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Abstract: To improve the fast and efficient distribution of fresh products with dynamic customer 
orders, we constructed a multi-objective vehicle routing optimization model with the objectives of 
minimizing the distribution costs including freshness-loss cost, cold-chain-refrigeration cost, and 
delay-penalty cost, and maximizing customer time satisfaction. An improved multi-objective genetic 
algorithm (GA)-based particle swarm optimization (MOGAPSO) algorithm was designed to quickly 
solve the optimal solution for the distribution routes for fresh-product orders from regular customers. 
Furthermore, online real-time orders of fresh products were periodically inserted into the distribution 
routes with local optimization solutions by applying a dynamic inserting algorithm. Finally, a case 
study of a fresh-product distribution company in Shenzhen, China was conducted to validate the 
practicality of the proposed model and algorithms. A comparison with the NSGA-II and MOPSO 
algorithms showed the superiority of the proposed MOGAPSO algorithm on distribution-cost 
reduction and customer time-satisfaction improvement. Moreover, the dynamic inserting algorithm 
demonstrated a better performance on distribution-cost reduction. 

Keywords: fresh-product distribution; multi-objective vehicle routing optimization; MOGAPSO 
algorithm; dynamic inserting algorithm 
 

1. Introduction  

The market demand for fresh products is growing rapidly with the development of Internet and 
cold-chain technology in recent years. In China, the market size of the fresh-product e-commerce 
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industry was 363.8 billion RMB in 2022, with a growth of 16.7% compared with 2021 [1]. However, 
the consequent growth in fresh-product distribution poses huge challenges to fast and efficient 
distribution services provision. Fresh products are perishable, and their freshness is lost with time. 
Out-of-date fresh products are thrown away after a short expiry date. In the United States, the average 
losses of fresh products during distribution are approximately 12% of the initial production, while the 
average loss rate of fresh products is approximately 30% in China [2,3]. Therefore, providing fast and 
efficient distribution services is an important issue for fresh products to keep their freshness and 
prevent deterioration. 

The fresh-product-distribution route optimization problem arises when fresh products must be 
distributed in cold-temperature conditions and quickly distributed within a short time window to keep 
their freshness. Fresh products are distributed in cold-chain trucks to avoid freshness loss in the entire 
distribution and uploading process. The distribution cost of fresh products is increased with the 
application of cold-chain technology and the deterioration of fresh products. Fresh-product customers 
are sensitive to the distribution time because freshness could be lost with time. Hence, research on the 
vehicle routing optimization problem for fast fresh-product distribution to reduce distribution costs 
and improve customer satisfaction has practical significance for the fresh-product distribution industry. 

In addition, the popularity of internet technology allows customers to purchase fresh products 
through online platforms, which not only expands their purchasing channels but also meets their 
diverse needs. However, fresh-product orders that could be dynamically placed on an online shopping 
platform at any time pose tremendous challenges to the distribution-route optimization problem. If the 
distribution company assigns additional vehicles for new fresh-products distribution, it would largely 
increase the distribution cost. Therefore, the research on the fresh-product-distribution route 
optimization problem with dynamic customer orders has both practical and academic significance for 
the fresh-product industry to efficiently minimize distribution costs.  

This study focuses on a multi-objective vehicle routing optimization model establishment for fast 
fresh-product distribution under dynamic demand conditions with the objectives of maximizing 
customer time satisfaction and minimizing the total distribution costs, including freshness-loss cost, 
delay-penalty cost, cold-chain-refrigeration cost, vehicle cost, and travel cost. The main contributions 
of this research are summarized as follows: 1) We propose a multi-objective vehicle routing 
optimization model for fast fresh-product distribution considering its freshness and short distribution 
time window; 2) a two-stage solution combining improved MOGAPSO and dynamic inserting algorithm 
is designed to quickly solve out the optimized route under dynamic demand circumstances; 3) a case 
study on a fresh-product distribution company in China is presented to validate the practicality of the 
proposed model and algorithm.  

The structure of the paper is as follows: Section 2 reviews the extant literature on multi-objective 
fresh-product distribution and dynamic vehicle routing problem (VRP) problem; Section 3 proposes a 
multi-objective dynamic routing optimization model for fast fresh-product distribution; Section 4 
introduces the two-stage solution based on improved MOGAPSO and dynamic inserting algorithm to 
solve the proposed model; Section 5 conducts a case study to test the practicality of the proposed model 
and algorithm; Section 6 summarizes the conclusions of the study and suggests future research direction. 

2. Literature review 

The vehicle routing problem (VRP) was proposed by Dantzig and Ramser in 1959 [4]. The multi-
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objective VRP is a kind of VRP problem that requires balancing multiple objectives to find an optimal 
distribution route. For the fresh-product-distribution route optimization problem, multiple objectives 
could be the distribution cost, freshness-loss cost, rider utilization, or customer satisfaction. For 
example, Li et al. [5] considered the highly perishable nature of fresh products and established a multi-
objective optimization model for minimizing the freshness decay and the total costs. Liao et al. [6] 
studied the multi-objective routing problem for green meal delivery to maximize customer satisfaction, 
balance rider utilization, and minimize carbon footprint. A two-stage strategy was proposed combining 
non-dominated sorting genetic algorithm II (NSGA-II) and adaptive large neighborhood search (ALNS) 
algorithm. Leng et al. [7] proposed a bi-objective cold-chain distribution-route model for fresh 
products that aimed to minimize the total distribution cost and the quality-degradation cost. To obtain 
the Pareto solutions, a novel multi-objective hyper-heuristic (MOHH) was proposed. Similarly, Hu et 
al. [8] developed a mixed integer programming model over time to minimize the total operational cost 
of the fresh cold-chain distribution process, including routing, time penalty, cargo damage, and 
refrigeration cost. They proposed a solution combining the variable neighborhood search and particle 
swarm algorithm for distribution routing optimization. Differently, we propose a multi-objective VRP 
considering fast-distribution and freshness-related objectives, including customer time satisfaction, 
delay-penalty cost, freshness-loss cost, and cold-chain-refrigeration cost under practical dynamic 
demand conditions. 

Heuristics algorithms are mainly used to find the Pareto solution set for multi-objective 
optimization problems [9]. Multi-objective particle swarm optimization algorithm (MOPSO) is a kind 
of intelligent algorithm with many advantages including its simplicity, fast calculation speed, and easy 
implementation. MOPSO has been widely used to solve multi-objective problems in many fields. For 
example, Xu et al. [10] studied a multi-objective optimization approach for refined-oil distribution 
considering station satisfaction, operation cost, and overtime penalty. A robust optimization model was 
developed to manage uncertainty in demand. A MOPSO algorithm was proposed to effectively solve 
the mathematical model. Similarly, Kuo et al. [11] investigated a multi-objective VRP model in a time 
window with the two objectives of supply-chain cost and carbon emission minimization. An improved 
MOPSO algorithm was designed to show the highest hyper-volume and lowest spacing. Wang et al. [12] 
addressed the multi-depot green VRP. They designed a bi-objective mathematical model aimed at 
minimizing total carbon emission and operation costs. A hybrid heuristic algorithm for vehicle routing 
optimization, combining the savings heuristic algorithm, sweep algorithm, and MOPSO, was used for 
local and global solution search. The experiment results indicated a reduction in total travel distance 
and number of vehicles. The shortest path was observed undermining minimized operation costs and 
carbon emissions. In summary, existing improvements in the MOPSO algorithm mainly focus on the 
iteration method of the particle swarm and its searching ability. Extensively, we propose an improved 
multi-objective GA-based particle swarm optimization algorithm (MOGAPSO) that introduces a 
genetic algorithm into the standard MOPSO algorithm to improve the diversity of the particle swarm 
population in this study. 

Dynamic demand resulting from online orders on Internet platforms is a crucial factor affecting 
vehicle routing optimization. Dynamic vehicle routing optimization problems have received increasing 
attention from the academic area. For example, Huang et al. [13] proposed a mixed-integer 
programming model for bus network design with dynamic demand. The passenger requests were 
dynamically inserted in an interactive manner by a proposed dynamic insertion method. The model 
aimed at designing an optimal routing for multiple vehicles to serve a set of fixed or dynamic customers 
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with strict time-deviation constraints. Achamrah et al. [14] investigated a dynamic and stochastic 
inventory routing problem (DSIRP) with flexible transshipment and substitution in a two-level supply 
chain. The optimal solution was solved by the genetic algorithm and deep-reinforcement learning 
algorithm. Nguyen et al. [15] addressed the dynamic traffic routing problem with multi-source and 
multi-destination. Their dynamic VRP was solved by an ant colony optimization (ACO) algorithm for 
the dynamic road network condition in the distribution-process optimization problem. Guo et al. [16] 
established a robust dynamic multi-objective vehicle optimization model with hard time-window 
constraints and dynamic customers considering three objectives: carbon emission, vehicle waiting time, 
and number of dispatched vehicles. A MOPSO algorithm was applied to find robust optimal vehicle 
routes. In conclusion, existing literature on dynamic vehicle routing optimization primarily focuses on 
circumstances of dynamic customer demand and flexible distribution networks with exact and heuristic 
methods in the transportation network and supply chain. In this study, we focus on a fast distribution 
routing optimization problem of fresh products with dynamic customer demand using improved 
MOGAPSO with the genetic algorithm (GA) and dynamic insertion mechanism. 

To sum up, there are some differences between our study and previous research work. First, we 
propose a fresh-product-distribution vehicle routing optimization model with the fast-distribution and 
freshness-related objectives of maximizing time-sensitive customer satisfaction and minimizing total 
distribution costs, including freshness-loss cost and delay-penalty cost, and extending the cost-
minimization objective in most existing literature. Second, we differently integrate a genetic algorithm 
into the standard MOPSO algorithm to improve the convergence performance for the multi-objective 
VRP problem. Third, we design a two-stage solution with an improved MOGAPSO algorithm and a 
dynamic insertion algorithm to quickly solve optimal distribution routes under practical dynamic 
demand conditions. This study provides a practical routing optimization strategy for fresh-product 
distribution enterprises on fast distribution and customer satisfaction improvement. 

3. Model formulation 

3.1. Problem description 

The fresh-product-distribution route optimization problem has its unique characteristics, 
including (i) the cold-chain distribution requirement for fresh products to keep their freshness, (ii) fast 
distribution requirement for fresh products to prevent freshness loss and deterioration, and (iii) time-
sensitive customers of fresh products who are sensitive to the distribution arrival time due to freshness. 
Considering the cold-chain technology application and fast requirements for fresh-product distribution, 
we established the fresh-product-distribution routing optimization model with multiple objectives of 
maximizing time-sensitive customers’ satisfaction and minimizing distribution costs, including cold-
chain-refrigeration cost, freshness-loss cost, delay-penalty cost, vehicle cost, and travel cost. 

In our fresh-product company practice, static fresh-product orders from regular customers in retail 
stores are collected from the previous working day, while still accepting new customer orders 
dynamically arriving during the distribution process in the current working day. A multi-objective 
vehicle routing optimization model with static fresh-product demand is established with the multiple 
objectives of minimizing total distribution costs and maximizing customer time satisfaction. An 
improved MOGAPSO algorithm is proposed to solve this multi-objective vehicle routing optimization 
model, which will be discussed in detail in Section 4.1. Furthermore, a dynamic insertion mechanism 
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is designed to dynamically handle newly arrived customer orders during the working day, which will 
be discussed in detail in Section 4.2 [17]. 

Table 1. Model definitions and notations. 

Parameters Explanations 
m  Number of distribution vehicles
n  Number of customer points
Q  Capacity of vehicle 
v  Velocity of vehicles 

{1, 2, ..., }K m  Set of distribution vehicles
{1,2,..., }V n  Set of customers to be served

iq  The demand of customer i ; i V   
k
it  

The moment the vehicle k  arrived at the customer point i ; ,k K i V    
k
iw  

The unloading time of the vehicle k  at the customer point i ; ,k K i V    

kg  The fixed vehicle cost of k ; k K   

dC  The travel cost per unit distance
p

 The unit price of fresh product

1  Penalty cost per time unit earlier than customers' preferred times 

2  Penalty cost per unit time later than customers' preferred times 

1  Refrigeration cost per unit time during vehicle distribution

2  Refrigeration cost per unit time during vehicle unloading

1u  Freshness coefficient in the distribution process 

2u  Freshness coefficient in the unloading process 

ijd
 Distance from customer point i  to customer point j ; ,i j V   

k
ijt

 
The travel time of vehicle k from customer point i to customer point j ; , ,k K i j V    

iG  Service time required for customer point i ; i V   

mL  Maximum kilometers of vehicle traveled 

[ , ]i iET LT  The time window for service acceptable to the customer i ; i V   
[ , ]i iet lt  The time window for service expectable to the customer i ; i V   

iU  Time satisfaction of customer i ; i V   

i i 、  Time sensitivity of customer i ; i V   

={0,1}k
ijx

 
Whether the vehicle k travels from customer point i to customer point j ; , , ,k K i j V i j     

 0,1iky   Whether the vehicle k  is unloaded at the customer point i ; ,k K i V    

={0,1}ka  Whether the vehicle k  is used for distribution 

The fresh products are delivered from one distribution center to n  customer points by cold-chain 
distribution vehicles within a certain time window. The customers’ orders, location, and distribution 
time windows are known. This paper focuses on the freshness of the fresh products and the fast-
distribution of the dynamic and time-sensitive customer orders to optimize distribution vehicles’ routes. 
To balance the cost and service levels, we develop a multi-objective vehicle routing optimization 
model to minimize the freshness-loss cost, cold-chain refrigeration cost, and delay-penalty cost, and 
maximize customer time satisfaction. 
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Based on realistic scenarios, some assumptions are presented as follows: 
(i) Vehicles are homogeneous cold-chain trucks with different speeds for each time period during 

the distribution process, while ignoring traffic congestion and other unexpected traffic situations. 
(ii) There is only one distribution center where vehicles depart from and eventually return to. 
(iii) Each vehicle can serve multiple customers and each customer location can only be visited once. 
(iv) Distribution center supplies are sufficient, and all vehicles are loaded before departing. 
(v) The variety of fresh products ordered by customers is the same. 
(vi)  Fresh products are kept in cold-chain conditions during the distribution process. The 

freshness of fresh products is reduced during the distribution and uploading processes. 

3.2. Model formulation 

To facilitate the construction of the model, the notations and definitions of the model are explained 
as shown in Table 1. The multi-objective mathematical model of fresh-product-distribution route 
optimization is presented as follows: 
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There are two objective functions in the proposed mathematical model: Equation (1) represents 
the minimum distribution costs, while Eq (2) represents the maximum average customer time 
satisfaction. The distribution costs include freshness-lost cost 1f , fixed vehicle cost 2f , variable travel 
cost 3f , cold-chain refrigeration cost 4f , and delay-penalty cost 5f . Equations (3)–(5) represent that 
each customer location needs to be serviced only once by one distribution vehicle. Equation (6) 
represents the vehicle traversing all customer locations. Equation (7) ensures that the vehicle departs 
from and returns to the distribution center. Equation (8) indicates that the fresh products loaded in the 
vehicle cannot exceed its maximum capacity. Equation (9) indicates that the number of customer points 
served by each vehicle cannot exceed the total number of customer points. Equation (10) represents 
the customer time satisfaction. Equation (11) is the maximum vehicle-travel-distance constraint. 
Equation (12) represents that the vehicle travel time is only related to the vehicle speed. Equation (13) 
represents that the vehicle has to wait if it arrives at the customer point before the customer acceptable 
time, and immediate service will be provided if it arrives within the acceptable time window. 
Equation (14) is the decision variables constraint. 

The freshness-loss costs of fresh products during the distribution process are divided into two 
parts in this study. The first part is the natural freshness-loss cost that occurs over time during the 
distribution process. The second part is the freshness-loss cost due to surface temperature changes of 
fresh products caused by frequently opening the vehicle doors during the unloading process. Referring 
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to Yu and Nagurney 3, our study applies the freshness loss function ( ) tQua t e   to determine the 
freshness loss of fresh products during distribution as shown in Figure 1.  

 

Figure 1. Freshness loss exponential function curve.  

The freshness-loss cost function 1f  is represented in the following Eq (15) and is embodied in 
the objective function Eq (1). 

0( )
1 1 2

1 1 1 1
(1 ) (1 )

k k k
i i

n m n mt t w
ik i ik i

i k i k
f =p y q u e p y q u e   

   
       (15)

Moreover, it is assumed that the fixed vehicle cost 2f , including driver cost, is dependent on the 
number of distribution vehicles and will not vary with the number of customers and travel distance, 
which is represented as the third item in the objective function Eq (1). The variable travel cost consists 
of the fuel cost and operation expenses of the distribution vehicles that are dependent on the travel cost. 
The variable travel cost 3f  is represented as the fourth item in the objective function Eq (1).  

The cold-chain technology is applied in the distribution vehicle to keep the freshness of fresh 
products. The cold-chain refrigeration cost of distribution vehicles for fresh products includes the 
refrigeration cost in the distribution process and the refrigeration cost increment when the vehicle door 
is opened to upload the fresh products to the customers. The cold-chain refrigeration cost 4f   is 
represented in the following Eq (16) and is embodied in the objective function Eq (1). 

4 1 2
1 j 1 1 1 1

n n m n m
k k
ij ij ij i

i k i k
f t x y G 

    
       (16)

where 1  is the refrigeration cost of vehicles in the distribution process, and 2 is the refrigeration 
cost in the fresh-product uploading process. 

In the objective function Eq (10) on customer time satisfaction ( )i iU t  , the customers’ time 
sensitivity is considered in fresh-product distribution. Combining the actual fresh-product distribution 
practices, the dual time window model [18] is taken for the customer time-satisfaction function. The 
customer expects the distribution time window to be [ , ]i iet lt and the actual acceptable distribution 
time window for customer is [ , ]i iET LT . Customer time satisfaction ( )i iU t  is equal to one if the vehicle 
arrives at the customer’s location within the distribution window [ , ]i iet lt .  
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Figure 2. Comparison of time sensitivity of customers. 

Moreover, we introduce the customers’ time sensitivity factors i   and i   to describe the 
tolerance degree of the customer i  to early arrival and distribution delay, respectively, as shown in 
Figure 2; i   represents the customer’s sensitivity to early distribution and i   is the customer’s 
sensitivity to distribution delay. The values of i  and i  are within the range of [0,1]. If both i  
and i are equal to 1, the satisfaction function graph takes the shape of a standard isosceles trapezoid, 
which indicates that customers are much more sensitive to distribution time.  

 

Figure 3. Delay and early distribution penalty function. 

Subsequently, a penalty cost will occur if the fresh products are delivered to the customers earlier 
or later than their expected time window. As shown in Figure 3, if the distribution vehicle arrives earlier 
than the customer time window iet , it results in penalty cost 1 . Also, if the vehicle arrives later than 

ilt  , it results in a much higher delay-penalty cost 2  , because customers might be much more 
sensitive to delayed distribution than earlier arrival. The delay- and early-penalty cost function 5f  is 
represented in the following Eq (17) and is embodied in the objective function Eq (1). 

   5 1 2 i
1 1 1 1

max ,0 max 0,
m n m n

k k
i i i

k i k i
f et t t lt 

   
        (17)

4. Two-stage dynamic algorithm solution design 

As an Nondeterministic Polynomial-hard (NP-hard) problem, the multi-objective VRP is difficult 
to be solved by exact algorithms. Therefore, heuristic algorithms are usually used. Considering fresh-
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product distribution practices based on the comparison of the performance of different heuristic 
algorithms in solving VRP, this paper proposes a two-stage algorithm to solve the fresh-product multi-
objective dynamic VRP. The flowchart of the two-stage algorithm is shown in Figure 4. In the first 
static stage, the initial distribution strategy is obtained by an improved MOPSO algorithm with the 
advantage of a fast calculation capability and simplicity. In the second dynamic stage, the dynamic 
updated strategy is obtained based on a dynamic insertion mechanism that is used to locally adjust the 
initial optimal route solution by periodically inserting newly placed customer orders.  

 

Figure 4. Flowchart of the two-stage solution. 

4.1. Proposed MOGAPSO algorithm 

In the first static stage, we design an improved MOGAPSO algorithm to solve the vehicle routing 
optimization model for fast and efficient fresh-product distribution. The MOPSO algorithm is one of 
the most common algorithms for solving multi-objective optimization problems [11,12], having many 
advantages including its simplicity, fast calculation speed, and easy implementation. However, the 
MOPSO algorithm is easy to converge to the local optimum. The GA is characterized by rich 
population diversity and robustness. Therefore, we introduce a GA into the standard MOPSO algorithm 
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to improve the diversity of the particle swarm population. In order to further improve the global search 
capability of the algorithm, in this paper, an improved MOGAPSO algorithm is proposed by 
introducing the order crossover (OX) and multiple mutation (MM) operations of the GA into the 
standard MOPSO. 

4.1.1. Particles encoding and decoding 

A swarm of particles are potential solutions for fresh-product-distribution vehicle routes. We use 
natural number coding to represent the sequence by which distribution vehicles serve customers. 
Specifically, we assume that the total number of customers served by the fresh-product distribution 
enterprise is N and the maximum number of distribution vehicles is M; the length of the encoding 
particle is N + M + 1. The customer points are represented as the natural numbers (2...N) and the 
distribution center is represented as a natural number 1. For example, the vehicle routing solution 1-3-
9-2-5-1-4-7-1-6-8-1 represents distribution routes in which three vehicles distribute fresh products 
for eight customers. The first vehicle departs from the distribution center and passes through the 
customer points 3, 9, 2, and 5, and finally returns to the distribution center. The second vehicle departs 
from the distribution center and passes through the customer points 4 and 7 and then returns to the 
distribution center. The third vehicle departs from the distribution center and passes through the 
customer points 6 and 8 and then returns to the distribution center. 

4.1.2. Internal particle swarm updating method 

The particle is updated at each iteration to ensure population diversity, which uses the genetic 
algorithm’s OX and MM operations [19]. For the personal best particle pbest  in each generation, the 
principle of “accepted based on probability for non-dominated solution” is applied. The personal best 
particle pbest  is updated when there is a new particle that dominates the current pbest ; otherwise, 
the decision on whether the new solution is accepted might be based on the probability. 

4.1.3. External archive particle selection and updating 

When solving the multi-objective vehicle routing optimization problem for fresh-product 
distribution, the Pareto optimal solutions have to be obtained, which indicates that none of the 
objectives can be further improved without deteriorating other objectives [11]. The non-dominated 
solutions are stored in an external archive. All solutions in the Pareto front are calculated by objective 
functions Z1 and Z2. In order to achieve the multiple objectives of minimizing distribution cost Z1 and 
maximizing customer time satisfaction Z2, it is necessary to select a proper particle in the external 
archive, which could lead the optimal solution set close to the Pareto front. In this paper, the global 
best particle gbest  is selected using the adaptive grid method. 

For two objective functions Z1 and Z2 in this vehicle routing optimization problem for the J 
company’s fresh-product distribution, the target solution space is divided into n * n grids as shown in 
Figure 5. The width of a grid of objective functions Zi (i = 1, 2, ..., n) is calculated as the following Eq (18). 

i i
i

max Z ( x ) min Z ( x )
d

n


  (18)
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where max ( )iZ x  and min ( )iZ x  represent the maximization and minimization values of objective 
functions Zi. The non-dominated solutions in an external archive are assigned into n * n grids. The 
global best particle gbest  is selected from a good sparse quality grid, which is calculated on particle 
quantities in each grid.  

 

Figure 5. Solution space griding for two objective functions. 

Furthermore, the global best particle gbest  is updated in each iteration cycle by making a non-
inferiority comparison between newly generated populations and the external archive population. 

The detailed calculation steps for the proposed MOGAPSO algorithm shown in Figure 4 are as 
follows, while the dynamic insertion mechanism will be discussed in Section 4.2. 

Step 1: Obtain the basic parameters of the algorithm, generate the initial population P , calculate 
the fitness value of the particles in the population under each objective, and determine the global best 
particle ( gbest ) and the personal best particle ( pbest ). 

Step 2: Particle external update operation. Set the algorithm’s iteration times 1t   and execute a 
particle update cycle. All particles in the population are implemented with crossover and mutation 
operations with gbest  and pbest  until the iteration times are larger than particle populations N. 

Step 3: Compare the non-inferiority relationships within the particle populations. Update the 
pbest  in particle swarm populations and the gbest  in the external archive. 

Step 4: If the number of particles in the external archive exceeds the maximum limit, trim the 
external archive. 

Step 5: If the number of external iteration times t  exceeds the maximum limits, it could output 
the Pareto front solution, which will be the initial optimized distribution routes for dynamic stage.  

4.2. Dynamic insertion mechanism 

In the second dynamic stage, fresh-product orders dynamically placed by online customers are 
periodically inserted into the initial distribution routing optimization solution by the dynamic inserting 
mechanism [17], as shown in Figure 6. Specifically, the working day T during which new fresh-product 
orders could be accepted is divided into a series of customer orders processing time slices 

( 1, 2, )iT i n   with equal length  T i . Also, fresh-product orders are collected during each working 
day. The fresh-product order requirements are periodically processed at the customer order processing 
times 1 2+ , ... nt T t T t T  . This dynamic insertion mechanism transforms the dynamic VRP for fresh-
product distribution into a series of static vehicle routing subproblems [17]. 
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Dynamic demand

Dynamic demand batch 
updating time interval

0 T1 T2 Ti Tn T

 

Figure 6. Diagram of dynamic insertion mechanism. 

The dynamic insertion mechanism is used to insert new orders periodically into the initial routing 
optimization solution by greedy insertion algorithm and to make local improvements to the selected 
initial solution. It is necessary to maintain the original customer time satisfaction as much as possible 
while meeting orders from new customers, and ultimately generating an optimal dynamic solution. 
The detailed steps of dynamic insertion mechanism in the second dynamic stage of the two-stage 
algorithm shown in Figure 4 are as follows. 

Step 1: Identify the current vehicle routes L and all newly added customer points list G in the 
current period. 

Step 2: Record the current time t and obtain customer order points list K that have been serviced 
or are being serviced. Remove the customer order points in K from the initial vehicle routes L and 
obtain the list of available customer order points that could be inserted (L-K). 

Step 3: Randomly select an order i  from the newly added customer points list G and insert it 
into the list (L-K). Since the last point is the distribution center, there are L-K available insertion points 
for newly added customer order points. 

Step 4: Record the additional cost added to the distribution route after inserting each newly added 
customer point. If there is an insertion point that violates the time constraints, it is directly discarded 
to ensure the arrival time of the distribution vehicle for regular customers. The optimal insertion point 
with the lowest cost is recorded. 

Step 5: Repeat Steps 3 and 4 until newly added customer points list G is empty. Then, we output 
all the best insertion point schemes and update the initial vehicle route L. 

5. Case study 

5.1. Case description 

We conduct a case study on fresh-product-distribution routing optimization for the J fresh-product 
distribution company in Shenzhen, China, based on the proposed model (3.3) and methods (4.1 and 4.2). 
The J fresh-product distribution company provides warehousing and distribution of fresh products 
including frozen meat, frozen seafood, vegetables, fruits, and so on. J company aims to quickly 
distribute fresh products with cold-chain trucks to their time-sensitive customers to keep the freshness 
of their fresh products, with the objectives of maximum customer satisfaction and minimum 
distribution cost. In this section, the practicality of the fresh-product-distribution routing optimization 
model (3.3) and methods (4.1 and 4.2) proposed in this study are tested in J fresh-product distribution 
company. As in our trial, the fresh-product demand is dynamically changing during the working day, 
with J company receiving orders both from regular customers and online customers with 
heterogeneous time sensitivity. The cold-chain truck can distribute fresh products to several customers 
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at diverse speeds in different traffic conditions.  
We used the real fresh-product distribution data of J company from its distribution center in the 

Guangming district of Shenzhen city in one working day (June 1st, 2016), referring to Chen and Li [20]. 
There are 33 customer data points used in our study in total, including static and dynamic demand as 
in our trial. The distribution center has 24 regular customers (retail stores), whose fresh-product orders 
are taken as static demand data in this study. During that working day, another 9 new customers placed 
fresh-product orders and 4 regular customers changed orders, which are taken as dynamic demand data 
in this study.  

The number of refrigerated vehicles performing distribution services at the J company’s 
distribution center is m =10, and the maximum capacity of the vehicles Q  = 3.0 tons. In the first 
static stage, vehicle speed was set as a fixed speed of 40 km/h. In the second dynamic stage, the vehicle 
speed changes with traffic volume in different distribution time periods. The fresh-product distribution 
period from 4:00 a.m. to 9:00 a.m. was divided into five segments according to the local traffic volume. 
Vehicle speed v was 50 km/h at [4:00, 5:00], 45 km/h at [5:00, 6:00], 40 km/h at [6:00, 7:00], 35 km/h 
at [7:00, 8:00], and 30 km/h at [8:00, 9:00]. In Table 2, the detailed parameters in the multi-objective 
distribution routing model are set as practical values in the J company.  

Table 2. Model parameter settings. 

Parameters Description Value Unit

kg  The fixed vehicle cost of K  200 RMB 

dC  The travel cost per unit distance 10 RMB/km 
p  The unit price of fresh product 3 RMB/kg
  Freshness loss time sensitivity coefficient 0.004 - 

1u  Freshness coefficient in the distribution process  0.9999 - 

2u  Freshness coefficient in the unloading process 0.9360 - 
1  Penalty cost on earlier arrival 20 RMB/h 

2  Penalty cost on delay  200 RMB/h 
1  Refrigeration cost during vehicle distribution 30 RMB/h
2  Refrigeration cost during vehicle uploading 40 RMB/h 

 

Figure 7. Location of the distribution center and the 33 customer points. 
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We collected fresh-product orders from regular retail stores that are submitted by customers 
before 12:00 a.m. There are 24 retail stores taken as customer points on the experiment working day. 
The latitude and longitude of the customer points and the distribution center were obtained from the 
Gaode map open platform. The relative positions of customer points were correspondingly transformed 
in the MATLAB coordinate system as shown in Figure 7. The distribution center was represented by 
a triangle and customer locations were numbered from 1 to 24. The 9 newly added customers during 
the working day were numbered from 25 to 33. 

The fresh-product order data of the 24 regular customers, including order demand for each 
customer, the expected distribution time window, the acceptable time window, and the service time, 
are shown in Table 3. 

Table 3. Customer orders and time window. 

Customer 
point 

Order demand 
(ton) 

Expected 
time window

Acceptable 
time window

Service time  
(minutes) i  i  

1 0.36 [4:15, 5:00] [4:05, 5:10] 15 0.6 0.6
2 0.2 [4:20, 5:05] [4:10, 5:15] 15 0.6 0.6
3 0.5 [4:15, 4:45] [4:05, 4:55] 15 0.4 0.4
4 0.6 [5:00, 5:30] [4:45, 5:40] 15 1 1
5 0.45 [5:30, 6:25] [5:20, 6:35] 15 0.4 0.4
6 0.23 [4:30, 5:15] [4:15, 5:25] 15 0.6 0.6
7 0.85 [4:40, 5:10] [4:30, 5:30] 15 0.6 0.6
8 0.35 [4:15, 5:00] [4:05, 5:05] 15 0.4 0.4
9 0.2 [4:40, 5:10] [4:30, 5:30] 15 1 1
10 0.45 [4:40, 5:30] [4:30, 5:40] 15 0.4 0.4
11 0.7 [5:15, 6:05] [5:05, 6:15] 15 0.6 0.6
12 0.8 [5:30, 6:20] [5:20, 6:30] 15 0.4 0.4
13 0.65 [4:35, 5;15] [4:25, 5:25] 15 0.6 0.6
14 0.3 [4:55, 5:30] [4:45, 5:40] 15 0.6 0.6
15 0.2 [5:35, 6:05] [5:25, 6:15] 15 1 1
16 0.65 [4:20, 5:05] [4:10, 5:15] 15 0.4 0.4
17 0.9 [5:00, 5:30] [4:45, 5:40] 15 0.6 0.6
18 0.45 [6:15, 6:45] [6:05, 6:55] 15 0.6 0.6
19 0.85 [4:20, 5:20] [4:10, 5:30] 15 0.4 0.4
20 0.5 [5:30, 6:00] [4:20, 6:10] 15 0.4 0.4
21 0.65 [5:40, 6:15] [5:30, 6:25] 15 0.6 0.6
22 0.42 [5:30, 6:00] [5:20, 6:10] 15 0.6 0.6
23 0.35 [4:50, 5:20] [4:40, 5:50] 15 0.6 0.6
24 0.55 [5:40, 6:15] [4:30, 6:25] 15 0.6 0.6

The time sensitivity of customers is different on fast distribution services. Therefore, it is assumed 
that the time-sensitivity coefficient i , i  are equal to 1 for highly time-sensitive customers, who are 
much more sensitive to the distribution time and have purchased the instant-distribution service. These 
highly time-sensitive customers desire to receive the fresh products within the expected time window 
 ,i iet lt  . For the highly time-sensitive customers who have not purchased the instant-distribution 
service, the time-sensitivity coefficient ,i i   is set as 0.6. The time-sensitivity coefficient ,i i 

 of 
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customers who are less sensitive to the arrival time of fresh products is set as 0.4. In this case study, 
the time-sensitivity coefficients are different between the 24 customers, as listed in Table 3. 

5.2. MOGAPSO algorithm results and comparison 

To test the effectiveness of the improved MOGAPSO algorithm, we compared its simulation 
results with the NSGA-II (non-dominated sorting genetic algorithm II) and standard MOPSO 
algorithms. The calculation was iterated 500 times for three comparison algorithms. Moreover, the 
target solution space parameter of the improved MOGAPSO was set as 10 × 10 grids for two objective 
functions of total cost and customer time satisfaction. We used MATLAB 2018b for programming and 
ran it on an Intel(R) Core(TM) i5-7300HQ CPU computer. The Pareto front comparison results of 
three algorithms are shown in Figure 8. The optimal solutions of the improved MOGAPSO algorithm 
indicate higher density than the standard MOPSO algorithm. These experiment results demonstrate 
that the OX and MM operations introduced into the improved MOGAPSO algorithm could effectively 
improve the diversity of the particle swarm population to converge the global optimum. The Pareto 
optimal solutions of the improved MOGAPSO algorithm are located in the left area of Figure 8, 
presenting better performance on distribution-cost reduction than the NSGA-II and standard MOPSO 
algorithms. Also, the proposed MOGAPSO algorithm improved by the GA demonstrates good 
convergence capability by denser global optimums in Figure 8, which is close to the results of NSGA-
II and greatly better than the optimum results obtained from MOPSO algorithms.  

 

Figure 8. Pareto front comparison of three algorithms. 

We compared the improved MOGAPSO algorithm with the NSGA-II and standard MOPSO 
algorithms. As shown in Figure 9, the experiment results show that the improved MOGAPSO 
algorithm is superior to the other two on freshness cost, delay- and early-penalty cost, total distribution 
costs, and customer time satisfaction. Especially, the delay- and early-penalty cost of optimal 
distribution routing solution deduced from the improved MOGAPSO algorithm is reduced to 28.2, 
which is much lower than in the NSGA-II (135.77) and MOPSO algorithms (163.77). This indicates 
that the improved MOGAPSO algorithm could solve the optimal distribution routes, helping to quickly 
and timely distribute fresh products within a short time window. The runtime of the improved 
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MOGAPSO algorithm is 72.4 s, which is much faster than the NSGA-II algorithm (129.72 s) and 
slower than the MOPSO algorithm (40.90 s). These numerical simulation results show that the 
improved MOPSO algorithm has the advantage of fast calculation speed. Also, the MOGAPSO 
algorithm demonstrates better performance on convergence to the global optimum improved by the GA. 

 

Figure 9. Comparison results of the three algorithms. 

5.3. Sensitivity analysis 

The sensitivity analysis was performed to explore the impact of coefficient changes on the 
performance of the improved MOGAPSO algorithm for fresh-product-distribution routing 
optimization [21]. Considering the characteristics of fresh products, the freshness coefficients in the 
distribution and uploading processes and order demand changes may have an influence on the 
performance of fresh-product-distribution routing optimization.  

       

Figure 10. Influence of freshness coefficients. 

We adjust the freshness coefficient in the distribution process by decreasing from 0.9999 to 0.9600. 



2914 

Electronic Research Archive  Volume 32, Issue 4, 2897-2920. 

Specifically, the freshness coefficient in the distribution process is set as 0.9999, 0.9900, 0.9800, 0.9700, 
and 0.9600. As shown in Figure 10, the results demonstrate that the total fresh-product distribution 
cost will increase as the freshness coefficient in the distribution process decreases. We adjust the freshness 
coefficient in the uploading process by increasing from 0.9360 to 0.9700. As shown in Figure 10, the 
results demonstrate that the total fresh-product distribution cost will decrease as the freshness 
coefficient in the uploading process increases. Therefore, the sensitivity analysis’ results show that the 
fresh-product distribution cost may increase as the freshness decreases in the distribution and 
uploading processes. Thus, the cold-chain performance of fresh-product-distribution vehicles on 
keeping freshness during the distribution process is critical to reduce total fresh-product distribution 
costs. Moreover, the J company should enhance fast-services training on uploading employees to reduce 
uploading time and freshness loss, and consequently to reduce total fresh-product distribution costs.  

 

Figure 11. Influence of fresh-product demand. 

The order demand for fresh products may explode when retail stores make special promotions on 
shopping festivals like Double Eleven. The sensitivity analysis was performed by setting demand 
growth as 10, 20, 30 and 40%. As shown in Figure 11, the total distribution cost will increase as the 
demand increases, and customer satisfaction will decrease as the demand increases. Therefore, the 
dynamic mechanism that will be designed to optimize distribution routes in Section 5.4 is critical to 
practical demand-changing scenarios to improve distribution performance. 

5.4. Dynamic insertion mechanism experiment 

According to the actual situation, new fresh-product orders are generated online from time to time. 
In the numerical experiment, on the second dynamic optimization stage, nine newly added customers 
are dynamically inserted into the initial optimal routes solution for regular customer points obtained 
from the first static optimization stage. The dynamic inserting algorithm is applied to optimize 
distribution routing in a series of processing time slices that are set as a fixed time interval of 40 
minutes. The dynamic distribution routing optimization is implemented three times every day in three 
updating time intervals: 4:40, 5:20 and 6:00. The nine customers who placed new fresh-product 
orders are marked as number 25 to number 33 in Table 4 and Figure 7. In this case study, new orders 
from customer points 25–27 are received in the time interval 4:40–5:20. New orders from customer 
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points 28–30 are received in the time interval 5:20–6:00. New orders from customer points 31–33 are 
received in the time interval 6:00–6:40. Moreover, four regular customers who have already placed 
fresh-product orders in the previous working day dynamically increase or decrease fresh-product 
orders in the working day, as shown in Table 5.  

Table 4. Newly added customers and time window. 

Customer 
point 

Demand 
(ton) 

Expected 
time window 

Acceptable  
time window

Service time 
(minutes) i  i  

25 0.4 [4:45, 5:20] [4:35, 5:35] 15 0.4 0.4
26 0.2 [4:55, 5:20] [4:45, 5:30] 15 0.4 0.4
27 0.1 [4:55, 6:20] [4:45, 6:30] 15 1 1
28 0.1 [5:25, 6:30] [5:15, 6:40] 15 0.4 0.4
29 0.1 [5:30, 6:30] [5:20, 6:40] 15 0.6 0.6
30 0.1 [5:35, 6:30] [5:25, 6:40] 15 0.4 0.4
31 0.05 [6:00, 7:00] [5:50, 7:10] 15 0.4 0.4
32 0.15 [6:20, 7:00] [6:10, 7:10] 15 0.6 0.6
33 0.1 [6:30, 7:00] [6:20, 7:10] 15 0.4 0.4

Table 5. Dynamic demand changes in regular customer points. 

Customer point Demand changes Acceptable time window Service time
4 0.6–0.8 (Increased) [4:45, 5:40] 15 
12 0.8–0.7 (Deceased) [5:20, 6:30] 15 
23 0.35–0.45 (Increased) [4:40, 5:50] 15 
17 0.9–0.8 (Deceased) [4:45, 5:40] 15 

Table 6. Vehicle optimal routing solution in the initial MOGAPSO stage. 

Vehicle 
number 

Distribution route Arrival time at each point (minutes) 
Travel 
distance 

Distribution
cost

1 0–19–8–13–16–0 0–12.50–36.67–59.52–83.32–104.05 35.7 781.69 

2 0–1–10–17–18–23–0 0–8.45–29.29–50.71–66.25–87.11–114.78 31.7 758.43 

3 0–20–22–21–24–0 0–6.90–99.40–117.33–134.12–159.27 19.3 667.21

4 0–14–6–4–5–12–0 0–5–65.36–84.22–101.49–120.09–138.97 18.6 655.94 

5 0–3–2–7–9–11–15–0 0–7.98–24.88–43.33–64.52–84.19–101.06–124.46 27.6 736.42 

Initial optimal distribution routes solution for fresh products are solved by the improved 
MOGAPSO algorithm in the first static stage, as shown in Table 6. The distribution center assigned 
the fresh-product distribution for 24 customer points to five cold-chain distribution vehicles. The 
customer time satisfaction reaches 86.3% on the initial optimization solution for five vehicle 
distribution routes. In the second dynamic stage, nine newly added customer points are inserted into 
the initial optimal distribution routes. Applying the dynamic inserting algorithm, the dynamic 
optimization solutions for fresh-product-distribution routing are updated three times at 4:40, 5:20, and 
6:00 respectively as shown in Table 7. In Table 7, the italics text in brackets indicates the new customer 
points that have been inserted into the initial optimal distribution routes. The bold numbers in the third 
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column are customer points whose orders have been delivered before the updating time. The bold 
numbers in the fourth column demonstrate the arrival time of vehicles that have finished their 
distribution tasks before the updating time.  

Table 7. Dynamically updated vehicle routing solutions. 

Update 
time 

Vehicle 
number 

Distribution route Arrival time at customer point (minute) 
Travel 
distance

Total 
cost 

 

 

4:40 

1 0–19–8–13–16–0 0–12.50–36.67–59.52–83.32–104.06 35.7 781.69

2 0–1–10–(25)–17–18–23–0 0–8.45–29.29–49.52–75.19–90.72–111.59–140.77 38.7 905.83

3 0–20–22–21–24–0 0–6.90–99.40–117.33–134.12–159.27 19.3 667.21

4 0–14–6–4–5–12–0 0–5.00–65.36–84.22–101.49–120.09–138.97 18.6 655.94

5 
0–3–2–7–9–(26)–11–15–

(27)–0 

0–7.98–24.88–43.33–64.52–85.26–105.19–122.28– 

138.42–162.88
32.9 1048.61

 

 

 

5:20 

1 
0–19–8–13–16–(29)–

(28)–(30)–0

0–12.50–36.67–59.52–83.32–103.52–130.39–

160.91– 189.20
63.5 974.73

2 0–1–10–25–17–18–23–0 0–8.45–29.29–49.52–75.19–90.72–111.59–140.77 38.7 905.83

3 0–20–22–21–24–0 0–6.90–99.40–117.33–134.12–159.27 19.3 667.21

4 0–14–6–4–5–12–0 0–5.00–65.36–84.22–101.49–120.09–138.97 18.6 655.94

5 
0–3–2–7–9–26–11–15–

27–0 

0–7.98–24.88–43.33–64.52–85.26–105.19–122.28– 

138.42–162.88
32.9 1048.61

 

 

 

6:00 

1 
0–19–8–13–16–29–28–

30–(32)–(31)–0 

0–12.50–36.67–59.52–83.32–103.52–130.39–

160.91– 182.18–205.46–213.12
67.6 1260.16

2 0–1–10–25–17–18–23–0 0–8.45–29.29–49.52–75.19–90.72–111.59–140.77 38.7 905.83

3 0–20–22–21–24–(33)–0 0–6.90–99.40–117.33–134.12–152.71–179.95 23.1 826.86

4 0–14–6–4–5–12–0 0–5.00–65.36–84.22–101.49–120.09–138.97 18.6 655.94

5 
0–3–2–7–9–26–11–15–

27–0 

0–7.98–24.88–43.33–64.52–85.26–105.19–122.28– 

138.42–162.88
32.9 1048.61

For fresh-product-distribution vehicles that have already departed to customer points, the system 
will subsequently insert newly added customer orders into their initial optimal distribution routes 
obtained from the first MOGAPSO stage. There are three newly added customer points (25, 26 and 27) 
at the updating time 4:40 when five distribution vehicles have all departed to serve customer points at 
the travel speed of 50 km/h. As shown in Table 7, optimized with the dynamic inserting algorithm, the 
newly added customer point 25 is inserted into the initial distribution route for vehicle 2, which makes 
its travel cost increase by 147.4 Yuan. Newly added customer points 26 and 27 are also inserted into 
the initial distribution route for vehicle 5, which makes its travel cost increase by 312.19 Yuan. 
Similarly, the three newly added customer points 28, 29, and 30 at the updating time 5:20 are inserted 
into the initial distribution route for vehicle 1 at the speed of 45 km/h, which makes its travel cost 
increase by 193.04 Yuan. The three newly added customer points 31, 32, and 33 at the last updating 
time 6:00 are inserted into the initial distribution route for vehicles 1 and 3 at the speed of 40 km/h. 
The travel costs for vehicle 1 increase by 285.43 Yuan and for vehicle 3 by 159.65 Yuan. Moreover, the 
travel distance becomes longer for the dynamic optimization solution of vehicle routes after inserting 
newly added customer points, which makes the customer time satisfaction decrease a little to 82.3%. 
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5.5. Dynamic solution comparison 

To demonstrate the effectiveness of the dynamic inserting algorithm, we compare the two-stage 
dynamic distribution routing optimization solution with a static distribution solution for newly added 
customer orders in the working day. In the static solution, two additional distribution vehicles, 6 and 7, 
are assigned to deliver fresh-product orders for nine newly added customer points. The distribution 
routes for the additional vehicles 6 and 7 are listed in Table 8 with their travel distance and cost. 
Moreover, the comparisons of various costs between the dynamic and the static solutions are shown in 
Figure 12. 

Table 8. Routing of two added vehicles for new orders. 

Vehicle number Distribution route Travel distance Travel cost 
6 0–26–28–32–30–31–0 36.8 949.05 
7 0–27–29–25–33–0 20.9 825.39 

The dynamic solution for fresh-product-distribution routing demonstrates a better performance 
on the reduction of freshness-loss cost, cold-chain-refrigeration cost, delay- and early-penalty cost, 
and total distribution cost as shown in Figure 12. Dynamic solutions for fresh-product-distribution 
routes could save a total distribution cost of RMB 676.73, which makes up a reduction of 12.6%. 
Therefore, a two-stage strategy combining the improved MOGAPSO algorithm and the dynamic 
inserting algorithm could efficiently reduce distribution costs for fresh products. Our research in 
this paper provides a scientific methodology for distribution vehicle routing optimization for fresh-
product enterprises. 

 

Figure 12. Cost comparison of dynamic and initial routing solutions. 

6. Conclusions 

Considering the freshness requirement and fast distribution characteristics, we proposed a multi-
objective vehicle routing optimization model for fresh-product distribution to comprehensively 
minimize freshness-loss cost, cold-chain-refrigeration cost, delay-penalty cost (including early-penalty 

1400

1254.15

1906

692.46

121.52

5374.13

1000

1220.81

1809

604.19

63.4

4697.4

0 1000 2000 3000 4000 5000

Fixed vehicle cost

Freshness loss cost

Travel cost

Total refrigeration cost

Delay and early penalty cost

Total distribustion cost

Dynamic solution Static solution



2918 

Electronic Research Archive  Volume 32, Issue 4, 2897-2920. 

cost), and distribution cost, and maximize customer time satisfaction. Moreover, we designed a two-
stage solution with an improved MOGAPSO algorithm and dynamic inserting algorithm to quickly 
solve out optimal vehicle routes for fresh-product distribution under dynamic demand practices. 
Finally, a case study was conducted on a fresh-product distribution company in Shenzhen, China, to 
validate the practicality of the proposed vehicle-routing optimization model and improved algorithms.  

The numerical simulation results on practical data indicated that the proposed MOGAPSO 
algorithm could solve optimal distribution routing solutions with lower total distribution costs and 
higher customer time satisfaction than the NSGA-II and MOPSO algorithms. The delay- and early-
penalty cost of the optimal distribution routing solution deduced from the proposed MOGAPSO 
algorithm was reduced to 28.12, which is much lower than the NSGA-II (135.77) and MOPSO (163.27) 
algorithms. The dynamic insertion algorithm can periodically update the optimal distribution routing 
solution for newly added customer orders with a total distribution cost reduction of 12.6%. Our 
research provides a practical and efficient solution for fresh-product-distribution enterprises to 
improve customer satisfaction and reduce distribution costs.  

The fresh-product distribution faces complicated scenarios in reality, such as road complexity or 
extreme weather conditions, which might be taken into account in future research. The cold-chain 
temperature conditions are different for various types of fresh products. Also, there are diverse types 
of distribution vehicles on different refrigerated conditions and dimensions in fresh-product 
distribution. Therefore, mixed fleets with multiple vehicles might be explored in the vehicle routing 
optimization problem. Furthermore, emerging blockchain technology applications could be analyzed 
in future research. 
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