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Abstract: Peptides are biomolecules composed of multiple amino acid residues connected by peptide 
bonds, which are widely involved in physiological and biochemical processes in organisms and exhibit 
diverse functions. In previous studies, the focus was primarily on single-functional peptides. However, 
research trends indicate that an increasing number of multifunctional peptides are being identified and 
discovered. To address this challenge, we proposed a deep learning method based on multi-scale 
ResNet as the backbone combined with a channel attention mechanism (called MSRC) for the 
identification of multifunctional peptides. Furthermore, the data imbalance problem was solved 
through the comprehensive use of online data augmentation and confidence-based weighted loss 
functions. Experimental results demonstrated that the proposed MSRC method achieved an accuracy 
of 0.688 with an absolute true rate of 0.619. Notably, in predicting minority class peptides such as AEP, 
AHIVP, and BBP, the MSRC model exhibited heightened sensitivity, showcasing its exceptional 
capability in addressing issues related to minority classes. By enhancing the precision in identifying 
and predicting multifunctional peptides, the MSRC method was poised to contribute significantly to 
advancements in drug discovery, disease treatment, and biotechnology.  

Keywords: multifunctional peptides; multi-scale ResNet; channel attention; data augmentation; 
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1. Introduction 

Peptides are organic molecules composed of amino acids in a specific arrangement. Their length 
can range from just a few amino acid residues to multiple amino acid units connected in an ordered 
sequence [1]. This organic molecule possesses certain functionalities and is commonly employed in 
the treatment of various diseases, such as cancer, diabetes, cardiovascular diseases, and others [2]. In 
order to enhance the effectiveness of peptide therapy, accurate identification of peptide functionality 
has become particularly important. Over the past few decades, an increasing number of bioactive 
peptides with diverse functionalities have been identified for drug development [3]. However, in the 
post-genomic era, the ability to identify peptide functionality through experimental methods is no 
longer sufficient to meet the demands of large-scale bioactive peptide identification. In this context, 
the introduction of computational methods allows researchers to pre-screen the functionality of 
peptides [4]. Nowadays, the combination of advanced computational technology and experimental 
methods has accelerated the discovery of potential therapeutic agents such as antimicrobial peptides 
(AMPs) [5] and anticancer peptides (ACPs) [6]. 

Data-driven computational methods such as machine learning and deep learning are widely 
used to predict the function of peptides [7,8]. Among these, feature selection is a critical step in 
machine learning and data science, which involves identifying and selecting data features that are 
most relevant to the target variable to reduce the dimensionality of the data. This process helps in 
enhancing the performance of predictive models [9]. Support vector machines (SVM) and random 
forests (RF) [10–12] were used to identify anti-cancer peptide (ACP), anti-parasitic peptide (APP), 
and Anti-inflammatory Peptides (AIP). Due to the structural and functional diversity of peptides, 
machine learning models may have limited generalization ability when dealing with untrained peptides. 
The advancement of artificial intelligence technology has promoted the importance and superiority of 
deep learning methods in the field of bioinformatics [13,14]. ACP-DL, ACP-2DCNN, and DeepACP 
use deep learning architectures [15–17] such as convolutional neural networks (CNN), long short-term 
memory (LSTM), and their combinations to achieve functional differentiation. Although traditional 
machine learning and deep learning methods have demonstrated excellent performance on specific 
peptide datasets, the above-mentioned studies primarily focus on the prediction of single-functional 
peptides. However, it has been discovered that an increasing number of peptides exhibit multiple 
functionalities [18]. Tang [4] and colleagues developed a deep learning model that integrates CNN and 
GRU for identifying peptides with various biological activities. Fan [19] and associates introduced a 
deep learning approach based on TextCNN and a multi-label focal dice loss function for predicting 
the functionalities of multifunctional therapeutic peptides. Moreover, Lv [20] and team proposed a 
method based on the Transformer architecture, utilizing label embedding techniques to explicitly 
extract functionally relevant information for predicting the multifaceted functionalities of 
therapeutic peptides. 

The identification of multifunctional peptides can be considered as a multi-label classification 
task, where a peptide may possess multiple associated functions, and the model needs to 
simultaneously assign this set of relevant functional labels to the peptide. Li et al. [21] employed a 
combination of convolutional neural network layers for extracting convolutional features from feature 
vectors and bidirectional long short-term memory networks to assign corresponding functional labels 
for each category. However, in multi-label classification tasks, the issue of imbalanced datasets is a 
prevalent phenomenon, adding complexity to the classification process. To address the problem of low 
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predictive accuracy resulting from dataset imbalance, the classic Synthetic Minority Oversampling 
TEchnique (SMOTE) is an oversampling method. In bioinformatics, Lin et al. [22] applied SMOTE 
to balance skewed benchmark datasets. As a cost-sensitive approach, Yan et al. [23] adopted class-
weight optimization to tackle the imbalance issue, achieving significant improvements in predictive 
performance. Nevertheless, there is room for further optimization in handling diverse imbalanced 
datasets with the mentioned methods. 

To further enhance the predictive accuracy of the model, our study proposes a multi-scale ResNet 
combined with channel attention model, abbreviated as MSRC, summarized as follows: (i) In the 
multi-scale ResNet model, we introduce semantic embedding blocks, ResBlock structures, and 
channel attention (CA). The function of the embedding block is to convert the encoded polypeptide 
sequence into a feature matrix with multiple semantic information to better support the extraction of 
local feature information of the polypeptide by the convolutional neural network (CNN) in the 
ResBlock structure. In addition, the design of the channel attention (CA) mechanism enables the model 
to dynamically learn the importance of each channel in the convolution during the training process, 
allowing the model to focus more on task-critical feature channels. This integrated design allows the 
model to more comprehensively capture semantic information at different scales, thereby improving 
the expressive ability of features. (ii) To address the imbalance in multi-label datasets, we employ data 
augmentation methods and a dynamic weighted loss function based on confidence. Data augmentation 
involves augmenting the minority class peptide samples, aiding in balancing the class distribution. The 
dynamic weighted loss function, by considering the confidence of each sample, reduces the penalty 
for highly confident samples, thereby increasing the model’s focus on crucial samples and improving 
predictive accuracy. 

This comprehensive approach fully leverages the characteristics of the multi-scale ResNet and 
enhances the model’s generalization through the use of the channel attention mechanism. Experimental 
validation demonstrates the outstanding performance of our model in multi-label prediction tasks, 
providing an effective solution for the application of deep learning in the analysis of peptide sequences. 

2. Materials and methods 

2.1. Datasets 

The dataset used in this study is identical to the PrMFTP [23] dataset, which was compiled by 
Yan et al. in 2021. It comprises a total of 9841 peptide sequences categorized into 21 classes. These 
classes include Anti-Angiogenic Peptides (AAP), Anti-Bacterial Peptides (ABP), Anti-Cancer 
Peptides (ACP), Anti-Coronavirus Peptides (ACVP), Anti-Diabetic Peptides (ADP), Anti-Endotoxin 
Peptides (AEP), Anti-Fungal Peptides (AFP), Anti-HIV Peptides (AHIVP), Anti-Hypertensive 
Peptides (AHP), Anti-Inflammatory Peptides (AIP), Anti-MRSA Peptides (AMRSAP), Anti-Parasitic 
Peptides (APP), Anti-Tuberculosis Peptides (ATP), Anti-Viral Peptides (AVP), Blood-Brain Barrier 
Peptides (BBP), Biofilm Inhibitory Peptides (BIP), Cell-Penetrating Peptides (CPP), Dipeptidyl 
Peptidase IV Peptides (DPPIP), Quorum Sensing Peptides (QSP), Surface Binding Peptides (SBP), 
and Tumor Homing Peptides (THP). The number of samples in each category varies, detailed in 
Table 1. Prior to utilizing these peptide datasets, further filtration is conducted to remove sequences 
shorter than 5 amino acids or longer than 50 amino acids, as longer peptides are typically more toxic 
and less stable, while very short peptides exhibit poor sequence activity [24]. Sequences containing 



2924 

Electronic Research Archive  Volume 32, Issue 5, 2921–2935. 

non-standard amino acids are also excluded. The datasets are then split into training and testing sets 
following an 80:20 ratio. 

Table 1. Benchmark dataset. 

Type Number Type Number 
AAP 133 APP 279 
ABP 2145 ATP 242 
ACP 1043 AVP 711 
ACVP 126 BBP 117 
ADP 509 BIP 333 
AEP 58 CPP 459 
AFP 1352 DPPIP 313 
AHIVP 101 QSP 220 
AHP 917 SBP 104 
AIP 2049 THP 651 
AMRSAP 168 Total 9841 

2.2. Method framework 

Figure 1 illustrates the overall framework for multi-label peptide prediction (MFTP) using a 
multi-scale ResNet network, divided into two main components. Part I encompasses data mapping and 
data augmentation. During the data mapping phase, based on the alphabetical order of the 20 natural 
amino acids (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y), these amino acids are 
encoded as natural numbers (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20). Given 
the potential significant variation in peptide sequence lengths, directly using these sequences of 
differing lengths as input could result in incorrect data handling by the model. Therefore, peptide 
sequences shorter than 50 are padded with zeros to ensure that each peptide sequence has the same 
dimension when entered into the model. Next, data augmentation is performed on the encoded minority 
peptides to increase the diversity of the sample. Second, we import the encoded data into the MSRC 
model for effective feature extraction. 

Part II describes the structure of the ResNet model, including the embedding layer, ResBlock 
module, CNN convolution module, CA module, and fully connected layer. Figure 1(A) delineates the 
overall data processing flow.  

Initially, the polypeptide sequences are processed using an embedding layer [25] to transform the 
normalized 158 × 50 feature vectors into dimensions of 158 × 50 × 256. Here, 158 represents the 
number of polypeptides in each training batch, 50 denotes the vectors representing the numerical 
representation of the polypeptide sequences before embedding, and 256 signifies the transformation 
into high-dimensional semantic matrices through embedding. In this process, the aim is to convert the 
original discrete sequence into a dense semantic representation to better capture the relationships and 
characteristics between different amino acids. In order to adapt to the input requirements of the ResNet 
layer, especially considering that the channel dimensions of data in convolution operations usually need 
to be placed at specific positions, we performed dimensionality replacement in the layer normalization 
(Layer Normalization) stage. Second, the peptide data is introduced into 6 ResBlocks [26], each of 
which includes two 3 × 3, 5 × 5, and 7 × 7 convolutional layers (convs1 and 2), two batch normalization 
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layers (bns1 and 2), and one layer normalization (norm). ReLU activation function and a channel 
attention (CA) are shown in Figure 1(B). 

Figure 1. Multi-scale ResNet model architecture diagram. 

The two convolutional layers in the ResBlock have kernel sizes of 3, 5, and 7 as shown in Figure 1(C), 
aiming to extract local features of the polypeptide sequence. The incorporation of the channel attention 
(CA) mechanism [27] within each ResBlock enables the network to focus on the most information-
rich features across the channel dimension. The implementation of the CA mechanism begins with the 
spatial compression of the peptide feature matrix, transforming it into a one-dimensional vector. This 
vector is then multiplied element-wise with the original peptide feature matrix to emphasize the 
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original features through weighting, a process that is visually depicted in Figure 1(D). During the 
spatial compression, two pooling strategies are employed: Average pooling and max pooling. The 
calculation of channel attention weights can be represented by the following formula (1): 

 𝐴(𝑋) = 𝜎(𝑊 ⋅ 𝑅𝑒𝐿𝑈(𝑊 ⋅ 𝑃𝑜𝑜𝑙(𝑋)) + 𝑊 ⋅ 𝑅𝑒𝐿𝑈(𝑊 ⋅ 𝑃𝑜𝑜𝑙(𝑋))). (1) 

In the formula, 𝑊   and 𝑊   represent the weight matrices, and 𝜎  denotes the sigmoid 
activation function. Finally, the channel attention weight vector is calculated by the sigmoid function 
to dynamically weight each channel, thereby highlighting the feature channels that are crucial for 
peptide function prediction. 

Figure 1(E) illustrates the classification layer, where the vector obtained after max pooling 
undergoes dimensionality reduction through fully connected layers. Subsequently, the sigmoid function 
is applied to compute predicted probability scores for various functions associated with the peptide 
sequence. Overall, Part E processes the features after max pooling through a series of operations, 
making full use of combined structures such as ResBlock, MLP, CA, and MaxPooling. This synergistic 
integration endows the entire model with robust capabilities for feature learning and representation. 

2.3. Data augmentation and optimization loss function 

Prior to embedding the dataset into the model, the imbalance rates of the 21 peptide categories in 
the training set are computed using formula (2). The imbalance rate is calculated through the 
following formula: 

 𝐼𝑅 = ∑( )⋅ , (2) 

where N represents the number of categories, Ci and Cj denote the number of samples in the i-th and j-
th classes, respectively. Subsequently, classes with an imbalance rate exceeding 2 are identified as 
minority classes based on a predefined threshold [28]. Next, potential minority regions near the original 
minority samples are found, and these regions are used to determine pure sub-regions that do not 
contain majority samples. These pure sub-regions are regarded as possible minority group areas, and 
finally these pure areas are filled in by synthesizing new samples from the features between the 
minority class samples. 

For the results after data augmentation, we further optimized the loss function. In the context of 
multi-label problems, where the probabilities of each node are independent of each other, binary cross-
entropy is employed as the loss function [29], as shown in formula (3). In order to force the model to 
pay attention to and optimize the information of the minority class data, this study dynamically adjusts 
the loss function during the training process based on the confidence of correct classification for each 
sample (Psn), resulting in the modified loss function shown in formula (4). 

 𝐿 (𝑌 , �̂� ) = −𝑌 𝑙𝑔 �̂� − (1 − 𝑌 ) 𝑙𝑔( 1 − �̂� ), (3) 

 𝐿 (𝑌, �̂�) = ∑ ∑ 𝜎[𝛾(1 − 2𝑃 )] 𝐿 (𝑌 , 𝑌 ), (4) 

where 𝑌  is the true label of the nth type peptide, �̂�  is the probability value of predicting the nth 
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type peptide, where 𝜎[𝛾(1 − 2𝑃 )] is the weighting coefficient, 𝜎 is the sigmoid function, 𝛾 is a 
constant that smoothens the loss function, and Psn represents the confidence of the classification. It 
indicates the model’s probability of predicting sample s as category n. 

2.4. Evaluation metrics 

In order to facilitate a comprehensive and fair comparison with other methods, we employed five 
evaluation metrics [4], including accuracy, coverage, precision, absolute true, and absolute false. These 
metrics are defined as follows: where 𝑁  represents the total number of peptide sequences in the 
dataset, 𝑀  denotes the number of labels, ∩  and ∪  are set-theoretic intersection and union 
operations, respectively. 𝐿  represents the subset of true labels for the i-th peptide sample, and 𝐿∗ 
denotes the predicted label subset by the classifier for the i-th sample. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ ∩ ∗∗ , (5) 

 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ ∩ ∗‖ ‖ , (6) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑ ∩ ∗∪ ∗ , (7) 

 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑟𝑢𝑒 = ∑ 𝛥(𝐿 , 𝐿∗), (8) 

 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑓𝑎𝑙𝑠𝑒 = ∑ ∪ ∗ ∩ ∗
, (9) 

 𝛥(𝐿 , 𝐿∗) = 1, 𝑖𝑓 𝐿∗ 𝑖𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑡𝑜 𝐿0, 𝑜𝑡ℎ𝑒𝑟 . (10) 

3. Results and discussion 

3.1. Comparison of multi-label models with common deep learning methods 

This section compares models that do not address the issue of imbalanced datasets. In our study, 
we first conducted a reproducibility study of models described in the literature, including convolutional 
neural network (CNN), bidirectional long short-term memory network (BiLSTM), and a hybrid model 
combining CNN, BiLSTM, and multi-head self-attention (MHSA). As shown in Table 2, the hybrid 
model exhibited superior performance on the test set compared to individual models. 

In the field of deep learning, ProtBERT [30] is a pre-trained model based on the Transformer 
architecture. It is specially designed for protein sequences and has strong representation capabilities 
when dealing with protein-related tasks. Therefore, we considered the protein pre-trained model 
ProtBERT and applied it to peptide function prediction. The ProtBERT model exhibited a significant 
improvement in performance on the test set compared to previous models, with key metrics such as an 
accuracy of 0.640 and absolute true of 0.578. In order to further improve the prediction effect, we 
combined ProtBERT with BiLSTM to form a ProtBERT+BiLSTM combination model. This 
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combination model refers to the learning of BiLSTM features from proteins encoded by ProtBert 
proposed by Zhang et al. [31]. To further enhance predictive performance, we combined ProtBERT 
with BiLSTM, resulting in the ProtBERT+BiLSTM composite model. This combined model achieved 
an accuracy of 0.651 and absolute true of 0.579 on the test set. We also explored combining ProtBERT 
with CNN and BiLSTM. This model demonstrated an accuracy of 0.667 and absolute true of 0.587 on 
the test set, compared with the combination of CNN, BiLSTM and MHSA, the accuracy of the model 
increased by 7.2%, and absolute true increased by 5.3%. 

In order to further improve the prediction accuracy, this study also explored the basic model with 
ResNet as the backbone. The table shows that the deep ResNet showed excellent performance. On this 
basis, we introduced MHSA and CA for comparison. Compared with MSHA, CA is more suitable for 
ResNet to learn more important channel information. The main indicators are accuracy = 0.680 and 
absolute true = 0.611. Compared with the combination model of CNN, BiLSTM and MHSA, the 
Accuracy is improved by 8.5%, and Absolute true is improved by 7.7%. 

Based on the experimental results, it is evident that the combined models, as opposed to individual 
models, can more effectively extract and integrate features from polypeptide sequences, consequently 
enhancing prediction accuracy. Notably, the multi-scale ResNet and CA combined model exhibits 
superior performance across all metrics, highlighting its excellence in peptide function prediction tasks. 
Therefore, this study uses the multi-scale ResNet+CA model for multifunctional peptide prediction. 

Table 2. Performance of multifunctional peptide model on test set. 

Model Precision Coverage Accuracy Absolute true Absolute false 
CNN 0.459 0.413 0.411 0.372 0.041 
CNN+BiLSTM 0.589 0.543 0.536 0.488 0.036 
CNN+BiLSTM+MHSA 0.637 0.623 0.595 0.534 0.033 
ProtBERT 0.680 0.689 0.640 0.578 0.037 
ProtBERT+BiLSTM 0.701 0.700 0.651 0.579 0.036 
ProtBERT+CNN+BiLSTM 0.703 0.708 0.667 0.587 0.036 
Multi-scale ResNet 0.700 0.710 0.676 0.601 0.036 
Multi-scale ResNet+MHSA 0.709 0.705 0.677 0.598 0.035 
Multi-scale ResNet+CA 0.716 0.721 0.680 0.611 0.034 

3.2. Comparative experiments on methods to deal with imbalanced data sets 

To verify the effectiveness of the proposed method for handling dataset imbalance in this study, 
we applied four methods to the PrMFTP model and the MSRC model proposed in this study. In previous 
studies, two methods [28,29] have been proposed and applied to improve multi-label classification 
performance (here we refer to these methods as M1 and M2 respectively). Considering the success of 
M1 and M2, we adopted a combination of these two methods in this study to handle dataset imbalance, 
abbreviated as M3, for the sake of experimental fairness, We compared the accuracy and absolute true 
values of different methods between two base models on the same test subset, with each method 
repeated ten times on both models and the average value taken. As illustrated in Figures 2 and 3. 
According to the box plot results, the M3 method has the highest box median, both on the PrMFTP 
model and the MSRC model. Therefore, it shows that the M3 method has a better effect in dealing 
with the problem of dataset imbalance.  
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(A)                                        (B) 

Figure 2. (A) and (B) are the accuracy and absolute true of four methods to deal with 
dataset imbalance on the PrMFTP model. 

  

(A)                                        (B) 

Figure 3. (A) and (B) are the accuracy and absolute true of four methods to deal with 
dataset imbalance on the MSRC model. 

To further validate the superiority of the M3 method, the class weighting approach, as a cost-
sensitive method, achieved satisfactory results in the PrMFTP model. However, for extremely 
imbalanced class issues, such as the dataset used in this study where ABP has 2469 entries while AEP 
only has 70, even if larger weight values are assigned to AEP before model training, it remains 
challenging for the model to learn useful information from the AEP samples. Table 3 describes that the 
M3 method has a better effect on the PrMFTP model than the class weight method, with the most 
important indicators of accuracy = 0.680 and absolute true = 0.597, which are 3.3% and 0.5% higher 
than the accuracy = 0.647 and absolute true = 0.592 of the class weight, respectively. Table 4 describes 
the performance of the M3 method on the MSRC model, which is also better than the class weight 
method, with accuracy = 0.688 and absolute true = 0.619. Compared to the class weight method, the 
accuracy = 0.680 and absolute true = 0.603 have increased by 0.8% and 1.6%, respectively. 

In general, the M3 method used in this study has excellent performance in handling the problem 
of dataset imbalance and is significantly better than other methods. The M3 method demonstrates its 
excellent performance in adjusting sample imbalance between different categories, providing an 
effective solution to this common problem. 
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Table 3. Performance of different methods on PrMFTP model. 

Method Precision Coverage Accuracy Absolute true Absolute false 
Base 0.637 0.623 0.595 0.534 0.033 
Base+Class weight 0.696 0.664 0.647 0.592 0.030 
Base+M1 0.646 0.630 0.604 0.551 0.032 
Base+M2 0.720 0.719 0.678 0.594 0.031 
Base+M3 0.721 0.721 0.680 0.597 0.032 

Table 4. Performance of different methods on MSRC model. 

Method Precision Coverage Accuracy Absolute true Absolute false 
Base 0.700 0.710 0.676 0.601 0.036 
Base+Class weight 0.719 0.720 0.680 0.603 0.037 
Base+M1 0.712 0.717 0.679 0.601 0.036 
Base+M2 0.720 0.723 0.682 0.607 0.036 
Base+M3 0.726 0.728 0.688 0.619 0.033 

3.3. Performance comparison with existing methods 

To further demonstrate the powerful capabilities of the multi-scale residual network combined 
with channel attention mechanism (MSRC) model, we randomly selected 80% of the data from the 
test set to form a testing subset and compared the MSRC model with several deep learning methods, 
including MPMABP [21], MLBP [4], and PrMFTP [23]. As shown in Table 5. In comparison, the 
MSRC model exhibited significant improvements across all metrics, with the primary metric, accuracy, 
reaching 0.688, and absolute true reaching 0.619. This indicates a significant advantage of the 
MSRC model in predicting multifunctional peptides. Additionally, with a precision of 0.726 and 
coverage of 0.728, the model not only accurately predicts the functions of peptides but also covers a 
broader range of functional categories in its predictions. 

Table 5. Performance comparison of MSRC model and other methods. 

Model Precision Coverage Accuracy Absolute true Absolute false
MPMABP [21] 0481 0.451 0.435 0.378 0.039 
MLBP [4] 0.551 0.493 0.489 0.450 0.036 
PrMFTP [23] 0.699 0.669 0.651 0.593 0.031 
MSRC 0.726 0.728 0.688 0.619 0.033 

3.4. The MSRC model is more sensitive to a few types of peptides 

To verify the good predictive accuracy of the proposed model on minority peptide samples, 
we compared the sensitivity (SEN) and specificity (SPE) of the MSRC model and the PrMFTP model 
on specific peptide functions (ACVP, AEP, AHIVP, BBP, and SBP) in detail. The calculation formula 
is as follows: 
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 𝑆𝐸𝑁 = , (11) 

 𝑆𝑃𝐸 = . (12) 

TP represents the true positives, FN represents the false negatives, TN represents the true 
negatives, and FP represents the false positives. SEN and SPE are calculated by treating peptides with 
the specific function as positive samples and peptides without that function as negative samples. 

Figure 4 shows the high sensitivity of the MSRC method in predicting the functions of a few 
peptide classes, especially the AEP, AHIVP, BBP, and SBP classes. MSRC was almost identical to 
PrMFTP in predicting ACVP sensitivity, but achieved better results than PrMFTP in predicting peptide 
functions in the other four minority classes. It is worth noting that the PrMFTP model cannot 
effectively distinguish AEP, while the MSRC model significantly improves the prediction performance 
of AEP. This shows that MSRC performs well in predicting peptides with these specific functions, 
successfully capturing the key features of these peptides, giving it a significant advantage in the task. 
To ensure that the high sensitivity of the MSRC model for minority class samples is not a result of 
overfitting, we also conducted sensitivity tests for majority class samples with multiple functions, such 
as ABP, ACP, ADP, AHP, as shown in Figure 5 where the MSRC model also outperformed the PrMFTP 
method in the majority class peptides. 

  

(A)                                      (B) 

Figure 4. Sensitivity and specificity of minority peptide samples on PrMFTP and MSRC models. 
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(A)                                        (B) 

Figure 5. Sensitivity and specificity of majority peptide samples on PrMFTP and MSRC models. 

In the field of deep learning models, especially in tasks involving minority class samples, 
achieving high sensitivity is crucial for the overall performance of the model. These results further 
demonstrate that MSRC, by effectively utilizing residual blocks, channel attention mechanisms, and 
appropriate strategies for handling dataset imbalance, successfully enables the model to learn 
information about minority class peptides. This makes it excel in tasks that require heightened 
sensitivity to small-sized peptide categories. The model’s sensitivity to these relatively rare peptide 
functions contributes to improving its reliability in practical applications. In summary, through this 
comparative study, we emphasize the outstanding performance of the MSRC model in predicting 
minority class peptide functions and showcase its sensitivity to specific peptide functionalities. 

4. Conclusions 

Peptides commonly showcase therapeutic properties such as antibacterial, anticancer, 
antihypertensive, and more. They possess inherent qualities of being potential, safe, and natural 
organic substances. In this study, we introduce an innovative multi-functional peptide prediction model 
named MSRC, which is based on the ResNet architecture and incorporates strategies for data 
augmentation and optimized loss. Compared to existing multi-label methods, MSRC demonstrates 
satisfactory performance in predicting multi-functional peptides. Key components of the model include 
multi-scale ResBlocks and channel attention (CA). Through these components, the model extracts 
information from different weighted channels in the convolutional layers to enhance the perception 
and capture of complex features. Data augmentation and optimized loss further guide the model’s 
attention towards information from minority class peptides. We conducted experiments on a peptide 



2933 

Electronic Research Archive  Volume 32, Issue 5, 2921–2935. 

dataset containing 21 categories, and the results demonstrate that MSRC achieved a significant 
improvement in predicting multi-functional peptides compared to the PrMFTP method. Its accuracy 
increased by 3.7%, and the absolute improvement reached 2.6%. 

Future research directions will focus on further optimizing the model structure and in-depth 
exploration of richer peptide sequence data to improve the accurate prediction of peptide function. 
Additionally, we plan to integrate structural information, function-related features, and physicochemical 
properties of peptides to enable the model to comprehensively learn sequence information. 
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