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Abstract: Distributed delay is a core concept in time-delay systems and it has been incorporated
into the networked respiratory disease model that elucidates the occurrence of respiratory diseases
induced by air pollution. Next we studied a respiratory disease model with distributed delay and
discrete delay. By analyzing the linearized system, we showed that if the disease-free equilibrium E0

exists, exhibits global asymptotic stability without any constraint on the variable space. In addition, we
proved the global stability of the endemic equilibrium E∗ by constructing the Liapunov functional. Our
findings contributed networked reaction-diffusion models with distributed delay and discrete delay to the
existing body of knowledge. Our research found that distributed delay altered the transmission rhythm
of respiratory diseases, which weakened local stability and disrupted global stability, which leads to
disease recurrence. Discrete delay could disrupt the ”synchrony” of respiratory disease transmission,
thereby inducing Hopf branches that lead to periodic disease outbreaks and undermined global stability,
making it impossible to completely eradicate the disease.
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1. Introduction

Currently, people face a serious air pollution problem, mainly characterized by elevated concentra-
tions of suspended particles in the atmosphere [1]. The adverse effects of air pollution on human health
are multifaceted, with most pollutants directly impacting the respiratory and cardiovascular systems [2].
The investigation of PM2.5’s influence on respiratory diseases through mathematical modeling has
received significant attention in contemporary research [3, 4]. The infectious disease dynamics model is
the key to analyzing the spread and control of respiratory diseases. Assuming that the number of infected
individuals reaches a relatively high level, the infection saturation effect will play a dominant role. This
makes the spread of the disease no longer exhibit linear characteristics, ultimately leading to a non-linear
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change in the incidence rate. Therefore, mathematical modeling of the nonlinear incidence of infectious
diseases has become a key issue in exploring the spread and prevention of respiratory diseases [5,6].

To our knowledge, in previous models of respiratory diseases, the important factor of uneven
spatial distribution of species was ignored [7–9]. Turing bifurcation is one of the core problems of
the reaction-diffusion system, which has been widely used in biology and neurophysiology. In recent
years, reaction-diffusion epidemic models have focused on spatial heterogeneous diffusion and pattern
dynamics, combining complex/multi-layer networks to optimize prevention and control strategies, and
have been extended to spatio-temporal multi-chamber models. The network delay system focuses on
the coupled analysis of mixed time delays (discrete + distributed), explores stability and bifurcation
through methods such as Lyapunov functionals, and incorporates node heterogeneity and time-varying
network characteristics [10–15]. The latest research strengthens empirical calibration and dynamic
mechanisms, but still needs to improve the estimation of time-delay parameters and the analysis of
coupled network propagation. In recent years, the application of big data has introduced a networked
structure to reaction-diffusion systems, helping to improve the accuracy of accurate models. Specifically,
the Gaussian diffusion direction of classical reaction-diffusion systems is isotropic, whereas the diffusion
direction of data-driven diffusion systems is anisotropic. Recently, in the study of anisotropic diffusion,
many scholars have introduced weighted network structures in classical reaction-diffusion systems [16].
Inspired by this, in order to characterize population movements between different regions, Shi et al.
introduced the Laplacian graph equation to improve the classical respiratory disease model into a
networked respiratory disease model with discrete delay [17].

According to our research observations, when the number of infected individuals reaches a certain
scale, the speed of disease transmission may no longer follow the linear response pattern. This
is due to the manifestation of the infection saturation effect, which makes the incidence rate show
nonlinear characteristics. Therefore, establishing a mathematical model of infectious diseases that
includes nonlinear incidence rates has become a key issue in systematically exploring the transmission
mechanism of respiratory diseases and optimizing prevention and control plans [18, 19].

Most models only consider a single type of delay (such as only discrete delay or distributed delay
only), without taking into account the ”multipath delay characteristics” of network propagation (such as
the scenario where fixed contact delay and random exposure delay coexist in social networks) [20–22].
In order to improve this situation, we tried a new modeling idea. Suppose that the time between the
susceptible population inhaling PM2.5 and becoming a patient is constant τ (lag days of onset). The
susceptible population at time t − τ will become a patient at time t, and the nonnegative constant τ is
the lag days. However, it may be more realistic to assume that τ is a distributed parameter and the
force of infection must be substituted by β2S (x, t)

∫ h

τ=0
f (τ) I (x, t − τ) dτ, where f (τ) represents the

fraction of the vector population in which the time required to become infectious is τ. In addition,
f (τ) is assumed to be non-negative, square integrable in R+0 = [0,∞) and satisfies

∫ +∞
0

f (τ) dτ = 1,∫ +∞
0

τ f (τ) dτ < +∞.
In the infectious disease model established in this paper, the human population is divided into several

different regions, and each region is further subdivided into two subgroups: susceptible individuals and
infected individuals. Specifically, there are two ways for the respiratory diseases we are considering
to spread. One way is that susceptible people inhale PM2.5 carrying pathogens of respiratory diseases,
which directly leads to infection and illness. Assuming that the onset of the disease rules out human-to-
human transmission, that is, the patient’s illness was not caused by the infection of other cases. Another
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approach is that patients with respiratory diseases act as sources of infection, spreading the virus in their
bodies to susceptible individuals, causing them to become infected and exhibit clinical symptoms. Of
course, in both cases, respiratory diseases can be treated and patients can return to a susceptible state.
S (x, t) and I(x, t) denote the densities of susceptible and infected populations, respectively.

To visually present the grid respiratory disease model architecture with distributed time delay, the
fractional-order infectious disease transmission framework with a network scale of N = 5 is now
visualized. For details, please refer to Figure 1.

Figure 1. The left figure shows the disease transmission dynamics within node i, i =
1, 2, 3, 4, 5; in the right figure, each node contains two types of individuals - susceptible
individuals (S (x, t)) and infected individuals (I(x, t)). The white arrows between the nodes
represent the connection relationship of population diffusion (mobility).

By simultaneously considering the impact of distributed delays [5] and heterogeneous spatial
distribution on the respiratory disease model, we formulate the following weighted networked differential
equation model:

∂S
∂t − d1∆ωS (x, t) = Λ + γI (x, t) − β1S (x, t) P − β2

S (x,t)
∫ h
τ=0 f (τ)I(x,t−τ)dτ
1+kS (x,t)

−µS (x, t), (x, t) ∈ V × (0,∞),
∂I
∂t − d2∆ωI (x, t) = β1S (x, t) P + β2

S (x,t)
∫ h
τ=0 f (τ)I(x,t−τ)dτ
1+kS (x,t)

−(µ + α + γ)I (x, t) , (x, t) ∈ V × (0,∞),
S (x, t) = S 0 (x, t) , I(x, t) = I0(x, t), (x, t) ∈ V × [−τ, 0],

(1.1)

where Λ is the recruitment rate, P denotes the air pollution index, β1 is the conversion rate of susceptible
individuals who directly got sick by inhaling air pollutants per unit of time, β2 is the infection rate of
susceptible individuals who are indirectly sick from infection by patients with respiratory diseases per
unit of time, µ is the natural death rate, α is the disease-induced death rate, γ is the cure rate of infected.
For a sufficiently large group of susceptible individuals, the nonlinear incidence rate S (x,t)I(x,t−τ)

1+kS (x,t) tends to
a saturation level, where k is the saturation factor. Furthermore, d1 and d2 are the diffusion rates. ∆ω is
the Laplacian diffusion graph, which describes networked mobility [18, 19].

In addition, all model parameters are positive throughout the paper. Our main aim is to investigate
the impact of delay on the dynamic process of transmission of respiratory diseases.
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2. Previous results

Remark 1. The region Ω =
{
(S , I) ∈ R2

≥0 : S + I ≤ Λ
µ

}
is positively invariant and attracts.

Based on the traditional method for solving the positive invariant set of a system as stipulated in
reference [3,4], Remark 1 above can be obtained. The specific proof process will not be elaborated here.

In order to study the spatial process of the spread of respiratory diseases, the asymptotic stability of
the endemic equilibrium should be considered.

Remark 2. Using the classic next-generation matrix method [23, 24], the basic reproduction number of
system (1.1) is derived as R0 =

µβ2

[β1P(µ+α)+µ(µ+α+γ)]k
.

Theorem 1. 1) It is easy to see that the model (1.1) has the disease-free equilibrium given by E0 =(
Λ

β1P+µ , 0
)

for all parameter values.
2) If R0 > 1, then there is an unique endemic equilibrium given by E∗ = (S ∗, I∗), where S ∗ =

Λ−(µ+α)I∗
µ

, I∗ = −B+
√

B2−4AC
2A , and

A = (µ + α)
[
µβ2 − (β1P (µ + α) + µ (µ + α + γ)) k

]
;

B = −Λ
[
µβ2 − (β1P (µ + α) + µ (µ + α + γ)) k

]
+ µ2 (µ + α + γ) + β1P (µ + α) (µ + kΛ) ;

C = −β1PΛ (µ + kΛ) < 0.

The basic reproduction number R0 > 1 indicates that ”the average number of new infections caused
by each infected person during the infectious period exceeds 1”, which is the biological basis for the
continuous spread of the disease. In reality, when respiratory diseases (such as influenza variants and
the original strain of COVID-19) are highly contagious, the population’s immunity is low (such as
unvaccinated), and social contact is frequent, R0 is very likely to exceed 1. At this point, the disease
cannot be quickly contained, and there is a prerequisite for the formation of a sustained epidemic, which
is completely consistent with the epidemiological definition of ”endemic”.

Then, the local asymptotic stability of the equilibria appeared.

3. Distributed delay

3.1. Local stability

Theorem 2. The disease-free equilibrium E0 is always locally asymptotically stable for all parame-
ter values.

Proof. First of all, the Jacobian matrix of system (1.1) at disease-free equilibrium E0 can be derived as

JE0 =

[
−β1P − µ γ − β2Λ

β1P+µ+kΛ

β1P − (µ + α + γ)

]
.

Then, the characteristic equation of system (1.1) without reaction diffusion terms at disease-free
equilibrium E0 is ∣∣∣λE − JE0

∣∣∣ = 0.
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Assuming λ1 and λ2 are the characteristic roots, then we have λ1λ2 = det (J) and λ1 + λ2 = tr (J),
where

det (J) = β1P (µ + α) + µ (µ + α + γ) > 0,
tr (J) = −

[
(β1P + µ) + (µ + α + γ)

]
< 0.

Then, the local asymptotic stability of the equilibria E0 can be easily proved by using the eigenvalue
method in reference [23, 24]. □

Theorem 3. Whenever the endemic equilibrium E∗ of the model (1.1) exists, it is locally asymptoti-
cally stable.

Proof. The System (1.1) is centered on E∗ by introducing x1 = S − S ∗, x2 = I − I∗, and its linear
part becomes  ẋ1 (t) = − (β1P + µ) x1 + γx2 −

β2S ∗
1+kS ∗

∫ τ

0
f (τ) x2 (t − τ) dτ + d1∆ωx1,

ẋ2 (t) = β1Px1 − (µ + α + γ) x2 +
β2S ∗

1+kS ∗

∫ τ

0
f (τ) x2 (t − τ) dτ + d2∆ωx2.

(3.1)

Let us consider the Liapunov functional

V (xt) =
∑
x∈V

1
2

x2
2 (t) +

∑
x∈V

1
2
ϕ (x1 (t) + x2 (t))2 +

∑
x∈V

1
2

β2S ∗
1 + kS ∗

∫ +∞

0
f (s)

∫ +∞

t−τ
x2

2 (s) dsdτ, (3.2)

where ϕ > 0 is a constant. Let us observe that

V (xt) ≥
∑
x∈V

ω1 (|x (t)|) =
∑
x∈V

1
2

x2
2 (t) +

∑
x∈V

1
2
ϕ (x1 (t) + x2 (t))2 , (3.3)

here ω1 is a positive definite quadratic form of x1 and x2, since ϕ > 0. Hence, ω1 ≥ 0, ω1 = 0 if and
only if |x (t)| = 0 and lim|x(t)|→+∞ ω1 (|x (t)|) = +∞.

Furthermore, the time derivative of V (xt) along the solution of system (1.1) becomes

V̇ (xt) |(2) =
∑
x∈V

(
−ϕµx2

1 + (γ − ϕ (µ + α)) x2
2 + (− (β1P + µ) + ϕµ − ϕ (µ + α)) x1x2

)
+ ϕd1∆ωx2

1 + ϕd2∆ωx2
2 + ϕd1∆ωx1x2 + ϕd2∆ωx1x2

+
∑
x∈V

(
1
2

β2S ∗
1 + kS ∗

x2
2 +

β2S ∗
1 + kS ∗

x2

∫ +∞

0
f (τ) x2 (t − τ) dτ

)
−

∑
x∈V

(
1
2

β2S ∗
1 + kS ∗

x2

∫ +∞

0
f (τ) x2

2 (t − τ) dτ
)
.

According to Remark1 and the nature of the model, it is known∑
x∈V

ϕd1∆ωx2
1 ≤ ϕd1

Λ

β1P + µ
∆ωx1 ≤ ϕd1

Λ

β1P + µ
∆ω

(
1 −

x∗1
x1

)
,

∑
x∈V

ϕd1∆ωx1x2 ≤ ϕd1
Λ

β1P + µ
∆ωx2 ≤ ϕd1

Λ

β1P + µ
∆ω

(
1 −

x∗2
x2

)
.
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From the Lemma 2.1 in reference [6], one has∑
x∈V

(
1 −

x∗1
x1

)
∆ωx1 = −

∑
x∈V

x∗1
x1
∆ωx1 = −

1
2

x∗1
∑
x∈V

(x1 (y) − x1 (z))

·

(
1

x1 (y)
−

1
x1 (z)

)
ω (z, y)

= −
x∗1
2

∑
x∈V

(x1 (y) − x1 (z))2

x1 (z) x1 (y)
ω (z, y) ≤ 0.

Summarizing the above process, it can be concluded

V̇ (xt) |(2) ≤
∑
x∈V

(
−ϕµx2

1 + (γ − ϕ (µ + α)) x2
2 +

1
2

β2S ∗
1 + kS ∗

x2
2

)
≤

∑
x∈V

(
−ϕµ

(
x2

1 + x2
2

))
= −

∑
x∈V

ω2 (|x (t)|) .

The above formula is obtained by choosing ϕ as ω2 (|x (t)|) = ϕµ
(
x2

1 + x2
2

)
= ϕµ |x (t)|2 and Λ =

β1S ∗P +
β2S ∗I∗
1+kS ∗

+ µS ∗ − γI∗, β1S ∗P +
β2S ∗I∗
1+kS ∗

= (µ + α + γ)I∗.
From the above theory and Theorem 1 in [25], the endemic equilibrium is locally asymptotically stable. □

The local stability of the equilibrium point in model (1.1) has been proven previously. Based on the
uniform persistence of the disease-free equilibrium points in references [7–9], a bridge can be built
from ”local stability (convergence of small disturbances) to uniform persistence (even slightly larger
disturbances can contract to a small range)”, paving the way for the proof of global stability.

3.2. Global stability

Theorem 4. The disease-free equilibrium E0 of the model (1.1) is global asymptotically stable with
respect to Ω .

Proof. System (1.1) is centered on E0 by introducing η1 = S − S 0, η2 = I − I0, and its linear part
becomes  η̇1 (t) = − (β1P + µ) η1 + γη2 −

β2S 0
1+kS 0

∫ τ

0
f (τ) η2 (t − τ) dτ + d1∆ωη1,

η̇2 (t) = β1Pη1 − (µ + α + γ) η2 +
β2S 0

1+kS 0

∫ τ

0
f (τ) η2 (t − τ) dτ + d2∆ωη2.

(3.4)

The disease-free equilibrium E0 = ( Λ
β1P+µ , 0) in Ω =

{
(S , I) ∈ R2

≥0 : S + I ≤ Λ
µ

}
simply becomes E0 =

(0, 0) for (3.4).
Let us consider the Liapunov functional

V (ηt) =
∑
x∈V

η1 (t) +
∑
x∈V

φη2 (t) +
∑
x∈V

β2

∫ +∞

0
f (τ)

∫ t

t−τ
η2 (s) dsdτ, (3.5)

where φ > 0 is a constant. Then V (ηt) ≥
∑
x∈V

min (1, φ) (η1 (t) + η2 (t)) for any t ≥ 0.
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Furthermore, the time derivative of V (ηt) along the solution of system (1.1) becomes

V̇ (ηt) |(5) =
∑
x∈V

(− (β1P + µ) η1 (t) + γη2 (t) + d1∆ωη1 + φβ1Pη1 (t) − φ (µ + α + γ) η2 (t))

+
∑
x∈V

(
φd2∆ωη2 +

β2η1 (t)
1 + kη1 (t)

∫ +∞

0
f (τ) η2 (t − τ) dτ − β2

∫ +∞

0
f (τ) η2 (t − τ) dτ

)
≤

∑
x∈V

(− (β1P + µ) η1 (t) + γη2 (t) + φβ1Pη1 (t) − φ (µ + α + γ) η2 (t))

+
∑
x∈V

d1∆ω

(
1 −

η∗1
η1

)
η1 +

∑
x∈V

φd2∆ω

(
1 −

η∗2
η2

)
η2

+
∑
x∈V

(
β2η1 (t)

1 + kη1 (t)

∫ +∞

0
f (τ) η2 (t − τ) dτ − β2

∫ +∞

0
f (τ) η2 (t − τ) dτ

)
.

In view of Lemma 2.1 in reference [6], we have∑
x∈V

(
1 −

η∗1
η1

)
∆ωη1 = −

∑
x∈V

η∗1
η1
∆ωη1 = −

1
2
η∗1

∑
x∈V

(η1 (y) − η1 (x))

·

(
1

η1 (y)
−

1
η1 (x)

)
ω (x, y)

= −
η∗1
2

∑
x∈V

(η1 (y) − η1 (x))2

η1 (x) η1 (y)
ω (x, y) ≤ 0.

Therefore, it can be obtained

V̇ (ηt) |(5) ≤
∑
x∈V

(−β1Pη1 (t) + γη2 (t) + φβ1Pη1 (t) − φ (µ + α + γ) η2 (t) + β2η2 (t))

=
∑
x∈V

(
−β1P (1 − φ) η1 (t) −

[
φ (µ + α + γ) − β2 − γ

]
η2 (t)

)
.

Here the last inequality is true because that 0 ≤ η1 (t) ≤ Λ
µ

. Choose φ = β2+γ

2(µ+α+γ) which is positive.
Then, it can be obtained

V̇ (ηt) |(5) ≤
∑
x∈V

(
−β1Pη1 (t) −

1
2

(β2 + γ) η2 (t)
)

≤
∑
x∈V

(−ψ (η1 (t) + η2 (t)))

= −
∑
x∈V

(
ψ |η (t)|1

)
for any t ≥ 0, where ψ = min

{
β1P, 1

2 (β2 + γ)
}
.

From the above theory and Theorem 5 in [26], the equilibria E0 is global asymptotically stable. □

This conclusion indicates that when R0 < 1, even if there is a distribution delay, the disease can
be completely eliminated across the entire network, and there will be no local rebound or long-term
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prevalence. From the perspective of real-world scenarios: No matter how dispersed the transmission
delay caused by population movement is, the disease will eventually disappear in all network nodes
(such as communities, schools, and cities), achieving a ”global disease-free” state. This provides
theoretical support for strategies such as ”dynamic zero-COVID” and ”precise prevention and control”.

Next, let’s discuss the global asymptotic stability of the endemic equilibrium.

Theorem 5. The endemic equilibrium E∗ = (S ∗, I∗) of model (1.1) is globally asymptotically stable if
R0 > 1, min (β1P + µ, µ + α + γ) > 1

2 .

Proof. Evaluating both sides of (1.1) at E∗ and recalling that
∫ h

τ=0
f (τ) dτ = 1, gives

Λ = β1S ∗P +
β2S ∗I∗
1 + kS ∗

+ µS ∗ − γI∗, (3.6)

β1S ∗P +
β2S ∗I∗
1 + kS ∗

= (µ + α + γ)I∗, (3.7)

which will be used as substitutions in the following calculation. Let g (y) = y − 1 − lny,

US (t) =
∑
x∈V

g
(
S (t)
S ∗

)
,

UI (t) =
∑
x∈V

g
(

I (t)
I∗

)
,

U+ (t) =
∑
x∈V

∫ h

τ=0
α (τ) g

(
I (t − τ)

I∗

)
dτ,

where α (τ) =
∫ h

σ=τ
f (σ) dσ.

Then, the behavior of the Lyapunov functional will be studied as follow

U (t) =
β2S ∗I2

∗

1 + kS ∗
US +

β2S ∗I∗
1 + kS ∗

UI + U+. (3.8)

It is found that α (τ) > 0 for each τ ∈ [0, h). In addition, g : R>0 −→ R≥0 has the global minimum
g (1) = 0. Thus, U (t) ≥ 0 with equality if and only if S (t) = I (t) = 1 and I (t − τ) = 1 for almost all
τ ∈ [0, h).

By Remark 1 and Theorem 3.4 in [5], the solutions are bounded above and bounded away from zero
for a time. Without loss of generality, it may be assumed that the solution in question satisfies these
bounds for all t ≥ 0. Thus, U (t) is defined (and finite) for all t ≥ 0.

The derivatives of US , UI , and U+ will be calculated separately and then combined to get the desired
quantity dU

dt

dUS

dt
=
∑
x∈V

1
S ∗

(S − S ∗
S

) dS
dt
=

∑
x∈V

1
S ∗

(S − S ∗
S

)
·Λ + γI − β1S P −

β2S
∫ h

τ=0
f (τ) I (t − τ) dτ

1 + kS
− µS + d1∆ωS

 .
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Given Lemma 1 in [6], we have∑
x∈V

(
1 −

S ∗
S

)
∆ωS = −

∑
x∈V

S ∗
S
∆ωS = −

1
2

S ∗
∑
x∈V

(S (y) − S (x))

·

(
1

S (y)
−

1
S (x)

)
ω (x, y)

= −
S ∗
2

∑
x∈V

(S (y) − S (x))2

S (x) S (y)
ω (x, y) ≤ 0.

Therefore

dUS

dt
=

∑
x∈V

1
S ∗

(S − S ∗
S

) (
β1S ∗P +

β2S ∗I∗
1 + kS ∗

+ µS ∗ − γI∗ + γI − β1S P − µS

−
β2S

∫ h

τ=0
f (τ)I(t − τ)dτ

1 + kS


=

∑
x∈V

1
S ∗

(S − S ∗
S

)
(− (β1P + µ) (S − S ∗) + γ (I − I∗)+

β2

∫ h

τ=0
f (τ)

(
S ∗I∗

1 + kS ∗
−

S I(t − τ)
1 + kS

)
dτ

)
=

∑
x∈V

[
−

(β1P + µ)
S ∗

(S − S ∗)2

S
+

1
S S ∗

(S − S ∗) (I − I∗)

+β2

∫ h

τ=0
f (τ)

1
S ∗

(
1 −

S ∗
S

) ( S ∗I∗
1 + kS ∗

−
S I(t − τ)
1 + kS

)
dτ

]
≤

∑
x∈V

[
−

(β1P + µ)
S ∗

(S − S ∗)2

S
+

1
2S S ∗

(S − S ∗)2 +
1

2II∗
(I − I∗)2

+
β2S ∗I2

∗

1 + kS ∗

∫ h

τ=0
f (τ)

(
1 −

S ∗
S

I(t − τ)
I∗

)
+

(
1 −

I(t − τ)
I∗

)
dτ

]
.

Let x = S (t)
S ∗

, y = I(t)
I∗

, z = I(t−τ)
I∗

, then

dUS

dt
=

∑
x∈V

[
−

(β1P + µ)
S ∗

(S − S ∗)2

S
+

1
2S S ∗

(S − S ∗)2 +
1

2II∗
(I − I∗)2 +

β2S ∗I2
∗

1 + kS ∗

∫ h

τ=0
f (τ)

(
1 −

1
x
− xz + z + 1 −

1
x
− z +

z
x

)
dτ

]
. (E.1)

On the other hand

dUI

dt
=

∑
x∈V

1
I∗

(
1 −

I∗
I

) β1S P +
β2S

∫ h

τ=0
f (τ) I (t − τ) dτ

1 + kS
− (µ + α + γ)I


=

∑
x∈V

1
I∗

(
1 −

I∗
I

) (
β1PS ∗

S
S ∗
+
β2S ∗I∗
1 + kS

∫ h

τ=0
f (τ)

S
S ∗

I (t − τ)
I∗

dτ − (µ + α + γ)I
)
.
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Using β1S ∗P +
β2S ∗I∗
1+kS ∗

= (µ + α + γ)I∗ to replace it gives

dUI

dt
=

∑
x∈V

1
I∗

(
1 −

I∗
I

) (
(µ + α + γ)I∗ +

β2S ∗I2
∗

(1 + kS ∗) I
−

β2S ∗I∗
1 + kS

∫ h

τ=0
f (τ)

S
S ∗

I2 (t − τ)
I2
∗

dτ − (µ + α + γ)I
)

≤
∑
x∈V

1
I∗

(
1 −

I∗
I

) (
−(µ + α + γ)(I − I∗) +

β2S ∗I∗
(1 + kS ∗)∫ h

τ=0
f (τ)

((
S
S ∗

I (t − τ)
I∗

−
I
I∗

))
dτ

)
=

∑
x∈V

−
(µ + α + γ)

II∗
(I − I∗)2 +

β2S ∗I∗
(1 + kS ∗)

∫ h

τ=0
f (τ)

(
xz − 1 −

xz
y
+

1
y

)
dτ.

Hence
dUI

dt
=

∑
x∈V

−
(µ + α + γ)

II∗
(I − I∗)2 +

β2S ∗I∗
(1 + kS ∗)

∫ h

τ=0
f (τ)

(
xz − 1 −

xz
y
+

1
y

)
dτ. (E.2)

Then, the derivative of U+ (t) is calculated as follows:

dU+
dt
=

∑
x∈V

d
dt

∫ τ=0

h
α (τ) g

(
I (t − τ)

I∗

)
dτ =

∑
x∈V

∫ τ=0

h
f (τ)

(
g
(

I
I∗

)
− g

(
I (t − τ)

I∗

))
dτ. (E.3)

According to (E.1)–(E.3), it can be obtained

dU
dt
=

∑
x∈V

[
−

(
2 (β1P + µ) − 1

2S S ∗

)
(S − S ∗)2

−

(
2 (µ + α + γ) − 1

2II∗

)
(I − I∗)2

−

∫ h

τ=0
f (τ) C (τ) dτ

]
.

where

C (τ) =
(
−1 +

1
x
+ xz − z

)
+

(
−1 +

1
x
+ z −

z
x

)
+

(
xz − 1 −

xz
y
+

1
y

)
+ lny + lnz

= 2
(
1
x
− 1 − ln

1
x

)
+ 2 (xz − z − lnxz) +

z
x
− 1 − ln

z
x
+

xz
y
− 1 − ln

xz
y

+ 2ln
1
x
+ 2lnxz + ln

z
x
+ ln

xz
y
+ lny + lnz ≥ 0.

It is observed that dU(t)
dt ≤ 0 if R0 > 1, min (β1P + µ, µ + α + γ) > 1

2 .
Thus, dU

dt ≤ 0. By Theorem 5.3.1 of [5], solutions limit to the largest invariant subset of
{

dU
dt = 0

}
. It

is shown that Ω comprises only the endemic equilibrium E∗.
Note that C (τ) = 0 if and only if x = 1, y = 1, z = 1 or equivalently, if and only if S (t) = S ∗,

I (t) = I (t − τ). Thus,
{

dU
dt = 0

}
if and only if

S (t) = S ∗ and f (τ) I (t) = f (τ) I (t − τ) (3.9)
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for almost all τ ∈ [0, h]. For each element of Ω, we have S (t) = S ∗ and, since Ω is invariant, dS
dt = 0.

Using equalities (3.6) and (3.7), we obtain

0 =
dS
dt

= Λ + γI∗ − β1S ∗P −
β2S ∗

∫ h

τ=0
f (τ) I (t − τ) dτ

1 + kS ∗
− µS ∗

= Λ + γI∗ − β1S ∗P −
β2S ∗

∫ h

τ=0
f (τ) I (t) dτ

1 + kS ∗
− µS ∗.

Rearranging gives I (t) = Λ−β1S ∗P−µS ∗
β2S ∗

1+kS ∗
−γ

= I∗.

Because of S (t) = S ∗, I (t) = I∗ for all t, we can gains dU(t)
dt = 0. It seems that

lim
t→∞

(S (t) , I (t)) = (S ∗, I∗). Further, it now follows that E∗ is globally asymptotically stable if R0 > 1,

min (β1P + µ, µ + α + γ) > 1
2 . □

3.3. Discussion

The construction of the entire Lyapunov functional is not merely a mathematical technique, but
a ”mathematical mapping” of the transmission mechanism of respiratory diseases. This paper, by
characterizing the core transmission links such as the fluctuation of susceptible individuals, the scale of
infection, rehabilitation protection, network spread, and time delay accumulation item by item, presents
the biological logic of ”reduced transmission risk → system stabilization”. It is transformed into a
mathematical determination of ”decreasing functional value→ convergence to disease-free equilibrium
point”, which not only ensures the rigor of the stability proof but also deeply integrates mathematical
tools with biological reality.

Under normal circumstances, distributed delay will change the transmission rhythm of network
respiratory diseases through the ”time accumulation effect”, thereby affecting the stability of the model.
In the short term, it may weaken local stability and cause fluctuations. If the distribution delay is
significant, even if the overall infection rate is not high, there may still be short-term small outbreaks
where ”one wave has not subsided and another has emerged”, and the local stability of the corresponding
model will be weakened.

In the long term, distributed delay may undermine global stability and lead to the recurrence of the
disease. The conclusions of Theorems 4 and 5 in this paper indicate that distributed time delays may
cause the ”basic regeneration number R0 < 1” to fluctuate over the long term. Even if the theoretical
R0 < 1, the cumulative delayed propagation may lead to the disease not being completely eliminated.
The more difficult it is for the disease to achieve ”global extinction”, the more the global stability of the
corresponding model is disrupted.

4. Discrete delay

The previous text has conducted a comprehensive and detailed analysis of the infectious disease
model with distributed time delay (1.1), systematically exploring the influence of distributed time delay
on the dynamic behavior of disease transmission and related key properties. To further improve the

Electronic Research Archive Volume 33, Issue 12, 7310–7330.



7321

applicability of the model and cover time delay types that are closer to actual propagation scenarios, the
case of discrete delay is considered, then system (1.1) becomes the following model

∂S
∂t − d1∆ωS (x, t) = Λ + γI (x, t) − β1S (x, t) P − β2

S (x,t)I(x,t−τ)e−µτ

1+kS (x,t) − µS (x, t),
(x, t) ∈ V × (0,∞),

∂I
∂t − d2∆ωI (x, t) = β1S (x, t) P + β2

S (x,t)I(x,t−τ)e−µτ

1+kS (x,t) − (µ + α + γ)I (x, t) ,
(x, t) ∈ V × (0,∞),

S (x, t) = S 0 (x, t) , I(x, t) = I0(x, t), (x, t) ∈ V × [−τ, 0].

(4.1)

To clearly present the model structure, we visualized the fractional-order infectious disease transmis-
sion framework with a network scale of N = 5, as shown in the specific Figure 2.

Figure 2. The left figure shows the disease transmission dynamics within node i, i =
1, 2, 3, 4, 5; In the right figure, each node contains two types of individuals - susceptible
individuals (S (x, t)) and infected individuals (I(x, t)). The white arrows between the nodes
represent the connection relationship of population diffusion (mobility).

4.1. Delay induced Hopf bifurcation

In general, the system does not lose stability at the disease-free equilibrium and produces Hopf
bifurcation. Therefore, the Hopf bifurcation of system (4.1) at the endemic equilibrium is studied mainly
in this section.

Lemma 1. From the eigenvalue problem{
−∆ωϕ (x) = ιϕ (x) , x ∈ V,∫

V
ϕ2 (x) = 1,

(4.2)

exists a series of eigenvalues {ιi}ni=1 : 0 = ι1 < ι2 ≤ · · · ≤ ιn, whose associated eigenfunctions are {ϕi}
n
i=1.

Moreover, letting Ei be the space of eigenfunctions corresponding to ιi such that Ei :=
{
c · ϕi : c ∈ ℜ

}
,

one has the following space decomposition:

[
L2 (V)

]2
=

n⊕
i=1

Ei. (4.3)
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In order to determine the stability of
(
S̃ , Ĩ

)
, we define the small perturbations around

(
S̃ , Ĩ

)
are θS

and θI . The linearized system (4.1) around
(
S̃ , Ĩ

)
is(

θ̇S

θ̇I

)
= J1

(
θS

θI

)
+ J2

(
θS τ

θIτ

)
+ D

(
∆ωθS

∆ωθI

)
, (4.4)

where θIτ = θI (t − τ), and

J1 =

(
a11 a12

a21 a22

)
, J2 =

(
0 a13

0 a23

)
,D =

(
d1 0
0 d2

)
. (4.5)

Here a11 = −β1P − µ − β2 Ĩe−µτ

(1+kS̃ )2 , a12 = γ, a21 = β1P + β2 Ĩe−µτ

(1+kS̃ )2 , a22 = − (µ + α + γ) , a13 = −
β2 Ĩe−µτ

(1+kS̃ )2 , a23 =

β2 Ĩe−µτ

(1+kS̃ )2 .

On the basis of Lemma 4.1, the space Ei is invariant under the operator −D∆ω, and λi is an eigenvalue
of this operator on Ei, if and only if it is an eigenvalue of the matrix λiD. For any small perturbation
(θS , θI)T from (0, 0), the basis decomposition is as follows:(

θS

θI

)
=

n∑
i=1

(
ci

1

ci
2

)
eλitϕi, (i = 1, 2, · · · , n) . (4.6)

Inserting (4.6) in (4.4), noticing that −∆ωϕi = ιiϕi and using the orthogonality of the eigenvectors,
we get for each mode ϕi (1, 2, · · · , n) that

λi

(
ci

1

ci
2

)
eλit = J1

(
ci

1

ci
2

)
eλit + J2

(
ci

1

ci
2

)
eλi(t−τ)

− ιiD
(
ci

1

ci
2

)
eλit.

Therefore, the characteristic equation is as follows:∏n
i=1∆ (λi, τ) = 0,where ∆ (λi, τ) = det

(
λiI −

(
J1 + e−λiτJ2 − ιiD

))
. (4.7)

Let’s put (4.7) into (4.5), the characteristic equation becomes

∆ (λi, τ) = λ2
i +

(
−a11 − a22 + (d1 + d2) ιi − a23e−λiτ

)
λi

+ a11a22 − a12a21 − (a11d2 + a22d1) ιi + d1d2ι
2
i

+ (a11 + d2ιi) a23e−λiτ. (4.8)

It can be obtained by calculation as follow

∆ (λi, τ) = λ2
i + A1λi + A2 + A3e−λiτ, (4.9)

where A1 = −a11 − a22 + (d1 + d2) ιi − a23e−λiτ, A2 = a11a22 − a12a21 − (a11d2 + a22d1) ιi + d1d2ι
2
i , A3 =

(a11 + d2ιi) a23.

The following results are found on the stability of
(
S̃ , Ĩ

)
of the model (4.1) by analyzing the

characteristic Eq (4.7).
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Lemma 2. (i) For the case without the delay, all characteristic roots of the Eq (4.7) have negative
real parts.
(ii) For the other case with the delay, the characteristic equation has a pair of purely imaginary roots
±iω∗ at τ = τ j, also

(ω∗)2
=

1
2

2A2 − A2
1 +

√(
2A2 − A2

1

)2
− 4

(
A2

2 − A2
3

) (4.10)

and

τ j =
1
ω∗

(
2 jπ + arccos

(
(ω∗)2

− A2

A3

))
, j = 0, 1, 2 · · · . (4.11)

where, Ai, i = 1, 2, 3 is given in the following Eq (4.13).

Proof. (i) For the first case τ = 0. Plugging τ = 0 to (4.8) yields

∆ (λi, τ) = λ2
i + A1λi + A2 + A3, (4.12)

where

A1 = (β1P + µ) + (µ + α + γ) + (d1 + d2) ιi,

A2 = µ (µ + α + γ) + (µ + α)

β1P +
β2 Ĩe−µτ(
1 + kS̃

)2

+(µ + α + γ) d1 +

β1P + µ +
β2 Ĩe−µτ(
1 + kS̃

)2

 d2

 ιi,
A3 =

β1P + µ +
β2 Ĩe−µτ(
1 + kS̃

)2 + d2ιi

 β2 Ĩe−µτ(
1 + kS̃

)2 . (4.13)

Because of 0 = ι1 < ι2 ≤ · · · ≤ ιn, and A1 > 0, A2 + A3 > 0 holds, then the real parts of the roots of
∆ (λi, τ) = 0 are negative. Given that the characteristic equation is

∏n
i=1∆ (λi, τ) = 0, all the characteristic

roots of (4.7) have real negative parts.
(ii) Set ±iω be a pair of pure imaginary roots. Putting ±iω into ∆ (λi, τ) = 0 and separating real and

imaginary parts, we can know {
−ω2 + A2 + A3 cosωτ = 0,
A1ω − A3 sinωτ = 0,

(4.14)

which leads to

ω4 +
(
A2

1 − 2A2

)
ω2 + A2

2 − A2
3 = 0. (4.15)

The Eq (4.15) has a unique positive real root (ω∗)2 if and only if
(
A2

1 − 2A2

)2
> 4

(
A2

2 − A2
3

)
. Then,

the expression of ω∗ is obtained in the form of (4.10) by solving the above Eq (4.15). Hence, the
corresponding τ j of (4.11) can be obtained by substituting (4.10) into (4.12). □

Electronic Research Archive Volume 33, Issue 12, 7310–7330.



7324

Theorem 6. When τ = τ0, the model (4.1) will undergo a Hopf bifurcation at the endemic equilibrium(
S̃ , Ĩ

)
, where τ0 =

1
ω∗

(
arccos

(
(ω∗)2−A2

A3

))
.

Proof. By the Lemma 2, it is only needs to show the following transversality condition
d
dt

Reλ (τ) |τ=τ0> 0, (4.16)

with ιi ≡ ι1. Hence, the following analyzes the characteristic equation (4.9), where the parameter Ai has
already been given in the previous equation (4.13).

It is supposed that λi = ι + iω is a complex eigenvalue of (4.16). It can be obtained by calculation{
ι2 − ω2 + A1ι + A2 + A3e−ιτ cosωτ = 0,
2ιω + A1ω − A3e−ιτ sinωτ = 0.

(4.17)

Differentiating (4.17) to τ, one gets
(2ι + A1 − A3τe−ιτ cosωτ) dι

dτ − (2ω + A3τe−ιτ sinωτ) dω
dτ =

A3τe−ιτ (ι cosωτ + ω sinωτ) ,
(2ω + A3τe−ιτ sinωτ) dι

dτ + (2ι + A1 − A3τe−ιτ cosωτ) dω
dτ =

A3τe−ιτ (ι sinωτ + ω cosωτ) .

(4.18)

Eliminating dω
dτ of the above two equations, one has[(

2ι + A1 − A3τe−ιτ cosωτ
)2
+

(
2ω + A3τe−ιτ sinωτ

)2
] dι

dτ
= A3τe−ιτ

[
(ι cosωτ + ω sinωτ)

(
2ι + A1 − A3τe−ιτ cosωτ

)]
+ A3τe−ιτ

[
(ι sinωτ + ω cosωτ)

(
2ω + A3τe−ιτ sinωτ

)]
. (4.19)

In view of (4.17), to prove dι
dτ > 0, it needs to verify that

(ι cosωτ + ω sinωτ)
(
2ι + A1 − A3τe−ιτ cosωτ

)
+ (ι sinωτ + ω cosωτ)

(
2ω + A3τe−ιτ sinωτ

)
> 0. (4.20)

In fact, when τ = τ0 and ω = ω∗, the above inequality satisfies ι = 0. In the case of τ = τ0, ι = 0, ω = ω∗,
(4.17) becomes {

− (ω∗)2 + A2 + A3 cosω∗τ = 0,
A1ω − A3 sinω∗τ = 0,

(4.21)

and (4.20) becomes

ω∗ sinω∗τ0 (A1 − A3τ0 cosω∗τ0) + ω∗ cosω∗τ0 (2ω∗ + A3τ0 sinω∗τ0) > 0. (4.22)

It can be simplified further from (4.22) that

A1ω
∗ sinω∗τ0 + 2 (ω∗)2 cosω∗τ0 > 0. (4.23)

If substitute (4.21) into (4.23), you get this
1
A3

A2
1 (ω∗)2

−
1
A3

[
2 (ω∗)2

(
A2 − 2 (ω∗)2

)]
> 0. (4.24)

To make A3 > 0, we have to verify formula

2 (ω∗)4
+

(
A2

1 − 2A2

)
(ω∗)2 > 0. (4.25)

On account of A2
1 > 2A2 always valid, the inequality (4.25) is true. □
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4.2. Global stability

Theorem 7. It is easy to know that model (4.1) has an unique endemic equilibrium given by E∗ = (S ∗, I∗),
and it is globally asymptotically stable if I∗ <

2·min(β1P+µ,µ+α+γ)
γ+β1PS ∗

.

Proof. We decide to choose the Lyapunov function of the following form

E (t) =
S ∗I∗

β2e−µτ (1 + kS ∗)
ES +

S ∗I∗
β2e−µτ (1 + kS ∗)

EI + E−

=
S ∗I∗

β2e−µτ (1 + kS ∗)

∑
x∈V

(
S
S ∗
− 1 − ln

(
S
S ∗

))
+

S ∗I∗
β2e−µτ (1 + kS ∗)

∑
x∈V

(
I
I∗
− 1 − ln

(
I
I∗

))
+

∑
x∈V

∫ h

τ=0
g
(

I (t − τ)
I∗

)
dτ.

Then E (t) ≥ 0 for all t ≥ 0, and E (t) = 0 if and only if (S , I) = (S ∗, I∗). It can be obtained by calculation

E′ (t) =
S ∗I∗

β2e−µτ (1 + kS ∗)

∑
x∈V

(
1 −

S ∗
S

)
·

(
d1∆ωS +

(
Λ + γI − β1S P − β2

S I (t − τ) e−µτ

1 + kS
− µS

))
+

S ∗I∗
β2e−µτ (1 + kS ∗)

∑
x∈V

(
1 −

I∗
I

)
·

(
d2∆ωI +

(
β1S P + β2

S I (t − τ) e−µτ

1 + kS
− (µ + α + γ)I

))
+

∑
x∈V

∫ τ

0

d
dt

g
(

I (t − τ)
I∗

)
dτ.

First of all, we know

S ∗I∗
β2e−µτ (1 + kS ∗)

∑
x∈V

dES

dt
=

S ∗I∗
β2e−µτ (1 + kS ∗)

∑
x∈V

1
S ∗

(S − S ∗
S

) dS
dt

≤ −
(β1P + µ) I∗

β2e−µτ (1 + kS ∗) S
(S − S ∗)2 +

γI∗
2S β2e−µτ (1 + kS ∗)

[
(S − S ∗)2 + (I − I∗)2

]
+

(
1 −

S ∗
S

) (
1 −

S
S ∗

I (t − τ)
I∗

)
.

Let g (a) = a − 1 − ln (a) > 0 [3], and have g (1) = 0. Set x = S (t)
S ∗

, y = I(t)
I∗

, z = I(t−τ)
I∗

, then

S ∗I∗
β2e−µτ (1 + kS ∗)

∑
x∈V

dES

dt
≤ −

(2 (β1P + µ) − γ) I∗
2β2e−µτ (1 + kS ∗) S

(S − S ∗)2 +
γI∗ (I − I∗)2

2S β2e−µτ (1 + kS ∗)

+

(
1 −

1
x

)
(1 − xz) . (E.4)
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From the Lemma 1 in [19], one receives∑
x∈V

(
1 −

I∗
I

)
∆ωI = −

I∗
2

∑
x∈V

(I (y) − I (x))
(

1
I (y)
−

1
I (x)

)
ω (x, y)

= −
I∗
2

∑
x∈V

(I (y) − I (x))2

I (x) I (y)
ω (x, y) ≤ 0.

On the other hand

S ∗I∗
β2e−µτ (1 + kS ∗)

∑
x∈V

dEI

dt

=
∑
x∈V

S ∗
β2e−µτ (1 + kS ∗)

(
1 −

I∗
I

) [
β1S P + β2

S I (t − τ) e−µτ

1 + kS
− (µ + α + γ)I

]
≤

∑
x∈V

(
1 −

I∗
I

) (
β1PS ∗I∗

β2e−µτ (1 + kS ∗)
(S − S ∗) −

(µ + α + γ) S ∗I∗
β2e−µτ (1 + kS ∗)

(I − I∗)

+

(
1 −

S
S ∗

I (t − τ)
I∗

))
≤

∑
x∈V

(
β1PS ∗I∗ (S − S ∗)2

2β2e−µτ (1 + kS ∗) I
−

(2 (µ + α + γ) − β1P) S ∗I∗ (I − I∗)2

2β2e−µτ (1 + kS ∗) I

+

(
1 −

1
y

)
(1 − xz)

)
,

that is

S ∗I∗
β2e−µτ (1 + kS ∗)

∑
x∈V

dEI

dt
=

∑
x∈V

[
β1PS ∗I∗ (S − S ∗)2

2β2e−µτ (1 + kS ∗) I

−
(2(µ + α + γ) − β1P) S ∗I∗ (I − I∗)2

2β2e−µτ (1 + kS ∗) I

+

(
1 −

1
y

)
(1 − xz)

]
, (E.5)

Moreover ∑
x∈V

dE−
dt
=

∑
x∈V

d
dt

∫ τ

0
g
(

I (t − τ)
I∗

)
dτ =

∑
x∈V

∫ τ

0

d
dt

g
(

I (t − τ)
I∗

)
dτ,

hence ∑
x∈V

dE−
dt
=

∑
x∈V

(
g
(

I (t − τ)
I∗

)
− g

(
I (t)
I∗

))
=

∑
x∈V

(g (z) − g (x)) . (E.6)

By the Eqs (E.4)–(E.6), it can be acquired

dE (t)
dt
=

∑
x∈V

S ∗I∗
β2e−µτ (1 + kS ∗)

dES

dt
+

∑
x∈V

S ∗I∗
β2e−µτ (1 + kS ∗)

dEI

dt
+

∑
x∈V

dE−
dt

= −
∑
x∈V

2 (β1P + µ) − γI∗ − β1PS ∗I∗
2β2e−µτ (1 + kS ∗) S ∗

(S − S ∗)2
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−
2 (µ + α + γ) − γI∗ − β1PS ∗I∗

2β2e−µτ (1 + kS ∗)
(I − I∗)2

−
∑
x∈V

C (τ) ,

where

C (τ) = g (x) − g (z) −
(
1 −

1
x

)
(1 − xz) −

(
1 −

1
y

)
(1 − xz)

= x − 1 − ln x + z − 1 − ln z −
(
1 − xz −

1
x
+ z

)
−

(
1 − xz −

1
y
+

xz
y

)
≥ 0.

It is want to make dE(t)
dt ≤ 0, it has to be I∗ <

2·min(β1P+µ,µ+α+γ)
γ+β1PS ∗

.
Therefore, C (τ) = 0 if and only if x = 1, y = 1, z = 1 or S (t) = S ∗, I (t) = I∗, I (t − τ) = I∗.

Hence, dE(S ,I)
dt = 0 if and only if S (t) = S ∗, I (t) = I∗,C (τ) I (t) = C (τ) I (t − τ). It is found that

lim
t→∞

(S (t) , I (t)) = (S ∗, I∗) because of S (t) = S ∗, I (t) = I∗ for all t. Then, the model (4.1) is globally

asymptotically stable at unique endemic equilibrium if I∗ <
2·min(β1P+µ,µ+α+γ)

γ+β1PS ∗
. □

4.3. Discussion

According to the theoretical analysis results, in order to achieve global asymptotic stability for
networked respiratory diseases with discrete time delay, the parameters β1, P, γ in the model needs to
satisfy specific relationships. It shows that the threshold condition interval of the parameters needed for
global asymptotic stability of the model is smaller and the threshold condition is more stringent. This
study will contribute to a better understanding of the transmission mechanism of respiratory diseases
and the dynamic complexity of their corresponding ecosystems.

Discrete delay can disrupt the ”synchronicity” of network respiratory disease transmission through
”fixed time difference propagation delay”, which may not only induce Hopf bifurcation and lead to
periodic disease outbreaks, but also undermine global stability and prevent the disease from being
completely eradicated. The essence of the Hopf bifurcation is the critical state where the model changes
from ”stable equilibrium” to ”periodic oscillation”, which corresponds to the ”seasonal outbreak” and
”periodic rebound” of diseases in reality.

In addition, from the conclusion of Theorem 7, it can be known that the discrete delay will fix
the ”effective transmission period” : Even if R0 < 1, the fixed-period transmission feedback may still
keep the disease at a ”low-level periodic prevalence” and fail to reach the globally stable ”disease-free
equilibrium point”. For instance, the seasonal outbreak of influenza is essentially a discrete time
lag effect of ”the low temperature in winter prolongs the virus’s survival time (fixed time lag) + the
population movement during the Spring Festival (fixed transmission delay)”, which makes it impossible
to be completely eradicated. It can only maintain a periodic stability of ”outbreak in winter and subside
in summer each year”, rather than a global stability of complete elimination.

5. Conclusions

Currently, it is one of the hot spots in the prevention and control of respiratory infectious diseases
to adopt epidemiological analysis technology and consider the analysis of the modeling of infectious
diseases of different transmission routes. In recent years, many researchers have extensively analyzed
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epidemic models with nonlinear incidence to understand the spread of disease [6–8]. Incidence plays a
crucial role in the construction of epidemic models, with various incidence rates introduced by different
authors. Bilinear and standard bilinear incidence are the two most widely used incidence rates in
classical epidemic models [9, 17]. If the number of infected individuals becomes high, the spread of the
disease may be slower than the linear response. In this case, the effect of infection saturation can lead to
nonlinear morbidity [18, 19, 25].

In this paper, we take into account the respiratory disease model with nonlinear rate and distributed
delay and discrete delay. For each model, the global stability of the endemic equilibrium E∗ have
proved by constructing the Liapunov functional. It is worth mentioning that owing to the introduction
of a network and distributed delay and discrete delay, our theoretical analysis has brought out some
interesting dynamic features.

This paper studies the influence mechanisms of respiratory diseases under air pollution corresponding
to distributed time delay and discrete time delay, and adopts the linkage mechanism of ”cross-regional
population flow in polluted environment- disease transmission”, enriching the understanding of the
transmission laws of such diseases. Theoretical results reveal that the time lag effect in areas with
high pollution incidence will amplify the transmission risk, verifying the positive correlation of ”air
pollution exposure - time lag - disease transmission”, and providing quantitative theoretical support for
analyzing the outbreak triggers of such diseases. In terms of public health impact, it is recommended to
prioritize reducing the frequency of population contact in severely polluted areas to shorten the delay in
disease transmission. In light of the impact of time lag on the persistence of the disease, monitoring and
intervention should be initiated in advance to prevent the spread of the epidemic due to the time lag effect.
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