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Abstract: This paper constructs a Susceptible-Exposed-Infectious-Recovered (SEIR) model that
takes into account the dynamic changes in the birth population and includes both vaccinated and
unvaccinated populations. The basic reproduction number R0 is derived, and its global stability is
analyzed. It is proven that when R0 < 1, the disease-free equilibrium point is globally stable.
When R0 > 1, there exist an unstable disease-free equilibrium and a unique endemic equilibrium.
Subsequently, we conduct the numerical simulations to validate theoretical results and plot data
visualizations for various scenarios. In addition, the parameter sensitivity analysis and the forward
bifurcation of the model are performed to examine how each system parameter specifically affects
disease transmission. Our results offer practical insights for public health planning, particularly in
optimizing vaccination strategies in populations with high birth rates or waning immunity.
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1. Introduction

Infectious diseases profoundly affect humanity and individual health. With the advancement of
science and technology, some infectious diseases have been eradicated through modern interventions.
However, some infectious diseases have evolved new modes of transmission or form as human society
develops, such as avian flu, H1N1 influenza, and COVID-19. Infectious diseases not only threaten
individual health, but their large-scale outbreaks may also cause shortages of medical resources,
declines in productivity, public panic, and social unrest, all of which have profound negative effects
on economic growth and social order. Therefore, the effective prevention and control of infectious
diseases have become important challenges in global governance. By strengthening control measures,
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public health can be effectively safeguarded, social stability maintained, and economic development
promoted [1–6].

The Susceptible-Exposed-Infectious-Recovered (SEIR) model originates from the foundational
research of Kermack and McKendrick [7], who were pioneers in introducing the
Susceptible-Infectious-Recovered (SIR) model in 1927. Their innovative study focused on analyzing
the mechanisms underlying the transmission of infectious diseases. The SEIR model, which builds
upon the SIR model [8, 9], was designed to account for a critical feature of infectious diseases:
incubation period, which more accurately represents the true progression of numerous infectious
diseases, such as Ebola, HIV/AIDS, and COVID-19, where individuals may be infected but not yet
capable of transmitting the disease [10, 11]. By introducing the exposed category, the model
incorporates an extra parameter that can be determined based on existing data. This improvement
enables a more precise calculation of key epidemiological factors, including the transmission rate,
incubation duration, and other relevant parameters. Keeling and Rohani [12] proposed the following
classical SEIR epidemic disease model:

dS
dt = Λ − βIS − δS ,
dE
dt = βIS − (σ + δ)E,
dI
dt = σE − (θ + δ)I,
dR
dt = θI − δR.

(1.1)

Here initial population is divided into four classes: susceptible S (t), exposed E(t), infected I(t), and
recovered R(t), with t being the time variable. The parameter Λ represents the rate of emergence of
new individuals per time unit, δ stands for the natural death rate per capita, β is the transmission rate
of diseases, σ denotes the rate of progression from exposed to infectious, and θ refers to the recovery
rate of infected individuals. Based on this model (1.1), Yang et al. [13] considered an infectious
disease model with saturated incidence rate, where the incidence rate takes into account the
behavioral changes of individuals, and by choosing appropriate parameters, they ensured the contact
rate remained bounded. Upadhyay et al. [14] developed an SEIR model that incorporates a
Crowley-Martin-type incidence rate along with Holling type II and III treatment rates. The analysis of
infection spread dynamics and its control was carried out for both types of treatment functions.
Khan et al. [15] investigated an SEIR endemic model with age structure and formulated an abstract
Cauchy problem to demonstrate the well-posedness of the model.

Traditional models mainly consider the transition processes between susceptible, exposed, infected,
and recovered individuals [16, 17]. However, many existing models overlook two critical biological
and demographic factors: dynamic vaccination uptake and population renewal through births. From
a biological perspective, vaccination directly reduces the density of susceptible population and alters
transmission dynamics, while birth inflows continuously introduce new susceptibles, especially when
vaccination coverage at birth is incomplete. These factors are crucial for understanding long-term
endemic persistence and the effectiveness of immunization programs.

In this paper, we develop an SEIR model that explicitly incorporates continuous vaccination of
susceptibles and demographic renewal via births, with a proportion p of newborns vaccinated at birth.
Unlike previous studies that often assume constant population or instantaneous vaccination
coverage [18–25], our model captures the continuous flow of individuals into the vaccinated and
unvaccinated compartments, reflecting real-world vaccination campaigns and birth processes.
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By separating the birth input into vaccinated and unvaccinated streams, which more accurately
represent the impact of neonatal vaccination policies on herd immunity. The model includes ongoing
vaccination of susceptibles and loss of immunity (δ), which allows us to study the interplay between
vaccination efforts and natural immunity decay. We establish global stability of both disease-free and
endemic equilibria using Lyapunov and geometric methods, providing theoretical guarantees under
biologically relevant parameter ranges. Furthermore, the bifurcation analysis and sensitivity analysis
are performed to identify key parameters influencing disease spread and control. Our results offer
practical insights for public health planning, particularly in optimizing vaccination strategies in
populations with high birth rates or waning immunity.

The structure of this paper is as follows: The model framework is established in Section 2. In
Section 3, the existence and uniqueness of both disease-free equilibrium and endemic equilibrium are
analyzed, accompanied by the formal derivation of the basic reproduction number. In Section 4, the
global stability of the disease-free equilibrium is systematically investigated through Lyapunov
methods and geometric approaches. The forward bifurcation analyses are performed in Section 5. In
Section 6, a special epidemiological scenario is specifically examined. Comprehensive numerical
simulations of the proposed model are conducted in Section 7. Finally, the parameter sensitivity
analyses are performed to quantify their impacts on the basic reproduction number in Section 8.

2. Model formulation

Based on the progression of the disease, we divide the population into four categories: susceptible
(S ), exposed (E), infected (I), and recovered (R). Let S (t), E(t), I(t), and R(t) represent the number
of individuals in each category at time t. Therefore, the total population at time t is given by N(t) =

S (t) + E(t) + I(t) + R(t).

The parameter β characterizes the transmission rate of the disease, ε represents the rate which
asymptomatic individuals become infected, γ represents the rate which infected individuals recover,
and σ represents the vaccination rate for susceptible individuals. δ represents the rate which recovered
individuals lose immunity and become susceptible. We also consider population dynamics, with birth
rate b and death rate µ. Additionally, assume that a proportion p of newborns are vaccinated, and the
remaining (1 − p) enter the susceptible class as unvaccinated individuals.

Based on the above assumptions, the SEIR model can be described by the following system
of equations: 

dS
dt = b (1 − p) − βS I − (µ + σ) S + δR,
dE
dt = βS I − (ε + µ) E,
dI
dt = εE − (γ + µ) I,
dR
dt = bp + γI − (δ + µ) R + σS .

(2.1)

We assume all the parameters are positive. In Figure 1, we plot the flow dynamics of the
system (2.1), and the specific parameter values are shown in Table 1 in Section 7.
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Figure 1. A sketch of the SEIR transmission scheme.

Lemma 2.1. The feasible region Ω defined by

Ω =

{
(S , E, I,R) ∈ R4

+ : S + E + I + R =
b
µ

}
is positively invariant for the system (2.1). If the initial condition (S (0), E(0), I(0),R(0)) ∈ Ω, then the
solution (S (t), E(t), I(t),R(t)) ∈ Ω for all t ≥ 0.

Proof. Summing up the equations in system (2.1) yields

dN
dt

= b − µN,

where N(t) = S (t) + E(t) + I(t) + R(t). This is a linear differential equation with solution

N(t) = N(0)e−µt +
b
µ

(1 − e−µt).

If the initial condition satisfies N(0) = b
µ
, then

N(t) =
b
µ

e−µt +
b
µ

(1 − e−µt) =
b
µ
.

Thus, N(t) = b
µ

for all t ≥ 0, meaning the solution remains in Ω. Additionally, since all parameters are
positive and the system is nonnegative, the solution stays in R4

+. Therefore, Ω is a positively invariant
set for the system (2.1).

As the parameters of (2.1) are locally Lipschitz continuous, system (2.1) has a unique local maximal
solution (S (t), A(t), I(t),R(t)) for all t ∈ [0, τ), satisfying the initial conditions, where τ is the explosion
time. Below, we shall prove given non-negative initial conditions; the variables remain non-negative
and globally defined (τ = ∞) for all t ∈ [0, τ).
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Theorem 2.2. If S (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0,R(0) ≥ 0, then S (t) > 0, E(t) > 0, I(t) > 0,R(t) > 0, for
all t ≥ 0, that is, the system (2.1) is globally nonnegative.

Proof. Assume there exists a time point t > 0, at which at least one variable becomes negative for the
first time. Due to the non-negative initial conditions and the continuity of the solution, we define:

t0 = inf {t > 0 : min{S (t), E(t), I(t),R(t)} < 0} .

By continuity, t0 > 0, and for all t ∈ [0, t0), we have S (t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0,R(t) ≥ 0. However,
at t0, at least one variable becomes zero with a non-positive derivative. We consider each variable’s
potential to become negative for the first time individually and derive a contradiction.

S (t) becomes negative for the first time. Assume that at t0, S (t0) = 0, and dS
dt

∣∣∣
t=t0
≤ 0. From the

equation in system (2.1):
dS
dt

= b(1 − p) − βS I − (µ + σ)S + δR,

at t = t0, S (t0) = 0, thus
dS
dt

∣∣∣∣∣
t=t0

= b(1 − p) + δR(t0),

since b(1 − p) > 0 and R(t0) ≥ 0. Because t0 is the time when a variable becomes negative for the first
time, and R(t) is non-negative on [0, t0), we have dS

dt

∣∣∣
t=t0
≥ b(1 − p) > 0, which contradicts dS

dt

∣∣∣
t=t0
≤ 0.

Therefore, S (t) cannot become negative for the first time.
E(t) becomes negative for the first time. Assume that at t0, E(t0) = 0, and dE

dt

∣∣∣
t=t0
≤ 0. From the

equation in system (2.1):
dE
dt

= βS I − (ε + µ)E,

at t = t0, E(t0) = 0, thus
dE
dt

∣∣∣∣∣
t=t0

= βS (t0)I(t0),

since S (t0) ≥ 0 and I(t0) ≥ 0, we have dE
dt

∣∣∣
t=t0
≥ 0. Combining this with dE

dt

∣∣∣
t=t0
≤ 0, we get dE

dt

∣∣∣
t=t0

= 0,
i.e., βS (t0)I(t0) = 0. This implies that E(t) remains zero at t0 but does not become negative. Therefore,
E(t) cannot become negative for the first time.

I(t) becomes negative for the first time. Assume that at t0, I(t0) = 0, and dI
dt

∣∣∣
t=t0
≤ 0. From the

equation in system (2.1):
dI
dt

= εE − (γ + µ)I

at t = t0, I(t0) = 0, thus
dI
dt

∣∣∣∣∣
t=t0

= εE(t0),

since E(t0) ≥ 0, we have dI
dt

∣∣∣
t=t0
≥ 0. Combining this with dI

dt

∣∣∣
t=t0
≤ 0, we get dI

dt

∣∣∣
t=t0

= 0, i.e., εE(t0) = 0.
This implies that I(t) remains zero at t0 but does not become negative. Therefore, I(t) cannot become
negative for the first time.

R(t) becomes negative for the first time. Assume that at t0, R(t0) = 0, and dR
dt

∣∣∣
t=t0
≤ 0. From the

equation in system (2.1):
dR
dt

= bp + γI − (δ + µ)R + σS ,
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at t = t0, R(t0) = 0, thus
dR
dt

∣∣∣∣∣
t=t0

= bp + γI(t0) + σS (t0),

since bp > 0, γI(t0) ≥ 0, and σS (t0) ≥ 0, we have dR
dt

∣∣∣
t=t0
≥ bp > 0, which contradicts dR

dt

∣∣∣
t=t0
≤ 0.

Therefore, R(t) cannot become negative for the first time.
Since all cases lead to contradictions, the assumption fails. Therefore, for all t ≥ 0, we have

S (t) > 0, E(t) > 0, I(t) > 0,R(t) > 0.

3. The basic reproduction number

In this section, we present the disease-free equilibrium point and the basic reproduction ratio R0 for
the systems (2.1).

To obtain the disease-free equilibrium, we set the four equations in the system (2.1) to zero, and
assume E = 0 and I = 0. Accordingly, we obtain the following equations:

bp −
(
δ + µ

)
R0 + σS 0 = 0,

and
b
(
1 − p

)
−

(
µ + σ

)
S 0 + δR0 = 0.

We solve the disease-free equilibrium point P0 = (S 0, E0, I0,R0) of the above equation

P0 = (S 0, E0, I0,R0) =

(
b (δ + µ − µp)
µ (µ + δ + σ)

, 0, 0,
b (σ + µp)
µ (µ + δ + σ)

)
. (3.1)

We use the next-generation matrix algorithm (see [26]) to define the basic reproduction number of
the system (2.1) as follows:

R0 = ρ
(
FV−1

)
.

Let x = (S , E, I,R)T , then the system (2.1) can be written in the following form:

ẋ = F (x) −V (x) ,

where

F (x) =


0
βS I

0
0

 , V (x) =


−b (1 − p) + βS I + (µ + σ) S − δR

(ε + µ) E
−εE + (γ + µ) I

−bp − γI + (δ + µ) R − σS

 .
The Jacobian matrices of F (x) andV(x) at the disease-free equilibrium E0 are as follows:

J [F (P0)] =


0 0 0 0
βI0 0 βS 0 0
0 0 0 0
0 0 0 0

 ,
and

J [V(P0)] =


βI0 + (µ + σ) 0 βS 0 −δ

0 ε + µ 0 0
0 −ε γ + µ 0
−σ 0 −γ δ + µ

 .
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Using the next-generation matrix algorithm [26], we can calculate the basic reproduction number by
utilizing two equations corresponding to the infection categories, namely the exposed class (E) and the
infectious class (I). This is represented by the matrices F and V below:

F =

[
βI0 βS 0

0 0

]
,V =

[
ε + µ 0
−ε γ + µ

]
,

V−1 =
1

(ε + µ) (γ + µ)

[
γ + µ 0
ε ε + µ

]
, FV−1 =

[ βS 0ε

(ε+µ)(γ+µ)
βS 0
γ+µ

0 0

]
,

and

ρ
(
FV−1

)
=

∣∣∣∣∣∣λ − βS 0ε

(ε+µ)(γ+µ) −
βS 0
γ+µ

0 λ

∣∣∣∣∣∣ = λ
[
λ − βS 0ε

(ε+µ)(γ+µ)

]
,

where λ1 = 0, λ2 =
βS 0ε

(ε+µ)(γ+µ) . The basic reproduction number is given by R0 = ρ
(
FV−1

)
, that is

R0 =
βε

(ε + µ) (γ + µ)
·

b (δ + µ − µp)
µ (µ + δ + σ)

. (3.2)

In fact, if R0 > 1, there exists a unique endemic equilibrium point. Setting the equations in the
system (2.1) to 0, we obtain the following equations:

b (1 − p) − βS ∗I∗ − (µ + σ) S ∗ + δR∗ = 0,
βS ∗I∗ − (ε + µ) E∗ = 0,
εE∗ − (γ + µ) I∗ = 0,
bp + γI∗ − (δ + µ) R∗ + σS ∗ = 0.

Solving these equations, we obtain the unique endemic equilibrium point P∗ = (S ∗, E∗, I∗,R∗), where

S ∗ =
(ε + µ) (γ + µ)

βε
,

E∗ =
γ + µ

ε
I∗,

I∗ =
µ(µ + δ + σ)(R0 − 1)(ε + µ)(γ + µ) + σ(β − δ)(ε + µ)(γ + µ)

βµ[δ(ε + γ + µ) + εγ + µ(ε + γ + µ)]
,

and
R∗ =

βε (bp + γI∗) + σ (ε + µ) (γ + µ)
βε (δ + µ)

.

4. Global stability analysis

In this section, we show that the disease-free equilibrium point P0 and the endemic equilibrium P∗

are globally asymptotically stable under some conditions.
From (3.1), the disease-free equilibrium point is given by

P0 = (S 0, E0, I0,R0) =

(
b (δ + µ − µp)
µ (µ + δ + σ)

, 0, 0,
b (σ + µp)
µ (µ + δ + σ)

)
.

We now establish its global stability property in the following theorem.
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Theorem 4.1. If R0 ≤ 1 , then the disease-free equilibrium point P0 is globally asymptotically stable
on Ω.

Proof. Define the Lyapunov function as follows:

V = E + kI.

Taking the time derivative along the system (2.1), we have

V̇ = Ė + kİ

= βS I − (ε + µ) E + k
[
εE − (γ + µ) I

]
=

[
βS − k (γ + µ)

]
I +

[
kε − (ε + µ)

]
E

≤

[
βb (δ + µ − µp)
µ (µ + δ + σ)

− k (γ + µ)
]

I +
[
kε − (ε + µ)

]
E.

Let k =
ε+µ

ε
> 0, then

V̇ ≤
[
βb (δ + µ − µp)
µ (µ + δ + σ)

−
1
ε

(ε + µ) (γ + µ)
]

I

=
1
ε

(ε + µ) (γ + µ) (R0 − 1) I.

In addition, V̇ = 0 if and only if E = I = 0. Substituting E = I = 0 into the system (2.1), we
obtain S → S 0 and R → R0 as t → ∞. Substituting S = S 0 and R = R0 into the system (2.1), we
get E → 0 and I → 0 as t → ∞. Therefore, V is a Lyapunov function on Ω, and the largest invariant
set (S , E, I,R) : V = 0 is a singleton set P0. By the LaSalle invariance principle [27], when R0 ≤ 1, all
solutions of the system (2.1) will tend to P0 as t → ∞.

Definition 4.2. The system (2.1) is said to be uniformly persistent if there exists a constant 0 < ε < 1
such that for any solution x(t) = (S (t), E(t), A(t), I(t)) with x(0) ∈ Ω, it satisfies

min
{
lim
t→∞

inf S (t) , lim
t→∞

inf E (t) , lim
t→∞

inf I (t) , lim
t→∞

inf R (t)
}
≥ ε. (4.1)

Theorem 4.3. If R0 > 1, then the endemic equilibrium P∗ is globally asymptotically stable in the
interior of Ω.

Proof. Using the geometric approach Lemma 3.1 in [28], from Definition 4.2, we know that there
exists τ > 0 such that for t > τ, we have

ε ≤ S (t), E(t), I(t),R(t) ≤ 1 − ε. (4.2)

The Jacobian matrix of the system (2.1) can be expressed as follows:

J =


−βI − (µ + σ) 0 −βS δ

βI −(ε + µ) βS 0
0 ε −(γ + µ) 0
σ 0 γ −(δ + µ)

 .
Electronic Research Archive Volume 33, Issue 12, 7289–7309.
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The third additive compound matrix of the Jacobian matrix has the following form:

J[3] =


−3µ 0 0 δ

γ −3µ βS βS
0 ε −3µ 0
σ 0 βI −3µ

 + Ψ,

where

Ψ =


− (βI + σ + ε + γ) 0 0 0

0 − (βI + σ + ε + δ) 0 0
0 0 − (βI + σ + γ + δ) 0
0 0 0 − (ε + γ + δ)

 .
Let P f , P(x), ν, where c is a positive constant such that γ+µ

σ+γ+δ+2µ < c < βI+σ+δ+µ

γ+β+βε
. Then direct

computation shows

P f =
{
Ṙ, cİ, Ė, Ṡ

}
, P (x) = diag {R, cI, E, S } , ν = −µI4.

By calculating B(t), we obtain the following formula:

B(t) = P f P−1 + PJ[3]P−1 − νI4

=



− (βI + σ + ε + γ) 0 0 δR
S

γcI
R − (βI + σ + ε + δ) βcS I

E βcI

0 εE
cI − (βI + σ + γ + δ) 0

σS
R 0 βS I

E − (ε + γ + δ)


+ Φ,

where

Φ =



Ṙ
R − 2µ 0 0 0

0 İ
I − 2µ 0 0

0 0 Ė
E − 2µ 0

0 0 0 Ṡ
S − 2µ


.

Rewrite the equations of the system (2.1) in the following form:

δR
S

= βI + (µ + σ) −
b (1 − p)

S
+

S ′

S
,

βS I
E

= (ε + µ) +
E′

E
, ε

E
I

= (γ + µ) +
I′

I
, (4.3)

σS
R

=
(
δ + µ

)
−

bp
R
−
γI
R

+
R′

R
.
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Then, using (4.1) and (4.2), we have

h1(t) = b11 (t) +
∑
j,1

∣∣∣b1 j (t)
∣∣∣

= − (βI + σ + ε + γ) − 3µ +
δR
S

+
R′

R
+ µ

= − (βI + σ + ε + γ) − 2µ +
R′

R
+

S ′

S
−

b (1 − p)
S

+ βI + µ + σ

= − (ε + γ + µ) −
b (1 − p)

S
+

R′

R
+

S ′

S

≤ − (ε + γ + µ) +
R′

R
+

S ′

S
,

h2 (t) = b22 (t) +
∑
j,1

∣∣∣b2 j (t)
∣∣∣

=
cγI
R
− (βI + σ + ε + δ) − 3µ +

cβS I
E

+ cβI +
I′

I
+ µ

=
cγI
R
− (βI + σ + ε + δ) − 2µ + cβI +

I′

I
+

E′

E
+ ε + µ

=
cγI
R
− (βI + σ + δ + µ) + cβI +

I′

I
+

E′

E

= c
(
γI
R

+ βI
)
− (βI + σ + δ + µ) +

I′

I
+

E′

E

≤ c (γ + β − βε) − (βI + σ + δ + µ) +
I′

I
+

E′

E
,

h3(t) = b33 (t) +
∑
j,1

∣∣∣b3 j (t)
∣∣∣

=
εE
cI
− (βI + σ + γ + δ) − 3µ +

E′

E
+ µ

=
1
c

(
I′

I
+ γ + µ

)
− (βI + σ + γ + δ) − 2µ +

E′

E

=
1
c

(γ + µ) − (σ + γ + δ) − 2µ − βI +
I′

cI
+

E′

E

≤
1
c

(γ + µ) − (σ + γ + δ + 2µ) +
I′

cI
+

E′

E
,

and
h4(t) = b44 (t) +

∑
j,1

∣∣∣b4 j (t)
∣∣∣

=
σS
R

+
βIS
E
− (ε + γ + δ) − 3µ +

S ′

S
+ µ

=
R′

R
−

bp
R
−
γI
R

+ (δ + µ) +
E′

E
+ (ε + µ) − (ε + γ + δ + 2µ) +

S ′

S

= −
bp
R
−
γI
R
− γ +

R′

R
+

E′

E
+

S ′

S

≤ −γ +
R′

R
+

E′

E
+

S ′

S
.
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Set
h̃1 (t) = − (ε + γ + µ) +

R′

R
+

S ′

S
,

h̃2 (t) = c (γ + β − βε) − (βI + σ + δ + µ) +
I′

I
+

E′

E
,

h̃3 (t) =
1
c

(γ + µ) − (σ + γ + δ + 2µ) +
I′

cI
+

E′

E
,

and
h̃4 (t) = −γ +

R′

R
+

E′

E
+

S ′

S
.

Utilize the matrix C(t) from condition (H4) in [28]

C(t) = diag
{
h̃1(t), h̃2(t), h̃3(t), h̃4(t)

}
.

From condition (4.2), we can derive

lim
t→∞

1
t

∫ t

0
h̃i(ξ)dξ = H̃i < 0,

where
H̃1 = − (ε + γ + µ) , H̃2 = c (γ + β − βε) − (βI + σ + δ + µ) ,

and
H̃3 =

1
c

(γ + µ) − (σ + γ + δ + 2µ) , H̃4 = −γ.

We can conclude that H̃1 and H̃4 are strictly less than 0. If c lies within the aforementioned defined
interval, then H̃2 and H̃3 are also strictly less than 0. The above results indicate that matrix B(t)
satisfies lim supt→∞

1
t

∫ t

0
µ(B(s))ds ≤ maxi H̃i < 0. According to Theorem 2.6 in [28], we deduce that

the endemic equilibrium point p∗ is globally asymptotically stable.

5. Bifurcation analysis

We simplify and change the variables on the system (2.1). Let S = y1, E = y2, I = y3, and R = y4,
so that N = y1 + y2 + y3 + y4. By substituting variable Y = (y1, y2, y3, y4)T into the system (2.1), it can
be expressed in the following form:

dY
dt

= (g1, g2, g3, g4)T ,

where 
y
′

1 (t) = g1 := b (1 − p) − βy1y3 − (µ + σ) y1 + δy4,

y
′

2 (t) = g2 := βy1y3 − (ε + µ) y2,

y
′

3 (t) = g3 := εy2 − (γ + µ) y3,

y
′

4 (t) = g4 := bp + γy3 − (δ + µ) y4 + σy1.

(5.1)

We assume that β is the bifurcation parameter and δ + µ > µp. When R0 = 1, we can obtain

β = β∗ =
µ (µ + δ + σ)
b (δ + µ − µp)

·
(ε + µ) (γ + µ)

ε
. (5.2)
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The Jacobian matrix eigenvalues for the system (2.1), evaluated at P0 with β = β∗, are presented as

λ1 = 0, λ2 = −µ, λ3 = −(γ + µ), and λ4 = −(µ + σ + δ).

Thus, λ1 = 0 is a simple zero eigenvalue, and the other eigenvalues have negative real parts. Therefore,
when β = β∗, the first assumption of Theorem 4.1 in [29] is satisfied. Hence, a nonnegative right
eigenvector corresponding to the zero eigenvalue λ1 is given by

v = (v1, v2, v3, v4)T =


−(εγ + (δ + µ)(ε + γ + µ))

(γ + µ)(δ + µ + σ)
ε(δ + µ + σ)

εγ − σ(ε + γ + µ)

 . (5.3)

Furthermore, we find the left eigenvector w related to the eigenvalue λ1 = 0, satisfies w · v = 1, where

w = (w1,w2,w3,w4) =


0
1

(δ+µ+σ)(γ+ε+2µ)
ε+µ

ε(δ+µ+σ)(γ+ε+2µ)

0


T

. (5.4)

The coefficients â and b̂, as defined by Theorem 4.1 in [29], are determined through the following
calculations. For the system of Eqs (5.1), the corresponding non-zero second partial derivatives of the
functions gi, evaluated at (P0, β

∗), can be expressed as follows:

∂2g1

∂y1∂y3
(P0, β

∗) =
∂2g1

∂y3∂y1
(P0, β

∗) = −β∗,

∂2g2

∂y1∂y3
(P0, β

∗) =
∂2g2

∂y3∂y1
(P0, β

∗) = β∗,

∂2g1

∂y3∂β
(P0, β

∗) = −
b(δ + µ − µp)
µ(µ + δ + σ)

,

and

∂2g2

∂y3∂β
(P0, β

∗) =
b(δ + µ − µp)
µ(µ + δ + σ)

. (5.5)

Then, using the expressions (5.2)–(5.5), we calculate that â and b̂

â =

4∑
k,i, j=1

νkwiw j
∂2gk

∂yi∂y j
(P0, β

∗) = 0,

and

b̂ =

4∑
k,i=1

νkwi
∂2gk

∂yi∂β
(P0, β

∗) =
(ε + µ)

β∗(γ + ε + 2µ)
.

It is found that the coefficient b̂ is always positive. Combining the actual parameters and Theorem 4.1
in [29], it can be obtained that the system behaves as a standard forward bifurcation at R0 = 1, rather
than a backward bifurcation. Therefore, we have the following theorem.
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Theorem 5.1. Assume that R0 = 1, then the system (2.1) has a forward bifurcation.

We set the parameters as µ = 1/70, N = 1000, p = 0.8, σ = 0.3, δ = 0.1, ε = 365/10, and
γ = 365/14. The x-axis represents the value of the basic reproduction number R0, ranging from 0 to 5,
and β varies proportionally with R0. The y-axis represents the number of infected individuals at the
equilibrium point. A forward bifurcation diagram is drawn as shown in Figure 2.
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Figure 2. Forward bifurcation diagram of model (2.1).

6. A special case

In this section, we consider a special case where recovered individuals no longer lose immunity and
become susceptible individuals. Let δ = 0, and the system (2.1) becomes the following system:

dS
dt

= b (1 − p) − βS I − (µ + σ) S ,

dE
dt

= βS I − (ε + µ) E,

dI
dt

= εE − (γ + µ) I,

dR
dt

= bp + γI − µR + σS .

(6.1)

The initial triad of equations in the system (6.1) exhibits structural independence from variable R.
We consider the dynamics of the subsystem

dS
dt

= b (1 − p) − βS I − (µ + σ) S ,

dE
dt

= βS I − (ε + µ) E,

dI
dt

= εE − (γ + µ) I.

(6.2)
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The basic reproduction number of this system is the same as (3.2) when δ = 0; therefore

R
′

0 =
βε

(ε + µ) (γ + µ)
·

b (1 − p)
(µ + σ)

.

Theorem 6.1. If R
′

0 > 1, then the endemic equilibrium point P∗1 =
(
S ∗1, E

∗
1, I
∗
1

)
of the system (6.2) is

globally asymptotically stable inside Ω.

Proof. For the endemic equilibrium point P∗1 =
(
S ∗1, E

∗
1, I
∗
1

)
, it must satisfy the following system

of equations:
b (1 − p) − βS ∗1I∗1 − (µ + σ) S ∗1 = 0,

βS ∗1I∗1 − (ε + µ) E∗1 = 0, (6.3)

and
εE∗1 − (γ + µ) I∗1 = 0.

Define the following Lyapunov function:

V = B1
(
S − S ∗1 − S ∗1 ln S

)
+ B2

(
E − E∗1 − E∗1 ln E

)
+ B3

(
I − I∗1 − I∗1 ln I

)
, (6.4)

where B1, B2, B3 are non-negative constants. Using (6.3), the derivative of V along the solution of (6.2),
we have

V̇ = B1

(
1 −

S ∗1
S

)
Ṡ + B2

(
1 −

E∗1
E

)
Ė + B3

(
1 −

I∗1
I

)
İ

= B1

(
1 −

S ∗1
S

)
βS ∗1I∗1

(
1 −

S I
S ∗1I∗1

)
+ B1

(
1 −

S ∗1
S

)
S ∗1 (µ + σ)

(
1 −

S
S ∗1

)
+ B2

(
1 −

E∗1
E

) [
βS ∗1I∗1

(
S I

S ∗1I∗1
−

E
E∗1

)]
+ B3

(
1 −

I∗1
I

) [
εE∗1

(
E
E∗1
−

I
I∗1

)]
.

Let, x = S
S ∗1
, y = E

E∗1
, z = I

I∗1
, then

V̇ = B1βS ∗1I∗1

(
1 −

1
x

)
(1 − xz) + B1

(
1 −

1
x

)
S ∗1 (µ + σ) (1 − x)

+ B2

(
1 −

1
y

) [
βS ∗1I∗1 (xz − y)

]
+ B3

(
1 −

1
z

) [
εE∗1 (y − z)

]
= B1S ∗1 (µ + σ)

(1 − x)2

x
+

(
B1βS ∗1I∗1 + B2βS ∗1I∗1 + B3εE∗1

)
+ xz

(
B2βS ∗1I∗1 − B1βS ∗1I∗1

)
+ y

(
B3εE∗1 − B2βS ∗1I∗1

)
+ z

(
B1βS ∗1I∗1 − B3εE∗1

)
−

1
x

B1βS ∗1I∗1 −
xz
y

B2βS ∗1I∗1 −
y
z

B3εE∗1.

Variables x, y, z are non-negative, to ensure the Lyapunov function remains negative definite. Setting
the terms involving x, y, z to zero, we obtain

B2βS ∗1I∗1 − B1βS ∗1I∗1 = 0,
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B3εE∗1 − B2βS ∗1I∗1 = 0,

and
B1βS ∗1I∗1 − B3εE∗1 = 0.

By the above system of equations, the solution to the problem is obtained

B1 = B2 = 1, B3 =
βS ∗1I∗1
εE∗1

,

therefore

V̇ = −S ∗1 (µ + σ)
(1 − x)2

x
+ 3βS ∗1I∗1 −

1
x
βS ∗1I∗1 −

xz
y
βS ∗1I∗1 −

y
z
εE∗1

= −S ∗1 (µ + σ)
(1 − x)2

x
+

(
3 −

1
x
−

xz
y
−

y
z

)
βS ∗1I∗1.

Due to the fact that the average value of the calculated numbers is greater than or equal to the average
value of several values, then 3 − 1

x −
xz
y −

y
z ≤ 0 if and only if x, y, z > 0, and 3 − 1

x −
xz
y −

y
z = 0 if

and only if x = y = z = 1. Therefore, for the system (6.2) in the set
{
(x, y, z) : V̇ = 0

}
, the maximum

invariant set is the singleton (1, 1, 1). By the LaSalle invariance principle, the local equilibrium point
of the system (6.2) is globally asymptotically stable.

7. Numerical simulation

In this section, we conduct numerical simulations on the disease transmission process of the SEIR
model and explain the analysis results obtained.

Table 1. Numerical values of parameters.
Parameter Description Value Unit
N Total population 67,081,234 people
b Daily births 1,820 people/day
ε Progression rate of exposed compartment to infective compartment 0.2 per day
µ Natural mortality rate 2.49 × 10−5 per day
γ Recovery rate 0.0714 per day
β Infection rate 1.0 × 10−8 per day-person
σ Vaccination rate of susceptibles Variable per day
p Vaccination proportion at birth 0.85 dimensionless
δ Immunity waning rate 0.00417 per day

We chose the UK as the simulation country because it has relatively complete data records on
COVID-19 and vaccination statistics. We used the population data of the UK in 2020 and assumed
that a portion of the population had been vaccinated at the beginning of the simulation. The parameter
values will be set based on the actual data of the UK. Through numerical solutions, we obtain the
dynamic process of changes in the population quantities of each group in the model over time. In
particular, R0 = 0.986 < 1 is calculated, indicating that the transmissibility of the disease is relatively
low and cannot trigger large-scale epidemics.
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The numerical outcomes in Figure 3 indicate that the susceptible S (t) curve rapidly decreases at
the initial stage, then gradually rises and eventually tends to be stable over time. This indicates that in
the early stages of the disease, most susceptibles are infected due to contact with infected individuals,
leading to a rapid decrease in the number of susceptibles. The exposed E(t) initially rises rapidly
and then shows a downward trend. This indicates that although individuals in the incubation period
do not show symptoms, the exposed will eventually become infected, leading to a decrease in the
population of exposed individuals. The number of infected individuals I(t) grows rapidly at the initial
stage, then gradually slows down, and finally tends to be stable. This reflects that after the incubation
period, infected individuals quickly enter the infected state, and with the passage of time, they are
gradually cured or die, consequently inducing asymptotic convergence of infection prevalence toward
epidemiologic steady state. The results in Figure 4 indicate that the recovered R(t) curve gradually
increases and eventually stabilizes. This indicates that with the passage of time, more and more infected
individuals enter the recovered group through recovery or treatment, thereby increasing the number of
recovered individuals and eventually reaching a stable state. This visualizes Theorem 4.1, which states
that when R0 < 1, the system approaches a disease-free state.
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Figure 3. The time variation graphs of S (t), E(t), and I(t) when R0 < 1.
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Figure 4. The time variation graphs of R(t) when R0 < 1.

Keep all other parameters unchanged and change the size of R0 by adjusting the value of σ =

0.05. Calculate the basic reproduction number R0 = 6.88 > 1, indicating that the disease has strong
transmission ability. As shown in Figure 5, under the condition R0 > 1, the number of susceptible
S (t) rapidly decreases at the initial stage and then tends to be stable, reflecting that most susceptibles
are infected. The exposed E(t) and infected I(t) increase slowly at the initial stage, then decrease,
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and eventually tend to 0. As shown in Figure 6, the dynamic evolution of recovered individuals R(t),
exhibit monotonic growth followed by asymptotic stabilization. This illustrates Theorem 4.3, which
states that when R0 > 1, the disease persists in the population.
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Figure 5. The time variation graphs of S (t), E(t), and I(t) when R0 > 1.
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Figure 6. The time variation graphs of R(t) when R0 > 1.

8. Sensitivity analysis

This section performs sensitivity analysis on the basic reproduction number R0 to quantify how the
system parameters influence epidemic transmission dynamics, so that we can control specific
parameters to seek effective disease control measures. As shown in Tables 2 and 3, parameters greater
than zero will positively affect the change in R0, being directly proportional to R0. Conversely, if the
sensitivity index is negative, it is inversely proportional to R0.

Table 2. Sensitivity index when R0 < 1.

Parameter Sensitivity index Parameter Sensitivity index
b 1.000 ε 0.00012464
µ –1.0002 γ –0.99965
β 1.000 δ 0.90263
σ –0.90295
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Table 3. Sensitivity index when R0 > 1.

Parameter Sensitivity index Parameter Sensitivity index
b 1.000 ε 0.00012464
µ –1.0036 γ –0.99965
β 1.000 δ 0.32615
σ –0.32302

Definition 8.1. The normalized forward sensitivity index of R0, the corresponding parameter is defined
in [30] as

ΥR0
ε =

∂R0

∂ε
·
ε

R0
.

The basic reproduction number R0 exhibits a strong positive correlation with the natural birth rate
b, as shown in Figure 7(a). This relationship arises because a higher birth rate introduces a larger
proportion of unvaccinated susceptible individuals (1 − p) into the population, thereby expanding the
pool of potential hosts for disease transmission. Figure 7(b) demonstrates that R0 increases
monotonically with the immunity loss rate β. A higher β accelerates the reversion of individuals to the
infection compartment, effectively replenishing the susceptible population over time. As illustrated in
Figure 7(c), R0 decreases as the natural death rate µ increases. Elevated mortality reduces the average
duration of susceptibility and infectiousness, thereby limiting opportunities for transmission.
Figure 7(d) reveals that R0 increases slowly with the increase of immunity waning rate δ.

(a) (b)

(c) (d)

Figure 7. (a) The link between R0 and b; (b) The link between R0 and β; (c) The link between
R0 and µ; (d) The link between R0 and σ.

Electronic Research Archive Volume 33, Issue 12, 7289–7309.



7307

All relationships exhibit monotonicity within the tested parameter ranges, indicating model
stability and predictable control outcomes. Critically, these figures emphasize the need for synergistic
interventions: For instance, regions with high natural birth rate require proportionally higher
vaccination rate to offset demographic pressures. Public health strategies should prioritize scalable
vaccination infrastructure and adaptive booster schedules to address immunity waning (δ), while
demographic policies may complement disease control efforts in high-fertility populations.
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