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Abstract: The purpose of this paper was to develop a unified combinatorial framework for fault
localization in heterogeneous software systems, where parameters may have different numbers of
levels. Specifically, we investigated mixed-level detecting arrays (MDASs) on graphs, extending the
classical detecting array model to accommodate non-uniform factor structures. In this paper, we
established an optimality criterion that minimizes the number of required test cases and analyzes the
structural and combinatorial properties of optimal MDAs on graphs. Furthermore, several constructive
methods were proposed to generate optimal arrays, and existence results were derived that achieve
the theoretical lower bounds. The findings enhance the theoretical understanding of detecting arrays
in graph-based settings and provide practical guidelines for designing cost-efficient and fault-sensitive
test suites in complex, heterogeneous software systems.
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1. Introduction

In the era of large-scale, component-based software systems, ensuring reliability and robustness
has become a central challenge in software engineering. As such systems grow increasingly complex,
their configuration spaces expand exponentially, rendering exhaustive testing infeasible. This
motivates the demand for efficient testing strategies that can detect potential faults prior to
deployment. Combinatorial interaction testing (CIT) has emerged as a powerful methodology that
significantly reduces test suite sizes while retaining strong fault detection capability. Instead of
enumerating all possible parameter combinations, CIT focuses on covering all 7-way interactions
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among parameters, guided by empirical evidence that most software failures arise from the interaction
of only a small subset of parameters [1,2]. By targeting these critical subsets, CIT provides a practical
balance between test coverage and efficiency.

A fundamental combinatorial object in CIT is the covering array (CA), which guarantees that
every z-tuple of values across any ¢ factors appears in at least one test. Covering arrays have been
extensively investigated in both combinatorics and software engineering, with applications ranging
from network protocols and embedded systems to user interface testing. Representative constructions
and applications can be found in [3—6], while algorithmic generation methods were surveyed in [7-9].
Constructions using linear feedback shift register (LFSR) sequences were studied in [10-12]. In
practice, software systems often consist of heterogeneous components, whose parameters admit
different domain sizes. To address this situation, mixed covering arrays (MCAs) were
introduced [13, 14], generalizing standard covering arrays by allowing each factor (column) to take
values from a distinct set. Formally, a mixed covering array of type (vi,va, ..., ), size N, strength ¢,
and index A, denoted by MCA (N;t, k, (vi,va2,...,)), is an N X k array A in which every t-tuple
across any ¢ columns appears at least A times, with column i taking values from a set V; of size v;.
Without loss of generality, we assume v; < v, < --- < v, and V; is often taken as the cyclic group Z,,.
When all v; are equal, the array reduces to a standard CA(N;t, k,v), and if N = AV, it becomes an
orthogonal array OA,(t, k,v). For t = 2, the notation may be simplified as MCA (N; k, (vi, ..., w)),
and repeated levels are written compactly using exponents (e.g., 2% denotes two factors with two
levels each).

In many real-world systems, not all parameter interactions are relevant because of structural,
physical, or logical constraints. To model this, covering arrays on graphs were introduced [15], where
parameters are represented as vertices and only interactions along edges must be covered, thereby
reducing the required number of tests. This was further generalized to mixed covering arrays on
graphs [16], accommodating mixed-level factors subject to graph-based interaction constraints.
Formally, an interaction graph G specifies feasible parameter interactions.

Definition 1.1. (Mixed Covering Arrays on Graphs [16]) Let G be an interaction graph with k vertices
Vi, Va, -+ Vi, each associated with a weight vy, v,,...,v. A mixed covering array on G, denoted by
MCA, (N, G, (vi,va,...,V)), 1s an N X k array A satisfying the following conditions:

1) The entries in column i are drawn from Z,;

2) Column i corresponds to vertex V; € V(G) with wg(V;) = v;;

3) For every edge {V;, V;} € E(G), all possible 2-tuples of values appear at least A times in columns

i and j.

In other words, in an MCA on an interaction graph G, each column corresponds to a vertex, and
only column pairs associated with edges of G must cover all 2-way combinations. Without loss of
generality, we assume v; < v, < -+ < 1, and column i corresponds to vertex V; with weight v;. This
correspondence will be assumed implicitly in what follows.

As a special case, if G is the complete graph K, the MCA on G reduces to the classical MCA
of strength 2. More generally, a covering array on a graph is denoted by CA,(N, G,v), where all
vertices have the same level v. The concept related to covering arrays on graphs is the covering arrays
avoiding forbidden edges (CAFEs), in which certain pairwise interactions are prohibited while all
other interactions must be covered [17]. Graph-based MCAs can significantly reduce test suite size
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while maintaining essential coverage. For example, consider a configuration system from a network
game software (NGS) application adapted from [2], which will serve as a running example throughout
the paper.

Example 1.1. Table 1 lists four configuration parameters, each with different levels. Exhaustive testing
requires 2-3 -4 = 96 test cases. Using an MCA(16; 2, 2!3'4?), as shown in [14], can achieve complete
2-way coverage with only 16 tests. If further system knowledge reveals that, for instance, parameters
F5 (Browser) and F4 (Access) do not directly interact, the edge {Vg,, Vp,} can be removed from the
complete graph on four vertices. The resulting mixed covering array on the interaction graph G then
requires only 12 tests (see Table 2).

Table 1. Configuration parameters for a NGS.

Parameter Values
Fi Audio Digital (0) Creative (1)
F, OS Windows (0) Linux (1) Mac (2)
Fs Browser Chrome (0) Edge (1) Firefox (2) Opera (3)
F, Access VPN (0) ISDL (1) Modem (2) ZTNA (3)

Despite their efficiency, (mixed) covering arrays (on graphs) have an intrinsic limitation: they can
detect the presence of interaction faults but cannot identify the specific faulty interactions. For
instance, in Table 2, if all tests pass except for the first one, it is impossible to determine which of the
four 2-way interactions (Windows, Chrome),(Windows, IS DL), (Digital, Windows), and
(Digital, 1S DL) is responsible for the fault. To overcome this diagnostic limitation, detecting arrays
(DAs) were introduced by Colbourn and McClary [18]. DAs strengthen covering arrays by ensuring
that distinct faults lead to distinct failing tests, enabling fault localization. More recently, detecting
arrays on graphs have been studied [19], combining the diagnostic capability of DAs with
graph-based constraints. As a special case, consecutive DAs of strength 2 are equivalent to detecting
arrays on paths, capable of localizing faults in adjacent interactions [20]. Constructions using
M-sequences have also been proposed [21]. However, most existing studies are restricted to
uniform-level assumptions, where all factors are treated as having the same number of levels. Such a
simplification greatly limits the applicability and realism of detecting array models, since many
practical software and system testing scenarios involve heterogeneous parameters with varying
domain sizes. To address this limitation, we introduce the concept of mixed-level detecting arrays
(MDAs) on graphs, which are capable of simultaneously capturing mixed-level factor structures and
graph-based interaction constraints that arise in real systems. This new framework not only
generalizes the classical detecting array model but also integrates the ideas of mixed covering arrays
on graphs, thereby providing a unified and more flexible combinatorial foundation for fault
localization in complex heterogeneous environments.

The remainder of the paper is organized as follows. Section 2 formally defines MDAs on graphs and
illustrates their utility with practical examples. Section 3 presents an optimality criterion and explores
the combinatorial structure of optimal MDAs on graphs. Section 4 develops construction methods
and existence results for MDAs on paths, cycles, and binary trees. Section 5 concludes with future
research directions.
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Table 2. An MCA(12; G, (2,3,4,4)) .

Test case Fy F, F3 Fi

1 Digital Windows Chrome ISDL
2 Creative Windows Edge Modem
3 Creative Windows Firebox ZTNA
4 Creative Windows Opera VPN

5 Creative Linux Chrome ISDL
6 Digital Linux Edge Modem
7 Digital Linux Firebox ZTNA
8 Digital Linux Opera VPN

9 Digital Mac Chrome Modem
10 Creative Mac Edge ZTNA
11 Digital Mac Firebox VPN
12 Creative Mac Opera ISDL

2. Preliminaries

In this section, we present the basic concepts, notations, and structures that form the foundation
for the study of MDAs on graphs. These preliminaries provide the combinatorial and graph-theoretic
background necessary for the constructions and existence results established in subsequent sections.

2.1. Definitions and terminology

Let I, = {1,2,...,n} denote the set of the first n positive integers. We begin by formalizing the
underlying testing framework. Consider a system with k distinct factors (also called parameters or
components), where each factor j € I, assumes values from the finite set Zvj =1{0,1,...,v; — 1}, the
residue class ring modulo v;. Without loss of generality, we assume that vi < v, < --- < v, A test case
(or simply a test) is a k-tuple (xy, x2, . .., Xx) € Z,, XZ,, X- - -XZ,,, representing a concrete assignment of
levels to all factors. Each test yields a binary outcome: pass or fail. A t-way interaction (or interaction
of strength 7) is a set of factor-value pairs of the form T = {(j;, 07;)|1 <i <1}, where {ji, j2,..., ji} € Ik
with jy < jp <...<jiand o} € Zv,-,.- A test case R = (x1, xo, ..., x;) 1s said to cover an interaction 7T if

x;, =oj foralli=1,...,1 Each test therefore simultaneously covers (’;) different 7-way interactions.
A test suite is a finite collection of such tests, with their collective outcomes used to detect faults. A
test fails if and only if it covers at least one faulty interaction. Therefore, a test suite can be represented
as an N X k array A = (a;;), where each row corresponds to a test and a;; € Z,,. For a given interaction
T, define
pA,T)={i:a;, =x,1<r<t},

the set of row indices in which T is covered. For a set of interactions 7, let

pAT) = |_Jpa. .

TeT

An array A is called a mixed covering array of strength ¢, denoted by MCA (N; t, k, (v, Vs, ..., V), if
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lo(A, T)| > A for every t-way interaction T of A. Such coverage ensures that all interactions of strength
t can potentially be observed in the test outcomes.

Following Colbourn and McClary [18], a mixed covering array A is called a (d, t)-detecting array,
denoted by (d, 1)-DA(N; k, (vi, v2, ..., V), if for every t-way interaction 7 and any subset 7 C 7, with
|77| = d, the following condition holds:

p(A,T)Cp(A,T) & TeT, 2.1)

where J, denotes the set of all -way interactions. This property guarantees the unique identification of
any set of up to d interaction faults.

We now extend this notion to a graph-based setting. Let G = (V,E) be a simple weighted
interaction graph with k vertices, each corresponding to a factor of level size v;, ordered as
vi < vy < --- < v, We assume that G contains no isolated vertices and exclude cases where two
degree-one vertices are adjacent, as such factor pairs can be independently tested. Unless otherwise
specified, we assume throughout the remainder of this paper that the interaction graph G possesses the
properties described above.

Let A = (a;j)nxi be an MCA (N, G, (vi, Vv, -+ , ). A 2-way interaction T = {(i, x;), (J, x;)} is
called valid if {V;,V;} € G, with x; € Z,, and x; € Z,,. Let VI, denote the set of all such valid 2-way
interactions, whose total number is

|VIz| = Z Vivj.

Vi,V)eE

Coverage of all valid interactions suffices in practical systems, leading to the following
formal definition.

Definition 2.1. (Mixed-Level Detecting Arrays on Graphs) Let G be a simple weighted graph with
vertex set Vy, ..., Vi and weights vi < vy < ..., <w. An N Xk array A = (a;;) with a;; € Z,, is called a
mixed-level detecting array on G, denoted by MDA(N; d, G, (vi, v, , W), if for any subset T C VI,
with|T|=dandany T € VI, p(A,T) Cp(A, 7)o TeT.

The expression p(A,T) C p(A,7) & T € 7 means that an interaction 7" belongs to the fault set 7
if and only if every test case that covers T also covers at least one interaction in 7 . This ensures that
distinct fault sets produce distinct sets of failing test cases, thereby enabling precise fault localization.
It is easy to observe that if T € 7, then p(A,T) C p(A,7 ) must hold. As a direct consequence,
T ¢T = p(A,T) € p(A,7), which will be used implicitly in later discussions. It is evident that the
array A also qualifies as an MDA(N; s, G, (v, V2, - -+ , V), for any integer s such that 0 < s < d — 1.
When G is the complete graph, this definition reduces to the classical (d, 2)-detecting array. This
indicates that MDAs on graphs can be seen as a natural extension of traditional detecting arrays with
strength 2. If all factors have the same number of levels, i.e., vi = --- = v, = v, the definition recovers
the uniform-level detecting arrays on graphs as in [19]. This observation highlights that mixed-level
detecting arrays on graphs serve as a natural generalization of their uniform level counterparts.

By setting d = 0O in the definition, we have p(A, 7)) = 0, which implies that p(A, T) # 0 for every
T € VI,. In other words, an MDA(N; 0, G, (vi, V2, -+, V) is an array in which each valid 2-way
interaction is covered in at least one row. This coincides with the concept of mixed covering arrays on
graphs, as mentioned earlier. = Therefore, an MCA(N;G, (vi,v,, -+ ,V)) is equivalent to an
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MDA(N;0,G, (vi,va,---,v)). As with traditional detecting arrays (DAs), certain parameter
constraints must be met for an MDA on a graph G. From a practical standpoint, it is crucial that the
parameter d satisfies d > 1. Additionally, since d is intrinsically linked to the number of levels of the
factors, it cannot be arbitrarily large. In fact, a necessary condition on d is given by the
following lemma.

Lemma 2.1. Let P,(G) and C5(G) denote the path and cycle u — v — w, respectively. Let A be an
MDA(N;d,G, (vi,va,- -+ ,w)), where G is a simple weighted graph. Then d < min{m,, m,}, where
m;= min {w wew)l, mr, = min  {w we(v), wew)}.
1 (M’V’W)GPZ(G){ c(u), wg(w)} 2 {u,v,w}eC3(G){ (), wg(v), wg(w)}
Proof. From the assumption on G, we know that G must contain a path from u to w, i.e., a length-2
path of the form u — v — w. Let the corresponding factors be denoted by F,, F,, and F,, respectively.

Without loss of generality, assume that wg(u#) < wg(w). Suppose, for contradiction, that d = wg(u).
Since A is an MDA(N; d, G, (v, v2, ..., i), consider the following set of valid 2-way interactions:

T ={(Fy,a),(Fy,i) | i€ Zy,w)

Let T = {(F,,a),(F,,b)} be a valid 2-way interaction involving F, and F,,. Then, by the definition
of MDAs on graphs, we have
pP(A,T) € p(A,T),

which contradicts the assumption that A is a mixed level detecting array on G. Therefore, we conclude
that d < wg(u) < min{wgs(u), wg(w)}. Since this argument applies to every such path in P,(G), we
obtain d < m,. Similarly, if G contains a 3-cycle (i.e., {u, v, w} € C3(G)), then an analogous argument
shows that d < m,.

When the graph G is complete, the bound reduces to d < v, which aligns with Theorem 7.11 in [18]
for the special case t = 2. This demonstrates that the parameter d serves as a natural generalization of
the classical bound. The following example illustrates the validity of the lemma in practice.

Example 2.1. The array obtained by transposing the following matrix is an MDA(18;2,G, (3,2, 3)),
where G is a path graph with vertex weights 3, 2, and 3, corresponding to the factors Fy, F,, and
F3, respectively.

Fil000000111111222222
F,l001111000111000111
F3(012012012012012012

Here, d = 2 meets the condition d < min{3,3} = 3.

According to the definition, an MDA(N; d, G, (vi,v,, ..., v;)) is essentially a special class of mixed-
level covering arrays defined on graphs. The key advantage of using such detecting arrays (DAs) is
their ability to precisely identify any set of up to d valid 2-way interaction faults based on the observed
test outcomes. Furthermore, if the actual number of such faults exceeds d, this condition can also
be detected. For practical applications of detecting arrays in fault localization and software testing,
readers may refer to [18].

According to the definition, an MDA(N; d, G, (vi, va, ..., V;)) is essentially a special class of mixed
level covering arrays defined on graphs. The key advantage of using such detecting arrays (DAs) lies
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in their capability to precisely identify any set of up to d valid 2-way interaction faults based on the
outcome of the tests. Moreover, if the actual number of such faults exceeds d, this condition can also
be detected. For practical applications of detecting arrays in fault localization and software testing, the
reader is referred to [18]. Since each row in an MDA on graphs represents a single test, minimizing the
number of rows N while keeping other parameters fixed is particularly important in practical settings.
The smallest possible value of N for which an MDA(N; d, G, (v, v,, ..., V) exists is referred to as the
mixed-level detecting array number on graphs, denoted by MDAN(d, G, (v, v2, ..., V). An MDA on
graphs that achieves this minimum size is called optimal. In the following section, we derive a lower
bound for the function MDAN(d, G, (v{, V3, ..., v;)) for G, and present a combinatorial property that
characterizes the existence of optimal MDAs on graphs.

2.2. An application example

One important application of MDAs on graphs lies in the testing of information systems. As an
illustrative example, consider the networked game software system (NGS) introduced earlier in the
Introduction. Table 3 presents a test suite consisting of 24 selected tests out of all possible
combinations. This test suite corresponds to an MDA(24; 1,G, (2,3,4,4)), where the interaction
graph is defined as G = (V,E) with vertex set V = ({F,F, F; F4 and edge set
E = {{F1, F2},{F\, F3},{F, Fa}, {F2, F3}, {F2, F4}}.

To demonstrate the practical applicability of MDAs on graphs, we present a simulated fault
localization scenario based on the test suite in Table 3. In this scenario, only Test 2 and 13 produce
failures, while all other tests pass. By analyzing the interactions covered by these two failing tests, we
observe that the interaction (F,, F3) = (Windows, ISDL) is the only valid 2-way interaction common
to both tests. Let 7 = {T} denote the (hypothetical) set of faulty interactions. The set of rows
covering 7 is then p(A,7") = {2, 13}. According to the definition of MDASs on graphs, there exists no
other interaction set 7' C VI, with |7’| = 1 such that p(A,7") = {2,13}. Therefore, the faulty
interaction 7 is uniquely identifiable from the observed test outcomes.

This example clearly illustrates the fault localization capability of the proposed
MDA(24;1,G, (2,3,4,4)). Unlike mixed covering arrays on graphs, which may only guarantee fault
detection, our graph-based MDA enables precise identification of faulty interactions. Moreover, by
incorporating interaction constraints through the graph G, the size of the test suite can be significantly
reduced without sacrificing diagnostic power. In the given example, a full factorial design would
require 2 X 3 x4 x4 = 96 tests. In contrast, the graph-based detecting array achieves the same level of
fault localization with only 24 tests. This empirical result validates the efficiency and effectiveness of
the proposed framework. It is particularly advantageous in practical testing scenarios such as software
systems with heterogeneous configurations where reducing testing cost while maintaining high
diagnostic accuracy is critically important.
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Table 3. An MDA(24;1,G, (2,3,4,4)) for the NGS.

Test case Fy: Audio F>: OS F5: Browser F4: Access
1 Digital Windows Chrome VPN

2 Digital Windows Edge ISDL

3 Digital Windows Firefox Modem
4 Digital Windows Opera ZTNA
5 Digital Linux Chrome ISDL

6 Digital Linux Edge Modem
7 Digital Linux Firefox ZTNA
8 Digital Linux Opera VPN

9 Digital Mac Chrome Modem
10 Digital Mac Edge ZTNA
11 Digital Mac Firefox VPN

12 Digital Mac Opera ISDL
13 Creative Windows Chrome ISDL
14 Creative Windows Edge Modem
15 Creative Windows Firefox ZTNA
16 Creative Windows Opera VPN

17 Creative Linux Chrome Modem
18 Creative Linux Edge ZTNA
19 Creative Linux Firefox VPN
20 Creative Linux Opera ISDL
21 Creative Mac Chrome VPN

22 Creative Mac Edge ISDL
23 Creative Mac Firefox Modem
24 Creative Mac Opera ZTNA

3. Optimality criterion and combinatorial characterization of MDAs on graphs

The primary goal of this section is twofold. First, we establish a lower bound for the function
MDAN(, G, (vi,v3,...,v;)). Second, we examine the combinatorial properties of optimal mixed-
level detecting arrays (MDAs) on graphs that attain this bound. To this end, we begin by introducing
a benchmark for evaluating the optimality of an MDA(N; d, G, (v, Vva,...,v:)). The following result
parallels Lemma 2.1 in [22], implying that |o(A, T')| > 2 must hold for any valid 2-way interaction 7 in
A. Since an MDA(N; d, G, (vy, ..., v)) is also an MDA(N; s, G, (vq,...,v)) forany 0 < s < d — 1, this
observation can be generalized as follows. Similar results for classical (non-graph-based) detecting
arrays appear in [23].

Lemma 3.1. Let A be an MDA(N; d, G, (vi, V2, ..., V). Then, for any valid 2-way interaction T in A,
we have |p(A,T)| > d + 1.

Applying Lemma 3.1, we immediately obtain the following lower bound, which serves as a
benchmark for assessing the optimality of MDAs on graphs.
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Theorem 3.2. Let G = (V, E) be a simple weighted graph, and define the pairwise weight PW(G) =
max{vv; :{V;, V;} € E}. Then,

MDAN, G, (vi,va,...,v)) = (d + 1)PW(G). 3.1

Proof. Let A be an MDA(N; d, G, (vi, ..., vi)). By the definition of PW(G), there exists an edge {V;, V;}
such that v;v; = PW(G). By Lemma 3.1, each of the v;v; possible interactions on {F, F';} must appear
at least d + 1 times. Consequently, we have N > (d + 1)PW(G).

Due to the structural constraints imposed by G, the two factors with the highest levels may not
participate in any valid 2-way interaction. Hence, PW(G) may be strictly smaller than the product
Vi—1Vk, even though these are the largest levels among all factors. Our objective is to construct an
MDA(N;d, G, (vy,...,v)) with N = (d + 1)PW(G), which we regard as optimal. Optimal MDAs
on graphs are of practical significance in software testing, as they minimize the number of required
test cases. To precisely characterize the properties and conditions of optimal MDAs on graphs, we
introduce several key concepts below.

Let A be an MDA(N; d, G, (vi,vs,...,v)), where G is a simple weighted graph. Consider a valid
2-way interaction T, = {((ji,a;,),(j2,q},)) : a;, € ZV./.’ aj € Zv_/z} corresponding to an edge e =
{Vi,V,,} € E(G). For another edge ¢’ = {V;, V;} € E(G), we define an extension of 75, denoted by T,
as follows:

1) If e and €’ are vertex-disjoint (|V(e) N V(e')| = 0), then T = {((ji,a,,), (j2,a},), (i, a:), (j,a))) : a; €
Zy,a;j € Ly}

2) If e and ¢’ share exactly one vertex V; (|V(e) N V(e’)| = 1), add the non-common vertex of e’ to T,
to form ' = {((j1, a;,), (2, aj), (. aj) : aj € Z,}.

Definition 3.1. An array A is said to be extendable if, for every valid 2-way interaction 7, and any
collection of d extensions T (1 < i < d) of T, the set p(A, T>)\ U~ p(A, T?) is non-empty. In other
words, there exists at least one row covering 7, but none of its d extensions simultaneously.

We are now ready to present a key combinatorial property of MDAs defined on graphs.

Theorem 3.3. Let A be an Nxk array of type (v, va, ..., ). Then A isan MDA(N; d, G, (vi,va, ..., V)
if and only if it is an extendable MCA ;.1 (N; G, (v, V2, . . ., V).

Proof. “<” Suppose that A is not an MDA(N; d, G, (vi, Vvs,...,v)). Then there exist a valid 2-way
interaction T = {((j1,a;,), (j2,a},)) : aj, € Ly, ,aj, € Zv,-z} and a collection of d valid 2-way interactions
T ={T\,T>,--- , Ty} suchthat T ¢ 7 and p(A,T) C p(A,T) = Ulep(A, T;). Construct an extension
T® of T corresponding to each T; as follows:

1) If the first coordinates in T; coincide with T, let T be any extension of 7.

2) If T; contains an element (f;, @;) where f; does not appear as a first coordinate in 7', then define
T® as the interaction obtained by adding (f;,a;) to T.

3) If T; contains two elements (f;, a;) and (fj, a;), with neither f; nor f; appearing in 7', then define
T by adding both of these pairs to T.

Now consider any row R € p(A,T) € p(A,7). Then there exists some 7; € 7 such that
R € p(A,T;). By the construction above, it follows that R € p(A, T?). Therefore, we conclude that
(A, T\ UL, p(A, T®) = 0, which contradicts the assumption that A is extendable.
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“=" Conversely, assume that there exists a valid 2-way interaction T’ = {((ji1,a;,), (j2,a},)) : a;, €
Z,, ,aj, € Z,, } and a collection of d extensions T for 1 < i < d such that p(A, T)\ UL, p(A, T?) = 0.
By definition, each 7 is an extension of T, which implies p(A, T?”) C p(A, T) for all i, and therefore
p(A,T) = U;‘;l p(A, T?). Based on the structure of these extensions, we can associate each 7@ with a
valid 2-way interaction 7 in the following manner:

D IfTO = {((1,a;), (ar aj), (G, a)), (ja))} with a; € Z,,, a; € Z,,, then the corresponding valid
2-way interaction T; is defined as T; = {(i, a;), (J, a;)};

2) I T9 = {((j1,aj), (j2,aj,), (j,aj)} with a; € Z, , then the corresponding interaction T; is defined
as either T; = {(j1, a;,), (j,ap} or T; = {(j»,aj,), (j,a;)}, depending on which vertex is shared.

Thus, we have p(A, T) = U%, p(A, T?) C UL, p(A, T;) which contradicts the definition of a mixed-
level detecting array (MDA) on graphs.
As an immediate consequence of Theorem 3.3, we obtain the following result.

Theorem 3.4. An optimal MDA(N;d, G, (vi,Vva,...,V)) that attains the lower bound in (3.1) is
equivalent to an extendable MCA . {(N; G, (v, Vs, ..., v;)) of optimal size N = (d + 1)PW(G).

Theorem 3.4 establishes a structural equivalence between two fundamental combinatorial
constructs under graph-based interaction constraints: optimal mixed-level detecting arrays (MDAs)
and extendable mixed-level covering arrays (MCAs) defined on the same interaction graph G. In
particular, any MDA(N;d, G, (vi,Vv,,...,V)) that attains the theoretical lower bound in (3.1) is
necessarily an extendable MCA . 1(N; G, (v, Vvs,...,v;)) of size N = (d + 1)PW(G). From a practical
perspective, Theorem 3.4 provides a constructive framework for designing optimal MDAs when
factor interactions are constrained by an underlying graph structure. Specifically, the construction of a
minimal-size extendable MCA on G directly yields an MDA that is not only size-optimal but also
facilitates efficient fault localization. This property is particularly advantageous in application
domains such as software testing and system configuration, where factor interactions are often limited
by architectural constraints. In these contexts, the ability to simultaneously achieve comprehensive
interaction coverage and precise fault detection with minimal testing overhead is of
critical importance.

4. Optimal MDAs on paths, cycles, and binary trees

In this section, we will construct a large number of optimal MDAs on paths, cycles, and binary
trees by leveraging the notion of extendability and the equivalent characterization established in
Theorem 3.4. To facilitate the combinatorial construction of optimal MDAs on graphs, we introduce
the concept of simple mixed covering arrays defined over graphs.

Definition 4.1. An MCA,(N;G, (vi,va,..., ) 1is said to be simple if it satisfies the
following conditions:

1) For any two edges in G that share a common vertex, the corresponding N X 3 subarray formed by
the factors associated with the vertices of these two edges contains each possible combination of
levels at most once.

2) For any two disjoint edges in G, the corresponding N X 4 subarray formed by the factors at the
endpoints of the two edges contains each possible combination of levels at most once.
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Table 3 provides an example of a simple MCA,(24; G, (2,3,4,4)), where G denotes a complete
factor interaction graph except that the edge representing the interaction between the two factors of
level 4 has been removed. When G is the complete graph on k vertices, this definition coincides with
the standard super-simple MCA of strength 2 introduced in [24], in which the two conditions reduce to
requiring that every N X 3 subarray contains each possible 3-tuple of values from the selected columns
at most once. Simple MCAs on graphs provide a sufficient condition for the existence of optimal
MDA on graphs, as formalized in the following result.

Theorem 4.1. If there exists a simple MCA 4,1 (N; G, (vi,va, - -+ ,v)) of optimal size N = (d+1)PW(G),
then there exists an optimal MDA(N; d, G, (vq, v, - - - , v)) that achieves the lower bound given in (3.1).

Proof. Let B be a simple MCA,1(N; G, (v, V2, ,v)) with N = (d + 1)PW(G). We aim to show that
B is extendable. Suppose, for the sake of contradiction, that there exists a valid 2-way interaction T
and d of its extensions 7 (i = 1,2,...,d) such that p(B, T)\ U™, p(B,T®) = 0. By Lemma 3.1, the
interaction 7" must occur at least d + 1 times in B. By the pigeonhole principle, at least one extension
T® must appear in at least two rows, i.e., [o(B, T®)| > 2, which implies that a specific 3-tuple or 4-
tuple of symbols occurs more than once in the same set of three or four columns of B, violating the
simplicity condition. Hence, B must be extendable, and by Theorem 3.3, an optimal MDA on G can
be constructed from it.

It is worth noting that any super-simple MCAg . (N;k, (vi,va,...,)) 1is also a simple
MCA41(N; G, (v, V2, ..., ) for some weighted graphs G, whereas the converse is not necessarily
true; the class of super-simple MCAs is strictly contained within the broader class of simple MCAs on
graphs. Motivated by Theorem 4.1, which provides a sufficient condition for the existence of optimal
MDAs on graphs via simple MCAs on graphs, we further explore combinatorial constructions of
optimal MDAs on graphs using super-simple MCAs as foundational building blocks.

4.1. Constructions of (optimal) MDAs on paths, cycles, and binary trees

In this subsection, we present constructions of (optimal) MDAs on paths, cycles, and binary trees,
derived from super-simple mixed covering arrays.

Construction 4.2. Let k > 3 be an odd integer. Let a; = 1,a,,... At denote the multiplicative
inverses in Zy, listed in increasing order. Suppose there exists a super-simple
MCA (N k,(vi,va, -+, V) of optimal size N = (d + 1)vi_1w. Then there exists a simple
MCA 1 1(N; G, (Vi, V2, , Vi, Vi, Var+15 s Var(k=1) (mod k)+15 *** s V1s Vai+1s ** 5 Vai(k=1) (mod k)+1>" " » V1,

Ve * s Va gy (k-1) (mod k)+1 v1), where G is a path whose length ranges from k to k%k) + 1.
2

p Al ’..
5 +1

Proof. Let A = (Ao, Ay, -+, A1) denote a super-simple MCA 4,1 (N; k, (v, vy, -+, ) of optimal size
N = (d + 1)vi_1vr. By number-theoretic properties, the elements a; = 1,a,,--- N € Zj satisty

ai+a;#0 (mod k) forall 1 <i# j< @. We construct a new array A’ by concatenating sequences as
A’ = (AO’Am "t aAa|~(k—2)’Aa|~(k—])a e ’AO, Aa,-’ e ’Aai-(k—Z), Aa,-~(k—])a U ’AO)’

with subscripts that are taken as modulo k, andi = 1,2,..., 20 Tt s straightforward to verify that A" is
a simple MCA,1(N; G, (vi,Vva,- -+ , Vi, -+ , V1)), where G forms a path beginning and ending at vertex
v, with total length k@ + 1. Since removing vertices from a path does not affect the simplicity or
extendability, the conclusion holds.
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Vi

Vs V2

V4 V3

Figure 1. A complete graph on 5 vertices.

To illustrate this construction, we consider an example. A super-simple MCA,(32; 2,5, 3'4%) was
previously constructed in [25], which can equivalently be viewed as a super-simple
MCA,(32; Ks,3'4*). In Figure 1, the complete interaction graph Ks is depicted, with vertex
weights 3,4,4,4,4 assigned to Vi, V,, Vi, V4, Vs, respectively. By applying Construction 4.2, we
obtain a simple MCA,(32;G, (3,4,4,4,4,3,4,4,4,4,3)), where the corresponding path graph G is
illustrated in Figure 2.

Vi V, V3 V4 Vs | V3 Vs V, V4 Vi
@ L { L 4 L J { @ L J { { L J

Figure 2. A path with length 11.

For even values of k, additional vertices can be incorporated into the construction without affecting
the overall structure of the resulting array.

Construction 4.3. Let k > 6 be an even integer, and let ay = 1,ay, ..., b denote the multiplicative

inverses in Zk, listed in increasing order. Suppose that there exists a super-simple

MCA . (N; k,(vi,va, -+, V) of optimal size N = (d + 1)vi_1v. Then, there exists a simple

MCA41(N; G, (v, V2, 5 Via VI, Vayels " 5 Vay(=1) (mod K+1> > V1 Vairls = > Vaik—1) (mod 1> " » V1,

V otk * s Va0 (k-1) (mod K)+1> V1> V3, * ** 5 Vi1, V1), Where G is a path whose length ranges from k to
2

AN ’..
5 +1

KD+ £ 41,

Proof. The proof follows analogously to Construction 4.2, with the additional step of concatenating
the segment (Ao, Ay, ..., A2, Ap) at the end of the array.

To construct MDASs on cycles, we modify Constructions 4.2 and 4.3 by removing the final column,
thereby ensuring that the resulting graph forms a cycle. This leads to the following constructions.

Construction 4.4. Let k > 3 be an odd integer, and let a; = 1,a,,--- At be the multiplicative
inverses in 7y, listed in increasing order. Suppose there exists a super-simple
MCA 1(N; k,(vi,va, -+ ,w)) of optimal size N = (d + 1)vi_yw. Then there exists a simple
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MCA (N, G, (vi,va, -+ Vi, Vi, Vay+15" " s Vay(k=1) (mod k)+15 " 5> V1> Vai+15" " 5 Vai(k=1) (mod k)+15>°** 5 VI,
Vel g5 ,va@(k_l) (mod k)+1), where G is a cycle of length ki for 1 <i < @.

Construction 4.5. Let k > 6 be an even integer, and let a; = 1,a,,..., b denote the multiplicative
inverses in 7y, arranged in increasing order. Suppose there exists a super-simple
MCA (N k,(vi,va, -+, Vi) of optimal size N = (d + 1)vi_yw. Then there exists a simple
MCA 1 1(N; G, (Vi, Vo, "+ Vi, V1, Var+15° " 5 Vas(k—1) (mod k)+15 " s V1> Vai+15 5 Vai(k—1) (mod k)+1>" " > V1,
Vel g5 ,va@(k_l) (mod k)+1> V1, V3, - -+ , Vi1), where G is a cycle of length is ki + %for 1<i< @.

We now present an algorithm for constructing (optimal) binary trees derived from super-simple
MCAs. A binary tree is a rooted tree in which each internal node has at most two children, commonly
referred to as the left and right child. The detailed construction procedure is outlined in Algorithm 1.
The first step of the algorithm is to select one of the last three factors from the given super-simple
MCA as the root of the binary tree, and assign the remaining two factors as its left and right children,
respectively. Subsequently, the algorithm recursively constructs the left and right subtrees. When
constructing the subtree for a given node, the current node and all its neighbors (i.e., nodes connected
to it in the interaction graph) are removed from the set of available factors. If the remaining set is non-
empty, one factor is selected as the left child, and the procedure recurses. If the set is empty, the branch
terminates. The right child is constructed in a similar, symmetric manner. This recursive process is
applied to all newly added nodes, and the algorithm terminates when no further valid children can be
assigned to any expandable node. The resulting binary tree is thus derived from the super-simple MCA
and conforms to the interaction structure of the factors.

The time complexity of Algorithm 1 is dominated by the recursive traversal of the factor set and
the repeated adjacency checks in the interaction graph G. Assuming that adjacency queries in G are
implemented using an adjacency matrix or hash-based structure (so that each query takes O(1) time),
the algorithm examines at most k nodes, and for each node, it may scan up to k remaining factors to
determine valid children. Hence, the overall worst-case time complexity is O(k?). The space
complexity is O(k), primarily due to the recursion depth (at most k) and the storage of intermediate
factor subsets. In practice, the algorithm is highly efficient for moderate-sized systems. For typical
combinatorial testing applications where the number of factors rarely exceeds 50, the recursive
construction completes almost instantaneously on modern hardware. This makes Algorithm 1
well-suited for generating hierarchical interaction structures in real-world software configuration and
integration testing scenarios.

To ensure deterministic behavior and reproducibility, the function chooseOneFrom(L) is formally
defined to select the factor in L with the largest index (or, equivalently, the one assigned to the highest
hierarchical level, if such a level-based ordering is used as a tie-breaking rule). Similarly,
theOtherOne(R, x) is defined as the unique element in the set R \ x, which is well-defined under the
condition |R| = 2, guaranteed by the structure of our recursive decomposition. A node v is considered
expandable if, after removing v and all its adjacent factors in the interaction graph G from the current
factor set, at least one factor remains available for assignment as a child. This criterion ensures that
the recursion proceeds meaningfully beyond trivial leaf cases. From an efficiency perspective, the
time complexity of Algorithm 1 is dominated by the recursive traversal of the factor set and repeated
adjacency checks in G. Assuming adjacency queries are supported by an adjacency matrix or a
hash-based data structure—both allowing O(1) edge lookups—the algorithm visits at most k nodes,
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and for each node, it may scan up to k remaining factors to identify valid children. Consequently, the
worst-case time complexity is O(k?). The space complexity is O(k), primarily attributed to the
recursion depth (bounded by k) and the temporary storage of intermediate factor subsets. In practice,
the algorithm performs efficiently. For typical combinatorial testing scenarios—where the number of
factors rarely exceeds 50—the construction process completes almost instantaneously on modern
hardware. These properties make Algorithm 1 particularly suitable for generating hierarchical
interaction structures in real-world software configuration and integration testing pipelines.

Algorithm 1 Constructing a Binary Tree

Require: A set of factors from given super-simple MCA . (N; k, (vi, V2, ..., V)
Ensure: A binary tree representing a hierarchical structure of the factors

. if the input factor set contains only one factor then

2 Create a leaf node labeled with that factor

3 return the leaf node

4: end if

5: Select a root factor r by calling chooseOneFrom(factorSet)
6: Let L « factorSet \ {r}
7
8
9

—

. if r has no neighbor in L (i.e., no f € L satisfies {r, f} € E) then
Create a leaf node labeled r

: return this node
10: end if
11: Choose a left child factor fi.t, € L such that {r, fier} € E
12: Let fron < theOtherOne(L, fief)
13: Recursively construct the left subtree using the factors associated with fieg
14: Recursively construct the right subtree using the factors associated with fign
15: Create an internal node labeled r, with the left and right subtrees as its children
16: return this internal node

We now provide an example to illustrate the algorithm. Let A be a super-simple
MCA4;1(N; 5, (vi, v2, V3, V4, Vs5)), Where vy < v, < --- < vs. Following the algorithm, we construct a
binary tree using the vertices V3, Vy4, and Vs. Suppose Vs is chosen as the root, with Vj as its left child
and Vj, as its right child. For the left child V3, whose neighbor in the tree is Vs, the remaining available
vertices are Vi, V5, and V,. We may assign V| and V, as the left and right children of V3, respectively.
Similarly, for the right child V,, whose neighbor is also Vs, the available vertices are Vi, V5, and V3,
from which V; and V, are assigned as the left and right children of V,, respectively. Next, consider the
left child V; of Vj. Its neighbors in the tree are V3 and V,, leaving V, and Vs as available vertices,
which are assigned as the left and right children of V;. In contrast, the right child V, of V3 has no
remaining vertices for further expansion. For the right child V, of V3, we may assign Vs as its left
child, leaving the right child unassigned. A similar situation occurs for the children of V4, where
neither the left child V| nor the right child V, can be further extended. Figure 3 illustrates the
complete process of constructing the binary tree according to this procedure.
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Figure 3. The process of constructing a binary tree.

4.2. Existence of optimal MDAs on paths, cycles, and binary trees

In this subsection, we construct several families of optimal MDAs over paths, cycles, and binary
trees, based on the construction framework presented in Subsection 4.1. As a preliminary step, we first
review several known results on super-simple MCAs, which serve as the fundamental building blocks
for the constructions that follow. We begin with the existence result of optimal super-simple MCAs of
strength 2 with k = 3, as established in [24].

Lemma 4.6 ([24]). Let 2 < vy < v, < v3. Then an optimal super-simple MCA ;(Av,v3; 2, 3, (v, V2, V3))
exists if and only if A < vy.

The next result extends the above construction to k = 4, providing several important
configurations [25].

Lemma4.7. Let v, A, m, and u be positive integers with A > 2. Then the following optimal super-simple
MCAs exist:

(i) MCA(AV*;2,4, A for any A < v;
(ii) MCA (A(vm)?; 2,4, v(vm)?) for any positive integer m > 1;
(iii) MCA>(2v*;2,4,u™V?) forany 2 < u < v.

Lemma 4.8. Let v > 4 be an integer. If v # 2 (mod4), then an optimal super-simple
MCA (A% 2,5, u'v*) exists for A < u < HJ )

The following lemma provides optimal super-simple MCAs where the number of factors is a prime
power or one more than a prime power, leveraging finite field properties.
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Lemma 4.9 ([25]). Let ¢ > 3 be a prime power. Then an optimal super-simple
MCA(Aq*;2, q,q' (¢*)T™") exists for any positive integer A < q. Moreover, if ¢ > 4 is a power of 2,
then an optimal super-simple MCA (Ag*;2,q + 1, q'(g*)?) also exists.

We now generalize the above results to arbitrary v, provided v is the product of distinct
prime powers.

Lemma 4.10 ([25]). Let v = q1q - - - q,, where each q; is a distinct prime power and k = min{g, : 1 <
i < s}. Ifeach q; > 3 and A < v, then an optimal super-simple MCA ;(Av*; 2, k, v! (vV?)K1) exists.

These foundational results provide a rich set of super-simple MCAs with varying parameters. In the
following, we leverage them to construct optimal MDAs on paths, cycles, and binary trees.

4.2.1. Optimal MDAs on paths

We first focus on constructing optimal MDAs on paths, one of the most fundamental graph
structures. A path consists of a linear sequence of vertices connected by consecutive edges, whose
simplicity and regularity make it particularly suitable for sequential interaction testing in software
systems. By exploiting the properties of paths and the construction techniques derived from
super-simple MCAs, we present a series of optimal MDAs.

Theorem 4.11. Let 2 < v < v, < v3. Then for any A < vy, there exists an optimal MDA(Av,v3; A —
1,G, (vi, v2,v3, V1)), where G is a path with vertex sequence V, — Vo, — V3 — V.

Proof. By Lemma 4.6, Construction 4.2, and Theorem 3.3, the existence of the desired MDAs on paths
follows directly.

We next extend to MDAs involving four main factors over paths of length six, allowing for more
complex configurations.

Theorem 4.12. Let A, v, u, and m be positive integers satisfying one of the following:

DA< vu=A4m=1;

i) 2<A<vu=vm=>1;

(i) 1=2,2<u<ym=1.
Then there exists an optimal MDA(N; A — 1, G, (u, vm, vm, vm, u, vin)) with N = A(vin)?, where G is a
path of length 6.

Proof. In each case, the corresponding super-simple MCA is obtained by Lemma 4.7. Denote the array
as A = (Ag,A1,As,A3) and construct a new array A" = (Ag, A1, Az, A3, Ag, Az). This sequence aligns
with the path structure V|, — V, — V3 — V, — V| — V3, ensuring optimal coverage.

For paths with eleven vertices, we have the following result.

Theorem 4.13. Let v > 4 be an integer such that v # 2 (mod 4). Then for any A < u < HJ - A, there
exists an optimal MDA(W*; A — 1, G, (u, v, v, v, v, u,v,v,v, v, u)), where G is a path of length 11.

Proof. This follows directly from Lemma 4.8 and Construction 4.2.
Using Lemma 4.10, we can also construct MDAs for a prime power number of levels.

Theorem 4.14. Let g > 3 be a prime power. Then:
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1) An optimal MDA(Ag*;A1—=1,G,(q,q% -+ . ¢*. ¢, G* ... q* -+ ,q.G% -+ ,q*,q)) exists for any A <
q, where G is a path of length ‘12_2—“2.

2) Moreover, if g > 4 is a power of 2, then an optimal MDA(Ag*; A—1,G, (¢, ¢*, -+ , ¢*. . ¢*, -+ , ¢*,
g, gt g% q)) also exists, where G is a path of length (g + 1) - @ + 1.

Finally, when v is a product of several prime powers, the smallest prime power factor governs the
size and structure of the resulting MDA.

Theorem 4.15. Letv = q,q> - - - q5 with each q; > 3 a distinct prime power, and k = min{q; : 1 <i < s}.
Then an optimal MDA(W*; A — 1, G, (v, V2, - V2, v, V2, - v, V2, -+ V2, V) exists where:

1) If k > 3 is odd, then G is a path of length k - %k) +1;
2) If k > 6 is even, then G is also a path of length k - @ + '5‘ + 1.

Proof. The result follows directly from Lemma 4.10 and Constructions 4.2 and 4.3, where the smallest
prime power factor k determines the path length.

4.2.2. Optimal MDAs on cycles

We now turn to optimal MDAs over cycles. Unlike paths, cycles impose stricter structural
constraints due to their closed-loop topology. In particular, for a small number of interacting factors
(e.g., k = 3,4), super-simple MCAs cannot, in general, be extended to additional factors without
sacrificing optimality.

Theorem 4.16. Let 2 < v < v, < v3, and let G be a cycle with vertex sequence Vi — V, — V3 = V.
Then an optimal MDA(Av,v3; A — 1, G, (v, v2, v3)) exists for any A < vy.

The following theorem incorporates four factors arranged in a 4-cycle.

Theorem 4.17. Let A, v, u, and m be positive integers with 2 < A < v, and let G be a 4-vertex cycle.
Then the following MDA exist:

1) An optimal MDA(AV*; A — 1, G, (A, v, v, v, V)) exists for 1 < v;
2) An optimal MDA(A(vm)*; A — 1, G, (v, v, vin, vin)) exists;
3) An optimal MDA(V*; 1, G, (u, v, v, v)) exists, where 2 < u < v.

We then generalize to larger cycles by replicating basic construction blocks. The following result
provides explicit constructions for cycles of lengths 5 and 10.

Theorem 4.18. Let v > 4 be an integer such that v # 2 (mod 4). Then for any 1 < u < HJ - A,
there exist:

1) An optimal MDA(AV*; A1 — 1, G, (u,v, v, v,v)), where G is a 5-cycle;
2) An optimal MDA(W*; A - 1,G, (u,v,v,v,v,u,v,v,v,v)), where G is a 10-cycle.

Proof. These results follow from Lemma 4.8 together with Construction 4.4.
Theorem 4.19. Let g > 3 be a prime power. Then:

1) An optimal MDA(Ag*; A —1,G,(q,¢%, ..., 4>, 4. 4*,...,q*, - -+)) exists for any A < g, where G is a

cycle of length g - i for 1 <i < q;].

Electronic Research Archive Volume 33, Issue 11, 6610-6630.



6627

2) Moreover, if q > 4 is a power of 2, then an  optimal

MDA(Ag*; A — 1,G,(q, 4%, ....¢*.q.q*,...,q*,--+)) also exists, where G is a path of length
(g+1)-iforl <i< €D

Proof. The results are based on Lemma 4.10 using Constructions 4.4.

Finally, we generalize to the setting where the number of levels v is a product of distinct prime
powers. In this context, the smallest prime power factor plays a pivotal role in determining the structure
and size of the optimal MDAs over cycles.

Theorem 4.20. Let v = q1q, - - - g5 be the standard factorization of v into distinct prime powers, and
let k = min{q; : 1 < i < s}. Suppose that each q; > 3 and A < v. Then there exists an optimal
MDAW*; A-1,G, (v,V2, ... V2,0, -+ V2, - -+ ), where the cycle structure G is determined as follows:

1) If k > 3 is odd, then G is a cycle of length k -i for 1 <i < %k);
2) If k > 6 is even, then G is also a cycle of length k - i + %for 1<i< @.

Proof. The result follows directly from Lemma 4.10 and Constructions 4.4 and 4.5, where the smallest
prime power factor k£ determines the cycle length.

For binary trees, numerous results can be derived by applying Algorithm 1 in conjunction with
Lemmas 4.6—4.10. Details are omitted for brevity.

5. Concluding remarks

In this paper, we introduced the concept of MDAs on graphs, extending classical detecting array
theory to accommodate heterogeneous factors and the graph-structured interaction constraints. This
new model is particularly relevant for testing component-based systems where parameter interactions
are governed by a dependency graph—reflecting real-world scenarios such as network configurations,
hierarchical components, and modular software architectures. We established theoretical bounds on
the size of MDAs on graphs and provided combinatorial characterizations for their existence.
Moreover, we presented explicit constructions of optimal MDAs on paths, cycles, and binary trees by
leveraging super-simple mixed covering arrays (MCAsS). These results demonstrate that
well-structured MCAs can serve as efficient and practical building blocks for generating
cost-effective, fault-sensitive test suites under graph-based interaction constraints. Overall, this study
provides both a rigorous theoretical foundation and constructive methodologies, highlighting the
novelty and practical relevance of MDAs on graphs in the design of systematic testing strategies for
heterogeneous and graph-constrained systems. Looking ahead, a particularly promising direction for
future research is to develop efficient algorithmic techniques for constructing mixed-level detecting
arrays (MDAs) on specific classes of graphs or for super-simple mixed covering arrays, especially
when additional structural constraints or optimality requirements are imposed. Such algorithmic
advancements would not only improve the practical feasibility of generating MDAs but also enable
their application to large-scale and complex systems where computational efficiency is critical.
Another important avenue for exploration is to generalize the current framework to encompass a
broader spectrum of graph topologies, including grids, scale-free networks, unbalanced networks,
tree-symmetric networks [26,27] , and orthogonal graph squares for the disjoint union of paths [28].
This extension would allow researchers to systematically investigate how the underlying graph
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structure affects both the existence conditions and the efficiency of MDA, thereby providing deeper
insights into the interplay between combinatorial design and network topology in heterogeneous
testing scenarios.
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