract: This paper has studied a predator-prey model that incorporates a nonlocal fear effect
and nonlinear cross-diffusion under homogeneous Neumann boundary conditions. We have derived
necessary and sufficient conditions for Turing instability in the presence of both nonlocal fear and
nonlinear cross-diffusion by means of linear stability analysis. Moreover, we have investigated steady-
state bifurcations induced by the nonlocal fear effect using the Lyapunov-Schmidt reduction.
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1. Introduction

Predator-prey interactions play a crucial role in maintaining ecosystem equilibrium. Although it is
generally believed that predators predominantly affect prey populations through direct hunting, a 2011
study by Zanette et al. [1] on song sparrows showed that even without direct predation, the perceived
predation risk could lead to a 40% reduction in their offspring. To quantify the cost of the risk, in 2016,
Wang et al. [2] proposed a predator-prey model incorporating a fear factor to quantify the defense costs
induced by fear perception. The model is presented as follows.{ du

dt = ru f (k, v) − du − au2 − puv,
dv
dt = cpuv − mv.

(1.1)

Here f (k, v) = 1
1+kv , and k stands for the level of fear that incites the prey to exhibit anti-predator

behaviors. The results showed that the high fear levels stabilize the system by excluding periodic
solutions, while low levels induce multiple limit cycles via subcritical Hopf bifurcations.

Fear of predators increases the survival probability of prey but leads to a cost of prey reproduction.
Wang and Zou proposed a predator-prey model with the cost of fear and adaptive avoidance of
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predators. Mathematical analyses have shown that the fear effect can interplay with maturation delay
between juvenile prey and adult prey in determining the long-term population dynamics [3]. And
then, some experts and scholars focused on the effects of fear on some predator-prey models, such as
the three-species food chain model [4], the predator-prey model incorporating the prey refuge [5], the
prey-predator model of the crowding effect in predators [6], and so on. In addition, some experts and
scholars have also discussed the effects of white noise and fear effects on predator-prey models [7].

Many experts and scholars also considered the influence of the spatial factor and fear on the
dynamic behaviors of some prey-predator models, such as the nonexistence of nonconstant positive
steady states [8] and high co-dimensional bifurcation (Hopf-Hopf bifurcation [9] and Turing-Hopf
bifurcation [10]). Han et al. [11] investigated a cross-diffusive Leslie-Gower predator-prey model with
the fear effect. They revealed that high fear leads to stripe patterns, low fear leads to spot patterns, and
intermediate fear leads to a mix of both. In addition, pattern formations of a spatial fractional
diffusive predator-prey system with refuge and fear [12] were investigated, and high-codimension
bifurcation of some predator-prey systems with chemotaxis and fear effect [13, 14] was studied.

In 1989, Furter and Grinfeld [15] hypothesized that the presence of a predator at a given spatial
location is determined not only by its local characteristics but also by the density of predators in
adjacent regions. This consideration led to the incorporation of nonlocal interactions into the
single-species population dynamics. And then they studied the local bifurcation structure by the
Lyapunov-Schmidt reduction. Since then, there have been many works concerned with the dynamical
behaviors of some reaction-diffusion systems with nonlocal effects. Based on the hypothesis in [15],
Dong and Niu [16] introduced the nonlocal fear effect f (k, v̄) into a predator-prey model, where v̄ is
the nonlocal term. In addition, in 2023, Sun [17] investigated the implications of the nonlocal fear
effect within a diffusive predator-prey model. The results showed that the fear effect in the system can
alter the stability of the constant steady state and lead to spatially nonhomogeneous steady states.
Moreover, high-level fear can stabilize the model by excluding periodic solutions. Hence, the
model (1.1) with the nonlocal fear effect and spatial diffusion reads as follows.

∂u
∂t = d1∆u + ru

1+kv̄ − du − au2 − puv, x ∈ Ω, t > 0,
∂v
∂t = d2∆u + cpuv − m1v − m2v2, x ∈ Ω, t > 0,
∂u
∂n = 0, ∂v

∂n = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.2)

where v̄ = 1
|Ω|

∫
Ω

v(x, t)dx, u(x, t), and v(x, t) represent the density of the prey and the predator at time t
and location x ∈ Ω, respectively. The d1, d2 > 0 are the diffusion rates. Other parameters are positive
values; for their specific biological interpretations, please refer to [16]. Ω ∈ Rn is a bounded domain
with a smooth boundary and n being the outward unit normal vector over ∂Ω. The initial data u0, v0

are continuous functions.
Taking into account the effects of the nonlocal fear effect, the prey species tend to avoid regions

with high-predator density. This pattern can be mathematically represented by the term α∆(uv), where
α < 0 quantifies the avoidance intensity. Furthermore, the population pressure of predator species
may weaken in the high density location of prey species, which can be modeled by ∆ v

1+βu , where β is
a saturation coefficient [18]. Furthermore, recent research efforts have extended to analyzing systems
with general incidence rate [19]. For instance, Li et al. [20] established criteria for exponential stability
in a multi-stage epidemic system featuring a discontinuous incidence rate. Hence, as analyzed above,
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we study the following system.
∂u
∂t = ∆[(d1 + αv)u] + ru

1+kv̄ − du − au2 − puv, x ∈ Ω, t > 0,
∂v
∂t = ∆[(d2 +

1
1+βu )v] + cpuv − m1v − m2v2, x ∈ Ω, t > 0,

∂u
∂n = 0, ∂v

∂n = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.3)

Turing’s pioneering work was that a system of coupled reaction-diffusion equations could be used
to describe spatiotemporal patterns in biological systems in 1952 [21]. From this theory, the diffusion
could destabilize an otherwise stable equilibrium point and cause spatial patterns. Such instability is
often referred to as diffusion-driven instability or Turing instability. Recently, there have been many
works focused on Turing instability of reaction-diffusion models by taking into account the effect of
cross-diffusion and nonlocal terms [22, 23]. For example, Liu et al. [24] introduced the super
cross-diffusion terms in a predator-prey system and studied the Turing instability and pattern
formation in such a system with Michaelis-Menten-type predator harvesting. Liu and Guo [25]
introduced the nonlinear cross-diffusion terms in a Lotka-Volterra competition model and mainly
studied the nonexistence of nonconstant solutions and sufficient conditions ensuring the existence of
nonconstant solutions by using Leray-Schauder degree theory. Fu et al. [26] introduced the
cross-diffusion and nonlocal terms in an activator-inhibitor (depletion) model and studied the Turing
instability and the existence of bifurcating solutions by using bifurcation theory. For more related
works, please refer to [27] and the references therein.

The structure of this paper follows this organizational framework. Section 2 analyzes the stability
conditions of positive constant steady-state solutions, examining how nonlinear diffusion influences
their stability properties and triggers Turing instability. Section 3 employs the Lyapunov-Schmidt
reduction to investigate steady-state bifurcation near the trivial steady-state E2. Numerical simulations
and illustrative cases are presented in Section 4 to validate the theoretical results.

2. Turing instability of the positive stationary solution

In this section, one studies the stability of constant steady-state solutions of system (1.3). Clearly,
the system (1.3) has three constant steady states: (i) E0 = (0, 0); (ii) E1 = ( r0−d

a , 0)(r0 > d); (iii) an
interior positive constant steady state E2 = (u∗, v∗) if and only if r > d + am1

cp , where

v∗ =
−(kcpd+akm1+cp2+am2)+

√
∆

2k(cp2+am2) , u∗ = m1+m2v∗

cp , and ∆ = (kcpd + akm1 + cp2 + am2)2−

4k(cp2 + am2)(cpd + am1 − r0cp).
Based on the analysis of [16], one has the following lemma.

Lemma 2.1. [16] (i) E0 is always unstable.
(ii) If cp(r−d)

a < m1, then the positive constant steady-state E1 is locally asymptotically stable.
Conversely, it is unstable.
(iii) If r > d + am1

cp , then the positive constant steady-state E2 exists and is locally asymptotically
stable.

Linearizing the system (1.3) at the constant equilibrium E2 gives

∂

∂t

[
u
v

]
= D∆

[
u
v

]
+ JU

[
u
v

]
+ JŪ

[
ū
v̄

]
, (2.1)
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where

D =
d1 + αe2 αe1

−
βe2

(1+βe1)2 d2 +
1

1+βe1

 JU =

[
−ae1 − pe1

cpe2 − m2e2

]
, JŪ =

0 −
kre2

1
(1+ke2)2

0 0

 , (e1, e2) ∈ X2.

Substitute
(

u
v

)
=

∞∑
i=0

(
ai

bi

)
φi(x) into (2.1), where φi are eigenfunctions of the following

eigenvalue problem

−∆u = λu, x ∈ (0, lπ), u′(0) = u′(lπ) = 0.

The eigenvalues are λi =
i2
l2 with corresponding eigenfunctions φi(x) = cos( ix

l ), i ∈ N0.
The operator is defined as follows.

L(α, i) =
(
−d11λi + fu −d12λi + f̄v

−d21λi + gu −d22λi + gv

)
,

where

f̄u =

 fu + fū, i = 0,
fu, i , 0.

Hence, when i = 0, one gets

L(α, 0)
(

a0

b0

)
= λ

(
a0

b0

)
,

when i , 0, one gets

L(α, i)
(

ai

bi

)
= λ

(
ai

bi

)
.

Taking i = 0, thus λ satisfies the equation

λ2 − λtrL(α, 0)(u∗,v∗) + detL(α, 0)(u∗,v∗) = 0,

where

trL(α, 0)(u∗,v∗) = −au∗ − m2v∗,

detL(α, 0)(u∗,v∗) = am2u∗v∗ + cpu∗
(

kr(u∗)2

(1 + kv∗)2 + pu∗
)
.

Taking i , 0, thus λ satisfies the equation

λ2 − λtrL(α, i)(u∗,v∗) + detL(α, i)(u∗,v∗) = 0, (2.2)

where trL(α, i)(u∗,v∗) = −(d1 + d2 + αv∗ + 1
1+βu∗ )λi − au∗ − m2v∗, detL(α, i)(u∗,v∗) = Aλi

2 + Bλi + C, here,

A = (d1 + αv∗)(d2 +
1

1+βu∗ ) +
αβu∗v∗

(1+βu∗)2 , B = au∗(d2 +
1

1+βu∗ ) + m2v∗(d1 + αv∗) + αcpu∗v∗ + pu∗ βv∗

(1+βu∗)2 ,C =
(am2 + cp)u∗v∗.
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Remark 2.2. If α > 0, trL(α, i)(u∗,v∗) < 0 and detL(α, i)(u∗,v∗) > 0 always hold. Then, the characteristic
equation (2.2) has two negative roots, so the constant steady state E2 is always asymptotically stable.
When α < 0, trL(α, i)(u∗,v∗) < 0 and detL(α, i)(u∗,v∗) < 0 may hold, the characteristic equation (2.2) has
one positive root, and then the instability may occur.

Theorem 2.3. Assume that r > d + am1
cp holds, if

α < αT and λi > λiT

hold, then the nonlinear diffusion may induce the Turing instability to the positive constant steady-state
E2 of the system (1.3), where αT = −

d1[d2(1+βu∗)+1](1+βu∗)
v∗(1+βu∗)[d2(1+βu∗)+1]+βu∗v∗ , λiT = max{λi|Aλ2

i + Bλi +C = 0}.

Proof. Under r > d+ am1
cp , by Lemma 2.1, the unique interior equilibrium point E2 is stable without the

nonlinear diffusion.
In addition, after a simple calculation, A = (d1 + αu∗)(d2 +

1
1+βu∗ ) +

αβu∗v∗

(1+βu∗)2 < 0, then α < αT . Here,

αT = −
d1[d2(1+βu∗)+1](1+βu∗)

v∗(1+βu∗)[d2(1+βu∗)+1]+βu∗v∗ .

lim
i→∞

detL(α, i)(u∗,v∗) = lim
i→∞

(Aλ2
i + Bλi +C) = −∞,

with A < 0,C > 0, then detL(α, i)(u∗,v∗) = 0 has at least one positive root. Let λiT = max{λi|Aλ2
i + Bλi +

C = 0}, one can deduce that detL(α, i)(u∗,v∗) < 0 when λi > λiT for a fixed l, which implies that the
characteristic equation (2.2) has a positive root. i.e., as α decreases, the nonlinear diffusion can induce
Turing instability to the trivial steady-state E2.

Theorem 2.4. If αc ≤ α ≤ ᾱT , ᾱT := min{αT , αt}, then system (1.3) undergoes Turing instability at the
positive constant steady-state E2.

Proof. By Theorem 2.3, suppose that A < 0 always holds (α < αT ), then detL(α, i)(u∗,v∗) = 0 only has
a positive root, which is λi = −

B+
√

B2−4AC
2A . Hence, in order to get the Turing instability, one must have

λi ≥ 1, i.e.,

−
B +
√

B2 − 4AC
2A

≥ 1.

If −2A ≥ B, i.e., α ≤ αt =: −
(2d1+au∗)(d2+

1
1+β∗u∗ )+d1m2v∗+ pβu∗v∗

(1+β∗u∗)2

2v∗(d2+
1

1+β∗u∗ )+m2(v∗)2+
2βu∗v∗

(1+β∗u∗)2
, then A + B + C ≥ 0. Through simple

calculation, one obtains that

α ≥ αc := −
(d1 + au∗)(d2 +

1
1+βu∗ ) + d1m2v∗ + pβu∗v∗

(1+β∗u∗)2 + (am2 + cp)u∗v∗

v∗(d2 +
1

1+βu∗ ) +
βu∗v∗

(1+βu∗)2 + m2v∗v∗ + cpu∗v∗
.

Hence, if αc ≤ α ≤ ᾱT holds, Turing instability may occur at the trivial steady-state E2, where ᾱT =

min{αT , αt}.

Electronic Research Archive Volume 33, Issue 12, 7428–7441.



7433

3. Existence of non-constant steady-state solutions

In this section, we mainly aim to investigate the existence of nonconstant steady-state solutions near
the positive constant steady-state E2 under the condition r > d + am1

cp .
0 = ∆[(d1 + αv)u] + ru

1+kv̄ − du − au2 − puv,
0 = ∆[(d2 +

1
1+βu )v] + cpuv − m1v − m2v2,

∂u
∂n = 0, ∂v

∂n = 0, x ∈ ∂Ω.
(3.1)

The first Fréchet derivative of system (3.1) at E2 can be given as follows:

Rα :=
[

d11∆ − a11 d12∆ − a12

d21∆ + a21 d22∆ − a22

]
. (3.2)

Moreover, the adjoint operator R∗α of Rα reads as follows:

R∗α :=
[

d11∆ − a11 d21∆ + a21

d12∆ − a12 d22∆ − a22

]
,

where d11 = d1+αv∗, d12 = αu∗, d21 = −
βv∗

(1+βu∗)2 , d22 = d2+
1

1+βu∗ , a11 = au∗, a12 = pu∗+ kru∗
(1+kv∗)2 JŪ∗, a21 =

cpv∗, a22 = m2v∗, JŪ ∗ u =
∫
Ω

u(x, t)dx.
To investigate the existence of nonconstant steady-state solutions near trivial steady-state E2, one

chooses α as the bifurcation parameter and gives the following hypothesis.

(Hi2) : α < αT , detL(λi2 , α
0) = 0, detL(λs, α

0) , 0,∀s ∈ N0\{i2}.

From the condition (Hi2) and (3.2), we have

α0 = −
d1d22λ

2
i2
+(a12d21−a11d22−d1a22)λi2+C

(d22v∗+d21u∗)λ2
i2
+(a21u∗−a22v∗)λi2

.

Let K = KerRα0 ,K∗ = KerR∗
α0 , S = span{qi2ϕi2}, S

∗ = span{pi2ϕi2}

qi2 =

 1
−d11λi2+a11

a12−d12λi2

 , pi2 =

(
d22λi2 − a22

a12 − d12λi2

)
.

In addition, qi2 · pi2 = a11 + a22 − (d11 + d22)λi2 and

κ0 ≜ qi2 · Rαpi2 = det(λi2 , α) = Aλ2
i2 + Bλi2 +C.

To find the bifurcating solutions near the trivial steady-state E2 of system (1.3), define
G = (G1,G2)T : X2 × R→ Y2 by

G1(u, v) =∆[(d1 + αv)u] +
r0u

1 + kv̄
− du − au2 − puv,

G2(u, v) =∆[(d2 +
1

1 + βu
)v] + cpuv − m1v − m2v2,
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for E = (u, v)T ∈ X2 and α ∈ R. Then, one objective is to find other solutions for the equation
G(E, α) = 0 when E → E2 ∈ X

2 and α → α0 ∈ R. For any ς = (ς1, ς2)T , ξ = (ξ1, ξ2)T and
ζ = (ζ1, ζ2)T ∈ K. The Fréchet derivative forms of d2Fz(ς, ξ) and d3Fz(ς, ξ, ζ), respectively.

d2Fz(ς, ξ) =


A1ς1ξ1 + A2(∆)(ς1ξ2 + ς2ξ1)
+A3(ς1ξ̄2 + ς̄2ξ1) + A4ς̄2ξ̄2

A5(∆)ς1ξ1 + A6(∆)(ς1ξ2 + ς2ξ1) + A7ς2ξ2

 ,
d3Fz(ς, ξ, ζ) =

(
B1(ς1ξ̄2ζ̄2 + ς̂2ξ̄2ζ1) + B2ς̄2ξ̄2ζ̄2

B3(∆)(ς1ξ2ζ1 + ς2ξ1ζ1 + ς1ξ1ζ2) + B4(∆)ς1ξ1ζ1

)
.

Here,

A1 = −2, A2(∆) = (α∆ − p), A3 = −
rk

(1+kv∗)2 , A4 =
2rk2u∗

(1+kv∗)3 ,

A5(∆) = 2 β2v∗

(1+βu∗)3∆, A6(∆) = (cp − β

(1+βu∗)2∆), A7 = −2m2,

B1 =
2rk2

(1+kv∗)3 , B2 = −6 rk3u∗

(1+kv∗)4 , B3(∆) = 2 β2

(1+βu∗)3∆, B4(∆) = −6 β3v∗

(1+βu∗)3∆.

One has the following decompositions:

X2 = S
⊕
Xi2 ,Y

2 = S ∗
⊕
Yi2

and

Xi2 ={ψ ∈ X
2|
〈
ϕi2 , pi2 · ψ

〉
},

Yi2 ={ψ ∈ Y
2|
〈
ϕi2 , qi2 · ψ

〉
}.

Based on the analysis of [28], one knows that Rα : X2 → Y2 is a Fredholm operator with zero index,
and Rα|Xi2

: Xi2 → Yi2 is invertible and has a bounded inverse. Suppose M and I −M are the projection
operators from Y2 to Yi2 and S ∗, respectively. Then for every u(x) ∈ Y2,

ME = E(x) − ⟨ϕi2 ,qi2 ·E⟩
qi2 ·pi2

ϕi2 pi2

for all E ∈ X2.
Hence, G(E, α) = 0 is equivalent to the system reading as

MG(E, α) = 0, (I − M)G(E, α) = 0. (3.3)

For every E ∈ X2, there is a unique decomposition.

E = E2 + zϕi2 pi2 + w,

where z ∈ R and w ∈ Xi2 .
Hence, the first equation of (3.3) can be rewritten as

MG(E2 + zϕi2 pi2 + w, α) = 0.
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A map MF : K × Xi2 × R → Yi2 , which satisfies the conditions of the implicit function theorem:
MG(E2, α) = 0,MGw(E2, α) = MRα = Rα. Therefore, one obtains a unique continuously differentiable
map w = (w1,w2)T in two open neighborhoods δ of 0 in R2 and ε of α0 in R respectively, which satisfies

f or all (z, α) ∈ δ × ε,w(0, α) = 0.

Substituting u = u∗ + zqi2 + w(z, α) into the first equation of (3.3), then

∀(z, α) ∈ δ × ε,MG(u∗ + zϕi2 pi2 + w(z, α), α) = 0. (3.4)

In addition,
〈
ϕi2 , pi2 · w(z, α)

〉
≡ 0.

Therefore, ∀(z, α) ∈ δ × ε,

G(u∗ + zϕi2 pi2 + w(z, α), α) ∈ K∗. (3.5)

Substituting w = w(z, α) into the second equation of (3.3), then

G(z, α) ≜ (I − M)G(u∗ + zϕi2 pi2 + w(z, α), α) = 0.

From (3.4), then

w(z, α) = 1
2w2z2 + 1

6w3z3 + · · · ,

w2 = −(Rα0)−1d2Fz(ϕi2qi2 , ϕi2qi2),

where

(Rα0)−1 = 1
detRα0

[
d22∆ + a22 −d12∆ − a12

−d21∆ − a21 d11∆ + a11

]
.

Calculating the inner product of (3.5) with qi2ϕi2 , derive that

G∗(z, α) = z(κ0 +
1
2
κ1z +

1
6
κ2z2) + o(|α − α0|, |z|3),

where

κ1 =
〈
ϕi2 , qi2 · d

2Fz(ϕi2 pi2 , ϕi2 pi2)
〉
,

κ2 =
〈
ϕi2 , qi2 · d

3Fz(ϕi2 pi2 , ϕi2 pi2 , ϕi2 pi2)
〉
+ 3

〈
ϕi2 , qi2 · d

2Fz(ϕi2 pi2 , ϕi2 pi2 ,wzz(0, α0))
〉
.

If κ1 , 0, by the implicit function theorem, one obtains a unique continuously differentiable map
α→ z(α) in two open neighborhoods, δ of 0 in R, ε of α0 in R, which satisfies G∗(z, α) = 0 and

z(α) = −
2κ0

κ1
+ o(|α − α0|).

i.e., the system (3.1) has a non-constant steady-state Eα = E2 + z(α)pi2ϕi2 + w(z(α), α).
For simplicity, for any δ > 0, one defines the following intervals, read as

I1(α, δ) ={(α0 − δ, α0 + δ) : κ0 > 0},
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I2(α, δ) ={(α0 − δ, α0 + δ) : κ0 < 0}.

If κ1 = 0, κ2 < 0 (respectively > 0), then there exists δ > 0 and two continuously differentiable
mappings z± from I1(α, δ) (respectively, I2(α, δ)) to R such that system (3.1) has two nontrivial
solutions E±α ∈ X

2, where

E±α = E2 + z±(α)pi2ϕi2 + w(z±(α), α),

when α→ α0,E±α → E2.

Theorem 3.1. If the assumption (Hi2) holds.
(i) If κ1 , 0, there exists a continuously differentiable map α→ zα in (0−δ, 0+δ) ∈ R, (α0−ε, α0+ε) ∈
R, satisfing that system (3.1) near E2; there exists has only one nonconstant steady-state solution
Eα = E2 + z(α)pi2ϕi2 + w(z(α), α). In addition, lim

α→α0
Eα = E2.

(ii) If κ1 = 0, κ2 < 0 (respectively > 0), then there exist δ > 0 and two continuously differentiable
mapping z± from I1(α, δ) (respectively, I2(α, δ)) to R such that (3.1) has two nontrivial solutions E±α ∈
X2, where

E±α = E2 + z±(α)pi2ϕi2 + w(z±(α), α),

when α→ α0,E±α → E2.

4. Numerical simulation

In this section, numerical simulations are carried out to demonstrate the Turing instability and the
existence of nonconstant steady-states for system (1.3) in the one-dimensional spatial domain (0, lπ)
based on the theoretical results in Sections 2 and 3.

Taking the parameters as follows: d = 1.1, r = 1.2, p = 1.1,m1 = 0.1,m2 = 0.2, c = 1.1, and
β = 0.1. By direct calculation, cp(r−d)

a = m1; according to Lemma 2.1, the E2 exists provided a < 1.21.

Let d1 = 0.1, d2 = 0.2, a = 0.2, l = 5; then the constant steady-state E2 = (0.0857, 0.0184). By
Theorems 2.3 and 2.4, one gets αc = −7.5811, ᾱT = −5.6305. Hence, when α = −1, E2 is locally
asymptotically stable. As shown in Figure 1. When αc < α = −5.7 < ᾱT , E2 is unstable, i.e., Turing
instability occurs. As shown in Figure 2. However, when choosing k = 10, the other parameters
remain unchanged; the critical parameters of Turing instability are αc = −20.4872, ᾱT = −15.3135.
When α = −5.5, by Theorems 2.3 and 2.4, the constant steady-state E2 is also locally asymptotically
stable. The results show that a high level of the fear effect can eliminate the Turing instability when
the other parameters are fixed. As shown in Figure 3.
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(a) (b)

Figure 1. The initial conditions (u0, v0) = (0.0857 − 0.0001cos x
5 , 0.0184 − 0.0001cos x

5 ).
When k = 3, α = −1, and l = 5, E2 of system (1.3) is stable.

(a) (b)

Figure 2. The initial conditions (u0, v0) = (0.0857 − 0.0001cos x
5 , 0.0184 − 0.0001cos x

5 ).
When k = 3, α = −5.7, and l = 5, E2 of system (1.3) is unstable, Turing instability occurs.

(a) (b)

Figure 3. The initial conditions (u0, v0) = (0.0838 − 0.0001cos x
5 , 0.0067 − 0.0001cos x

5 ).
When k = 10, α = −5.5, and l = 5, E2 of system (1.3) is stable.

Let d1 = 0.1, d2 = 0.2, a = 0.2, and l = 100. By Theorem 3.1, there exists a λi such that the
hypothesis Hλi2

holds, and κ1 , 0, then system (1.3) has one nonconstant steady-state solution, as
shown in Figure 4.
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(a) (b)

Figure 4. The initial conditions (u0, v0) = (0.0857 − 0.0001cos x
100 , 0.0184 − 0.0001cos x

100 ),
When k = 3, α = −5.5, and l = 100, system (1.3) has a nonconstant steady-state solution.

(a) (b)

Figure 5. The initial conditions (u0, v0) = (0.0838 − 0.0001cos x
100 , 0.0067 − 0.0001cos x

100 ),
When k = 10, α = −5.5, and l = 100, system (1.3) has a nonconstant steady-state solution.

5. Discussion and conclusions

Turing instability leading to spatial pattern formation occurs exclusively when the prey avoidance
coefficient satisfies α < 0 within the critical range αc ≤ α ≤ ᾱT . This instability arises from nonlinear
cross-diffusion destabilizing the homogeneous equilibrium E2, provided the spatial wavenumber λi

exceeds a threshold λiT . Crucially, the nonlocal fear effect (k) exhibits dual roles: while low fear
levels permit pattern emergence under suitable α, high fear levels suppress Turing instability by
elevating the critical threshold |αc|, thereby stabilizing E2. Numerical simulations validate this
antagonistic mechanism (Figures 1–3), showing that increased k eliminates instability even at fixed α.
Furthermore, steady-state bifurcation analysis via Lyapunov-Schmidt reduction confirms the
existence of spatially heterogeneous solutions near E2 (Figures 4 and 5), extending pattern formation
beyond linear instability. Ecologically, α < 0 models prey aggregation induced by predator-avoidance
behavior, whereas high k reduces prey fitness, mediating stability-perturbation trade-offs.
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