
Electronic
Research Archive

https://www.aimspress.com/journal/era

ERA, 33(12): 7360–7384.
DOI: 10.3934/era.2025325
Received: 29 September 2025
Revised: 18 November 2025
Accepted: 21 November 2025
Published: 05 December 2025

Research article

GraphDAFI: A graph representation learning framework with
degree-aware feature interaction for node classification

Yiming Chen, Ying Zhang, Wenrui Guan and Wengang Jiang*

School of Automation, Jiangsu University of Science and Technology, Zhenjiang 212100, China

* Correspondence: Email: a 1 2 3@163.com.

Abstract: Graph neural networks (GNNs) have been widely studied to handle graph-structured data
due to their superior learning capability. Despite the successful applications of GNNs in many areas,
their performance suffers heavily from the imbalanced degree distribution (long-tail issue). Most prior
studies tackle this issue by graph augmentation, which explicitly increases the communication among
nodes by optimizing original topology. In this paper, we employed the perspective of taylor interaction
to explore the long-tail issue, and analyzed that there is insufficient interaction between low-degree
nodes and their neighbors. In detail, we proposed a novel GNN framework named with degree-aware
feature interaction (GraphDAFI), in order to bridge the gap of neighborhood aggregation between
head-node embeddings and tail-node embeddings. GraphDAFI comprises two collaborative modules:
adaptive feature interaction and degree-aware neighborhood transfer. Adaptive feature interaction
leverages node embeddings of the current layer and interactions of the historical layer to perceive
potential local information. Then, a unified feature encoder was designed that enhances the interaction
to increase the model’s generalization ability. To inject relevant information into low-degree nodes,
a degree-aware neighborhood transfer was developed, which updates the node-edge adjacency matrix
through a degree-aware strategy to achieve knowledge transfer. Experimental results demonstrate that
GraphDAFI achieves excellent performance in semi-supervised node classification compared with the
state-of-the-art models.

Keywords: semi-supervised learning; graph neural network; imbalance learning; knowledge
transfer; feature interaction

1. Introduction

In recent years, there has been a surge in approaches that handle graph-structured data via graph
neural networks (GNNs) [1], which have achieved astonishing success in many real-world scenarios
such as recommendation systems [2], bioinformatics [3] and traffic prediction [4]. Under the

https://www.aimspress.com/journal/era
https://dx.doi.org/10.3934/era.2025325

7361

assumption of homogeneity [5], most GNNs hinge on a neighborhood-aware mechanism, where each
node recursively receives and aggregates features from its neighbors [6]. As a representative
downstream task of GNNs, semi-supervised node classification aims to correctly classify the
unlabeled nodes with partly labeled nodes and a given topology [7]. The critical challenge of this task
is to reveal and explore the potential information for enhancing the learning performance of node
embeddings [8, 9].

Despite the remarkable performance of node classification achieved by emerging GNNs, most of
them assume that graph-structured data follows a balanced situation where the number of
neighbors (i.e., node degree) are uniform [10]. Unfortunately, real-world graphs often suffer from the
long-tailed issue (i.e., imbalance issue), where the node degree approximately obeys the power-law
distribution [11]. For example, in the citation network (Pubmed) where each node represents a
scientific paper and the links indicate citation relationships among these papers, groundbreaking
research may have thousands of followers while most papers receive only a few citations. This means
that a significant fraction of tail nodes with low degree can only perceive limited information in the
recursive neighborhood-aware process [12, 13]. As a consequence, GNNs trained on a dataset with a
long-tailed distribution are likely to fail in detecting such significant tail cases, as depicted in
Figure 1(a). Compared with the head nodes that have abundant structural connectivity, these tail
nodes struggle to access information from labeled nodes, resulting in performance degradation, as
shown in Figure 1(b).

(a) (b)

Figure 1. Long-tail issue in Pubmed. (a) Degree frequency and corresponding accuracy
statistics; (b) comparison of head and tail nodes with different label rates. All reported with
balanced accuracy (bAcc) (%) for node classification.

A few recent studies have attempted to mitigate this issue through the graph structure learning
strategy. Specifically, graph structure learning aims to obtain an optimized topology via the targeted
loss function, so as to transfer the ideal information of head nodes to tail nodes with few links. For
instance, long-tailed graph neural networks via graph structure learning (LTSL-GNN) [14] allows
information-rich head nodes to optimize the graph structure through multi-metric learning and further
enhancing the embeddings of the tail nodes with the learned graph structure, and Tail-GNN [15]
constructs the variable ties between a target node and its neighbors to achieve a neighborhood

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7362

translation from the structurally rich head nodes and obtain the robust tail node embeddings.
Essentially, these methods rely on a fundamental assumption, i.e., the optimized topology by graph

structure learning is reliable for downstream tasks. However, since graph-structured datasets are
extracted from complex interactive systems through manual predefined rules, the above assumption
cannot be always satisfied. For head nodes, the increased links make their receptive field further
expanded and accept redundant information, which reduces the discrimination of the node
embeddings [16]. For tail nodes that have sparse message propagation, they depend on the
information of high-degree nodes given by neighborhood translation. While the information from
head nodes provides valuable insights for enhancing the representation learning of tail nodes, it also
introduces potential noise [17]. These unintended influences can compromise the stability of
representation learning for tail nodes, leading to a compromise on the robustness and reliability of
tail-node embeddings.

To alleviate this limitation, we employ the perspective of taylor interaction to explore the long-tail
issue. [18] proves that the network output can be mathematically decomposed as the sum of two
typical types of effects caused by input variables, i.e., the independent effect and interaction effect.
Furthermore, [19] shows that coefficients of the neighborhood interaction effect are relatively small in
most GNN models. On this basis, we argue that insufficient neighborhood interaction of tail nodes
results in deteriorating the performance of their embeddings. Specifically, the complex characteristics
of graphs require the approaches to carry powerful nonlinear modeling capability [20, 21]. However,
the majority of message propagation depends on the general aggregation strategy, which does not
comprehensively utilize the relationship information [22]. Such simple combination of neighbors
without considering the interactions between nodes limits the capability of capturing intricate
relational dependencies in graphs [23]. Furthermore, compared to the head nodes, a notable limitation
of tail-node embeddings is that their sparse neighbors exacerbate the attenuation of interaction effects.
This naturally leads us to consider one practical question: How can the interaction effect for tail nodes
be supplemented without disrupting the original topology?

In this study, we propose a graph representation learning framework with degree-aware feature
interaction (GraphDAFI), in order to bridge the gap of neighborhood aggregation between head-node
embeddings and tail-node embeddings. The core idea is to inject additional interaction information
from head nodes into tail nodes for enhancing their raw suboptimal embeddings. Specifically, we first
construct the adaptive feature interaction of pairwise nodes to reveal the potential dependencies in the
graph. As a novel explicit interaction model, it effectively fuses node embeddings of neighbors and
interaction information which are originally derived by a factorization machine to extract the adaptive
interactions. Then, a universal feature encoder is designed to enhance both node embeddings and
adaptive interactions through feature augmentation, which further improves the generalization of our
model. In order to transmit the constructed adaptive interactions to the tail nodes, we propose a
degree-aware neighborhood transfer with interaction. Specifically, to preserve the original topology,
we extend the node-edge adjacency matrix onto the original adjacency matrix as the initialization for
neighborhood transfer. Immediately, the node-edge adjacency matrix is applied to a tail-oriented
learning strategy, aiming to deliver the interaction information (i.e., edge index) of paired nodes to tail
nodes with similar embeddings. The main contributions can be summarized as follows.

• Considering that the manual neighborhood transfer lacks an interaction effect, a novel explicit
adaptive interaction is designed by fusing node embeddings and feature interaction constructed

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7363

by a factorization machine, which can be automatically learned for various real-life scenarios.
• To conduct the derived interactions into tail nodes, a degree-aware neighborhood transfer is

devised that adopts the node-edge adjacency relationship to expand the existing message
propagation. Through the tail-oriented learning strategy, the node-edge adjacency matrix is
updated to build channels for head-tail knowledge transfer.
• We conduct extensive experiments on six datasets in semi-supervised node classification, and the

experimental results demonstrate that GraphDAFI achieves state-of-the-art performance. We
apply GraphDAFI to the recommendation system, and segment the head and tail nodes for
statistical analysis and visualization to show the effectiveness at alleviating the long-tail issue.

2. Related work

In line with the focus of our work, we briefly review the previous work in the two following areas: 1)
GNNs with imbalanced learning, and 2) feature interaction.

2.1. Graph neural networks with imbalanced learning

There are currently different groups of methods for reducing the bias caused by graph-structured
data imbalance [17]. Specifically, real-world graphs often exhibit a highly skewed distribution, where
some segments contain an abundance of objects while others are significantly insufficient [24]. Due to
the complex dependencies among nodes in graphs (i.e., non-independent and identically distributed),
it is challenging to directly apply traditional approaches to address imbalance issues on graphs. As a
result, there has been a surge in approaches that alleviate graph imbalance issues via graph structure
learning [25]. Graph structure learning is to construct an optimized adjacency matrix via random or
adaptive methods, which can directly increase the message propagation between the head and tail
nodes. For instance, LTSL-GNN iteratively learns the graph structure and tail node embedding
enhancement parameters, allowing information-rich head nodes to optimize the graph structure
through multi-metric learning and further enhancing the embeddings of the tail nodes with the learned
graph structure. CensNet [26] quantifies the similarity between hub vertices and their neighbors, and
applies graph transformations through edge weight adjustments and self-connections, effectively
mitigating this issue. Self-supervised-learning degree-specific GCN (SL-DSGCN) [27] leverages
degree-specific graph convolution network (GCN) layers and the self-supervised-learning with the
Bayesian teacher network to introduce more labeled neighbors for low-degree nodes. Intuitively, the
key insight of the approaches is to improve communications between high-resource nodes and
low-resource nodes, facilitating distribution alignment in training.

2.2. Feature interaction

As a technology for data augmentation, feature interaction aims to capture nonlinear distributions
of node features, revealing the complex interaction patterns among nodes in graph-structured
data [18]. More precisely, it refers to combining two or more features such that the model can capture
higher-order interaction terms and learn more complex nonlinear relationships [22, 23]. It is worth
noting that Hu et al. [19] mathematically demonstrated that the output of existing GNNs lacks
interactive effects. Therefore, the neighborhood aggregation with feature interaction is introduced,
and becomes a simple and promising approach that can effectively enhance the node embedding. For

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7364

example, dual feature interaction-based graph convolutional network (DFI-GCN) [28] extracts the
arbitrary-order interactions between different features via Newton’s identities, and integrates
interactions into node embeddings using an attention mechanism; Adaptive factorization
network (AFN) [29] transforms feature embeddings into a logarithmic space and constructs
arbitrary-order feature interactions through feed forward architecture, and GraphAIR [19] takes into
account the interactions between nodes in different channels, thus it represents the interactions as the
inner product of node embeddings between two channels. However, the above interactions are
manually designed and thus lack adaptive capabilities, which cannot be applied to unfamiliar
interaction patterns. Furthermore, there are few GCNs that consider feature interactions in addressing
the imbalance issue of graph-structured data.

3. Preliminaries

3.1. Notations

Let G = (V, E) be an original graph, and V = {v1, v2, ..., vN} and E = {e1, e2, ..., eM} represent the
node set and the edge set, respectively. N(i) is the set containing the neighbors of node vi as well as
node vi itself. We denote the adjacency matrix of G as A ∈ {0, 1}N×N , where each element A(i, j) = 1 if
and only if (iff) (vi, v j) ∈ E. X ∈ RN×F is the feature matrix, where xi ∈ R

F is the feature of vi. Y ∈ RN×C

denotes the label indicator matrix, where C is the number of classes and yi ∈ R
C is the ground-truth

label of node vi. In Table 1, notations commonly used in the article are defined.

Table 1. Notation description.

Notation Description
G Original graph
A Node adjacency matrix of G
V Node set of G
E Edge set of G
X Feature matrix
Y Label indicator matrix
C Number of classes
N Neighbor node set
α Aggregation weight

3.2. Node aggregation methods of neighborhood awareness

The basic idea of node aggregation is to learn a parameter-sharing aggregator, which takes features
of node vi and its neighbors v j ∈ N(i) as inputs and outputs a new embedding for node vi. As mentioned
above, we can classify node aggregation methods into two types based on neighborhood-aware pattern:
greedy neighborhood neighborhood-aware (GNA) and node-level neighborhood-aware (NLNA) [30].
In the following, we discard the subscripts of our notations for a moment, assuming A is the node
adjacency matrix.

In the GNA methods, as one of the most popular approaches, GCN defines the aggregation
coefficients as the symmetrically normalized adjacency matrix Â with Â = D̃−

1
2 (A + I)D̃−

1
2 , where I is

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7365

the identity matrix and D̃(i,i) =
∑

j A(i, j). The updated embedding of node vi based on GCN can be
formulated as:

h(l+1)
i = σ(

∑
v j∈N(i)

Â(i, j)h
(l)
j W (l)), (3.1)

where h(l)
i is the embedding of the node vi from the l-th convolutional layer. σ is a nonlinear activation

function which we used in this paper as sigmoid, and W (l) denotes the weight matrix at the l-th layer.
In the NLNA methods, sampling and attention mechanisms are usually adopted to selectively

aggregate information from relevant neighbors. The updated embedding of node vi based on sampling
mechanisms can be expressed as:

h(l+1)
i = σ(W (l) · AGGREGAT E({hl

i} ∪ {h
l
j, v j ∈ Ns(i)})), (3.2)

where AGGREGAT E is a aggregation function, which commonly includes mean, pooling, and LSTM.
Ns(i) represents the partial neighbors of node vi, which are obtained by different sampling mechanisms.
In addition, the updated embedding of node vi based on attention mechanisms can be formulated as:

h(l+1)
i = σ(

∑
v j∈N(i)

a(l)
i j h(l)

j W (l)), (3.3)

where a(l)
i j is the attention coefficient between nodes vi and v j at the l-th layer.

4. Method

4.1. Overview of the framework

The overall structure of GraphDAFI is illustrated in Figure 2. GraphDAFI differs from the
traditional GNN framework for a long-tail issue in two main aspects. 1) GraphDAFI considers the
importance of the interactive effect, incorporating a novel adaptive interaction strategy to explore
local latent patterns. 2) GraphDAFI includes a degree-aware neighborhood transfer, where the devised
interaction can be injected into the node representation by continuously updating the tail-oriented
transfer matrix.

The following sections are structured to present the details and implementation of GraphDAFI. In
Section 3.2, we present the construction of adaptive interaction. In Section 3.3, we provide details on
the degree-aware neighborhood transfer. In Section 3.4, we introduce our proposed loss function and
the process of model training.

4.2. The construction of adaptive interaction

As mentioned above, we design a novel adaptive interaction construction method, as shown in
Figure 2. By extracting node interactions of the historical layer and node embeddings of the current
layer, adaptive node interaction can be learned. In the following, we provide a detailed procedure of
the adaptive interaction.

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7366

Figure 2. The framework of GraphDAFI.

As discussed in Section 3.2, GraphDAFI uses the node aggregation method of GNA. Thus, the
updated process of node embedding H can be expressed as follows:

hl+1
i = σ(

∑
v j∈N(i)

Â(i, j)hl
jW

(l)
v), (4.1)

where hl
i is the node embedding of the node vi from the l-th layer with h0

i = xi. Â is the symmetrically
normalized adjacency matrix, and W (l)

v denotes the weight matrix of the l-th layer.
Taylor interaction effects point out that the output of a linear learner f (·) (i.e., GCN learner) can be

decomposed into K-order Taylor expansions, which are expanded at a baseline point b = [b1, ..., bn]T .

f (x) = f (b) +
n∑

i=1

1
1!
·
∂ f (b)
∂xi

· (xi − bi)︸ ︷︷ ︸
Independent e f f ects

+

n∑
i=1

n∑
j=1

1
2!
·
∂2 f (b)
∂xi∂x j

· (xi − bi)(x j − b j) + · · ·︸ ︷︷ ︸
Interaction e f f ects

(4.2)

It can be concluded that the interaction term of the learner is the key to improve the nonlinear fitting
ability of the model. Unfortunately, the interaction term coefficient decreases rapidly with the increase
of the order, and the existing literature [19] has proved that the third-order interaction term coefficient
is less than 1/48, which limits the model learning ability. Therefore, a straightforward strategy is to
explicitly construct interaction items and add them to the learning process. On this basis, a natural idea
to model neighborhood interaction of pairwise nodes (vi, v j) is formulated as:

z(i, j) =

 ∑
vk∈N(i)

Â(i,k)hl
jW

(l)
v

 ⊙
 ∑

vr∈N(j)

Â(j,r)hl
jW

(l)
v

 , (4.3)

where z(i, j) is the neighborhood interaction representation between vi and v j, and ⊙ is the element-wise
multiplication operator. It should be pointed out that this approximation method lacks consideration

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7367

of the adaptive coefficient, and it is easy to cause performance degradation if it is blindly added to the
forward propagation.

GraphDAFI first extracts the embedding of pairwise nodes, and constructs the interactive
information (hl+1

i ⊙ hl+1
j) ∈ R|E|×d′ of the current layer through the factorization machine form. In order

to comprehensively perceive node relationships, GraphDAFI additionally considers the interaction
information of the previous layer and merges it into the current layer through residual connection.
Then, we use the attention mechanism to adaptively fuse the interaction information from different
layers into the embedded dimension through a layer of MLP learners (the learnable feature matrix
S ∈ Rd×d′). Therefore, the learning of adaptive interaction Z is defined as follows:

zl+1
(i, j) = σ

([
zl

(i, j) ⊕ (hl+1
i ⊙ hl+1

j)
]

S T
)
, (4.4)

where zl
(i, j) is the adaptive interaction between nodes vi and v j from the l-th layer, and z0

(i, j) = σ(h0
i ⊙h0

j).
We denote ⊕ as the concatenation operation, respectively. S ∈ Rd×d′ is a learnable feature matrix, where
d is the dimension of the current layer and d′ is the sum of interaction dimensions. Thus, we explicitly
model the interaction between pairwise nodes, where any interaction z(i, j) points to an inherent edge,
and Z = {z(i, j), · · · }, i, j ∈ V, can also be represented as Z = {z(k), · · · }, k ∈ E.

4.3. The degree-aware neighborhood transfer

As head nodes are structurally rich, we assume their observed neighborhoods are representative
enough to be regarded as the ideal neighborhoods. Therefore, the interaction between the head nodes
and their neighbors often provides the knowledge that the tail node desires. Thus, we exploit and learn
the feature interaction from the neighborhood of head nodes, and then locally transfer the knowledge
of interaction to tail nodes in order to predict the missing neighborhood information.

Considering the inevitable existence of redundant information in the constructed interaction
information, we first compress the adaptive interaction through a unified feature encoder to predict the
missing neighborhood information of low-level nodes as much as possible. Its purpose is to enhance
the distinguishability of the node embeddings by introducing the difference information between the
node and its neighbors. If the node differs greatly from its neighbors (high AvgDist), its
characteristics will be adjusted to reflect this local heterogeneity; otherwise, more original
information will be retained. The unified feature encoder can be represented as:

z̃(i) =

z(i) +

√ ∑
vk∈N(i)

(z(i) − z(k))2/|N(i)|

Wu, (4.5)

where |N(i)| is the number of neighbors of node vi. (z(j) − z(k))2 represents the difference information
(high-level information) between nodes, explaining implicit high-level relations. Wu is the weight
matrix obtained by MLP for the new embedding.

Our tail-oriented transfer strategy aims to enable tail nodes to receive interaction from high-resource
nodes of the same class but with significantly different degrees as much as possible. Based on the node
adjacency matrix A ∈ RN×N , we initialize the tail-oriented transition matrix T ∈ RN×M as the node edge

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7368

adjacency matrix. The transfer process can be expressed as:

h′i = hi +

N∑
k=1

T(i,k)z(k), (4.6)

where h′i is the enhanced node embedding of node vi, and T(i,k) = 1 indicates that node vi receives
adaptive interaction z(k). When T is the node-edge adjacency matrix, any node can only accept the
interaction information of its nearest neighbors. Therefore, we need to update the transfer matrix At

according to the goal of knowledge transfer. The process of updating the transfer matrix At can be
expressed as follows:

P(i, j) =

{
1, i f |

∑N
k=1 A(i,k) −

∑N
k=1 A(j,k)| >

1
N

∑N
k=1
∑N

r=1 A(k,r)

0, otherwise
(4.7)

At = HHT + P, (4.8)

where |
∑N

k=1 A(i,k) −
∑N

k=1 A(j,k)| represents the degree difference between nodes vi and v j.
1
N

∑N
k=1
∑N

r=1 A(k,r) denotes the average degree, and P is used to connect paired nodes with significantly
different degrees. The transfer process toward the tail node can be expressed as:

H′ = H + AtTZ, (4.9)

where H′ = {h′1, · · · , h
′
N} is the final node embedding.

4.4. Task-dependent loss functions

For semi-supervised classification tasks, the loss fuction L can be represented as follows:

L (Θ) = −
∑
vi∈V

C∑
j

Yi j log(H̃′i j), (4.10)

where H̃′ is the softmax result of H′, and Θ = (Wv,We,Wt, S) is the parameter set, which is also used
in link prediction.

To obtain more accurate node embeddings, we leverage adaptive interaction Z to construct the
auxiliary classifiers. Specifically, we employ an additional graph convolutional layer that encodes
adaptive interaction Z into embeddings Hz. Eventually, the overall objective function is the weighted
sum of the three losses:

Lnode = β1L (H′,Y) + β2L (Hz,Y), (4.11)

where β1, β2 are the hyperparameters that control the proportion of loss functions to minimize the total
loss Lnode.

Finally, we optimize the model parameters with respect to the objective using stochastic gradient
descent. Without loss of generality, the algorithm of GraphDAFI is elaborated as follows (Algorithm 1).

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7369

Algorithm 1: GraphDAFI
Input: Original graph G = (V, E); Feature matrix X; Iterations epochs; Hyperparameters

β1, β2;
Output: The node embedding H′;
Obtain the transfer matrix T via the original graph G;
for epochs do

Encode feature matrix X to obtain node embedding H via Eq (4.1);
Construct adaptive interaction of pairwise nodes Z via Eq (4.4);
Obtain enhanced interaction Z̃ by unified feature encoder via Eq. (4.5);
Aggregate adaptive interaction Z̃ into node embedding H′ via Eq (4.6);
Update transfer matrix T via Eq (4.7) and Eq (4.8);
Calculate the corresponding loss and update the parameter set via Eq (4.11);

end
Return The node embedding H′;

4.5. Complexity analysis

Let G = (V, E) be the input graph, |V | = N denotes the number of nodes, and |E| = M is the number
of edges. For each node vi, d0 represents the dimension of node features, and {d1, ..., dl} denotes the
hidden layer dimension of the GCN learner with l layers. Consequently, the complexity of ith layer in
GCN is O(Ndidi−1+Mdi). The complexity of ith layer in Demo-Net is O(Ndidi−1+Tdi+NHdi−1+Mdi),
where T is the number of tasks (degree values) and H is the hashing dimension in the graph. The
complexity of ith layer in UMGCN is O(Ndidi−1+d′d′′+N3+(Ndi+N2di−1)+ |VL|·|VU |), where |VL|, |VU |

represent the number of labeled and unlabeled nodes and {d′, d′′} are the hidden layer dimensions of
this attention mechanism. For our proposed model GraphDAFI, its complexity can be composed of the
following parts:

• In the adaptive feature interaction, the complexity of this module is O(Md2
i di−1), where M denotes

we construct the interaction information Z ∈ RM×d′ of pairwise nodes.
• In the degree-aware neighborhood transfer module, it involves the unified feature encoder, transfer

process, and adjacency matrix update. Therefore, their time complexities are as follows: O(Mdi+

Ndi + Ndidi−1),O(N2),O(N2 + Md′).

Therefore, the computational complexity of the entire GraphDAFI model is O((M +N)di + (Mdi
2 +

Ndi)di−1 + 2N2).

4.6. Scalability implementation

To address the computational challenges posed by pairwise interactions in large-scale graphs, we
propose a scalable solution using METIS-based graph partitioning acceleration. METIS is a
well-established graph partitioning algorithm that decomposes a graph into smaller subgraphs while
minimizing the edge cut, thereby reducing inter-partition communication overhead.

Graph partitioning formulation. Given a graph G = (V, E) with |V | = N nodes and |E| = M

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7370

edges, we employ METIS to partition the graph into K disjoint subgraphs {G1,G2, . . . ,GK}, where:

Gi = (Vi, Ei),
K⋃

i=1

Vi = V, Vi ∩ V j = ∅ for i , j, (4.12)

where Vi and Ei denote the node set and edge set of partition i, respectively. The partitioning objective
is to minimize the edge cut:

EdgeCut =
∣∣∣{(vi, v j) ∈ E : vi ∈ Vp, v j ∈ Vq, p , q}

∣∣∣ , (4.13)

while maintaining balanced partition sizes: |Vi| ≈
N
K for all i ∈ {1, . . . ,K}.

Intra-partition interaction computation. For each partition Gi, we compute the adaptive node
interactions locally using Eq 4.4. The interaction representation within partition i is:

Zi = {zl+1
(u,v) : (u, v) ∈ Ei}, zl+1

(u,v) = σ
([

zl
(u,v) ⊕ (hl+1

u ⊙ hl+1
v)
]

S T
)
, (4.14)

where all nodes u, v ∈ Vi belong to the same partition, ensuring that strongly connected nodes are
processed together.

Inter-partition interaction handling. For cross-partition edges (u, v) where u ∈ Vp and v ∈ Vq

with p , q, we approximate the interaction by:

zl+1
(u,v) = σ

(
(hl+1

u ⊙ hl+1
v)S T

cross

)
, (4.15)

where S cross ∈ R
d×d′ is a simplified learnable matrix that avoids the residual connection from previous

layers, thereby reducing communication overhead between partitions.
Complexity analysis. Without partitioning, computing adaptive interactions for all edges requires

O(Md2) operations, where M is the total number of edges and d is the embedding dimension. With
METIS partitioning into K subgraphs, the complexity becomes:

O

 K∑
i=1

(Mid2 + Ni log Ni)

 , (4.16)

where Mi = |Ei| and Ni = |Vi| represent the number of edges and nodes in partition i, respectively. The
Ni log Ni term accounts for the partitioning overhead. Since

∑K
i=1 Mi ≪ M due to minimized edge cuts,

and partitions can be processed in parallel, this approach achieves significant speedup:

Speedup ≈
Md2

maxi(Mid2 + Ni log Ni)
, (4.17)

where the denominator represents the bottleneck partition’s computational cost under
parallel processing.

5. Experiments

In this section, we evaluate GraphDAFI against state-of-the-art semi-supervised node classification
models, focusing on its ability to address the long-tail distribution problem. Additionally, we conduct
auxiliary experiments to assess the performance of the individual components of GraphDAFI.

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7371

5.1. Datasets

The experiments are conducted over four real-world datasets which are summarized in Table 2.

1) Citeseer: It is a literature citation network dataset, which can automatically extract citation
information of the literature and establish citation networks among the literature.

2) Cora: It is an academic paper citation network, mainly used to provide a testing ground for
algorithm research. This dataset contains approximately 2708 machine learning papers, each of
which has been manually labeled as one of seven categories: Case Based, Genetic Algorithms,
Neural Networks, Probabilistic Methods, Reinforcement Learning, Rule Learning, and Theory.

3) ACM: It is a dataset mainly used in heterogeneous GNNs, which constructs a heterogeneous
information network including various nodes such as Paper, Author, Affiliation, Venue, and
multiple relationships.

4) Pubmed: It is a dataset widely used in the biomedical field, containing the abstract texts of
approximately 19,717 research papers related to diabetes as graph nodes.

Table 2. Data details.

Datasets Nodes Edges Classes Features Training Test
Cora 2708 5429 7 1433 14/28/140 1000
Citeseer 3327 4732 6 3703 15/30/160 1000
Pubmed 19,717 44,338 3 500 15/30/60 1000
ACM 3025 26,256 3 1870 15/30/60 1000

5.2. Baselines

To comprehensively evaluate the performance of our model, we conducted a comparison with
several different types of models as detailed below:

1) Representative models: GCN [31], GAT [32]. The former treats all nodes as equally important
without distinguishing between head and tail nodes.The latter assigns different weights to nodes
using an attention mechanism, but the information propagation limitations for tail nodes hinder
sufficient feature learning.

2) Feature interaction models: CensNet [26] and GraphAIR [19]. They are generally capable of
optimizing graph structures and feature representations; however, they do not specifically address
the issue of long-tail nodes. In scenarios characterized by significant long-tail distributions, models
tend to pay insufficient attention to low-degree long-tail nodes, resulting in suboptimal learning
outcomes.

3) Degree-based models: Demo-Net [25], Tail-GNN [15], and SL-DSGCN [27]. They address the
issue of long-tail distribution with the aim of enhancing the representational capability of
low-degree nodes. By employing a recalibration mechanism to mitigate bias, learning and
transferring neighborhood relationships of high-degree nodes, and designing degree-specific
layers, they effectively optimize the feature representation of long-tail nodes. This approach
significantly improves performance in sparse and imbalanced graph data.

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7372

4) SOTA models: UMGCN [33], Logo-GNN [34], and FTCP [35] are the latest topology
augmentation-related models in graph representation learning. Among them, Logo-GNN and
UMGCN both adopt the multi-channel framework to merge the information of the augmented
graph with the original topology.

5.3. Parameter setting

Table 2 gives the basic information of relevant datasets, and explains the allocation ratio of the
training, verification, and test set. In the proposed GraphDAFI, we employed full batch processing to
train our model and optimized it using the Adam algorithm. The parameter settings are as follows: the
learning rate is set between 0.001 and 0.005; hyperparameters β1 and β2 are searched within the range
{0, 0.1, ..., 1}; the number of training epochs ranges from 100 to 500; weight decay is set at 0.0005.
For the baselines, the results of GCN, GAT, Dome-net, SL-DSGCN, and UMGCN were copied from
previous publications [33]. Tail-GCN, CensNet, and GraphAIR adopt the two-layer GCN architecture
and the embedding dimension is selected from [512, 256, 128]. In particular, the GraphAIR’s
parameters of the overall objective function are set to [1, 1, 1]. Tail-GCN sets the default degree
threshold to K = 5, i.e., nodes with degree no greater than 5 are regarded as tail nodes. The
experiments are run 10 times in the same partition, and then the average results are reported for
comparison and validation.

5.4. Semi-supervised node classification

Table 3 presents the accuracy values (ACC) and F1 score obtained after training, following a detailed
discussion and comparison of various algorithms in semi-supervised node classification. The results
that performed best are highlighted in bold. From the Table 3, it can be observed that:

1) Compared to the baselines, GraphDAFI achieves superior performance on most datasets. This can
be attributed to the effective collaboration between adaptive feature interaction and degree-aware
neighborhood transfer. The devised modules not only extract discriminative information but also
integrate this into the final node embedding to enhance the overall classification performance.

2) Compared with long-tail-related models, GraphDAFI exhibits strong competitiveness over most
datasets. It is worth noting that GraphDAFI adopts the interaction information as the local
perspective to capture auxiliary knowledge. In addition, the improvements indicate that
degree-aware neighborhood transfer perceives the nonlinear dependencies between source and
target domains, facilitating the exchange of high-level information.

3) From the failure cases presented in Table 3, using the Citeseer dataset as an example, it is evident
that the performance of GraphDAFI was inferior to that of UMGCN. This discrepancy can be
attributed to UMGCN’s ability to extract high-quality node representations, effectively compensate
for information loss associated with low-degree nodes, and maintain stable model performance in
complex networks. Consequently, it is essential to enhance GraphDAFI’s feature aggregation
capabilities within scenarios characterized by sparse graph structures and intricate original
topological relationships.

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7373

Table 3. Comparison of models on different datasets.

Datasets Cora Citeseer ACM Pubmed
Metrics ACC↑ F1↑ ACC↑ F1↑ ACC↑ F1↑ ACC↑ F1↑
GCN [31] 74.87 71.50 67.80 63.63 78.50 76.08 76.51 75.60
GAT [32] 78.14 77.88 69.24 65.58 85.60 84.23 77.11 75.82
Tail-GCN [15] 83.12 81.32 72.22 69.34 88.03 87.08 79.48 77.87
Demo-net [25] 78.24 77.60 61.44 59.02 90.13 90.02 75.96 74.28
SL-DSGCN [27] 83.43 83.03 65.49 62.47 89.09 87.23 80.93 80.02
CensNet [26] 79.14 78.45 67.51 66.23 89.72 87.45 69.94 69.24
GraphAIR [19] 84.22 81.78 71.19 68.73 90.24 89.66 80.12 77.45
Logo-GNN [34] 84.16 81.80 71.88 69.56 90.64 88.78 80.62 78.31
FTCP [35] 83.31 80.80 72.65 69.43 91.24 89.13 81.67 79.45
UMGCN [33] 82.46 81.80 72.93 69.34 90.44 89.69 80.27 78.24
GraphDAFI 85.33 82.39 70.23 69.85 91.56 90.49 81.40 80.82

5.5. Comparison of the ability to promote the long-tail issue

In order to verify the ability of the model to alleviate the long-tail distribution, we sample the
top 5% and the bottom 5% of the dataset, respectively, as the head and tail nodes. We select the train
environment with different label ratios for full implementation, and the results are shown in Figure 3.

(a) Label ratio = 0.3 (b) Label ratio = 0.4

(c) Label ratio = 0.5 (d) Label ratio = 0.6

Figure 3. Visualization comparison of head vs. tail nodes on Cora.

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7374

(a) Per-class accuracy of GCN on the Cora

(b) Per-class accuracy of GraphDAFI on the Cora

(c) Per-class accuracy of GCN on the Citeseer

(d) Per-class accuracy of GraphDAFI on the Citeseer

Figure 4. Visualization comparison of per-class or tail vs. head accuracy.

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7375

It is evident from empirical results that GraphDAFI demonstrates significant advantages in tail node
classification. This suggests that the degree-aware neighborhood transfer effectively leverages auxiliary
knowledge from head nodes and utilizes constructed interactive information. Comparing DemoNet
with GCN and GarphAir, we can find that although DemoNet’s strategy for long-tail distribution is
effective, it has lost the overall classification performance to some extent.

From Figure 4, the proposed GraphDAFI model demonstrates superior performance over the
baseline GCN in long-tail node classification. It achieves a more balanced accuracy distribution
across head and tail classes: for example, maintaining high accuracy in head classes (e.g., 1.0 in
Class 1) while significantly improving tail class recognition, such as increasing tail accuracy in
Class 1 from 0.6875 to 0.8352. Additionally, the model generalizes well across classes of varying
sizes, sustaining robust accuracy in both large and small classes. These results confirm that
GraphDAFI effectively mitigates class imbalance in GNNs, delivering more balanced, stable, and
accurate classification.

5.6. Scalability on the large graph

To evaluate the scalability of our GraphDAFI framework, we conducted extensive experiments on
the ogbn-arxiv dataset, a substantial citation network comprising 169,343 nodes and 1,166,243 edges.
The core objective was to assess the computational efficiency of our adaptive interaction mechanism
when handling large-scale graphs. Specifically, we measured the additional processing time required
to compute the pairwise node interactions and the corresponding GPU memory allocation during this
preprocessing phase.

As shown in Table 4 and Figure 5, memory allocation refers to the GPU memory required to store
the preprocessed graph, while partition rate denotes the proportion of subgraphs modified by
GraphDAFI during preprocessing. GraphDAFI achieves an effective balance between performance
enhancement and computational overhead. The adaptive interaction module introduces a manageable
increase in processing time while significantly improving the model’s representation capability. More
importantly, as demonstrated in our analysis, the implemented optimization strategies effectively
control memory consumption, enabling GraphDAFI to scale efficiently to graphs of this magnitude.
This demonstrates the practical viability of our approach for real-world, large-scale graph
learning tasks.

Table 4. Scalability on ogbn-arxiv.

Partition rate Remove edges Acc Preprocessing time(s) Training & testing time(s)

0 – OOM – –
0.10% 89,455 0.66 176 492
0.50% 187,221 0.67 191 511
1.00% 298,777 0.71 263 531
5.00% 423,105 0.72 350 543

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7376

Figure 5. Memory allocation for graphs after preprocessing with different partition rates.

5.7. Ablation study

This section presents an ablation study focused on validating the contributions of various
components of GraphDAFI to the model performance, as well as their synergistic interactions. To this
end, we systematically remove model components either individually or in combination and evaluate
the performance of GraphDAFI and its variants. Specifically, we analyze how the node representation
in GraphDAFI is integrated from three components: adaptive feature interaction (AFI), universal
feature encoding (UFE), and degree-aware transfer integration (NTI). The variants are represented by
removing single or paired components; for instance, GraphDAFI-UN indicates that AFI has been
removed from GraphDAFI, while GraphDAFI-A signifies that UFE and NTI have been excluded.

The final classification results are presented in Table 5 and Figure 6, revealing several
key observations:

1) Contribution of individual components: It is evident that GraphDAFI-UN, GraphDAFI-AN, and
GraphDAFI-AU perform exceptionally well on the ACM dataset. Notably, the performance of
GraphDAFI-AU surpasses that of GraphDAFI-UN; however, the performance of GraphDAFI-AN
significantly declines compared to both of the other variants. Analyzing these outcomes reveals
that NTI effectively leverages node degree information for deep modeling in graph data with
pronounced domain distribution differences, thereby reducing feature bias across domains. AFI
enhances global feature learning capabilities when dynamically capturing edge-node feature
interactions which improves model robustness. UFE contributes to the foundational classification
ability by providing universal feature representations.

2) Performance of paired components. It can be observed that the combination of AFI, UFE, and NTI
can complement each other and improve the performance of the model in the graph classification
task. Specifically, GraphDAFI-A is suitable for datasets with complex distribution and dynamic
relationships. GraphDAFI-U has strong domain adaptability and is very suitable for graphs with
significant distribution differences.

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7377

Table 5. ACC (%) of node classification with different components.

AFI UFE NTI Cora Citeseer Pubmed ACM
GraphDAFI-UN ✓ 82.2 67.5 79.1 88.2
GraphDAFI-AN ✓ 75.3 59.4 70.2 79.3
GraphDAFI-AU ✓ 82.6 68.6 80.3 89.4
GraphDAFI-A ✓ ✓ 83.1 69.3 80.6 89.7
GraphDAFI-U ✓ ✓ 83.5 69.2 80.7 87.5
GraphDAFI-N ✓ ✓ 82.9 69.5 80.4 87.8
GraphDAFI ✓ ✓ ✓ 84.3 70.2 81.4 90.5

Figure 6. ACC (%) of GraphDAFI and its variants.

5.8. Parameter sensitivity

The analysis of the hyperparameters in the loss function reveals the operational mechanism of our
model. In this section, we further investigate the regularities regarding how the hyperparameters β1 and
β2 influence node classification on the Cora dataset. Specifically, the hyperparameters β1 and β2 take
values from {0.6, 0.7, ..., 1.4}. We present the corresponding bar charts illustrating these effects from
the perspective of node classification accuracy (ACC), as shown in Figure 7.

In the Figure 7, it is evident that the two hyperparameters exhibit a significant nonlinear
relationship with classification accuracy, characterized by a certain degree of fluctuation. The
variation range lies between 0.7 and 0.8. From an overall distribution perspective, higher
classification accuracy predominantly concentrates within the mid-to-high value range, particularly in
the region where β1 and β2 are approximately between 0.8 and 1.2. This phenomenon can largely be
attributed to the model’s ability to effectively capture feature interactions among nodes while
maintaining a balanced optimization of loss terms, thereby avoiding both overfitting and underfitting.
The results indicate that moderate parameter settings can better balance the weights of various
components within the loss function, thus significantly enhancing model performance.

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7378

Figure 7. ACC of node classification on Cora with varying hyperparameters.

Furthermore, when there is a substantial disparity in the values of β1 and β2, such as when β1 = 0.7
and β2 = 1.4, there is a marked decline in classification accuracy. This outcome suggests that these
two hyperparameters may possess some degree of coupling within the model; an imbalance in their
weight distribution could hinder effective coordination between node feature learning and structural
information processing. Further analysis reveals that larger parameter values may introduce additional
noise elements, diminishing modeling capability for graph structure information; conversely, smaller
parameter values might result in insufficient weighting, failing to adequately optimize specific
loss components.

5.9. Statistical analysis

In order to systematically analyze the performance of the above comparison methods, it is necessary
to consider using statistical tests for analysis. Specifically, we use the Bonferroni-Dunn test to generate
CD (critical difference) diagrams of the two performance indicators, as shown in the Figure 8.

(a) CD diagram of accuracy (b) CD diagram of F1-score

Figure 8. The CD diagrams on all datasets. (The line of the order number indicates the
ranking of method performance. Bold lines indicate within the CD threshold.)

Figure 8 shows that GraphDAFI achieved the top ranking in both ACC and F1 indicators, owing to
its superior performance. Compared with models related to long-tail distribution, GraphDAFI
outperforms Demo-net, SL-DSGCN, and Tail-GCN, indicating that GraphDAFI not only solves the
problem of tail nodes’ poor performance but also improves the overall performance.

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7379

5.10. Visualization

In this subsection, we conduct a comparative analysis of the performance of GraphDAFI and GCN
models on the Cora dataset through visualization techniques. The choice to compare with GCN is
motivated by the differing approaches both models employ in node representation learning and feature
interaction modeling. Specifically, while GraphDAFI dynamically captures the interactions between
nodes and edges to enhance intra-class feature consistency and inter-class feature separability, IGCN
relies on static convolution that aggregates features based on a fixed graph structure. Therefore, we
employed t-SNE and similarity matrix Z̃aggZ̃aggT

visualizations to comprehensively illustrate the
distribution characteristics and quality of node representations Z̃agg, as shown in Figures 9 and 10.

(a) GraphDAFI(21) (b) GCN(21)

(c) GraphDAFI(140) (d) GCN(140)

Figure 9. Visualization comparison of node representation distribution on Cora.

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7380

(a) GraphDAFI (b) GCN

(c) GraphDAFI (d) GCN

Figure 10. Visualization comparison of node representation quality on Cora.

From Figure 9, it can be observed that under the low-sample condition with a training sample size
of 21 (e.g., Figure 9(a)), our model effectively clusters similar samples together and demonstrates
clearer boundaries compared to GCN. In the high-sample condition with a training sample size
of 140 (e.g., Figure 9(c)), both models show an overall improvement in node distribution; however,
our model exhibits superior embeddings and higher intra-class similarity.

The similarity matrix presented in Figure 10 further corroborates this conclusion. Under
low-sample conditions, our model displays complete diagonal matrix blocks, indicating high
intra-class node similarity and consistent distribution of embedding features across categories. In
contrast, the diagonal block distribution for GCN is more scattered and noticeably darker, suggesting
weaker intra-class similarity and difficulty in forming accurate class representations. Under

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

7381

high-sample conditions, both models demonstrate enhanced quality in overall node representations;
however, GraphDAFI further reinforces the diagonal block structure, resulting in brighter
corresponding category regions and stronger intra-class consistency.

6. Conclusions and future work

In this study, we introduce GraphDAFI, a novel framework addressing the long-tail degree
distribution problem in GNNs via Taylor interaction theory. Its key innovations are: 1) an adaptive
feature interaction module that automatically learns potential graph dependencies by fusing node
embeddings with factorization machine-based interaction features; 2) a degree-aware neighborhood
transfer mechanism that updates the node-edge adjacency matrix through a tail-focused strategy to
transfer interaction information to low-degree nodes without altering the original topology; and 3) a
direct enhancement of interaction effects for tail nodes, eliminating noise injection from high-degree
nodes and significantly improving the robustness of tail-node representations. Unlike graph
augmentation approaches, GraphDAFI preserves structural integrity while effectively bridging the
embedding gap between head and tail nodes.

Although this study has made significant progress in different downstream tasks, there are still many
issues worthy of further investigation. For example, in the process of injecting auxiliary information
into low-degree nodes, although knowledge transfer effectively enhances the expression ability of low-
degree node embeddings, the overall robustness of the GNN framework cannot be guaranteed. In future
work, we will further explore the robustness of models in imbalanced learning based on knowledge
transfer. In addition, due to the need to construct interaction information between pairwise nodes, the
model is limited by computational complexity when dealing with large-scale dense graphs. The lower
performance improvement on dense graphs in recommendation systems also reflects the difficulty of
GraphDAFI in handling dense graphs. Therefore, in future work, we will attempt to use acceleration
methods such as vector quantization to simplify the model and improve its scalability.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by National Natural Science Foundation of China (62076111).

Conflict of interest

The authors declare there are no conflicts of interest.

References

1. S. Khoshraftar, A. An, A survey on graph representation learning methods, ACM Trans. Intell.
Syst. Technol., 15 (2024), 1–55. https://doi.org/10.1145/3633518

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

https://dx.doi.org/https://doi.org/10.1145/3633518

7382

2. K. Sharma, Y. Lee, S. Nambi, A. Salian, S. Shah, S. Kim, et al., A survey of graph
neural networks for social recommender systems, ACM Comput. Surv., 56 (2024), 1–34.
https://doi.org/10.1145/3661821

3. M. Réau, N. Renaud, L. C. Xue, A. M. J. J. Bonvin, DeepRank-GNN: A graph neural
network framework to learn patterns in protein–protein interfaces, Bioinformatics, 39 (2023), 759.
https://doi.org/10.1093/bioinformatics/btac759

4. F. Li, J. Feng, H. Yan, G. Jin, F. Yang, F. Sun, et al., Dynamic graph convolutional recurrent
network for traffic prediction: Benchmark and solution, ACM Trans. Knowl. Discovery Data, 17
(2023), 1–21. https://doi.org/10.1145/3532611

5. X. Pei, X. Deng, N. N. Xiong, S. Mumtaz, J. Wu, Complex graph analysis and representation
learning: Problems, techniques, and applications, IEEE Trans. Network Sci. Eng., 11 (2024),
4990–5007. https://doi.org/10.1109/TNSE.2024.3417850

6. Q. Guo, X. Yang, F. Zhang, T. Xu, Perturbation-augmented graph convolutional networks: A
graph contrastive learning architecture for effective node classification tasks, Eng. Appl. Artif.
Intell. , 129 (2024), 107616. https://doi.org/10.1016/j.engappai.2023.107616

7. Y. Ye, S. Ji, Sparse graph attention networks, IEEE Trans. Knowl. Data Eng., 35 (2023), 905–916.
https://doi.org/10.1109/TKDE.2021.3072345

8. F. Wu, T. Zhang, A. H. de Souza Jr., C. Fifty, T. Yu, K. Q. Weinberger, Simplifying graph
convolutional networks, preprint, arXiv:1902.07153.

9. S. Yi, Z. Mao, W. Ju, Y. Zhou, L. Liu, X. Luo, Towards long-tailed recognition for
graph classification via collaborative experts, IEEE Trans. Big Data, 9 (2023), 1683–1696.
https://doi.org/10.1109/TBDATA.2023.3313029

10. X. Wang, X. Yang, P. Wang, H. Yu, T. Xu, SSGCN: A sampling sequential guided
graph convolutional network, Int. J. Mach. Learn. Cybern., 15 (2024), 2023–2038.
https://doi.org/10.1007/s13042-023-02013-2

11. Z. Liu, W. Zhang, Y. Fang, X. Zhang, S. C. H. Hoi, Towards locality-aware meta-
learning of tail node embeddings on networks, in Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, (2020), 975–984.
https://doi.org/10.1145/3340531.3411910

12. E. M. Hamedani, M. Kaedi, Recommending the long tail items through
personalized diversification, Knowl.-Based Syst., 164 (2019), 348–357.
https://doi.org/10.1016/j.knosys.2018.11.004

13. K. Yao, J. Liang, J. Liang, M. Li, F. Cao, Multi-view graph convolutional networks with attention
mechanism, Artif. Intell., 307 (2022), 103708. https://doi.org/10.1016/j.artint.2022.103708

14. J. Lin, Y. Wan, J. Xu, X. Qi, Long-tailed graph neural networks via graph structure learning for
node classification, Appl. Intell., 53 (2023), 20206–20222. https://doi.org/10.1007/s10489-023-
04534-3

15. Z. Liu, T. Nguyen, Y. Fang, Tail-GNN: Tail-node graph neural networks, in Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, (2021), 1109–1119.
https://doi.org/10.1145/3447548.3467276

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

https://dx.doi.org/https://doi.org/10.1145/3661821
https://dx.doi.org/https://doi.org/10.1093/bioinformatics/btac759
https://dx.doi.org/https://doi.org/10.1145/3532611
https://dx.doi.org/https://doi.org/10.1109/TNSE.2024.3417850
https://dx.doi.org/https://doi.org/10.1016/j.engappai.2023.107616
https://dx.doi.org/https://doi.org/10.1109/TKDE.2021.3072345
https://dx.doi.org/https://doi.org/10.1109/TBDATA.2023.3313029
https://dx.doi.org/https://doi.org/10.1007/s13042-023-02013-2
https://dx.doi.org/https://doi.org/10.1145/3340531.3411910
https://dx.doi.org/https://doi.org/10.1016/j.knosys.2018.11.004
https://dx.doi.org/https://doi.org/10.1016/j.artint.2022.103708
https://dx.doi.org/https://doi.org/10.1007/s10489-023-04534-3
https://dx.doi.org/https://doi.org/10.1007/s10489-023-04534-3
https://dx.doi.org/https://doi.org/10.1145/3447548.3467276

7383

16. S. Zhu, C. Zhou, S. Pan, X. Zhu, B. Wang, Relation structure-aware heterogeneous graph neural
network, in 2019 IEEE International Conference on Data Mining (ICDM), (2019), 1534–1539.
https://doi.org/10.1109/ICDM.2019.00203

17. L. Liang, Z. Xu, Z. Song, I. King, Y. Qi, J. Ye, Tackling long-tailed distribution issue in
graph neural networks via normalization, IEEE Trans. Knowl. Data Eng., 36 (2024), 2213–2223.
https://doi.org/10.1109/TKDE.2023.3315284

18. H. Deng, N. Zou, M. Du, W. Chen, G. Feng, Z. Yang, et al., Unifying fourteen post-hoc attribution
methods with taylor interactions, IEEE Trans. Pattern Anal. Mach. Intell., 46 (2024), 4625–4640.
https://doi.org/10.1109/TPAMI.2024.3358410

19. F. Hu, Y. Zhu, S. Wu, W. Huang, L. Wang, T. Tan, GraphAIR: Graph representation
learning with neighborhood aggregation and interaction, Pattern Recognit., 112 (2021), 107745.
https://doi.org/10.1016/j.patcog.2020.107745

20. J. Gao, J. Gao, X. Ying, M. Lu, J. Wang, Higher-order interaction goes neural: A substructure
assembling graph attention network for graph classification, IEEE Trans. Knowl. Data Eng., 35
(2023), 1594–1608. https://doi.org/10.1109/TKDE.2021.3105544

21. A. Kazi, L. Cosmo, S. Ahmadi, N. Navab, M. M. Bronstein, Differentiable graph module (DGM)
for graph convolutional networks, IEEE Trans. Pattern Anal. Mach. Intell., 45 (2023), 1606–1617.
https://doi.org/10.1109/TPAMI.2022.3170249

22. J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, G. Sun, xDeepFM: Combining explicit
and implicit feature interactions for recommender systems, in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, (2018), 1754–1763.
https://doi.org/10.1145/3219819.3220023

23. Z. Shen, Z. Kang, When heterophily meets heterogeneous graphs: Latent graphs guided
unsupervised representation learning, IEEE Trans. Neural Networks Learn. Syst., 36 (2025),
10283–10296. https://doi.org/10.1109/TNNLS.2025.3540063

24. S. Yun, K. Kim, K. Yoon, C. Park, LTE4G: Long-tail experts for graph neural networks,
in Proceedings of the 31st ACM International Conference on Information & Knowledge
Management, (2022), 2434–2443. https://doi.org/10.1145/3511808.3557381

25. J. Wu, J. He, J. Xu, DEMO-Net: Degree-specific graph neural networks for node and graph
classification, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, (2019), 406–415. https://doi.org/10.1145/3292500.3330950

26. X. Jiang, R. Zhu, P. Ji, S. Li, Co-Embedding of nodes and edges with graph
neural networks, IEEE Trans. Pattern Anal. Mach. Intell., 45 (2023), 7075–7086.
https://doi.org/10.1109/TPAMI.2020.3029762

27. X. Tang, H. Yao, Y. Sun, Y. Wang, J. Tang, C. Aggarwal, et al., Investigating and
mitigating degree-related biases in graph convolutional networks, in Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, (2020), 1435–1444.
https://doi.org/10.1145/3340531.3411872

28. Z. Zhao, Z. Yang, C. Li, Q. Zeng, W. Guan, M. Zhou, Dual feature interaction-based
graph convolutional network, IEEE Trans. Knowl. Data Eng., 35 (2023), 9019–9030.
https://doi.org/10.1109/TKDE.2022.3220789

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

https://dx.doi.org/https://doi.org/10.1109/ICDM.2019.00203
https://dx.doi.org/https://doi.org/10.1109/TKDE.2023.3315284
https://dx.doi.org/https://doi.org/10.1109/TPAMI.2024.3358410
https://dx.doi.org/https://doi.org/10.1016/j.patcog.2020.107745
https://dx.doi.org/https://doi.org/10.1109/TKDE.2021.3105544
https://dx.doi.org/https://doi.org/10.1109/TPAMI.2022.3170249
https://dx.doi.org/https://doi.org/10.1145/3219819.3220023
https://dx.doi.org/https://doi.org/10.1109/TNNLS.2025.3540063
https://dx.doi.org/https://doi.org/10.1145/3511808.3557381
https://dx.doi.org/https://doi.org/10.1145/3292500.3330950
https://dx.doi.org/https://doi.org/10.1109/TPAMI.2020.3029762
https://dx.doi.org/https://doi.org/10.1145/3340531.3411872
https://dx.doi.org/https://doi.org/10.1109/TKDE.2022.3220789

7384

29. W. Cheng, Y. Shen, L. Huang, Adaptive factorization network: learning adaptive-order feature
interactions, in Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2020), 3609–
3616. https://doi.org/10.1609/aaai.v34i04.5768

30. M. Guang, C. Yan, Y. Xu, J. Wang, C. Jiang, Graph convolutional networks with adaptive
neighborhood awareness, IEEE Trans. Pattern Anal. Mach. Intell., 46 (2024), 7392–7404.
https://doi.org/10.1109/TPAMI.2024.3391356

31. W. Guan, X. Yang, M. Li, Q. Guo, K. Liu, Q. Sun, VQIT-GNN: A collaborative
knowledge transfer for node-level structure imbalance, Pattern Recognit., 172 (2026), 112632.
https://doi.org/10.1016/j.patcog.2025.112632

32. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph attention networks,
preprint, arXiv:1710.10903.

33. G. Zhu, K. Liu, X. Yang, Q. Guo, UMGCN: Updating multi-graph for
graph convolutional networks, Comput. Electr. Eng., 123 (2025), 109957.
https://doi.org/10.1016/j.compeleceng.2024.109957

34. Q. Guo, X. Yang, M. Li, Y. Qian, Collaborative graph neural networks for augmented
graphs: a local-to-global perspective, Pattern Recognit., 158 (2025), 111020.
https://doi.org/10.1016/j.patcog.2024.111020

35. H. Cong, X. Yang, K. Liu, Q. Guo, Feature-topology cascade perturbation
for graph neural network, Eng. Appl. Artif. Intell., 152 (2025), 110657.
https://doi.org/10.1016/j.engappai.2025.110657

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 33, Issue 12, 7360–7384.

https://dx.doi.org/https://doi.org/10.1609/aaai.v34i04.5768
https://dx.doi.org/https://doi.org/10.1109/TPAMI.2024.3391356
https://dx.doi.org/https://doi.org/10.1016/j.patcog.2025.112632
https://dx.doi.org/https://doi.org/10.1016/j.compeleceng.2024.109957
https://dx.doi.org/https://doi.org/10.1016/j.patcog.2024.111020
https://dx.doi.org/https://doi.org/10.1016/j.engappai.2025.110657
https://creativecommons.org/licenses/by/4.0

	Introduction
	Related work
	Graph neural networks with imbalanced learning
	Feature interaction

	Preliminaries
	Notations
	Node aggregation methods of neighborhood awareness

	Method
	Overview of the framework
	The construction of adaptive interaction
	The degree-aware neighborhood transfer
	Task-dependent loss functions
	Complexity analysis
	Scalability implementation

	Experiments
	Datasets
	Baselines
	Parameter setting
	Semi-supervised node classification
	Comparison of the ability to promote the long-tail issue
	Scalability on the large graph
	Ablation study
	Parameter sensitivity
	Statistical analysis
	Visualization

	Conclusions and future work

