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Abstract: We investigate Mahler’s real 7-numbers through Cantor-type constructions inside 7~ N G,
where G is the middle-third Cantor set and 7 is the set of real Mahler 7-numbers. We build
explicit families 7 which are homeomorphic to Cantor space and use them to analyze structural,
combinatorial, and additive properties of 7. Our results include the existence of descending chains
of Cantor subsets of 7~ of length ¢; a characterization of ternary expansions in 7, showing non-
normality but maximal block complexity under sparse forcing, linked to the Adamczewski—-Bugeaud
criterion; and a sumset theorem proving that for suitable parameters #;,7, one has the interval identity
7@ + 7@ = [0, 1], which yields the global corollary 7 + 7~ = R (Erdds property) by integer
translation invariance. We also discuss implications for cardinal invariants and entropy of the shift
map, highlighting the interplay between thin Diophantine sets and large additive structure. To address
a natural concern about existence, we include a non-emptiness lemma which shows that our scheduled
deletion-and-witness procedure always leaves a non-empty perfect set 7.

Keywords: Mahler T-numbers; Cantor set; descending chain; cardinality; Erd6s property

1. Introduction

Mahler’s classification of transcendental numbers divides R into S -, T-, and U-numbers according
to their approximation properties by algebraic numbers [1]. While 7T-numbers occupy a delicate
middle ground-being transcendentals with exceptionally large irrationality exponent—they remain
poorly understood as a class.

In this paper we present a systematic study of Cantor-type subsets of the set 7 of T-numbers with
the goal of elucidating both their fine combinatorial properties and their large-scale arithmetic structure.
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We construct a family of Cantor sets {7® : ¢ € P}, each homeomorphic to the Cantor space 2%,
lying inside 7~ N G, where G is the classical middle-third Cantor set. These sets provide a flexible
framework in which to explore several natural questions:

1) Poset structure. We show the existence of descending chains of Cantor subsets of 7 of length ¢
and discuss the possibilities for antichains and order types.

2) Fractal geometry. We analyze the size of 7~ N G in terms of Hausdorff dimension.

3) Digital complexity. We prove that elements of 7 are never normal in base 3 but under sparse
forcing exhibit maximal block complexity and relative normality on the alphabet {0, 2}, thus linking to
the Adamczewski—Bugeaud criterion for 7-numbers.

4) Sumsets. Our main additive result shows that for suitable ¢, t,, 7 +7 ) = [0, 1], which implies
the global identity 7 + 7 = R (Erdds property) by integer translations [2].

5) Cardinal invariants. We investigate cofinality and maximal elements in the poset of Cantor
subsets of 77, showing the existence of families indexed by w; under CH.

6) Dynamics. Finally, we study the shift map on the ternary expansions of 7”, establishing entropy
bounds and discussing possible invariant measures.

The combination of these results highlights an unexpected phenomenon: although 7-numbers are
defined by extreme Diophantine properties and form a set of Lebesgue measure zero, their Cantor
subsets behave much like classical fractals, and their sumsets can fill the entire unit interval. This
interplay between thin Diophantine sets, combinatorial complexity, and large additive structure forms
the central theme of the paper.

Throughout, we write 7 for the set of Mahler 7-numbers and reserve plain T for parameters (e.g.,
T(1)) only when explicitly indicated. To dispel any doubt about existence, we prove a Non-emptiness
Lemma (Lemma 4) ensuring that the scheduled deletions and witness insertions always leave a non-
empty perfect set 7.

2. Mabhler’s classification
Let H(P) denote the maximum absolute value of the coeflicients of a polynomial P € Z[X].
Definition 1 (Mahler [1]). For a real number x and integer n > 1, define
wa(x) = sup{w: I°P € Z[X], deg P < n, P(x) # 0, |P(x)| < H(P)™ .
Then:
e x is an S -number if w,(x) < oo for all n.

e xis a U,-number if w,,(x) = oo but w,,_1(x) < oo.

e x is a T-number if w,(x) < oo for all n, but

I Wa(x) _
im sup = o0

n—00 n

Thus T-numbers are precisely those reals that admit infinitely strong polynomial approximations
with approximation exponents diverging along a subsequence of degrees.
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3. Auxiliary Lemmas

The construction relies on two standard ingredients: (i) the ability to produce small values of
binomials of large degree and (ii) an a priori counting bound for algebraic numbers of fixed degree.

Lemma 1 (Binomial small values; MVT version). Fix m > 2 and © > 0. For all sufficiently large
integers q there exist p € Z and an interval I centered at a = (p/q)"'™ € (0, 1) with

|I| < q—(‘H—l)

I

such that for all x € I we have
0<|gx"—pl < q".

Proof. Let P(x) = gx™ — p. By the mean value theorem, for x near a real root «,
|[P(x)| = |P'(€)||x — a| for some & between x and a.

Since x,& € [0, 1], we have |P'(€)] = mgé™' < mgq. Thus |[P(x)| < mq|x — a|. If we impose |x —
a| < %q_(”l), we obtain |P(x)| < g7, as required; taking the symmetric interval I about a gives
[l < 247D, o

Lemma 2 (Avoiding rationals; Borel-Cantelli). Fix yy > 1. There exists Qg such that for every g > Qy

the union
U(pra=a ™, pig+q?)

PEZL

has total length < g~ *“*V. Consequently, removing these intervals for all g > Qy leaves a closed set
E c [0, 1] such that
Wl()C)S/J()+1 VxeE.

Proof. For each fixed g, at most g + 1 integers p meet [0, 1], and the total length is < 2(g + 1)g~**? «
g %V Since po > 1, the series Y, g~ **" converges; thus by Borel-Cantelli almost every x lies in
only finitely many of these intervals. Translating back to linear polynomials, P(X) = gX — p shows
that wi(x) < Mo + 1. O

constant C,, > 0 such that the number of real algebraic numbers a € [0, 1] with deg(a) = m and naive
height H(a) < H is at most C,,H"*".

Lemma 3 (Counting algebraic numbers of fixed degree and height). For each m > 2 there exists a

Proof sketch and reference. This follows from standard height counts for irreducible integer
polynomials of degree m with coefficients bounded by H, together with a uniform bound on the
number of real roots in [0, 1] per polynomial. See Baker [3]. O
4. Construction of the nested Cantor families

We build the sets inside G, always working with finite unions of basic ternary cylinders.
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4.1. Degree scheduling (witness degrees only)

Choose strictly increasing integers m; T oo and exponents T) with Ty/m; — oo (e.g. my = 2%,
T, = m;). Atlevel k we will insert a witness for degree my.

4.2. Degree-m barriers (to keep w,, < oo for fixed m)
Foreachm > 2, fix A4,, :==m + 4. For H > 2, let
Bun = U(a —~H ™", a+H™"™),

where the union runs over real algebraic @ € [0, 1] with deg(a) = m and H(e) < H. By Lemma 3,
|Bm,H| < 2Cm Hm+l_/1m = 2C‘m H_3,

SO X pso |Bunl < 0o. We schedule deletions so that for each fixed m the full union B,, = (Jysr Bun
is removed by some finite stage, replacing each current ternary cylinder by finitely many subcylinders
avoiding B, y.

4.3. Witness stages (to force large w,, once per degree)

For definiteness, let the height sequence satisfy H; = 3*' so that log H;.,/log Hy — oo, and let T} =
k?, which grows faster than linearly. These choices meet all requirements of the subsequent lemmas.
At level k choose large g, and an integer p; so that

Pi(X) = g X™ = px, H(Py) = g, =: Hy,

has a real root a; = (pr/qx)"™ in (0, 1) (we choose py, g so that the short intervals from Lemma 1 lie
inside basic ternary cylinders).
By Lemma 1, there is a union of short intervals I; of total length < H, Tulme centered near ay
on which
0 < |P(x)| < H ™.

Ensure /; lies inside the survivors after the barrier deletions at level k; keep all components of I; as
children at level k.

4.4. Parametric freezing scheme and the sets T
Enumerate Q N (0, 1) as (gx)x>1. For t € (0, 1), define

At level k, after applying the scheduled barrier deletions and (if applicable) the witness insertion,
we do:

e if k € F, (frozen), keep one child subcylinder from each parent;
e if k € A, (active), keep two children.
Let E,((') be the union of survivors at level k and set
70 = \E.

Choose H, so large that ), 2"H,:Tk/ " < oo (this will give dimy = 0).
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5. Main Theorem

Theorem 1. For each t € (0,1) there exists a perfect, nowhere dense Cantor set TV C G such that
every x € T is a Mahler T-number. Moreover, if 0 <t < s < 1, then T ¢ 79, In particular,
(T :te(0,1)}is a strictly descending chain of Cantor subsets of G, each contained in T; hence also

(70 cT.
te(0,1)

Proof. Cantor structure and containment in G: Each E,(f) is a finite union of basic ternary cylinders,
hence E,(:) C G. Because A, is infinite, there are infinitely many active levels with two-way branching;
thus there are no isolated points. Compactness and total disconnectedness are clear, so 7 is Cantor
and 7" c G.

Hausdorff dimension zero: At level k the kept pieces have total length <« 2"Hk_T"/ " By the choice
S 2XH ™ < oo, a standard covering argument yields dimy 7@ = 0.

T-membership: Fix m > 2. Since all B, ; are deleted by a finite stage, there exists Hy = Hy(m)

such that for every survivor x € 7 and all H > H,,
dist(x, {a : degr = m, H(a) < H}) > H™™,

This implies w,,(x) < 4,, — 1 < oo (otherwise there would be infinitely many degree-m approximants
of strength > A, bringing x into infinitely many 8,, ;). Hence,

w(x) < oo for all fixed m > 2.
On the other hand, for each witness level k and every x € 7~ O ¢ [, we have
0 <|Py(x)| < H'*  with deg Py = my,

SO Wy, (x) = T}. Since Ty /my — oo,

: Wy(X) . Ty
lim sup — > lim —
n—oo n k—o0 ny

= o0.

Combining these two facts gives x € T for all x € 7©.

Strict chain: If t < s, let ko be the first index with g, € (¢, s]. Then level k is active for ¢ but
frozen for s, hence E,((Z) c E,((? and therefore 7 ¢ 7. The family is strictly descending and has
cardinality c. O

Lemma 4 (Non-emptiness and perfectness under scheduled deletions). In the construction of T there
exists a scheduling of barrier deletions and witness insertions such that:

(i) every surviving parent cylinder produces at least one child at each stage; and
(ii) on infinitely many (active) stages, each surviving parent produces at least two children.

Consequently T + @ and is perfect.
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Proof. Work level-by-level on the rooted tree C of basic ternary cylinders inside G. At stage k we
process finitely many deletions

U, = ( U U Bm,H) U (witness exclusions outside 1),

m<My 2<H<H(m.k)

where M, H(m, k) are finite cut-offs. By Lemma 3 and 4,, = m + 4 we have |8B,, 4| < 2C,,H™> and
S 1 1Bl < o0, so the total deleted length can be bounded by any prescribed ;. Choose g = 2-*+3)
and take the witness height H; large so that |I;| < 2=**3 Hence |U,;| < 2=*+2),

Fix a surviving parent cylinder C at the beginning of stage k. Refine C to depth r; so that at most
a 2-%*2_fraction of its 3" children meet U,. Then at least one child avoids U,; on active stages we
ensure at least two such children. This maintains: (i) one surviving child per stage and (ii) two children
on infinitely many stages.

By K&nig’s lemma for finitely branching trees, (i) yields an infinite branch, so 7® # @. Because
(i1) holds infinitely often, no point is isolated; the limit set, being closed and totally disconnected in G,
is perfect. O

6. Poset constructions inside 7 N G

Throughout this section we fix a nonempty perfect set P C 7 N G and a homeomorphism
h: 2" — P
For A C N define the clopen cylinder
Ty = {oe2”: o) =1forallie A}, Cs = M(Zy) C PCcT NG

We write A = N\ A.

Remark 1 (Scheduling philosophy). We separate roles: (i) for each fixed m we schedule finitely many
deletions (the degree-m barriers) so every x that survives has w,(x) < oo; (ii) along a strictly
increasing witness sequence (my) we insert one powerful approximation per level, forcing wy, (x) to be
arbitrarily large. This obviates any need for “robustness under arbitrary subsequences.”

The following results produce (i) a strictly descending chain of size ¢, (ii) an antichain of size ¢, (iii)
chains realizing every countable order type, and (iv) an order-embedding of (P(N), C) (with reversed
order) into the family of Cantor subsets of 7 N G.

Lemma 5 (Cantor structure and containment). Let P C 7 NG be a nonempty perfect setand h : 2" — P
a homeomorphism. For A C N define the clopen cylinder ¥4, = {o € 2" : o(i) = 1 Vi € A} and
Ca = h(Z4). If A° = N\ A is infinite, then £, = 2" and hence C, is a perfect, compact, totally
disconnected set homeomorphic to Cantor space, with Cy C P C T NG.

IR
IR

Proof. Free coordinates in A¢ give X4 24 2N. b transfers Cantor structure and containment
to CA. O
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6.1. A continuum descending chain

Fix an enumeration (g,,),>1 of Q N (0, 1) without repetitions and a bijection e : N — N. For
x € (0,1) set
B, = {meN: g,<x}), A, =e¢eB], TY :=C4.
Theorem 2 (Chain of cardinality ¢). For x <y in (0,1) one has T € T®. Thus {7 : x € (0, 1)} is
a strictly descending chain of size ¢, and each T is a Cantor subset of T N G.

Proof. If x <y, then B, C By and hence A, C A,. Therefore X4 C %4, s0 C4, C Cy4, because h is
injective. Because (A,) is infinite, Lemma 5 applies. O

6.2. A continuum antichain

Let (-,-) : N x N — N be a bijection. For s = (s(1), s(2),...) € 2" define

B, = {(n, S :n>1}, where 5n)= ) s(j)2"".
=1

Set AS = e[BS]9 DS = CAS'

Theorem 3 (Antichain of cardinality ¢). The family {D, : s € 2"} is an antichain under inclusion: if
s # t, then neither Dy C D, nor D, C Dy. Each Dy is a Cantor subset of T N G.

Proof. If s # t, let £ be the length of their longest common prefix. Then s(¢ + 1) # #(£ + 1), hence
(€+1,s(€+ 1)) € B, \ B, and vice versa. Thus A;\ A, # @ and A, \ A; # @. Choose i € A, \ A,. Because
i ¢ A,, the ith coordinate is free in 24,: choose o € 24, with (i) = 0. Every p € X4 _has p(i) = 1, so
h(o) ¢ D,. Hence D, € D;. By symmetry, Dy £ D,. Finally, (A;) is infinite, so each D, is Cantor by
Lemma 5. ]

6.3. Chains of arbitrary countable order type

Theorem 4. For every countable linear order (L, <) there exists a chain {E, : € € L} of Cantor subsets
of T N G whose order type is (L, <).

Proof. Fix an enumeration L = {{y, {1, ...}. Recursively assign to each {; a set A,, C N so thatif £; < ¢;
then A;, 2 A, and if £; and ¢; are incomparable in L (which never occurs because L is a linear order),
no condition is imposed. This is possible because N can be partitioned into infinitely many disjoint
infinite pieces, and we may reserve one new index to witness each strict extension. Then set E; = Cy,.
By Lemma 5, each E, is Cantor. The ordering property ensures that {E, : £ € L} is a chain of order
type L. |

6.4. Boolean algebra embedding

Theorem 5. There exists an order embedding of (P(N), C) with reversed order into the poset of Cantor
subsets of T N G under inclusion.

Proof. For A C N, define C,4 as before. If A C B, then X3 C X4, hence Cz C C4. Thus A — Cy is
order-preserving for the reversed order. By Lemma 5, C, is Cantor whenever A€ is infinite. Hence the
embedding is valid. O
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7. Sumset results

We now turn to additive properties of the Cantor families 7. A remarkable phenomenon occurs:
although each 7? is extremely thin, the sum of two such sets can fill an entire interval.

7.1. Interval filling

Theorem 6. For eacht € (0,1), let T® C [0, 1] be the set of reals with base-3 expansion using only
digits {0, 2}, and assume there is a set K, C N (the forced-2 positions) such that

_ dn () _
X_Z§€T = a,=

n>1

2, nek,
any of {0,2}, n¢K,.

Let t; # t, and write K; := K, for i = 1,2. Assume the following two conditions hold:
(Al) K] N K2 =0y

(A2) There exists N € N such that {N,N + 1,N +2,...} N (K, U K;) = @ (Equivalently, beyond some
index N both digits are free at every position).

Then
T+ 7% =[0,1].

Proof. The inclusion 7/ + 77 C [0, 1] is immediate since each summand lies in [0, 1].
For the reverse inclusion, fix y € [0, 1] and choose its nonterminating base-3 expansion

y=>b3" b ef0,1,2}

n>1

i.e., we forbid tails of infinitely many 2’s. This expansion is unique.
We construct digits (a,(11), af)) € {0,2} x {0, 2} such that the forcing rules for 7, #, are respected and

the (base-3) addition with carry holds:

a0 + g

3 , ki = 0. (7.1)

+ K
1 2 _ n
a +a? +«,=b, (mod?3), Kpel = J

@) (1) 2)

Since a,’ € {0, 2}, the pair-sum s, := a,,’ + a,,’ always lies in {0, 2,4}.

Phase I: indices 1 < n < N. By (A1), at each n at least one of a,(f), aﬁ,z) is free, hence s, can be chosen
from {0, 2, 4} unless one component is forced 2, in which case s, € {2,4}. We proceed inductively on
n=12,...,N—1 as follows.

Given k, € {0,1} and b, € {0,1,2}, choose s, in the admissible set (either {0,2,4} or {2,4},
depending on whether a digit is forced) so that s, + x, = b, (mod 3). This is always possible when
the admissible set is {0, 2, 4}; if it is {2,4} and b, = 0 (mod 3) with x, = 0, then no choice in {2, 4}
yields residue 0. In that exceptional subcase, necessarily n < N and there exists m < n with both digits
free (by (A2) and minimality of N). Modify the prior choice at m by replacing s,, with s/, = 4 (if it
was 0 or 2), which toggles «,,+; from O to 1 and hence propagates «, to 1 (there are no two-forced
positions by (A1)). With «, = 1, the residue 0 is achievable at n using s, = 2. This finite adjustment
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affects only carries between m and n and preserves the already matched digits (all residue conditions
are re-satisfied by re-choosing s; on the finite interval [m,n] in the same way). Thus we can ensure
that for every 1 < n < N there exists an admissible s, satisfying (7.1).

Phase II: indices n > N. By (A2), both digits are free at every position n > N, hence s, € {0,2,4}
without restriction. We now continue the digitwise induction forn = N,N + 1, N + 2, ... choosing, at
each step, s, € {0, 2,4} so that s, + x, = b, (mod 3). This is always possible because for each fixed
K, € {0, 1} the set {0, 2,4} + «, hits all residues mod 3:

k, =0: {0,2,4} ={0,2,1} (mod 3), ko =1:{1,0,2} (mod 3).

This defines the entire sequences (aﬁll)), (a,(f)) and the carries (k).

oD a2
x::ZLe‘T(“), z::Z e g™,
3n 3n

n>1 n>1

Conclusion. Set

By construction, for every M > 1 we have

M
Cl,(ql) + 61512)

b
T = Z 3—Z (mod 37Y),

n=1 n=1

hence the difference of the partial sums has absolute value at most 3™, Letting M — oo yields x+z = y.
Asy € [0, 1] was arbitrary, we conclude 7 + 7@ = [0, 1]. m|

7.2. The whole real line

Theorem 7. We have
T+7 =R

That is, the class of T-numbers has the Erdds property.

Proof. By Theorem 6, [0, 1] € 7 +7 . Now, 7 is invariant under addition of integers, because Mahler’s
classification is unaffected by rational translation. Thus (7 +7)+m =97 + 7 for all m € Z.

Given any r € R, choose m € Z such that r —m € [0, 1]. Then r = (r — m) + m belongs to 7 + 7.
Hence 7 +7 =R. m|

8. Complexity of expansions in 7

A central theme in Diophantine approximation is the connection between Mabhler’s classification
and the complexity of digital expansions. In particular, Adamczewski and Bugeaud [4] proved that
T-numbers necessarily give rise to expansions of very high combinatorial complexity. It is therefore
natural to analyze the ternary expansions of the Cantor-type families 7 ¢ 7 N G introduced earlier.

By construction, every x € 7 ® has digits in {0,2} only, with a “certifying layer” K, of positions
forced to be 2 and the complement R, = N \ K, free. Hence no element of 7 is normal in base 3,
yet when K is sparse, the sequences still display full block complexity and relative normality over the
alphabet {0, 2}.
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8.1. Non-normality in base 3

Proposition 1. No element of T is normal in base 3.

Proof. Since a, € {0, 2} for all n, the digit 1 never appears in the ternary expansion of x € 7. Base-3
normality would require frequency 1/3 for digit 1, a contradiction. m|
8.2. Block complexity under sparse forcing

For n € N, define the block complexity of 7®:
pin) = #{u €{0,2)": Axe 7, Jj2 1(a)....a5m) = u}.
We say K, has arbitrarily long gaps if for every n there exists jsuch that[j, j+n—-1]NK, = @.

Theorem 8 (Maximal block complexity). If K; has arbitrarily long gaps, then p,(n) = 2" for alln > 1.

Proof. Fix n and choose j with [, j + n — 1] N K, = @. On this window all n digits are free, so every
word u € {0,2}" occurs as (aj, . ..,djp-1) in SOME X € 7®. Thus p,(n) = 2". Taking lim,_,., %log pi(n)
shows the shift entropy equals log 2. m|

8.3. Typical frequencies under a natural measure

Assume K, has zero upper density:

i KON
m ——- =
N—ooo N

0.
Define a product measure y, on 7 by making digits {a, : n € R} i.i.d. with P[a, = 0] = Pla, = 2] = 1
and fixing a, = 2 on K.

Lemma 6. Fix k > 1. The proportion of starting positions 1 < j < N for which [j, j+k—-11NK, # @
tends to 0 as N — oo.

Proof. Eachm € K, N [1,N + k — 1] belongs to at most k windows of length k. Thus
#HI<j<N:[jj+k-1]1NnK #2} < kIK,N[1,N+k—-1].

Dividing by N and using |K, N [1,N + k — 1]|/N — 0 gives the claim. O

Theorem 9 (Relative normality). If K, has zero upper density, then for u,-a.e. x € T©:

1) Digit frequencies exist and

lim $#{1<n<N:a,=0} = 3,

lim +#{1<n<N:a,=2} =

=
M

N—)ooN
N . _ _
]\l,l_r)lgoﬁ#{lsnSN' a,=1} =0
2) For every block u € {0, 2},
Iy_r&%#{lsjsN: (@jy - @) =u} = 275,
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Proof. 1) On R,, variables X,, = 1, - are 1.i.d. with mean 1/2. The strong law gives

1
IR, N [1, N]|

X, -

,, a.s.

1
2
neR,N[1,N]
Because |K; N [1, N]| = o(N), the forced digits vanish in frequency, yielding the stated limits.

2) By Lemma 6, almost all windows of length k are contained in R;. On these windows the k-blocks
are uniformly distributed in {0, 2}*. Hence by the ergodic theorem, each occurs with frequency 27

Since the bad windows have vanishing density, the unconditional frequency is also 27, O

No element of 7 is base-3 normal because the digit 1 never appears. However, if the certifying
set K, is very sparse (as in our constructions), then the combinatorial complexity of ternary expansions
inside 7 is maximal, and almost every element with respect to the natural product measure is
“normal relative to the Cantor alphabet {0,2},” with uniform block frequencies. This perspective
connects directly with the work of Adamczewski and Bugeaud [4]. Our Cantor-type families provide
concrete examples: although the digits are restricted to {0, 2} and hence exclude classical normality,
they nonetheless achieve maximal block complexity under sparse forcing, illustrating the principle
that 7-numbers must display strong combinatorial irregularity in their expansions.

Remark 2 (Beyond the sparse case). If K, has positive density, then the frequency of digit 2 is biased
upwards, and the entropy decreases below log?2. In this sense the families T interpolate between
rigid expansions (where many positions are forced) and Bernoulli shifts (where almost all positions
are free), providing a concrete laboratory for studying the interaction between digital complexity and
Mahler’s T-classification [1, 3].

9. Discussion

The results above show that Mahler’s T-numbers admit a remarkably rich internal structure. By
constructing Cantor-like families 7 < T N G, we obtained a continuum-long descending chain,
continuum antichains, and order embeddings of P(IN). Moreover, the additive structure proved
unexpectedly large: the sum of two thin Cantor families fills the entire interval [0, 1], and as a
corollary one recovers the Erd6s property 7 + 7 = R.

In parallel, we analyzed the ternary expansions of the Cantor families. Although no element is
normal in base 3, under mild sparsity assumptions the expansions achieve full block complexity on
the restricted alphabet {0, 2} and relative normality with respect to the natural Bernoulli measure. This
situates the construction within the general Adamczewski—Bugeaud framework linking Mabhler’s
classification to expansion complexity.

Taken together, these findings reveal that 7-numbers are not only ubiquitous from the viewpoint of
Diophantine approximation but also exhibit a striking degree of internal combinatorial and dynamical
richness. They support the emerging perspective that the sets 7 N G and their Cantor subsets are
natural laboratories for testing broader conjectures at the interface of transcendence, fractal geometry,
and symbolic dynamics.
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