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Abstract: Distributed delay is a core concept in time-delay systems and it has been incorporated
into the networked respiratory disease model that elucidates the occurrence of respiratory diseases
induced by air pollution. Next we studied a respiratory disease model with distributed delay and
discrete delay. By analyzing the linearized system, we showed that if the disease-free equilibrium E|
exists, exhibits global asymptotic stability without any constraint on the variable space. In addition, we
proved the global stability of the endemic equilibrium E. by constructing the Liapunov functional. Our
findings contributed networked reaction-diffusion models with distributed delay and discrete delay to the
existing body of knowledge. Our research found that distributed delay altered the transmission rhythm
of respiratory diseases, which weakened local stability and disrupted global stability, which leads to
disease recurrence. Discrete delay could disrupt the ”synchrony” of respiratory disease transmission,
thereby inducing Hopf branches that lead to periodic disease outbreaks and undermined global stability,
making it impossible to completely eradicate the disease.
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1. Introduction

Currently, people face a serious air pollution problem, mainly characterized by elevated concentra-
tions of suspended particles in the atmosphere [1]. The adverse effects of air pollution on human health
are multifaceted, with most pollutants directly impacting the respiratory and cardiovascular systems [2].
The investigation of PM;5’s influence on respiratory diseases through mathematical modeling has
received significant attention in contemporary research [3,4]. The infectious disease dynamics model is
the key to analyzing the spread and control of respiratory diseases. Assuming that the number of infected
individuals reaches a relatively high level, the infection saturation effect will play a dominant role. This
makes the spread of the disease no longer exhibit linear characteristics, ultimately leading to a non-linear
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change in the incidence rate. Therefore, mathematical modeling of the nonlinear incidence of infectious
diseases has become a key issue in exploring the spread and prevention of respiratory diseases [5, 6].

To our knowledge, in previous models of respiratory diseases, the important factor of uneven
spatial distribution of species was ignored [7-9]. Turing bifurcation is one of the core problems of
the reaction-diffusion system, which has been widely used in biology and neurophysiology. In recent
years, reaction-diffusion epidemic models have focused on spatial heterogeneous diffusion and pattern
dynamics, combining complex/multi-layer networks to optimize prevention and control strategies, and
have been extended to spatio-temporal multi-chamber models. The network delay system focuses on
the coupled analysis of mixed time delays (discrete + distributed), explores stability and bifurcation
through methods such as Lyapunov functionals, and incorporates node heterogeneity and time-varying
network characteristics [10-15]. The latest research strengthens empirical calibration and dynamic
mechanisms, but still needs to improve the estimation of time-delay parameters and the analysis of
coupled network propagation. In recent years, the application of big data has introduced a networked
structure to reaction-diffusion systems, helping to improve the accuracy of accurate models. Specifically,
the Gaussian diffusion direction of classical reaction-diffusion systems is isotropic, whereas the diffusion
direction of data-driven diffusion systems is anisotropic. Recently, in the study of anisotropic diffusion,
many scholars have introduced weighted network structures in classical reaction-diffusion systems [16].
Inspired by this, in order to characterize population movements between different regions, Shi et al.
introduced the Laplacian graph equation to improve the classical respiratory disease model into a
networked respiratory disease model with discrete delay [17].

According to our research observations, when the number of infected individuals reaches a certain
scale, the speed of disease transmission may no longer follow the linear response pattern. This
is due to the manifestation of the infection saturation effect, which makes the incidence rate show
nonlinear characteristics. Therefore, establishing a mathematical model of infectious diseases that
includes nonlinear incidence rates has become a key issue in systematically exploring the transmission
mechanism of respiratory diseases and optimizing prevention and control plans [18, 19].

Most models only consider a single type of delay (such as only discrete delay or distributed delay
only), without taking into account the “multipath delay characteristics” of network propagation (such as
the scenario where fixed contact delay and random exposure delay coexist in social networks) [20-22].
In order to improve this situation, we tried a new modeling idea. Suppose that the time between the
susceptible population inhaling PM, 5 and becoming a patient is constant 7 (lag days of onset). The
susceptible population at time ¢ — 7 will become a patient at time ¢, and the nonnegative constant 7 is
the lag days. However, it may be more realistic to assume that 7 is a distributed parameter and the
force of infection must be substituted by 3,5 (x, t) fT Zo f (@) I(x,t—1)dt, where f (1) represents the
fraction of the vector population in which the time required to become infectious is 7. In addition,
f (7) is assumed to be non-negative, square integrable in R,y = [0, o) and satisfies fom f(m)dr =1,
f()+°o 7f(1)dt < +00.

In the infectious disease model established in this paper, the human population is divided into several
different regions, and each region is further subdivided into two subgroups: susceptible individuals and
infected individuals. Specifically, there are two ways for the respiratory diseases we are considering
to spread. One way is that susceptible people inhale PM, 5 carrying pathogens of respiratory diseases,
which directly leads to infection and illness. Assuming that the onset of the disease rules out human-to-
human transmission, that is, the patient’s illness was not caused by the infection of other cases. Another
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approach is that patients with respiratory diseases act as sources of infection, spreading the virus in their
bodies to susceptible individuals, causing them to become infected and exhibit clinical symptoms. Of
course, in both cases, respiratory diseases can be treated and patients can return to a susceptible state.
S (x,1) and I(x, ¢) denote the densities of susceptible and infected populations, respectively.

To visually present the grid respiratory disease model architecture with distributed time delay, the
fractional-order infectious disease transmission framework with a network scale of N = 5 is now
visualized. For details, please refer to Figure 1.

Sl.\‘.ljfof(r)llx,/ )dr
1445 (1)

é‘ BS(x.1)P ‘ al(x,t)
—

yi(xt)
ﬂus(x, t) ﬂul (€5]

Diffusion (mobility) of the population

Infection of the population

Figure 1. The left figure shows the disease transmission dynamics within node i, i =
1,2,3,4,5; in the right figure, each node contains two types of individuals - susceptible
individuals (S (x, ¢)) and infected individuals (/(x, ¢)). The white arrows between the nodes
represent the connection relationship of population diffusion (mobility).

By simultaneously considering the impact of distributed delays [5] and heterogeneous spatial
distribution on the respiratory disease model, we formulate the following weighted networked differential
equation model:

St [ FOIxi-T)dr

aa_i - dlAwS (x’ t) =A+ ')’I (x, t) _ﬁIS (X, t)P _ﬁz T+kS (x.0)

—uS (x,1), (x,1) € Vx(0,),

S [ f@OIn—t)dr ]
% —dry AT (x,1) :ﬁls (x,n P + 52 t fTI—?—I{S(x,t) : (b
—(u+a+yIlx1n, (x1)eVx(0,o0),
Sx,0)=8o(x,0,I(x,0) =Ih(x,0), (x,1) €V Xx[-1,0],

where A is the recruitment rate, P denotes the air pollution index, 5; is the conversion rate of susceptible
individuals who directly got sick by inhaling air pollutants per unit of time, 3, is the infection rate of
susceptible individuals who are indirectly sick from infection by patients with respiratory diseases per
unit of time, u is the natural death rate, « is the disease-induced death rate, y is the cure rate of infected.
For a sufficiently large group of susceptible individuals, the nonlinear incidence rate % tends to
a saturation level, where k is the saturation factor. Furthermore, d; and d, are the diffusion rates. A, is
the Laplacian diffusion graph, which describes networked mobility [18, 19].

In addition, all model parameters are positive throughout the paper. Our main aim is to investigate

the impact of delay on the dynamic process of transmission of respiratory diseases.
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2. Previous results

Remark 1. The region Q = {(S ) € Rio S +71< %} is positively invariant and attracts.

Based on the traditional method for solving the positive invariant set of a system as stipulated in
reference [3,4], Remark 1 above can be obtained. The specific proof process will not be elaborated here.

In order to study the spatial process of the spread of respiratory diseases, the asymptotic stability of
the endemic equilibrium should be considered.

Remark 2. Using the classic next-generation matrix method [23, 24], the basic reproduction number of

system (1.1) is derived as Ry = 2 P(ﬂm)’i [j.tz(/l+(1+’y)] -

Theorem 1. 1) It is easy to see that the model (1.1) has the disease-free equilibrium given by E, =
( FP f,}w , O) for all parameter values.
2) If Ry > 1, then there is an unique endemic equilibrium given by E, = (S.,1.), where S, =
A-+a)l 1. = =B+ VB2-4AC
s Lx T 2A

" ,and

A=u+a)[uy— BiP(u+a) +pu(u+a+y)kl;
B=-AluB—BiPu+a)+p(u+a+y)kl+1° (u+a+y)+BiPu+a)(u+kA);
C = —B,PA (u+kA) < 0.

The basic reproduction number R, > 1 indicates that ’the average number of new infections caused
by each infected person during the infectious period exceeds 17, which is the biological basis for the
continuous spread of the disease. In reality, when respiratory diseases (such as influenza variants and
the original strain of COVID-19) are highly contagious, the population’s immunity is low (such as
unvaccinated), and social contact is frequent, R is very likely to exceed 1. At this point, the disease
cannot be quickly contained, and there is a prerequisite for the formation of a sustained epidemic, which
is completely consistent with the epidemiological definition of “endemic”.

Then, the local asymptotic stability of the equilibria appeared.

3. Distributed delay
3.1. Local stability

Theorem 2. The disease-free equilibrium E is always locally asymptotically stable for all parame-
ter values.

Proof. First of all, the Jacobian matrix of system (1.1) at disease-free equilibrium E\ can be derived as
BoA
Je, = PP —py- ,81P+2y+kA .
BiP —(ut+a+y)

Then, the characteristic equation of system (1.1) without reaction diffusion terms at disease-free
equilibrium Ej is
|AE - Jg,| = 0.
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Assuming A; and A, are the characteristic roots, then we have 4,1, = det(J) and A, + A, = tr (J),
where
det(J)=B1Plu+a)+uu+a+y >0,
tr()=—=[B1P+w)+Wu+a+7y)]<0.

Then, the local asymptotic stability of the equilibria E, can be easily proved by using the eigenvalue
method in reference [23,24]. O

Theorem 3. Whenever the endemic equilibrium E, of the model (1.1) exists, it is locally asymptoti-
cally stable.

Proof. The System (1.1) is centered on E, by introducing x; = S — S., x, = [ — I, and its linear
part becomes

3.1)

xl(t)=—(ﬁ1P+#)x1+YXz—fka ) (D0 =1)dr +didon,
X, (t) = B1Px; — (/1+a+y)x2+1+ks Of(T)XQ(t—T)dT-I-dzAw)Q

Let us consider the Liapunov functional

1 —+00 +00
V0= Y I8 0+ Y 5600+ n ) XS T s [ Beddn 62
0 -7

xeV xeV

where ¢ > 0 is a constant. Let us observe that

V) > ) (k@) = Z % () + qus(xl (0 +x ), (3.3)

xeV er xeV

here w is a positive definite quadratic form of x; and x,, since ¢ > 0. Hence, w; > 0, w; = 0 if and
only if |x ()] = 0 and lim|x(,)|_>+oo w (|x (1)) = +oo0.
Furthermore, the time derivative of V (x,) along the solution of system (1.1) becomes

V) oy = ) (~uxd + (= ¢ (u+ @) B + (= BIP + ) + $pt = ¢ (1 + @) 1)

xeV

+ ¢d1wa% + ¢d2Aw)C§ + ([)dl wxl)Cz + ¢d2 wX1X2

1 ﬁZS* 2 ﬁzS
+;(§1+k8*x2+ f(T)Xz(f—T)dT
1 ﬁzS* 2
) ;(51 +k5*x2fo f(T)x2(t_T)dT)'
According to Remark1 and the nature of the model, it is known
A A Xt
> diA: < d Axi < od, A (1 _ _1),
xev BiP+ BiP+u X

A X,
Aw(l - —2).
BiP+pu X2
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From the Lemma 2.1 in reference [6], one has

12 s == 3 Ban = =56 Y 1 0)- 1 @)

xeV

1 1
'(xl ™ x (z))“’(z’”

N0 -x @)
) Z x1(2) x1 ()

w(z,y) <0.

xeV

Summarizing the above process, it can be concluded

V(x) e < Z (—¢ﬂx% +(y—pu+a)x+

xeV

< 2, (~ou(x + )

xeV

= > o (x)).

1 BaS. 2
21+kS, 2

The above formula is obtained by choosing ¢ as w, (|x (1)) = ¢u (xf + xg) = ¢ulx(®))* and A =

BiS. P+ 55 4 uS, —yL,BiS. P+ 558 = (u+ a+y)L.

From the above theory and Theorem 1 in [25], the endemic equilibrium is locally asymptotically stable. O

The local stability of the equilibrium point in model (1.1) has been proven previously. Based on the
uniform persistence of the disease-free equilibrium points in references [7-9], a bridge can be built
from “local stability (convergence of small disturbances) to uniform persistence (even slightly larger
disturbances can contract to a small range)”, paving the way for the proof of global stability.

3.2. Global stability

Theorem 4. The disease-free equilibrium E, of the model (1.1) is global asymptotically stable with
respect to Q.

Proof. System (1.1) is centered on Ej by introducing ; = S — So, 72 = I — I, and its linear part
becomes P
(1) = = BiP+wm +ym — 2 [ f @ m (1 = 1) dr + diAum,

(1) = Py — (u+a+y)m+ 55 [T f (@ n (= 1)dr + daA .

(3.4)

The disease-free equilibrium E
(0,0) for (3.4).
Let us consider the Liapunov functional

Vm) =) m@o+ ) em®+ ) p fo f@ f n (s)dsdr, (3.5)

xeV xeV xeV

= (ﬂ]%ﬂl,O) inQ = {(S,I) € Rio S +I< %} simply becomes E, =

where ¢ > 0 is a constant. Then V (1,) > >, min (1, ¢) (1, (¢t) + n2 (¢)) for any ¢ > 0.

xeV
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Furthermore, the time derivative of V (1;) along the solution of system (1.1) becomes

V) ks = ) (= BIP+m () +ym () + diAum + i Py () = 9 (u+ @ +7) > (1)

xeV
+ XZ‘; (QDdZAwnZ + % L f(T) Uyl (t - T) dT _ﬁZL f(T) m (l — T) dT)
= Z(—(ﬁ1P+,u)771 (O +ym (@) + @B P () — @ (u+a+y)n (D)
xeV
+ i (1 - _)m + Y ot (1 _ ﬂ_),h
xeV xeV n
+;(%L f(T)Uz(t—T)dT—ﬂzj; f(T))]z(t—T)dT).

In view of Lemma 2.1 in reference [6], we have

Z(l—ﬂ) o lz—ZmAwm———mZ(m(y) 71 (x)

xeV m xGV xeV

( 1 B 1 )a)(x)
mo)  m) Y

o) - m @)’
=32 m @) ()

w(x,y)<0.

xeV

Therefore, it can be obtained

V() ls) < Z (=B1Pni () + yma () + @B1 Py (1) — (U + @+ y) 12 (1) + Bonz (7))

xeV
=D BPA-@m (1)~ [pu+a+y) -2 —y]n ().
xeV
Here the last inequality is true because that 0 < 7, (r) < % Choose ¢ = 2(fizy) which is positive.

Then, it can be obtained

. 1
V) ls <)) (—,Ble =5 B2+ (t))

xeV

< D (Y @+ )

xeV

== whol)

xeV

for any # > 0, where ¥ = min {,BIP, % B + y)}.
From the above theory and Theorem 5 in [26], the equilibria Ej is global asymptotically stable. O

This conclusion indicates that when Ry < 1, even if there is a distribution delay, the disease can
be completely eliminated across the entire network, and there will be no local rebound or long-term
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prevalence. From the perspective of real-world scenarios: No matter how dispersed the transmission

delay caused by population movement is, the disease will eventually disappear in all network nodes

(such as communities, schools, and cities), achieving a ’global disease-free” state. This provides

theoretical support for strategies such as “dynamic zero-COVID” and “precise prevention and control”.
Next, let’s discuss the global asymptotic stability of the endemic equilibrium.

Theorem 5. The endemic equilibrium E, = (S ., 1,) of model (1.1) is globally asymptotically stable if
Ry > 1, min(BiP+u,u+a+vy)> %

Proof. Evaluating both sides of (1.1) at E, and recalling that fT io f()dr =1, gives

ﬁZS*I*
A= P « — v, 3.6
BiS +1+kS*+#S Y (3.6)
ﬁZS*I* _
BiS.P+ kS, (u+a+y)L, (3.7)

which will be used as substitutions in the following calculation. Let g (y) =y — 1 — Iny,

S
Us (1) = Zg( S(”),

xeV
1
Ul(r)=Zg( I(”),
xeV *
h
U+(r)=Zf0a(r)g(m[_”)dn
xeV Y= *

where & (r) = [ f (o) do
Then, the behavior of the Lyapunov functional will be studied as follow
_ ﬁZS*If BZS o1

1+kS*US+1+kS*U1+U+. (3.8)

U )

It is found that a (1) > O for each 7 € [0, h). In addition, g : R.o — R has the global minimum
g (1) = 0. Thus, U (¢) > 0 with equality if and only if S (#) = I(t) = 1 and I ( — 7) = 1 for almost all
T € [0, h).

By Remark 1 and Theorem 3.4 in [5], the solutions are bounded above and bounded away from zero
for a time. Without loss of generality, it may be assumed that the solution in question satisfies these
bounds for all £ > 0. Thus, U (¢) is defined (and finite) for all # > 0.

The derivatives of Ug, U;, and U, will be calculated separately and then combined to get the desired
quantity <

dUg 1 /(S -S5.\dS 1 /5 -S.

0 o e D Vx|

BoS [ f @It ~1)dr
1+kS

A+yl-BSP-

—,US +d1AwS].
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Given Lemma 1 in [6], we have

Z(l_%)Aws:-Zv% S5 =383 ()~ 8 ()

xeV xeV

( 1 1 x.y)
S—(y)—m)w X,y
S.x 8 =5 W)’

=-3 w(x,y) <0,
2 xeV SX)S ) Y
Therefore
dt ZV:S( S )(ﬁlS +1+k5*+ﬂ5 L+ 3l = B,S P — S
h
BoS [, fOI(t - 1)dT
1+kS
1 (S-S,
:Z_( )(_(ﬂ1P+M)(S—S*)+),(I_I*)+
SIt—1)
d
ﬁ2f f()(1+kS T+ kS)T)
(:31P+,U)(S S) 1
— (1= _ 4
+B, T:0f<r>5*( S)(Hks* e ) T]
BGP+w (S -8 1 ,
< _ s _s.
_;[ s. s Tass, 78 211
BoS.I: f St It 1)
l_ .
+1+kS* - f@ofl I + T dr
Letx =2,y =42 z= %72, then
%:Z[_$1P+ﬂ)(S—S*)2+ 1 sy
a b S s 2ss. 211
S.? 1 1
llgier f(T)(l—)—c—xz+z+1—;—z+ )df] E.D)
On the other hand

dUu 1
d—z’:xzr(

BS M @ 1G-1)dr
)[ﬁlSP ’ fT_01+kS —(,u+a/+)/)l]

)(,BIPS ﬁQS’f f@ T a’T—(/x+a+y)I).

~|’\4 N|'\‘
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Using 5,5 .P + BS.L. = (u + a + y)L. to replace it gives

1+kS .

U, o1 BaS I

& C A (1“)(“‘”*”’ T rsIT
B,S.1, SIZ(t
1+ka f() a’ —(/J+a+7)])

_Z (1——)(—(ﬂ+6¥+7)(1_[*)+ BaS. 1.

(1+kS.)
SIt-7) [
[0

(#+CY+7) Ly BSL (T ox 1
—Z (I-L)+ T +450) f(T)(xz 1 y+y)d7.

xeV

Hence

du, (L+a+7y) 2, BaS.d. h xz 1
W Z—I—I*(I—I*) (1 kS) f(T)(XZ_1_7+;)dT

xeV

Then, the derivative of U, (¢) is calculated as follows:

2 A G B WA Ry

xeV

According to (E.1)—(E.3), it can be obtained

d_Uzz[_(Nﬁ]Pw)—l)(S _S*)z_(z(ﬂ+@+7)—1)(1_l*)2

dt 2S5 S. 211,
xeV
h
—f f(T)C(T)dT].
=0
where
1 1 1
C(T)I(—l+—+XZ—Z)+(—1+—+z—£)+(xz—1—g+—)+lny+lnz

X X X y oy

1 |
—2(——1—ln—)+2(xz—z—lnxz)+——1—ln R R
X X X X 0y y

1
+ 2In— + 2Inxz + lnE + lnE + Iny + Inz > 0.
X X y
It is observed that L€ < 0if Ry > 1, min (BiP + i + @ +y) > 1.

Thus, &Y o
is shown that Q2 comprises only the endemic equilibrium E..

U <0. By Theorem 5.3.1 of [5], solutions limit to the largest invariant subset of {‘Z—lt]

(E.2)

(E.3)

= 0}. It

Note that C(r) = Oif and only if x = 1, y = 1, z = 1 or equivalently, if and only if § (¥) = S,

() =1(t - 7). Thus, {2 = 0} if and only if

SOH=S.and f(I)=f()I({t-71)

(3.9
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for almost all T € [0, i]. For each element of Q, we have S (¢) = S, and, since (2 is invariant, ‘Z—SI =0.
Using equalities (3.6) and (3.7), we obtain
das
0=—
dt
Nl —ps P BoS. [1 f @1t —1)dr S
= + * L = — - *
vl - Bi 15 ks. M
Nl s p BaS. [1 f (@1 (0dr S
= + P * - — - ke
¥l — B 15 ks. M
Rearranging gives [ (7) = 285215 — f
T+kS%
Because of S(r) = S., I(t) = I, for all t, we can gains %ft) = 0. It seems that

lim (S (¢r),1(¢)) = (S.,1.). Further, it now follows that E, is globally asymptotically stable if Ry > 1,
t—00

min(B1P+,u,u+a+y)>%. |

3.3. Discussion

The construction of the entire Lyapunov functional is not merely a mathematical technique, but
a “mathematical mapping” of the transmission mechanism of respiratory diseases. This paper, by
characterizing the core transmission links such as the fluctuation of susceptible individuals, the scale of
infection, rehabilitation protection, network spread, and time delay accumulation item by item, presents
the biological logic of reduced transmission risk — system stabilization”. It is transformed into a
mathematical determination of ’decreasing functional value — convergence to disease-free equilibrium
point”, which not only ensures the rigor of the stability proof but also deeply integrates mathematical
tools with biological reality.

Under normal circumstances, distributed delay will change the transmission rhythm of network
respiratory diseases through the ”time accumulation effect”, thereby affecting the stability of the model.
In the short term, it may weaken local stability and cause fluctuations. If the distribution delay is
significant, even if the overall infection rate is not high, there may still be short-term small outbreaks
where ”one wave has not subsided and another has emerged”, and the local stability of the corresponding
model will be weakened.

In the long term, distributed delay may undermine global stability and lead to the recurrence of the
disease. The conclusions of Theorems 4 and 5 in this paper indicate that distributed time delays may
cause the “basic regeneration number R, < 1” to fluctuate over the long term. Even if the theoretical
Ry < 1, the cumulative delayed propagation may lead to the disease not being completely eliminated.
The more difficult it is for the disease to achieve “global extinction”, the more the global stability of the
corresponding model is disrupted.

4. Discrete delay
The previous text has conducted a comprehensive and detailed analysis of the infectious disease
model with distributed time delay (1.1), systematically exploring the influence of distributed time delay

on the dynamic behavior of disease transmission and related key properties. To further improve the
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applicability of the model and cover time delay types that are closer to actual propagation scenarios, the
case of discrete delay is considered, then system (1.1) becomes the following model

%_f —d\ALS (x, ) = A+yl(x,t) =S (x,1) P —ﬁz%’t&zew —uS(x,1),
(x,1) € VX (0, 00),

B — dh AT (x,1) = B1S (x, 1) P+ B EHED — (0 + )] (%, 1), 4.1
(x,1) € VX (0, 00),

S (-x’ t) = SO (-x, t) ’I(-x’ t) = IO(x7 t)a (x7 t) eV X [_T’ 0]

To clearly present the model structure, we visualized the fractional-order infectious disease transmis-
sion framework with a network scale of N = 5, as shown in the specific Figure 2.

1)1( Jd—t)e ¥
T +kS(m)

:>‘ BS(xr)P ‘

vl
,‘5( ﬂﬂl( 1))

Infection of the population

Diffusion (mobility) of the population

Figure 2. The left figure shows the disease transmission dynamics within node i, i =
1,2,3,4,5; In the right figure, each node contains two types of individuals - susceptible
individuals (S (x, 7)) and infected individuals (I(x, t)). The white arrows between the nodes
represent the connection relationship of population diffusion (mobility).

4.1. Delay induced Hopf bifurcation

In general, the system does not lose stability at the disease-free equilibrium and produces Hopf
bifurcation. Therefore, the Hopf bifurcation of system (4.1) at the endemic equilibrium is studied mainly
in this section.

Lemma 1. From the eigenvalue problem

{ —A,¢ (x) =1p(x),x €V, 4.2)

f¢* =1,

exists a series of eigenvalues {t;}i_, : 0 = 1 <1, < --- <, whose associated eigenfunctions are {¢;}_,.
Moreover, letting E; be the space of eigenfunctions corresponding to i; such that E; := {c - ¢; : ¢ € R},
one has the following space decomposition:

15 (V)]2 - @ E. (4.3)
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In order to determine the stability of (5 v ), we define the small perturbations around (§, f) are 0

and 6;. The linearized system (4.1) around (§ v ) is

6 0 O A, b5
Sl=J +J "7+ D , 4.4
(91) 1(91) 2(917) (Aw91 ¢4
where 6, = 6;(t — 1), and
ap  ap 0 aps d 0
Ji = ’J = 7D = . 4.5
: (6121 Clzz) 2 (0 6123) (0 dz) (4.5)
- _ _ . Bale _ _ Bole ™™ _ _ Pl _
Here a;, = -f1P—u (1+k§)2’a12 =7v,a; =B P+ (1+k§)2aa22 =—(u+a+y),a3= (1+k§)2,a23 =
Bale™
(1+k8)*

On the basis of Lemma 4.1, the space E; is invariant under the operator —DA,,, and 4; is an eigenvalue
of this operator on E;, if and only if it is an eigenvalue of the matrix A;D. For any small perturbation
(0s,6)" from (0, 0), the basis decomposition is as follows:

HS _ - cll At ¢ ©
(91)_2(6,)6 ¢, (i=1,2,--+,n). (4.6)

i
i=1 2

Inserting (4.6) in (4.4), noticing that —A,¢; = (;¢; and using the orthogonality of the eigenvectors,
we get for each mode ¢; (1,2, --- ,n) that

ct ct ct ct
/li( ;)eM = J1( g)em + Jz( ll e 1D ll el
ch ch ch ch

Therefore, the characteristic equation is as follows:
LA (4, 7) = 0, where A(4;,7) = det (41— (Jy + e "], - uD)). 4.7)
Let’s put (4.7) into (4.5), the characteristic equation becomes

A (/li, T) = /llz + (—all —day + (dl + dg) L — (1236_/liT) A;
+apnax — apay — (andy + axpd)); + d1d2l,-2
+ (ay + doty) aze™ . (4.8)

It can be obtained by calculation as follow
A7) = A7 + AL + Ay + Aze™, (4.9)
where A| = —ay) — an + (di + do) t; — ape™ ", Ay = ajjan — anay — (an1ds + andy) ; + didyi?, Az =
(ary + dat) ags. o
The following results are found on the stability of (S ,I) of the model (4.1) by analyzing the
characteristic Eq (4.7).

Electronic Research Archive Volume 33, Issue 12, 7310-7330.



7323

Lemma 2. (i) For the case without the delay, all characteristic roots of the Eq (4.7) have negative
real parts.

(ii) For the other case with the delay, the characteristic equation has a pair of purely imaginary roots
+iw* at T = 7, also

|
(W)’ = 3 (2A2 ~ A2+ \/ (24, - A{)2 —4(A2- Ag)) (4.10)
and
1 212 _A
Tj:—(2jn+arccos((‘“)—2)),j:0,1,2---. @.11)
w* Az

where, A;,i = 1,2,3 is given in the following Eq (4.13).
Proof. (i) For the first case 7 = 0. Plugging 7 = 0 to (4.8) yields

A7) = A2+ A4 + Ay + As, 4.12)
where
Al =B P+ +u+a+y +d +d))u,

A=uu+a+y)+u+a ,81P+%_m2 +
(1+43)

Jeo
(u+a+y)d + ﬁlP"',U"‘—'BZ - — |42 |t
(1+43)
Je Jes
Av=|ppaps PL g | PL (4.13)
(1+43) (1+4S)
Because of 0 = ¢y <, <--- <,,and A; > 0,A, + A3 > 0 holds, then the real parts of the roots of
A (4;, ) = 0 are negative. Given that the characteristic equation is [/, A (4;, 7) = 0, all the characteristic
roots of (4.7) have real negative parts.
(1) Set +iw be a pair of pure imaginary roots. Putting +iw into A (4;, 7) = 0 and separating real and
imaginary parts, we can know

—w? + Ay + Aycoswt = 0,
{ Ajw — Az sinwt =0, (4.14)
which leads to
W'+ (A2 - 24,) w? + AT - A2 =0, (4.15)

The Eq (4.15) has a unique positive real root (w*)* if and only if (A% - 2A2)2 > 4 (A% - A%) Then,
the expression of w” is obtained in the form of (4.10) by solving the above Eq (4.15). Hence, the
corresponding 7; of (4.11) can be obtained by substituting (4.10) into (4.12). O
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Theorem 6. When t = 7, the model (4.1) will undergo a Hopf bifurcation at the endemic equilibrium
~ 12
(S , I), where g = - (arccos (%))

Proof. By the Lemma 2, it is only needs to show the following transversality condition

d
R () |r> 0. (4.16)

with ¢; = ¢;. Hence, the following analyzes the characteristic equation (4.9), where the parameter A; has
already been given in the previous equation (4.13).
It is supposed that 4; = ¢ + iw is a complex eigenvalue of (4.16). It can be obtained by calculation

{ C—w+ AL+ Ay + Aze ™ coswt = 0, 4.17)

2w + Ayw — Aze T sinwt = 0.

Differentiating (4.17) to 7, one gets

(2 +Ap - Aste™ coswr % - Q2w + Aste™" sinwr) ‘é—“T’ =

Azte™ (1cosS wT + w Sin wT),
2w + A3Te™ sin wT) % + (2t +A; — AzTe™ cos wr) %’ =
AsTe ™ (1SIn WwT + W CcoS wT) .

(4.18)

Eliminating ‘[%’ of the above two equations, one has

d
[(2L + A, — Aste " cos wT)” + (2w + AsTe T sin U)T)z] d—L
-

T cos wr)]

= Aste™ [(tcoswT + wsinwt) (2t + Ay — AzTe”

+ Aste™ " [(Lsin wT + wcos wTr) 2w + Azte™ " sin wr)] . (4.19)

In view of (4.17), to prove 2’—; > (), it needs to verify that

L

(tcoswt + wsinwt) (2t + Ay — Azte™ cos wr)

+ (tsinwt + wcos wt) 2w + Azte™ " sinwt) > 0. (4.20)

In fact, when 7 = 79 and w = w*, the above inequality satisfies ¢ = 0. In the case of 7 = 7¢,¢ = 0, w = W,
(4.17) becomes

(R anser=e
and (4.20) becomes
W' sinw Ty (A — A3Tocos w*Ty) + w* cos w 'ty Quw* + A3Tysinw 1) > 0. (4.22)
It can be simplified further from (4.22) that
A" sin 'ty + 2 (w")? cos w'ty > 0. (4.23)
If substitute (4.21) into (4.23), you get this
A%Af (w")? - A% |2 @) (42 - 2(@"))] > 0. (4.24)
To make A; > 0, we have to verify formula
2 (") + (A} - 24;) (") > 0. (4.25)
On account of A7 > 2A, always valid, the inequality (4.25) is true. O
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4.2. Global stability

Theorem 7. It is easy to know that model (4.1) has an unique endemic equilibrium given by E.

2-min(B) P+p u+a+y)

and it is globally asymptotically stable if I, < Y

Proof. We decide to choose the Lyapunov function of the following form

S.I, S.I
E(f) = E +E
@) Bre (1 +kS,) Bze‘f”(l +kS.) Ei

NA S S
" Pre* (1 + kS >Z(_ - _ln(s*))
S .1, 1 b4
T Boer (11 kS )Z(_ 1o ln(Z))

2L

xeV

= (5., 1),

Then E () > Oforallt > 0, and E (r) = O if and only if (S, 1) = (S ., 1..). It can be obtained by calculation

S.I s,
E (1) = ' (1 - )
Brer (1 ks )2\ 7S

SI(t—T1)e™
NdiALS +|A+yI=BSP-By————
(aﬁ S +( +yl-B1SP-p T ,US))

S.1, L.
+ Z (1 - —)
pre7 (1 +kS.) & I

SI(t—1)e ™™
(dzAwI'F(ﬁlSP +ﬁ2W —(y+a+y)]))
I —
Zf ( @ T))dr.
xeV *
First of all, we know
S .1 dEs S.I ( -S. )dS
Bre (1 +kS*)X€V dt Bze‘l”(l +kS ) S dt
B P+ ) 1. 2 71* 2 2
- S-S, S-S, I1-1,
B (11 ks0S8 © 5 Y s (11 ks ) [ -5.7+ - 1.7]

(-5 557)

Letg(a) =a—1-In(a)>0[3], and have g (1) = 0. Setx = 32,y = L0 7 = D then

S.I. dEs Q@R+ =L o o0, yL(I- L)
Bae T (1 + kS )45 dt = 2Bre ™ (1+KkS.)S 28 Bre (1 +kS.)

+(1——)(1—xz).
X

(E.4)
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From the Lemma 1 in [19], one receives

1
;(1 - —)A I= ——xev () - I(x»(ﬁ - m) (x.y)
(I (y) — I (x))?
Z TT0) w(x,y) <0.
On the other hand
S.I, dE,
Bre (1 + kS ) &
B SI(t—T1)e ™™
Z,Bzef”(1+k5)( )[ﬁlsp P s et

L, BlPS*I* (/J+01+7)SI
S;(1_7)(ﬁze‘*”<1+ks*>(5_S*)‘,e eS¢

(l_im-f)))
S. L

- Z(ﬁlPS*I* ($-S8) Qu+ta+y)-AP)S.LU-L)
- A\ 2Bt (1 + kS )T 2Bre (1 +kS.) 1

+(1—1)(1—xz)),
y

that is
S.1, dE, BiPS.I.(S —S.)?
Bore T (1 +kS.,) Z ; [ZBZe‘ﬂT(l +kS.)I
_Quta+y)-pP)S.LU-L)
2Bre (1 +kS.) 1
+ (1 - l) (1- xz)],
y
Moreover JE 4 I ) I )
_ i t—71 t—T1
5 [ T L2
; dt ;dtfo ( ) ; I,
hence

Z%:Z(g(m,:ﬂ)—g(“”)) S () - g ).

xeV xeV xeV

By the Eqgs (E.4)—(E.6), it can be acquired
E e E e E E_
dE (1) _ Z S dEs N Z S dE; N d
dt xevﬁze‘#f(l +kS.,) dt EV,Bze‘l”(l + kS.) dt ~ dt

_22(B1P+,u) - vl —,BIPS*I*
2Bre (1 +kS.) S,

S -S.)?

xeV

(E.5)

(E.6)
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2u+a+y) -yl - B PS.L
2Bre7H (1 + kS .)

I-Ly =) C@,

xeV

where

C(T)=g(x)—g(Z)—(1—l)(1—xz)—(l—l)(l—xz)
x y

1 1
:x—l—lnx+z—1—lnz—(l—xz——+z) (1—xz——+E)zO.
X y oy

It is want to make dE(’) <0, ithastobe I, < W

Therefore, C(T) =0ifandonlyifx=1,y=1,z=10orS@) =S, 1) =1L,1(t—-71) = L.
Hence, 80 = 0 if and only if S () = S.,1(t) = L,C(0)1(t) = C(1)I(t—7). It is found that
lim (S (r),1(¢)) = (S, 1.) because of S (1) = S., I(t) = L. for all . Then, the model (4.1) is globally
t—00

2-min(B1 P+ p+a+y)

y+B1PS., =

asymptotically stable at unique endemic equilibrium if 7, <

4.3. Discussion

According to the theoretical analysis results, in order to achieve global asymptotic stability for
networked respiratory diseases with discrete time delay, the parameters §;, P, y in the model needs to
satisfy specific relationships. It shows that the threshold condition interval of the parameters needed for
global asymptotic stability of the model is smaller and the threshold condition is more stringent. This
study will contribute to a better understanding of the transmission mechanism of respiratory diseases
and the dynamic complexity of their corresponding ecosystems.

Discrete delay can disrupt the ’synchronicity” of network respiratory disease transmission through
“fixed time difference propagation delay”, which may not only induce Hopf bifurcation and lead to
periodic disease outbreaks, but also undermine global stability and prevent the disease from being
completely eradicated. The essence of the Hopf bifurcation is the critical state where the model changes
from stable equilibrium” to ”periodic oscillation”, which corresponds to the ”seasonal outbreak” and
“periodic rebound” of diseases in reality.

In addition, from the conclusion of Theorem 7, it can be known that the discrete delay will fix
the “effective transmission period” : Even if Ry < 1, the fixed-period transmission feedback may still
keep the disease at a low-level periodic prevalence” and fail to reach the globally stable “disease-free
equilibrium point”. For instance, the seasonal outbreak of influenza is essentially a discrete time
lag effect of ’the low temperature in winter prolongs the virus’s survival time (fixed time lag) + the
population movement during the Spring Festival (fixed transmission delay)”, which makes it impossible
to be completely eradicated. It can only maintain a periodic stability of ”outbreak in winter and subside
in summer each year”, rather than a global stability of complete elimination.

5. Conclusions
Currently, it is one of the hot spots in the prevention and control of respiratory infectious diseases
to adopt epidemiological analysis technology and consider the analysis of the modeling of infectious

diseases of different transmission routes. In recent years, many researchers have extensively analyzed
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epidemic models with nonlinear incidence to understand the spread of disease [6—8]. Incidence plays a
crucial role in the construction of epidemic models, with various incidence rates introduced by different
authors. Bilinear and standard bilinear incidence are the two most widely used incidence rates in
classical epidemic models [9,17]. If the number of infected individuals becomes high, the spread of the
disease may be slower than the linear response. In this case, the effect of infection saturation can lead to
nonlinear morbidity [18, 19,25].

In this paper, we take into account the respiratory disease model with nonlinear rate and distributed
delay and discrete delay. For each model, the global stability of the endemic equilibrium E, have
proved by constructing the Liapunov functional. It is worth mentioning that owing to the introduction
of a network and distributed delay and discrete delay, our theoretical analysis has brought out some
interesting dynamic features.

This paper studies the influence mechanisms of respiratory diseases under air pollution corresponding
to distributed time delay and discrete time delay, and adopts the linkage mechanism of ”cross-regional
population flow in polluted environment- disease transmission”, enriching the understanding of the
transmission laws of such diseases. Theoretical results reveal that the time lag effect in areas with
high pollution incidence will amplify the transmission risk, verifying the positive correlation of “air
pollution exposure - time lag - disease transmission”, and providing quantitative theoretical support for
analyzing the outbreak triggers of such diseases. In terms of public health impact, it is recommended to
prioritize reducing the frequency of population contact in severely polluted areas to shorten the delay in
disease transmission. In light of the impact of time lag on the persistence of the disease, monitoring and
intervention should be initiated in advance to prevent the spread of the epidemic due to the time lag effect.
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