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Abstract: This work established synchronization criteria for master-slave inertial neural networks
with leakage time-varying delays and proportional delays, The solution employed a direct analysis
method based on parameterized system solutions. The derived synchronization conditions consisted of
only a few simple inequalities, which were easy to solve.Based on the adopted approach, a novel class
of synchronization controllers was designed for proportional delays without constructing any complex
functionals. Using the proposed method, leakage delays could be transformed into their maximum
absolute values, enabling the derivation of delay-dependent conditions without any intricate treatment
of leakage delays. Furthermore, it was noteworthy that this paper presented the first investigation into
this problem using the proposed method, and the technique employed was novel. Finally, numerical
simulations were provided to verify the effectiveness of the proposed method.
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1. Introduction

For many years, research on neural networks (NNs) has been a popular topic [1-5]. Inertial
neural networks (INNs), a specialized subclass of NNs, are characterized by the incorporation
of inertial terms into their dynamics. Babcocka et al. [6] found that electronic neural networks
with inertial couplings exhibit more complex dynamics than those with standard resistor-capacitor
couplings. This integration leads to significantly more complex dynamic behaviors compared to
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conventional first-order neural models [7, 8]. Research on INNs has consistently remained an active
and important area within computational neuroscience and nonlinear systems [9—12]. Recently,
studies on INNs have demonstrated promising results in critical application domains such as secure
communication and image encryption [13—-16]. These advances highlight the substantial research
value of investigating INNs, particularly in relation to their distinctive dynamic properties and practical
implementation potential.

Proportional delay, as a special category of unbounded time delays, has attracted growing attention
from an increasing number of scholars in the field of neural networks in recent years. When
proportional delays are introduced into INNs, the combined influence of inertial terms and such
delays substantially increases the complexity of the associated problems. Consequently, research on
INNs with proportional delays has attracted substantial scholarly attention. Several well-established
methodologies have been developed to address these challenges, including: Lyapunov functional
analysis [17]; the delay-free functional approach by Zhang et al. [18]; proportional delay differential
inequalities proposed by Zhou et al. [19]; the Halanay inequality technique documented in [20];
etc. Given these developments, investigating INNs with proportional delays demonstrates significant
theoretical value and practical relevance. The pursuit of novel methodologies to resolve these complex
issues represents a compelling and substantial scientific challenge.

Leakage delays, recognized as a particularly challenging category of time delays, have attracted
considerable research attention due to their significant theoretical implications. Consequently, their
integration into the study of INNs has become an active research frontier. Wang et al. [21]
established convergence criteria for such systems using Lyapunov stability theory; Yu et al. [22]
derived delay-dependent stability conditions by combining Lyapunov functionals with the Jensen
inequality; reference [23] developed synchronization criteria through an effective sliding mode control
law without requiring delay differentiability; etc. Nevertheless, a fundamental question remains: Can
novel methodologies be formulated to analyze INNs with leakage delays while circumventing the need
for intricate delay-specific treatments? Therefore, the study of INNs with leakage delays continues to
hold significant research value.

Fixed-time synchronization (FTS), as an advanced synchronization technique, has demonstrated
substantial success across diverse domains in recent years [24,25], including image encryption [26—28],
secure communication [29], chaotic cryptosystems, 3D point cloud data protection, Chua’s circuit
networks [30], robotic trajectory tracking, Chua oscillator metrics, and multi-agent systems [31-34].
Consequently, research on FTS for NNs possesses significant theoretical and practical value, attracting
considerable scholarly attention. Representative studies include: Yao et al. [35] investigated fixed-time
projective synchronization for INNs; reference [36] addressed FTS control for fuzzy inertial cellular
NNs; Ran et al. [37] studied FTS in INNs with parametric and structural mismatches; and Long et
al. [38] resolved FTS for delayed inertial complex-valued NNs.

However, conventional FTS often proves overly idealized for real-world applications due to
practical constraints. Motivated by this limitation, Su et al. [39] introduced the concept of practical
FTS, which was subsequently refined by Yuan et al. [40] into the framework of FTS with pre-
specified accuracy. Both approaches explicitly account for initial condition dependencies, with the
latter establishing rigorous quantitative precision guarantees.

Furthermore, to the authors’ knowledge, no existing studies have addressed the synchronization
problem for INNs that include both leakage and proportional delays. Despite increasing attention to
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complex delay structures, this gap remains unaddressed. Motivated by the importance of these delays,
the value of FTS, and the limitations of conventional methods, this paper proposes a direct analysis
approach based on parameterized system solutions to study accuracy-preassigned FT'S (AP-FTS) for
INNs with time-varying leakage and proportional delays. This work fills a critical research gap and
advances the methodology for FTS in delay-sensitive INNs.

The main contributions of this paper are as follows:

1) This paper presents a novel method for studying synchronization problems and applies it to INNs
with proportional delays.

2) The derived synchronization conditions consist of only a few simple inequalities, ensuring
computational tractability.

3) A novel controller designed specifically for proportional delays has been developed, which avoids
complex delay-handling procedures.

4) The proposed methodology effectively mitigates leakage delay impacts while streamlining the
proof process.

5) The coupled dynamics of leakage and proportional delays are concurrently addressed, significantly
broadening applicability.

6) Inertial term processing is achieved through tailored tuning parameters without resorting to
variable substitution.

Notations: Denote by R the real number field. The R-linear space of continuous functions mapping S,
to S, is denoted C(Sy, S;). Additionally, define (n) = 1,2,...,n.
2. Model preparation

Fist of all, we introduce an INN model characterized by time-varying leakage delays and
proportional delays:

Hi(t) = = &Hi() — &Hi(t = 00) + ) by [ (Hi(1)
j=1

+ G H b)), i € (1> 1, (2.1a)

J=1

Hi(s) = ¢"(5), Hi(s) = v\ (s),
i € (n), s € [min{bty, ty — 0}, 1y, (2.1b)

in which # indicates the number of neurons and i denotes the i-th neuron, H, is the neuronal state, H;
is the inertial term, 0;(¢) € C([ty, +0), [0;, 0;]) refers to the leakage delay, 7y > O represents the initial
time, 0 < 6; < 0;, 0 < b;; < 1 stands for the proportional coefficient, & > 0, a; > 0, connection weights
are given by b;; and ¢;;, while the mappings fj(q) : R = R (g € (2)) define the activation functions,
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cpl(,l) and 1//1(.1) € C([min{bty, ty — 0}, ty], R) appertain to the initial functions, 0 = max o; represents the

1<i<n

upper bound of the absolute values of leakage delays, and b = min b;; is the minimum value of the

1<i,j<n
proportional coefficients.
Let the model (2.1) be the master INN, and assume its slave INN as follows:

L(t) = = &L(0) — aidi(t — 0,(1))

# D by + e fR b))
j=1 j=1
+ ui(t)’ i € <I’l>,t > t()’ (223)

L(s) = ¢2(s), Ii(s) = ¥\ ?(s),
i € (n), s € [min{bty, ty — 0}, 1], (2.2b)

where I; represents the neuronal state, /; indicates the inertial term, 9052) and wl@) € C([min{bty, 1ty —
0}, t9], R) stand for the initial functions, and the i-th controller component is denoted by u;(?).
Consequently, the error system below is derived from (2.1) and (2.2).

Ei(1) = — EEi(t) — GEt — 04(1))
+ D By FE ) + ) e F P (E (b))
j=1 j=1
+u; (1), i € {(n),t > 1y, (2.3a)

Ei(s) = @i(s), Ei(s) = yi(s),
i € (n), s € [min{bty, ty — 0}, o], (2.3b)
where Ei(t) = I(t) = H(1), ¢i(s) = ¢{(s) = ¢ (s), i) = ¢”(s) = ;" (s), and
FO(E0) = F7U0) - P (Hi(1), q € (2).
Furthermore, the error system is assumed to satisfy the following assumptions.

Assumption 1. A nonnegative constant F exists satisfying |F fq)(u)l < F foralli e (n), u € R, and
q € (2).
The controller u;(¢) is designed as follows to address the posed problem:
ui(t) = (& + P) Ei(1) + Q;E(1)

- Sgn (ﬂ.l(t)) Ai’t > t()’i € <I’l>, (24)
where the controller gains requiring determination are P; < 0 and Q; € [—#, O], and

A; = Z F(|l_7ij| + |5ij|) ,

J=1

mi(t) = Eit) — PiE(1) — Q:Ei2).
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Remark 1. Distinct from conventional approaches in references [17-20] that handle proportional
delays through Lyapunov functional construction or inequality techniques, this study designs
controller (2.4) based on the proposed methodology to address proportional delays, resulting in
significantly streamlined proof procedures.

Let A; and B; satisfy the following relationship:
~AB; = Q;, A+ B;= P;and B; < A, < 0.
Based on this, the error system (2.3) can be transformed into the following form:
Ei(t) =AE(0) + BE(D) - ABE(0) - aE(t - 0/(1))

+ D ByF(E ) + ) 6 F P (E (b)) — sgn (mi(1) 4,

=1 =1
i€ n),t> to, (2.5a)
Ei(s) = ¢i(s), Ei(s) = yi(s),i € (n), s € [min{b1g, to — 0}, 7). (2.5b)

Remark 2. By constraining the magnitude relationships among controller gains, we design regulation
- -

parameters A; and B; to process inertial terms directly. This approach eliminates the need for variable

substitutions while substantially reducing theoretical derivation complexity.

Assumption 2. The mentioned A, Bi(i€(ny)and 1> 0 satisfy the following inequalities:

20+ 1< —A; < —B; and A; — B, — 2a,e™ > 0.

1 2[11‘6/161

Remark 3. Assumption 2 yields the inequalities F (1) = =— + = > -2 > 2 gnd & < |
Ai+a Bi+A A+l Ai~B;
(i € (n)). Moreover, there exists L > 1 such that
-B; a6 F (A
Ris(d) =t 2Dy ey,

(A;-B)L A, - B,

Remark 4. The inequalities presented in Assumption 2 and Remark 3 constitute the synchronization
conditions in this study. It should be noted that these conditions consist solely of simple scalar
inequalities, making them highly tractable for computational implementation.

Definition 1. The inertial neural networks (2.1) and (2.2) are said to achieve FTS with accuracy
€ under controller u(t) if, for arbitrary initial states ¢; and ¥; (i € (n)), there exist € > 0 and
t. > 0 satisfying

DUE@I+E@) <€, t>1.
i=1

Assumption 3. Given fixed L and A, there exists € > 0 satisfying

L) + In||E]| = InS > 0,
n
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where
L(1) = max L;(2),
1<i<n
l_jl(/l) =L (1 + 451,-6’”’") + 14_)53)[,
IEI = max (I1Eil + IE)
1<i<n

IE] = sup |Ei(s)), Ei(s) = Ei(to + 5),
B min{bty,to—0}<s<ty B 5
IEi| = sup |Ei(s)], Ei(s) = Ei(to + ).

min{bty,tg—0}<s<ty

This paper will design controller (2.4) for guaranteeing AP-FTS of INNs (2.1) and (2.2).
3. Main results

Next, a controller (2.4) is designed to ensure AP-FTS for INNs (2.1) and (2.2).

Theorem 1. Given Assumption 1, any solution E(t) := (E(t), E2(f), ...E,(t))T to the error system
(2.5a) satisfies:

|E(I)|<M
T4

i Di

, 1> 1y,0 €(n), 3.1

-

where

Ja(t) = (™ — &™) |E0)] + (Aie™ — Bie™) |E0).

f
Jo(t) = @; f (e + egi(t_s)) |Ei(s — 0,(s))|ds.
0
Proof. For any t > ty, according to (2.5a), there is
Ei(t) - KEt) - B |Ei() - KE1))
=—a;Ei(t — 0(1)) + Z BijFE-I)(Ej(f))
j=1
+ D EFP(E (bijt) - sgn(rin)a, i € (n).

J=1

Next, it can be obtained that
—Eil _ d _Eit ; . —_ —). .
e "mi(t) =3 (e [El(t) A,E,(t)])

= — e MaE(t - 00) + € Y byF(E;(1)
=1

+ BN 5 FPE (byt) - €™ sgn(m(0)as, i € (n).
j=1
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Then, according to Assumption 1, there will be

0 < e Bin(r) < e B1a|E(t — 0,(t))], when m;(f) > 0, i € (n),
—e Bia,|Et — 0,0))] < e Biri(f) < 0, when mi(f) < 0, i € (n).

Combining the two cases in (3.2), we can get

—e PG| Ei(t — 0i(1))] < e P'mit)
B~
< e G |Edt — 0:(0))l,
t> 1,1 €{n).

Then, exchanging A; and B; in the process of deriving (3.3), we can get

—e MG Ei(t — 0:(D) < e M mi(t)
.
< e Ma|E(t — 0:(1))l,
t> 1,1 €{n).

Integrating both sides of (3.2) and (3.3) from O to ¢ yields

and

Therefore,

and, hence, (3.1) holds.

!
& f BIE(s - oi(s)lds

0
<E(t) — AEA1) - €™ [E0) - AE(0)]

!
<a; f B E (s — 0i(s))|ds, t = ty,i € (n)
0

t
-4 f e IEi(s = 0i(s)lds

0
<E(t) - BE(1) - e" [E(0) - BE(0)]

!
<a f I E (s — o(WIds, 1> fo,i € ().

0

—Jit(t) = Jo(1) < (AT = B )w;(t) < Jin (1) + Ji(0),

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Remark 5. Theorem 1 establishes an inequality governing state-related scalar function within the
error system. This result fundamentally characterizes solution properties of the error dynamics and

serves as the foundational basis for all subsequent derivation procedures throughout this paper.

The following theorem provides sufficient conditions for AP-FTS of INNs (2.1) and (2.2).

Theorem 2. With Assumptions 1-3 holding, the following hold:

Electronic Research Archive
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() |E(0)] < Llllzjlle‘”"for any t > ty,i € (n), where ||E|| is the same as in Assumption 3;

(ii) The controller (2.4) with P; = ff, + B)l. and Q; = —&Ei can guarantee that the INNs (2.1) and (2.2)
realize FTS with a preassigned accuracy €.

Proof. (1) According to (3.1) and Assumption 2, it is obtained that
Jo() < ~BlIElle™ < ~BE|e™,

Then, there will be

1 - — d > -
ED] < = [—Bl-nEne‘Mai f (et + &) |Ei(s—oi<s>)|ds]. (3.7)
A; — B; 0

i i

When ¢ = t,, (i) is obvious. If (i) is incorrect for some ¢ > t,, V' € (n), set T = inf{t > 1, : |E,(?)| >
Lllﬁ lle™ for some V' € {n)}. By continuity of E;(¢), there exists v € {n) satisfying

|Ei(t)] < LIE|le™, t € 15, T). i € (n), (3.8)
and
|E(T)| = L|Elle™". (3.9)

By (3.7)—(3.9), we have

BT . = N N ‘
(BBl + @, LB [ (409 + eHT-9) etods)

- -

AV_BV

ET)] < (3.10)

Using the integral inequality technique, we can obtain that

T
f (eAV(T—s) + eBV(T—S)) e—/lsd p
0

_ _le_ (e T +

< —F,(e T,

and, hence, (3.10) implies that |E,(T)| < Rlv(/l)LIIE ||e‘ﬁ. This, together with Remark 3, gives
|E\(T)| < LIIE|le™,

which contradicts with (3.9). Therefore, (i) holds.
(i1) It follows from (i) that

\Ej)| < LIE|le™, t > to,i € (n). (3.11)

Derivation from (3.5) and (3.6) yields
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- f (—Be™V|Ei(s — 0i(s))lds
0
<(-B)IEr) - KE(D] - (~B)e [E0) - AE0)]

!
<a; f (—B)i)eBi(t_s)|Ei(S —o0i(s))lds, i € (n),t > 1o,
0

and
- a; fo t(—fﬁ)exi(f“Y)lEi(s — 0i(s5))lds
<KLE1) - BEn) - Ke™ [E(0) - BiE(0))]
<a; fo t(_A)i)eKi(t_S)lEi(s —o0i(s)lds, i € (n),t > 1,
hence,

!
- f (=ADe ™ + (=BeP ) |Ei(s - 0i(s))lds

0
<(A&; - B)E() - (Aie™ - Bie™) E(0)
A (e ) E )

!
<ty [ (A0 4 -B)el ) (s - oo
0
i€ <I’l>, r21.
From this, we can obtain that

2 2
= > ) < (A = BYE() < ) Ja(0), 2 1o, € (n),
=1 =1

where

Ja(0) = 'A_)ieAﬂ — B

|EA0)] + AiB; (e — eB) |E/0)),

!
To(t) = & f ((=A0et ™ + (= BeP V) |Ei(s — oi(s))lds.
0
It is obvious that

Ja(t) < AB|\Elle™ < AB)|Elle™,

!
Jo(t) < GiLIE]le™ f (-ADe™ + (~BpeP) e~ ds
0

73
< aLllElle At zo,f ((_A"i)e(Ai+/1)(t—s) + (_B’i)e(Bi+/l)(t—s)) ds.

0

(3.12)

(3.13)

Electronic Research Archive Volume 33, Issue 10, 5897-5915.



5906

In addition,

!
nd K. _ - 3 _
f ((_Ai)e(Aﬁ/l)(l‘ ) + (_Bi)e(B,+/l)(t s)) ds
0

- -

:_ —A; (1 _ e(ff,-+/l)t) n _B:IB_I ;

(1 _ e(l.?,-u)r)

N

A — A
A; B,
<= T3
A,'+/l B, +A
_ 24
=2-AF,(1) <2+ ——<4.
A+1

Therefore, according to (3.11)—(3.14), we have
|Ei(t)| < (AiB; + 4ae” L) || Elle™.

This, together with (3.11), gives

Ei(t)] + |E0)] < LDIENe™ < L)Elle™, 1 > to,i € (n).

Then, we can get that
D UUE@] + 1ED < nLIIEe™, ¢ > 10,7 € (n).
i=1

InL()+n||E|-In<

Note that when ¢t > T* := ;

, it is obvious that
- €
LOIE|le™ < =.
n
Thus, we can obtain

InL(A) + In||E|| - In€
1
A

E0)| + |E0)] < 5 £ > e ().

Hence
D UED]+ ) < €, t> T i € (n),
i=1

which implies that (ii) holds. The proof was completed.

(3.14)

(3.15)

Remark 6. In contrast to the leakage delay treatment in references [21-23], the methodology adopted
in this work enables direct transformation of leakage delays into the maximum of their absolute values.
This approach thereby yields delay-dependent synchronization conditions without requiring intricate

processing procedures.
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4. Numerical simulations

The example is given below to illustrate the applicability of the research.

Example 1. Consider INNs (2.1) and (2.2) under parameters:
n=2 fPu)=tanhu+1| (ueR,qe(2))

0i(t) = 0.1(sin(#) + 2), b;; = 0.1 (i, j € (2),1 > 0),

61 = 3, -fz = 3, C_ll = 15, C_lz = 15,
biy=2,b1=50by=7bn=2

Set F =1, 0; = 0.3 (i € (2)), satisfying Assumption 1.

For A = 1, Assumption 2 yields ffl =-35, ffz =-35, §1 = —87, §2 = —87, leading to P; = —90.5,
P, = -90.5, O, = -304.5, Q, = —304.5. With L =7, Remark 3’s inequalities hold. Setting € = 0.1
satisfies Assumption 3.

Under initial conditions:

Dy =2, 011 = =2, 1) = 4, V(1) = -4,
A SO A
e M=8 ¢, ) =-8 Y (=4 ¢, (1) =-4
Figures 14 depict state trajectories of INNs (2.1), (2.2), and (2.3).

Theorem 2 yields T* = 10.7, with actual synchronization occurring att =~ 2.5 < T*. Settling-times
for varying preassigned accuracies are documented in Table 1. Collectively, the table and figures
demonstrate that the proposed methodology successfully achieves AP-FTS in master-slave INNs (2.1)
and (2.2), thus conclusively establishing its efficacy in solving the AP-FTS problem.

8 — S —
”
V4
S| / z1(t)
6 - - - i
SN Y a1 (t)
<0/
Sy A
g
2 1 1 1 1 1
0 5 10 15 20 25 30
t
10 T
= . w2 (t)[ ]
= - = =42(t)
= /
- 0»' -
—~
> 1
N—
é\‘ 5 4
_lO 1 1 1 1 1
0 5 10 15 20 25 30
t

Figure 1. Response curves of master and slave INNs in Example 1.
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wi (t)
——wy(t)

w1 (t), (0% (t)

4 4

_6 1 1 1 1 1
0 5 10 15 20 25 30

t

Figure 2. Response curves of error INN in Example 1.

T T T T T
— 0Fr
+~
~— ]
5 5 -
< 10 —— 1 (t) |
~— h . t
'g-lSi ---yl() i
_20 1 1 1 1 1
0 5 10 15 20 25 30
t
T T T T
< ()
= - = =1(t) |
=
=
2\
'8
1 1 1 1
10 15 20 25 30
t

Figure 3. Response curves of master and slave INNs in Example 1.
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20 T T T T T

15 —d)g (t) 1

10 1

w1 (t), wal(t)

-15 1

-20 1 1 1 1 1

Figure 4. Response curves of error INN in Example 1.

Table 1. Preassigned-accuracy-dependent settling-times in Example 1.

Accuracy Time
e=1 8.4
e=0.1 10.7
e =0.01 13.0
e = 0.001 15.3
e = 0.0001 17.6
e = 0.00001 19.9

Example 2. Consider INNs (2.1) and (2.2) under parameters:
n=3, fPu)=tanhu+ 1| (uecR,qe(3))
o0i(t) = 0.1(sin(¢) + 2), b;j = 0.3 (i, j € (3),1 > 0),
& =3,6=35&=4a =15 a =18 a; =2,
Bll = 2, 512 = 15, [;13 = —0.8, 521 = —1.2, 522 = 25, 1_723 = 1, l_731 = 07, [?32 = —1, 533 = 3,
C11 = 15, Cip = —0.6, Ci3 = 09, Cyp = —0.8, Cyy = 2, Cy3 = —0.5, C31 = 12, Cyp = 04, C33 = 1.8.
Set F =1, 0, = 0.3 (i € (3)), satisfying Assumption 1.
For A = 1, Assumption 2 yields A, = —73.04, A, = —72.84, A; = -72.70, B, = —164.1, B, =
—164.3, §3 = —164.4. With L =7, Remark 3’s inequalities hold. Setting € = 0.1 satisfies Assumption 3.
We choose the initial values of the state variables as go(ll)(t) = 2, 90(2])(1?) = -2, <p(%])(t) = 1,
U0 =4, 9500 = -4, 900 = 2, ¢P(0) = 8, (1) = -8, ¢7() = 4 ¢ Y1) = 4,y (1) = 4,
1ﬁ(32)(t) = 2. Figures 5-8 depict state trajectories of INNs (2.1), (2.2), and (2.3). Collectively, the figures
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demonstrate that the proposed methodology successfully achieves AP-FTS in master-slave INNs (2.1)
and (2.2), thus conclusively establishing its efficacy in solving the AP-FTS problem.

* 10 : '
g —le(t)
P . _yl(!') i
= e m—
é_' 0 1 L Il 1 1
0 5 10 15 20 25 30
t
-
= 10 ; ; .
> L L —(t) |
& I - =(t)
Eca\l -10 L | | I |
0 5 10 15 20 25 30
t
=4 : ‘ : :
o3
b=
—r / ——a3(t)| 1
-2
— - il t
g 0 L | | L ( )
0 5 10 15 20 25 30
t

Wi (f)! Wo (t)s w3(t)
i |
!
!
]
!
|
!
|
|
|
|
|
|
!
|
|
!
!
]
!

4t .

_6 1 L L 1 1
0 5 10 15 20 25 30

t

Figure 6. Response curves of error INN in Example 2.
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t
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Figure 7. Response curves of master and slave INNs in Example 2.
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5. Conclusions

This study presents the first investigation into AP-FTS for INNs incorporating both time-varying
leakage delays and proportional delays. By introducing a direct analysis method grounded in
parameterized system solutions, we establish synchronization criteria for master-slave systems. The
proposed methodology offers these distinctive advantages:

i) Simplified delay treatment: Our approach enables straightforward handling of delays, significantly
streamlining the proof process.

ii) Computationally efficient criteria: The derived synchronization conditions are readily solvable,
reducing computational complexity.

iii) Inertial term processing without substitution: The methodology eliminates the need for variable
substitutions when addressing inertial terms.

iv) Comprehensive delay coverage: Concurrent consideration of leakage and proportional delays
extends the applicability of INN synchronization frameworks.

v) Explicit settling-time expression: The settling-time bound is derived explicitly without constructing
complex auxiliary functions.

Finally, regarding future research directions:
(a) The present framework can be extended to include unbounded distributed delays.

(b) L, AP-FTS for INNs represents a promising avenue for further investigation.
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