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Abstract: In this paper, we investigated a class of nonlinear triply coupled systems of fractional
Langevin equations subject to closed boundary conditions. The existence of solutions to the proposed
boundary value problem was first established by applying Krasnoselskii’s fixed point theorem. Fur-
thermore, the uniqueness of the solution was obtained via the Banach contraction mapping principle.
To demonstrate the effectiveness of the theoretical results, illustrative examples are provided.
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1. Introduction

Fractional calculus constitutes an extension of classical differential and integral calculus,
wherein the order of differentiation and integration is generalized from integer values to arbitrary real
or even complex numbers. The foundational idea is to relax the constraint of integer-order opera-
tors, thereby enabling a broader analytical framework for describing nonlocal and memory-dependent
phenomena. Since the 1990s, fractional calculus has evolved from a purely theoretical construct into
a powerful tool with widespread applications across scientific disciplines, including physics, control
theory, biomedical engineering, finance, and economics, as well as computational engineering and
image processing [1-3]. For instance, within the framework of Caputo fractional calculus, Lutz and
Burov [4, 5] proposed the following fractional Langevin equation (FLE)

/(1) + LEDE (D) = Y(@),

where 0 < @ < 1, “D¢, is the Caputo fractional derivative (CFD) of order @. The Langevin equation
plays a central role in understanding and describing the behavior of particles in fluids and other macro-
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scopic phenomena. It bridges macroscopic physics and microscopic statistical mechanics, providing a
powerful tool for studying complex systems [6].

In recent years, the solvability of anti-periodic boundary value problems (BVPs) for fractional dif-
ferential equations (FDEs) has attracted extensive attention from scholars [7-10]. In particular, anti-
periodic BVPs driven by the FLEs have been intensively studied [11-21]. For example, Baghani et
al. [11] used the Banach contraction mapping principle (BCMP) to prove the existence and uniqueness
(E&U) of solutions for the anti-periodic BVP of the following coupled system of FLEs

CDP,(CDG, + 20)3(0) = P, 30, w(@), 1€ (0,1), & € (0,11, m € (1,2],
CDE(CDE + LH)w(r) = D1, 3(1), w(t)), t € (0,1), & € (0,11, m € (1,2],

3(0) + 3(1) = 0, D*13(0) + D*13(1) = 0, D*13(0) + D*13(1) = 0,
w(0) + w(1) = 0, D2w(0) + D2w(1) = 0, D*¥*w(0) + D*2w(1) = 0,

where CDS . is the CFD of order «, k € {1, &1, 1m2, &) D™ (m,i = 1,2) denotes the sequential fractional
derivative, ¥, ® € C([0, 1] x R%,R), v1,x2 € R.

Zhang and Ni [12] employed the Krasnoselskii fixed point theorem (FPT) and the BCMP to inves-
tigate the E&U of solutions for the cyclic anti-periodic BVPs of the following tripled system of FLEs

DG, (CD, + Ox) = Tt 11(1), 12(0), (1), 1€ (0, 1), i=1,2,3,
10 +1n(1) =0, DI x(0)+ DI, x(1) =0,

+

5(0) +13(1) = 0, €D, %,(0) + DL, 13(1) = 0,

+

3(0) + (1) =0, €D 23(0) + €D x,(1) = 0,

+

where CCD(K)+ denotes the CFD of order « € {a,8}, a,8 € (0,1), { € R*,f; € C([0,1] x R}, R), and
i=1,2,3.

Alsaedi et al. [22] utilized the Leray-Schauder FPT and the BCMP to examine the E&U of solutions
for the following coupled system of FDEs with closed boundary conditions (BCs)

g x(0) = F1(1,x(1), y(0), 1€ (0,T), a€(1,2),

€D, 0(0) = 12t 2(8), v(1), t € (0,T), Be(1,2),

¥T) = p(0) + q:1Ty'(0), T¥(T) = y1n(0) + 6:Ty’(0),

W(T) = p2x(0) + g2T¥'(0), Ty'(T) = ¥2%(0) + 6:T%(0),
where CTDS+ denotes the CFD of order x € {a,B}, p1,p2.91,92,Y1,Y2,01,00 € R, T > 0, i, €
C([0,T] x R%,R).

According to the available literature, there is no research on the existence of solutions for the tripled

system of FLEs with closed BCs. This constitutes a new class of BVPs for fractional differential

systems. Therefore, inspired by the literature, we qualitatively analyze the nonlinear triply coupled
system of FLEs with closed BCs. The specific form is as follows:

€D (CDE, + (1) = 1,1, 11 (), ::(0), %3(8)), 1 € (0, 1), @, B € (0,1),
(D) = p1x1(0) + 11D, 21(0), “DE, x1(1) = y1%(0) + 6, DL, ,(0),
£(1) = %(0) + 75 DE, %:(0), “DY, 2:(1) = y,%:(0) + 5,5 DY, %,(0),
13(1) = u313(0) + 3D, 3(0), “DY, 13(1) = y3%3(0) + 63D, %3(0),

(1.1)
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where j = 1,2,3, CD’6+ denotes the CFD of order k € {a,f}, ] < a+B =1<2,{ € R, {; €
C([0,1] X R*,R), u;,n;,7;,0; € R, satisfying

A]’ = (1 - 51 - é/n])(l —ﬂj + {UJ)F(CY + 1)
+(yj+ w06 = (1 —pT@+ 1) #0,  j=1,2,3.

Note that the closed BCs are a class of generalized anti-periodic BCs. If the parameters take special
values u; =6, = -1, n; =vy; = 0,and j = 1,2, 3, then the closed BCs can reduce to the anti-periodic
BCs. Moreover, the closed BCs discussed in this paper involve fractional derivatives that are more
general than those in reference [22]. Consequently, the results obtained in this paper extend and enrich
research findings on anti-periodic BVPs for FLEs.

The organization of the paper is as follows: In Section 2, we provide a concise overview of basic
concepts and lemmas in fractional calculus, as well as Krasnoselskii’s FPT and the BCMP, which
together constitute the analytical foundation for the proofs of the major results. Section 3 is devoted to
establishing sufficient conditions for the E&U of solutions to the nonlinear BVP (1.1) by constructing
appropriate operator equations based on the Krasnoselskii’s FPT and BCMP. In Section 4, we validate
the effectiveness and applicability of our main conclusions by constructing two examples. Finally, in
Section 5, we given a concise summary of the principal findings and outline several open problems that
merit further analytical investigation.

2. Preliminaries

In this section, we collect the essential definitions and properties of fractional calculus, along with
the Krasnoselskii’s FPT and the BCMP.
Definition 2.1. [3,23,24] The Riemann-Liouville fractional integral of order 7 (7 > 0) for a function
¥ : [0, +00)—>R is given by

1 t
~h fi-1
) = —— r— Hs)ds, t>0,
S0, 9(0) T j; (t—95)" " ds)ds, t>
provided that the right-hand side is pointwise well-defined on (0, +00).
Definition 2.2. [3,23,24] For 9(t) € AC"[0, +0c0), the CFD of order % (7 > 0) is given by

1
I'(n-")

t
Db, 9(1) = f (t— )" "9 (s)ds, t>0,
0

where n = [fi] + 1.
Lemma 2.1. [3,23,24] Let 2,8 > 0, and J(¢) € C|O0, 1], then

o~ o~ o~ o~ - F(N) -
(3N D) = SN, IS = mﬂ‘l*“ !
~ _ ')
“OF IO =0@), Dp N = mz“ et
Lemma 2.2. [3,23,24] Let 7o > O and n = [A] + 1. If 9(¢r) € AC"[O, 1], then

n—1

ngz)gﬂ?(l) =9 + Z Cil‘i, O<r<1,
i=0
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where ¢, ¢, -, -1 €R.
Theorem 2.1. (Krasnoselskii’s FPT) [23,24] Let Q2 be a nonempty, bounded, convex, and closed subset
of the Banach space X. Let G and # be two operators, satisfying

) Gx+Fve Vi, peQ;
() G : Q — X is compact and continuous;
(D F : Q — Xis a contraction mapping.

Then, one can find an element 3 € Q, such that 3 = G3 + ¥ 3.
Theorem 2.2. (BCMP) [23,24] Let Q is a closed nonempty subset in the Banach space X, and let
T :Q C X — Qis contractive, i.e., for a fixed u € [0, 1),

1T — Tyllx < pllx—vlly, Vxpe

Then T has exactly one fixed point on €.
3. Major results

In this section, we prove the existence and E&U of solutions to the BVP (1.1) by means of Theo-
rems 2.1 and 2.2, respectively. To begin, we introduce the Banach space X = C[0, 1], endowed with
the norm

ll¥llcc = max|x(r)].
1€[0.1]

Additionally, we define the space X = X X X X X, endowed with the norm
(1, %2, %3)llx = [1E1lloo + [1%2]le0 + [1%3]lc0s (21, %2, %3) € X.

Thus, (X, || - ||x) is a Banach space.

To introduce the fixed point approach, we next present an auxiliary lemma that solves a linear
variant associated with problem (1.1), which serves as a foundational step in reformulating the original
nonlinear problem into an equivalent fixed point framework.

Lemma 3.1. Let b; € C([0, 1],R), j=1,2,3. Then the system of FLEs

DL (CDE, +Ox,() =D(r), 1€ (0, 1), (3.1)
1 < ¢ < 2, under the closed BCs
(1) = p;x;(0) + ;5 DF,%,(0), “DF,x,(1) = y;%,(0) + 6,°D, x,(0), (3.2)

admits a solution of the following form

1 [ . Qpt (! ~
xj(t):mf(t—s)‘ ', r](z) f (1 - 5)7'p;(s)ds
—1
m) f (1 =95)""h(s)d F(ﬂ) f (1= s 'p;(s)ds

F(,B) f (1-sp! b,(s)ds—ﬁ f (t — )" 'x;(s)ds (3.3)
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{Q,zt“f (1 5! e )f (1 -9 13£](s)ds

I'(a)
where
1 —p;+{n; Vi +{up =46, - n;
Qi=—"—""", Qp= ,
J AJ J A]
_I-pT(@+1) (=6 -l @+ 1)
Qi=——7 > Qu= A, -
j j

Proof. Let us apply the operator i”sg . to Eq (3.1). Then, by Lemma 2.2, we deduce
(DY, + 050 = H b0 + ), G ER, j=1,2,3. (3.4)

By placing the operator 37, on both sides of Eq (3.4) and using Lemmas 2.1 and 2.2, we obtain

104

£(1) = 34, 0,(0) — {38, %,(1) + ﬁ o+, 3.5)

¢/,c] €R, j=1,2,3. From Egs (3.4) and (3.5), it can be derived that

x,(0) = c’ D2 %,(0) = —§c + c
J

C .
(1) =3, bj(t)lz 1= 30,5 (Ol=1 + m + ¢, (3.6)

“Dg,%,(1) = 30, 0;0l=1 + (1 = L0y — Gy — Pn))ey.
Substituting (3.6) into (3.2) yields a system of linear equations in the unknown coefficients cé and c{,
Ta+ D 'C(J) + (1 =+ {nj)e) = éfsgij(t)lm = 30.:0;(Dli=15 3.7)
(1= 6; = {mjeg = (v + {uj = £6; = 0] = =0, 5;(0li=1-

By solving the system of Eq (3.7), we obtain

;= + @+ 1)

{ I-nl(a+1) ;

(=30, 5;(Dli=1)

C

0= A;
. =08 =)0
L it - .5 )T (e + )(gw (Ot = 35,5,(Dlz1),
J
- A=-nla+1))_
=% 0Dl
1=6;—{ny)r
LU OO D ey - 35,0, = 1,23,

Aj

Substituting cé and c{ into Eq (3.5) immediately yields Eq (3.3). Conversely, for any x;(r) €
C[0,1], (j = 1,2,3) satisfying Eq (3.3), and it follows from Lemma 2.1 that x;(¢) satisfies Eq (3.1)
with BCs (3.2). Therefore, the assertion of the lemma holds.
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Based on Lemma 3.1, define the operator T : X — X as follows:

T(x1, %2, 13)(1) 1= (T1(x1, X2, ¥3)(2), To(X1, X2, ¥3)(1), T3(X1, X2, X3)(0)),

where
z'(ﬁ,%z,%)(f)
Q}ta 1
r() f t-9)"'f; rj(z) f (1 - $)7'8,(s)ds
1= s = [ = st
—m - Ry S_F(ﬁ) (1-=s i(s)ds
F(,B)f (1 - syt (s)ds—mf(t )" x(s)ds
{Q “ . o
r(ﬂ) f(l—s) 1x,(s)ds+r( )f (1 - )" 'x(s)ds, j=1,2,3,
and f;(s) is denoted by

f[(s) = fj(s7xl(s)’ }ZQ(S),$3(S)), j: 1’293'

Therefore, ¥ = (1, ¥,, ¥3) is a solution to the BVP (1.1) if and only if x is a fixed point of the operator <.
In the following, we establish an existence result for the BVP (1.1) by applying Krasnoselskii’s FPT.
Theorem 3.1. Suppose that the conditions below are met:

(Cy) T € C([0,1] x R3,R), for j = 1,2,3.
(C,) There are functions p;, g;, 7}, I}j e C([0, 1],R"), for j = 1,2, 3, satisfying

[fit, ¢ 0, Y| < ki) + p;OISD)] + GOl + Fi (D (D),
(t, ¢, 0,) € [0,1] x R3. Then BVP (1.1) admits at least one solution on [0, 1], provided that
A+ B<1, (3.8)

where

1 +1Qp| + |Qul N Q1| + Q3]
I'ec+1) re+1)

=1

ol +1Ql),

Pi = Pjllos aj = lIGjllees tj = [I7jllcos
ti=llkillo, £{j=pj+q;j+r;, j=1,2,3.

Proof. Let £ > 0 and

S Z [1 *1Qpl +1Qul | 1Qul+1Ql ),
1—(A+B) T+1) TB+1)
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Define a bounded closed set
B: ={x=(x1,%0,13) € X! [lallx < &}.
Define the operators ¥, G : B, — X on B,, respectively, as follows:
(F o)) = (F1(x1, 22, 13)(0), Fo (31, %2, 13)(0), F3(x1, 2, ¥3)(1)),
(G0 = (G1(x1, %2, 13)(1), Ga(x1, X2, ¥3)(1), G3(31, %2, ¥3)(1),

where

Fi(x1, %2, %3)(t) = — @ f (t — ) ! (s)ds+ r( ) f (1 - )" 'x,(s)ds

Q
8 ’4f (1 -9 "x(s)ds, j=1,2,3,
0

I'()
1 t a 1
Qj(3€1,3€2,3€3)(t)=mf(t—S)‘_lf' If(ztt) fo (1—5)"'f,(s)ds

f(l— Yt A f(l— Pt (s)d
ru) N r@ Jo =7 Y
(1 — sV 'ti(s)ds, j=1,2,3.

F(,B)

To prove Theorem 3.1 using Theorem 2.1, we divide the proof into three steps.

Step 1. We prove that for ¥ = (x1,%,%3), ) = (V1,92,93) € B, G + ¥y € B,. Indeed, in view of

x,1) € B,, we have |x||x < &, |[pllx < &. From (C,), it follows that
If;()I = [F;Cs, 21(5), x2(5), %3(s))|
<t +pjllailleo + ajllxalle + vjllslle <t + EGllRllx,  j=1,2,3,

then

Igﬁl_r()f(t )1 (s)ldls + llle) f(l ) I (9)lds

'f(”)'f (1 - 5)If,(s)lds + | ﬂ'af (1 - P |f,(s)lds

Q5|
r(;) f (1 - s (s)lds

3 [1 +1Qpl + 1Qj4l N Q1| + |Qj3|]
I'Gc+1) rg+1)

< [1 + |Qj2| + |Qj4| 4 |Qj1| + |Qj3|

- I'Gc+1) rg+1)

Besides, for any 7 € [0, 1], we obtain

(& + £illxllx)

](fj+€je), j=1,23.

' - {Qple* ! -
Iﬂnls%fo(t—ﬂ "y (s)lds + F(Z) fo(l—S) "y (s)lds

(3.9)
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, 419l .
I“(J; Llﬂ (1= )" ()l (3.10)
< a0+ Qe +1Qubljlles - j=1.2.3.

Combining Egs (3.9) and (3.10), one can obtain

1L +1Qpl +1Qul  1Ql + 1@l
|g1x+7:jt)|ﬁ[ F(L+1) + F(,B-i-l) ](fj+fj8)
g .
* T(a + 1)(1 +1Qpl + 1QuDIjlle,  j=1,2,3.

This implies that

1+1Qpl +1Qul  1Qul +1Qj|
16+ Tl < [ AT + ST |+ )
( .
+ I+ 1)(1 + |Qj2| + |Qj4|)||1)j||oo, J= 1,2, 3.

Noting that ||p||x < &, we conclude that [|1)/]|. < &. Therefore, from (3.8), we can derive that

IGx + Follx = 161 + Fiolle + 1G2% + Fo0lleo + 1G53 + Fa0lles
BN [1 +1Qal +1Qul  1Q1+ |a,-3|](f_
Te+1) r@B+1)

ij)

=1

3
FarD ; (1 +1Qpl + Qi)

]fj+(A+B)8S8,

~ 23: [1 +1Qp + 1Q4] N Q1| +1Qj5!
‘] T(t+1) r@+1)

thatis, Gx + Fy € B,.
Step 2. We show that ¥ is contractive on B,. For ¥ = (x;,%,%3) and vy = (11,195, 93) in B,, and
t € [0, 1], the following estimates hold:

Fa Tr)l<% (1 = 9 1 (s) — v,(5)lds
Qo
gr(’z) f (1 - )" |t(s) — v (s)lds
Q
1{(")‘ f (1 - )" "[x;(s) — 9;(s)ldss
< r(ai S+ Q1 Qublly =l =123
Thus,
3
172 = Folle < s D7 (141l + 1Dl = il = Bll =l
=1
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It follows from condition (3.8) that ¥ is a contraction.

Step 3. We verify that G is completely continuous on B,. Actually, the continuity of the functions
f1,f2, f3 ensures that G is continuous on B,. Therefore, it remains to verify the compactness of G
on B,. For x(t) € B,, t € [0, 1], conclusion (i) implies that G is uniformly bounded on B,. Next,
we demonstrate that G is equi-continuous. Given any ¥ = (¥, %,%3) € B, and 1,1, € [0, 1] with
0<1 <t <1, we infer that

|G jx(t,) — Gjx(11)]

11

[(t2 — 5)™" = (11 — 5) 7" IE;(s)ds

f z(tz—s)‘_lf (s)d‘ 9l f (1 =) (o)lds(ts — 1)

|Q11|
l“(ﬁ)

f(r— U (st — 1)

Fat ) + il — 1)

+[ |sz| + |Qj1|
I'ec+1) IT@B+1)

Since # and #* exhibit uniform continuity on [0, 1], we proceed

[+ o -, =123,

Gx(t) — Gjx(t)| = 0, asty = 1, j=1,2,3.

Therefore, G is equi-continuous on B,. It follows from the Arzela-Ascoli theorem that G is compact
on B,. Hence, invoking Theorem 2.1, we conclude that the BVP (1.1) admits at least one solution
on [0, 1].

Having established the existence of solutions to BVP (1.1), we now turn to the issue of E&U. To
this end, we impose additional Lipschitz-type conditions and apply BCMP. The following theorem
presents the corresponding existence and uniqueness result.

Theorem 3.2. Suppose that the following assumptions are satisfied:

(Cy) T € C([0,1] x R3,R), for j = 1,2,3.
(C,) There are constants £; > 0 (j = 1,2, 3), such that forall x;,p; e R (j = 1,2,3)and 7 € [0, 1],

I7(2, 21, %2, %3) — T;(2, 91, D2, DI)ISLj([x1 — )1 + 22 — 2| + 23 —v3]), j=1,2,3.
If the condition
A+B<1, 3.11)

is satisfied, then the BVP (1.1) possesses a unique solution on [0, 1], where

S L+ 1Qal +1Qul 1Q] + Q!
A= Z [ Lj.
J

T+ | T@+D
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Proof. Let o > 0 and

Z [1 +1Qpl + |Q,4| Q1| + Q3]
1—(A+B) Te+1) TG+ 1)

where w; = n%gul(] [f;(¢,0,0,0), j =1,2,3. Define the set
tel0,

By ={(x1, %, %) € X ! |lzllx < o}
We show that T8, C B,. For x = (x1, x,%3) € B, and ¢ € [0, 1], by condition (C3), we obtain

[T(2, x1, 2, :3)| < [F(7, %1, %2, %3) — §(£,0,0,0)| + [f(2, 0,0, 0)|
< Li(llxille + %2l + [1%3]lc0) + 10
=Lilllx+w; < Lio+w;, j=1,2,3.

Furthermore, we have
1 +1Qp| + 1Qul N Q1| +1Qj3
I'c+1) re+1)

1 +1Qp| + |Qjl
e, i=1.2.3.
[ Ta+1) ]”xf” J

1T, Gx1, 12, 53)(0)] < [ ](Lj@ 1))

Then from (3.11), we deduce that

3
TG, 1, 5) Ol = ) 1T, 1, %)l
j=1
2 [1 +1Qul +1Qul 1@l + Q|
I'c+1) rg+1)

M

](-EJQ +w))

J=

> 1+|Q |+|Q |
Z[ 2 e
=1

i [1 +1Qul +1Qil 1@l + Q|
= Ce+1) r@B+1)

](LJQ +w))

211+ 1Qol + 1Qul
gjzz;[ r(cjyz+ 1 - ]Q

S L+ 1Qal +1Qul 1Q] + Q)]
=(A+B)Q+Z[ T+ D) + TG+ 1) ]m <

J=1

Consequently, T8,C8,. We now show that T is contractive on B,,. For x = (¥, %2,%3), ) = (11,12,03) €
8B,, and denote

£i:(s) = T,(s,2:(5), %2(5), 13(5)), £y () = T,(5,91(5), 92(5), 93(5)), j=1,2,3.
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It follows that
|T(x1, %2, ¥3)(1) — Tj(V1, D2, V3)(D)

| 12| P 1

1 ¢
< mf (t— S)t—1|fjx(S) pJ(S)|d s+ — o J, (1- S)L_llfjx(s) _ fjr)(s)|ds

) 1
l J4|f (1= )" fx(s) — £ (s)lds +| ]llf (1 — s f5x(s) — £y (s)ld's

e F(,B)
Qx| -

n}% f (=9, ae(S)—fju(s)ldHr( ) f (t = )" x;(s) = v(s)lds
{lQ |t a §| | a_

* T f (1= le(5) = vi(s)ds + o= fo (1= 97 e,(5) = 0,()lds

3 [1 +1Qpl +1Qj4l . Q1| +1Qj|
= T+ 1) r@B+1)

é .
a0t 1Rl 1QuDi = ojlles = 1,23,

]Ljux il

which yields

3
1T = TyOllx = D 1T = L@l
j=1

Lillx = vllx

S L+ 1Qal +1Qul 1Q] + Q!
S]Z[ e+ T+

{ N B
S vPm ;} (1 +1Qpl +1QuDllx = vllx = (A + Bl — vllx.

From condition (3.11), we know that T is a contraction operator. By applying the Banach contraction
mapping principle, T admits a unique fixed point x € B,, which implies that the BVP (1.1) has a

unique solution.

4. Example

To validate the theoretical results established in this paper, we present the following two concrete

examples corresponding to Theorems 3.1 and 3.2, respectively:

Example 4.1. Let o = %, B = %, {= % Consider the following BVP:

COPHED? + 2)xi(1) = 1t 11D, 00, 5:(1), 1€ (0,1), j=1,2,3,
2(1) = %(0) — D%, (0), “D7x,(1) = 3%,(0) — 36Dy ’x1(0),
%(1) = 25,(0) — 26D%x2(0), CDF7x2(1) = 2x2(0) — 26D x,(0),
25(1) = 35;(0) — 3°D?x:(0), D x3(1) = 1:(0) — Dy’ x3(0),

4.1)
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where

mi=1 =2, ui3=3,m=-1, ;m=-2, 13 = -3,
vi=3,%=2,yv3=1,0=-3, 6,=-2, 65 =—1,
sin x; () N %(1) N sin ¥3(¢)

16(20 + £2) ~ 80(6 + 6¢’)  60(8¢’ + 8)’

x1(7) N ¥(7) N (1)
8OVZ+16 60Q2+n' 240(c" +3)’

x1(1) sin x(7) N (1)
(85 + t)z (10¢'y* =40 160 V15¢' + 21

From the explicit expressions of f; for j = 1,2,3 given above, it is evident that each §; € C([0, 1] x
R3,R), and thus condition (C) in Theorem 3.1 is satisfied. For ¢ € [0, 1], choose

(8, 21(0), x2(0), x3(1)) = €' +

fo(t, %1 (1), ¥2(2), x3(f)) = cost + 1 +

f3(2, %1 (1), %2(1), %3(1)) = In(3 + 1) +

ki(t) = €', ky(t) = cost + 1, k3(¢) = In(3 + 1),

1 1 1
p1(1) = ————m) Po(l) = ———, P3(t) = ——,
PR Te@0+ ) P T sovEr 16 U 8B ey

1 1 1
G1(1) = o, (1) = ————, §3(0) =
N() 80(6 + 6e’) 41 60(2 + 1)* 0 (10e")* — 40

1 1

7 t = N 7 = 9 2 t = .
"0 = o +8 2= oe 3 PY 160 V15¢ + 21

It is then straightforward to verify that condition (C,) in Theorem 3.1 is verified. Moreover, we can
obtain

I N T T S SR
P1 = 320’ P2 = 3209 p3 = 320’ q = 960, q2 = 960, a3 = 960,
1 1 1 |
= I = 1‘3:%, fj:pj+qj+rj:—(]:1,2,3).

960" "~ 960’

By calculation, we obtain

192

Ar=1 =61 =) =+ {n)l(e + 1)

+ (1 + Sy = &6 = ) = miT(a + 1)) = 3T(1.5) + 3.1616 # 0,
Ay =(1 =062 —¢m)(1 —pa + {m)l(a + 1)

+ (Yo + Lo — £65 = o)1 = mol(@ + 1)) = T(1.5) + 2.1632 # 0,
Ay =(1=063=4m)(1 — s+ {m3)l(e + 1)

+(ys + Cus — £65 — )1 = maT(a + 1)) = —T(1.5) + 1.1648 # 0,
l—p+dm _ 1 1

= C .~ —0.00687252,
Qll Al 25 A]
yi+lu =6 = 19761
= - 2~ 0.5432
A A 625 A
l—nT@+1) 1+I(L5
Q= omlar D 1+ o 04078,
A1 Al
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(1=6, =@ +1) _ 101 I(L5)

_ _ ~ 0.615152,
Qs A 25 A
1 — o+ 27 1
e — z—0354165
1 A, 25 A,
Ya+lup =46 - 1352 1
Q> = - . — ~0.709379,
22 A, 625 A,
l—-ml@+1) 14215
Q= Lomtet ) 1+20AS) 5017,
A, Ay
(1-6—m)a+1) 77 T(1.5)
_ - ~ 0.895112,
s Ay 25 A, ?
1 — s + s 53 1
= BTESB _ 27~ 761021,
& As 25 A;
ys+lus =465 — s 728 1
- - . — ~4.18131,
Q& As 625 A,
1—mT@+1) 1+30(1.5)
- - ~ 13.1336,
Q33 As As
(1-065-¢n)la+1) 53 T(L.5)
= = 2. 1 6.74437.
Qs A, %5 A, 6.74437
Therefore,
3
1 +1Qpl +1Qul  1Q) +1Q;
A= Z | J2| | ‘/4| " | j1| | j3| fj ~ 02225’
< T+ 1) TG+ 1)
3
- 1 - ) ~ 0.7532,
EE JZJ( +1Qpl + Q)
and

A+ B=~09757 < 1.

In view of Theorem 3.1, the BVP (4.1) admits at least one solution.
Example 4.2. Let a = }L, B= ;—‘, = ﬁ. Consider the following BVP:

CRLEDY! + Hxi() = Tt 11(1), %2(8), 13()), 1€ (0, 1), j=1,2,3,
21(1) = 3%,(0) - 3D %(0), Dy'xi(1) = (0) — Dy x1(0),
(1) = 2x,(0) — 26Dx2(0), D x2(1) = 2x2(0) — 26D x,(0),
5(1) = £(0) — D %3(0), D x3(1) = 3x3(0) — 36D x3(0),

(4.2)

where

m=3, =2, i3=1,m=-3, m=-2, n3=-1,
7121, ')’222, ’}/3:3’ 51:_1a 52:_2’ 53:_3’

) 1]+ [00)] + ()
T30, 20500 = 5663600 + k0] + ] + m0OD
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|21 ()] N [x2(2)] N 2|x3(2)]
SOVE+1 12+ 1O T+0®] V2 + 30l
|1 ()] cos x5(1) |x3(7)]
3 + , + .
5V2+1) S¢'+45 254/l +3

f2(t, 11(0), %2(0), %3(1)) =

f3(t, 21(1), %2(), %3(0)) =

The explicit forms of f; for j = 1,2,3 presented above demonstrate that each function belongs to
C([0, 1] x R?,R). Therefore, condition (C,) is fulfilled. On the other hand, for ¢ € [0, 1], we choose

1 1 1
.51—%,.52—%,.53—%,

from which it is evident that condition (C3) is satisfied. It follows from straightforward computation

that

Electronic Research Archive

Ay =1 =61 =) =+ {npl(a+ 1)
+ (1 + Sy — £ = ) =T + 1)) = =I'(1.25) + 1.101875 # 0,
Ay =(1=06=Zm)(1 —pp + i)l (@ + 1)
+ (Yo + Cpn — £65 — o)1 — oI (@ + 1)) = [(1.25) + 2.10125 # 0,
Ay =(1—-063={m)(1 — s+ {n)l(a + 1)
+ (3 + s — £653 = Pn3)(1 — msT(a + 1)) = 30(1.25) + 3.100625 # 0,
1= +4m 83 1

- mTeAN 27 1 _10.6153,
Qi A 40 A,
yi+lu — 46 -y 1763 1
_ - . — ~ 5.63698,
Qo A 1600 A,
l—pT@+1) 1+3012
Q= mmbtet ) 1+30A:29 g 068,
Ay Ay
(1-6,—n)la+1) 83 TI(1.25)
= =22 " 962174
s A 40 A ? ’
l—po+imp 42 1
= = -— =~ —0.3491
Qo A 0 0.349109,
Yo+ lus — L6 -y 3362 1
- - . — ~0.698635,
& A 1600 A,
l—ml(@+1) 1420125
Q= ot ) 1+2AA29) 6 935016,
A, A,
(1-6, - &)@ +1) 122 T(1.25)
= = . ~ U. 1 1 .
Qu A 0 A 0.919165
1 — s+ {3 11
=BT £ _0.004295656,
Q1 As 40 A; ?
Y3+ Qus — {65 — Py 4961 1
= - . — ~0.5327688,
Qs As 1600 A,
l—mT(@+1) 1+T12
Qy = 1zl D 1+TA.25) 62787,
As As
(1-65-(n)l@+1) 161 T(1.5)
= = . ~ U. 2 .
Q4 A, 20 A, 0.626869
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It follows that

1 +1Qpl +1Qjl  1Ql +1Q;
I j2| | J4|+| Jll | ]3| sz0.37549,

3
=1

-3

I F(L + 1) F(ﬁ + 1)
é/ 3
b= re+D ; (1 +1Qpl +1Qul) =~ 0.5802,

and
A+ B = 0.95569 < 1.

By Theorem 3.2, the BVP (4.2) admits a unique solution.
5. Conclusions

In this study, we analyze the E&U of solutions for a nonlinear triply coupled system of FLEs
subject to closed BCs. By employing properties of fractional calculus, the original BVP (1.1) has been
equivalently transformed into a fixed point problem of a nonlinear operator equation in Banach space X.
Within this framework, the results on the existence and E&U of solutions are respectively established
by combining Krasnoselskii’s FPT and the BCMP. The present work has enriched theoretical findings
on BVPs for tripled system of FDEs. In future investigations, we will focus on: Analyzing the well-
posedness and stability of solutions for triply coupled system of FLEs with dual BCs; and exploring
E&U criteria for triply coupled system of fractional Hybrid-Sturm-Liouville-Langevin equations with
Sturm-Liouville BCs.
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