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Abstract: In this paper, we consider the existence of positive solutions for a system of fractional q-
difference equations with generalized p-Laplacian operators. By using Guo-Krasnosel’skii fixed point
theorem, we obtain some existence results of positive solutions for this system with two parameters
under some different combinations of superlinearity and sublinearity of the nonlinear terms. In the end,
we give two examples to illustrate our main results.
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1. Introduction

In this paper, we consider the existence of positive solutions for the following system of fractional
q-difference equations with generalized p-Laplacian operators:

−Dγ
q(ϕ1(Dα

q x))(t) = η f (t, x (t) , y (t)) , 0 < t < 1,

−Dγ
q(ϕ2(Dα

qy))(t) = ζg (t, x (t) , y (t)) , 0 < t < 1,

x(0) = Dqx(0) = 0, Dqx(1) = β > 0, Dα
q x(0) = 0,

y(0) = Dqy(0) = 0, Dqy(1) = β > 0, Dα
qy(0) = 0,

(1.1)

where 0 < q < 1, 2 < α < 3, 0 < γ < 1, f , g : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) are continuous,
η > 0 and ζ > 0 are two parameters, ϕ1 and ϕ2 are generalized p-Laplacian operators; Dγ

q and Dα
q are

the fractional q-derivative of the Riemann-Liouville type, Dq is the q-derivative.
Due to the extensive application of fractional order equations, many scholars have studied the exis-

tence of nontrivial solutions of boundary value problems for fractional order differential equations. In
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recent years, some authors [1–5] have considered the existence of positive solutions for some Riemann-
Liouville type, tempered type, Caputo type and Hadamard type fractional order differential equations.
The authors [6,7] have considered the existence of nontrivial solution of Hadamard-type singular frac-
tional differential equations. Some authors [8–12] have considered the existence of nontrivial solutions
for some Riemann-Liouville type, tempered type, Caputo type and Hadamard type fractional order
differential equations with p-Laplacian operator. Some authors [13,14] have considered the eigenvalue
problems of fractional differential equations.

Meanwhile, after Jackson [15] introduced the q-calculus, Al-Salam [16] and Agarwal [17] devel-
oped the fractional q-calculus. Many researchers have studied the existence of nontrivial solutions for
fractional q-difference equations these years. The commonly used methods include fixed point theo-
rems, lower-upper solution method, monotone iterative technique, and so on. For example, in [18],
Ferreira studied the following boundary value problem of fractional q-difference equation:(Dα

qy)(x) = − f (x, y(x)), 0 < x < 1,

y(0) = (Dqy)(0) = 0, (Dqy)(1) = β ≥ 0,
(1.2)

where 0 < q < 1, 2 < α ≤ 3, f : [0, 1]× [0,∞)→ [0,∞) is continuous; Dα
q is the fractional q-derivative

of the Riemann-Liouville type, Dq is the q-derivative. The author obtained the existence of positive
solutions about the boundary value problem (1.2) by using Guo-Krasnosel’skii fixed point theorem.

In [19], Zhai and Ren applied iterative algorithm and lower-upper solution method to study the
following fractional q-difference equation:(Dα

qu)(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = (Dqu)(0) = 0, (Dqu)(1) = 0,
(1.3)

where q ∈ (0, 1), α ∈ (2, 3). Under some conditions, the authors obtained some existence results of
positive or negative solutions for the boundary value problem (1.3).

In [20], Mao et al. used iterative technique to consider the general fractional q-difference equation
of the problem (1.3) as followings:(Dα

qu)(t) + f (t, u(t), v(t)) = 0, 0 < t < 1,

u(0) = (Dqu)(0) = 0, (Dqu)(1) = 0,
(1.4)

where q ∈ (0, 1), α ∈ (2, 3), f may be singular at v = 0, t = 0, 1. The existence of a unique positive
solution of the problem (1.4) has been proved.

In [21], Jiang and Zhong studied the following fractional q-difference equation with p-Laplacian
operator: 

Dβ
q(ϕp(Dα

q x)(t)) + f (t, x(t),Dρ
q(t)) = 0,

x(0) = (Dqx)(0) = 0, (Dα
q x)(0) = 0,

x(1) = ζIqx(η),

(1.5)

where α ∈ (2, 3), β, q, η, ρ ∈ (0, 1), ϕp(s) = |s|p−2s is the p-Laplacian operator (p > 1). The authors
used Banach’s contraction principle to prove the existence and uniqueness of nontrivial solution of the
problem (1.5), and also used Guo-Krasnosel’skii fixed point theorem to obtain the existence of positive
solutions of the problem (1.5).
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In [22], Li et al. considered the following boundary value problem of nonlinear fractional q-
difference equation: Dγ

q(ϕ(Dα
qu)(t)) + η f (u(t)) = 0, 0 < t < 1,

u(0) = Dqu(0) = 0, Dqu(1) = β > 0, Dα
qu(0) = 0,

(1.6)

where 0 < q < 1, 2 < α < 3, 0 < γ < 1, ϕ is the generalized p-Laplacian operator; Dγ
q and Dα

q are
the fractional q-derivative of the Riemann-Liouville type, Dq is the q-derivative. The authors used the
fixed point theorem to prove the existence of positive solutions of the boundary value problem (1.6).

In [23], Wang et al. investigated the following boundary value problem of fractional q-difference
equation with ϕ-Laplacian:Dβ

q(ϕ(Dα
qu(t))) = λ f (u(t)), 0 < t < 1,

u(0) = Dqu(0) = Dqu(1) = 0, ϕ(Dα
qu(0)) = Dq(ϕ(Dα

qu(1))) = 0,
(1.7)

where 0 < q < 1, 2 < α ≤ 3, 1 < β ≤ 2, λ > 0 is a parameter, and Dβ
q, Dα

q are the standard Riemann-
Liouville fractional q-derivatives. The existence and nonexistence of positive solutions of the boundary
value problem (1.7) was obtained based on Guo-Krasnosel’skii fixed point theorem on cones.

Currently, many other authors have studied fractional q-difference equations. Some authors [24,25]
have considered the existence of multiple positive solutions for some fractional q-difference equations.
The authors [26–30] have considered the existence of nontrivial solutions for fractional q-difference
equations with various boundary conditions.

Meanwhile, many authors have studied the existence of positive solutions of systems of some frac-
tional differential equations with various boundary conditions, see [31–35] and the references therein.
For example, in [31], Li et al. investigated the following system of fractional differential equations
with p-Laplacian operators:

Dα1
0+(φp1(D

β1
0+u(t))) = f (t, v(t)), 0 < t < 1,

Dα2
0+(φp2(D

β2
0+v(t))) = g(t, u(t)), 0 < t < 1,

u(0) = Dβ1
0+u(0) = 0, Dγ1

0+u(1) =
m−2∑
j=1

a1 jD
γ1
0+u(η j),

v(0) = Dβ2
0+v(0) = 0 Dγ2

0+v(1) =
m−2∑
j=1

a2 jD
γ2
0+v(η j),

(1.8)

where αi, γi ∈ (0, 1], βi ∈ (1, 2],Dαi
0+ ,D

βi
0+ and Dγi

0+ are the standard Riemann-Liouville derivatives,
i = 1, 2. The authors derived the conditions for the existence of the maximal and minimal solutions,
and obtained the existence of extremal solutions of the system (1.8).

In [32], He and Song considered the following system of fractional differential equations with p-
Laplacian operators and two parameters:

Dα1
0+(φp1(D

β1
0+u(t))) = η f (t, v(t)), 0 < t < 1,

Dα2
0+(φp2(D

β2
0+v(t))) = ζg(t, u(t)), 0 < t < 1,

u(0) = 0, u(1) = a1u(ξ1),Dβ1
0+u(0) = 0,Dβ1

0+u(1) = b1Dβ1
0+u(η1),

v(0) = 0, v(1) = a2v(ξ2),Dβ2
0+v(0) = 0,Dβ2

0+v(1) = b2Dβ2
0+v(η2),

(1.9)
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where αi, βi ∈ (1, 2], Dαi
0+ and Dβi

0+ are the standard Riemann-Liouville derivatives, ξi, ηi ∈ (0, 1), ai, bi ∈

[0, 1], i = 1, 2. η and ζ are positive parameters. By using the Banach contraction mapping principle,
the authors gave the existence and uniqueness of the solution for the system (1.9).

In [33], Hao et al. investigated the following system of fractional boundary value problems with
p-Laplacian operators and two parameters:

−Dα1
0+(φp1(D

β1
0+u(t))) = λ f (t, u (t) , v (t)) , t ∈ (0, 1) ,

−Dα2
0+(φp2(D

β2
0+v(t))) = µg (t, u (t) , v (t)) , t ∈ (0, 1) ,

u (0) = u (1) = u′ (0) = u′ (1) = 0,Dβ1
0+u (0) = 0,Dβ1

0+u (1) = b1Dβ1
0+ p (η1) ,

v (0) = v (1) = v′ (0) = v′ (1) = 0,Dβ2
0+v (0) = 0,Dβ2

0+v (1) = b2Dβ2
0+v (β2) ,

(1.10)

where αi ∈ (1, 2] , βi ∈ (3, 4] , Dαi
0+ and Dβi

0+ are the Riemann-Liouville derivatives, φpi (s) =
|s|pi−2s, pi > 1, f , g ∈ C ([0, 1] × [0,+∞) × [0,+∞), [0,+∞)), λ and µ are positive parameters. By
means of Guo-Krasnosel’skii fixed point theorem, the authors obtained various existence results of
positive solutions of the system (1.10).

To the best of our knowledge, limited attention has been devoted to the investigation of systems
of fractional q-difference equations. Inspired by the above literatures, in this paper, we consider the
existence of positive solutions for the system of fractional q-difference equations (1.1) with general-
ized p-Laplacian operators and two parameters. Under some sublinear and superlinear conditions, we
establish some existence results of positive solutions for the system (1.1) by using Guo-Krasnosel’skii
fixed point theorem.

2. Preliminaries

In this section, we firstly introduce Guo-Krasonsel’skill fixed point theorem. Secondly, we give
some knowledge about fractional q-calculus. In the end, we give some lemmas that are used to prove
the main results.

Lemma 2.1. ( [36]) Let E be a Banach space, P ⊂ E be a cone. Assume that Ω1 ⊂ E and Ω2 ⊂ E are
bounded open sets with θ ∈ Ω1 ⊂ Ω2, the operator A : P ∩ (Ω̄2\Ω1) → P is completely continuous. If
the following conditions are satisfied:

(i) ∥ Ax ∥ ≤ ∥ x ∥,∀x ∈ P ∩ ∂Ω1, ∥ Ax ∥ ≥ ∥ x ∥,∀x ∈ P ∩ ∂Ω2, or

(ii) ∥ Ax ∥ ≥ ∥ x ∥,∀x ∈ P ∩ ∂Ω1, ∥ Ax ∥ ≤ ∥ x ∥,∀x ∈ P ∩ ∂Ω2,

then the operator A has at least one fixed point in P ∩ (Ω̄2\Ω1).

In the following, we give some definitions and lemmas about fractional q-calculus. For the detailed
knowledge about fractional q-derivative and fractional q-integral, we can refer to [15–18].

Define
[a]q =

1 − qa

1 − q
, a ∈ R, q ∈ (0, 1).

The q-analogue of the power function (a − b)(α) with α ∈ R is

(a − b)(α) = aα
∞∏

n=0

a − bqn

a − bqα+n , n ∈ N.
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The q-gamma function is defined by

Γq(x) =
(1 − q)(x−1)

(1 − q)x−1 , x ∈ R\{0,−1,−2, ...},

and satisfies Γq(x + 1) = [x]qΓq(x).
The q-derivative of a function f is defined by

(Dq f )(x) =
f (x) − f (qx)

(1 − q)x
, (Dq f )(0) = lim

x→0
(Dq f )(x),

and q-derivative of higher order by

(D0
q f )(x) = f (x), (Dn

q f )(x) = Dq(Dn−1
q f )(x), n ∈ N.

The q-integral of a function f is given by

(Iq f )(x) =
∫ x

0
f (t)dqt = x(1 − q)

∞∑
n=0

f (xqn)qn, x ∈ [0, b],

where f is defined in the interval [0, b].

Definition 2.1. ( [17, 18]) The fractional q-integral of the Riemann-Liouville type is defined by
(Iq

0 f )(x) = f (x), and

(Iαq f )(x) =
1
Γq(α)

∫ x

0
(x − qt)(α−1) f (t)dqt, α > 0, x ∈ [0, 1].

Definition 2.2. ( [18]) The fractional q-derivative of the Riemann-Liouville type order α ≥ 0 is defined
by (D0

q f )(x) = f (x) and

(Dα
q f )(x) = (Dm

q Im−α
q f )(x), α > 0,

where m = [α].

The paper [37] introduced the definition of a generalized p-Laplacian operator ϕ, which included
two important cases ϕ(u) = u and ϕ(u) = |u|p−2u(p ≥ 1). In this paper, we assume that ϕ1 and ϕ2 are
generalized p-Laplacian operators, namely, ϕ1 and ϕ2 satisfy the following condition:
(H0) ϕi : R → R(i = 1, 2) is an odd and increasing homeomorphism, and there exist increasing
homeomorphisms ψ1, ψ2, ψ3, ψ4 : (0,∞)→ (0,∞) such that

ψ1(x)ϕ1(y) ≤ ϕ1(xy) ≤ ψ2(x)ϕ1(y), ∀ x, y > 0,

ψ3(x)ϕ2(y) ≤ ϕ2(xy) ≤ ψ4(x)ϕ2(y), ∀ x, y > 0.

In the following, we give the other important lemmas. We list the following fractional q-difference
equation with homogeneous boundary conditions:Dγ

q(ϕ(Dα
qv))(t) + η f (v(t) + φ(t)) = 0, 0 < t < 1,

v(0) = Dqv(0) = 0,Dqv(1) = 0,Dα
qv(0) = 0,

(2.1)
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where φ(t) = βtα−1

[α−1]q
, and φ(t) is the unique solution of the following fractional q-difference equation

with nonhomogeneous boundary conditionDα
qφ(t) = 0, 0 < t < 1,

φ(0) = Dqφ(0) = 0,Dqφ(1) = β > 0, Dα
qφ(0) = 0,

(2.2)

where 0 < q < 1, 2 < α < 3, 0 < γ < 1, ϕ is a generalized p-Laplacian operator.

Lemma 2.2. ( [22]) Let v(t) be a solution of the boundary value problem (2.1). Then u(t) = v(t) + φ(t)
is the solution of the boundary value problem (1.6).

Lemma 2.3. ( [22]) Let 2 < α < 3, 0 < γ < 1, y ∈ C[0, 1] be a given function. Then the following
boundary value problem of fractional q-difference equationDγ

q(ϕ(Dα
q x))(t) + ηy(t) = 0,

x(0) = Dqx(0) = 0,Dqx(1) = 0,Dα
q x(0) = 0

has a unique solution

x(t) =
∫ 1

0
G(t, qs)ϕ−1(

η

Γq(γ)

∫ s

0
(s − qτ)(γ−1)y(τ)dqτ)dqs,

where

G(t, qs) =
1
Γq(α)

(1 − qs)(α−2)tα−1 − (t − qs)(α−1), 0 ≤ qs ≤ t ≤ 1,
(1 − qs)(α−2)tα−1, 0 ≤ t ≤ qs ≤ 1.

(2.3)

Lemma 2.4. ( [18]) The function G(t, qs) defined by (2.3) has the following properties:

(1) G(t, qs) ≥ 0, G(t, qs) ≤ G(1, qs), ∀ 0 ≤ t, s ≤ 1, (2.4)
(2) G(t, qs) ≥ tα−1G(1, qs), ∀ 0 ≤ t, s ≤ 1. (2.5)

Lemma 2.5. ( [37]) Let (H0) hold. Then we have

ψ2
−1(x)y ≤ ϕ1

−1(xϕ1(y)) ≤ ψ1
−1(x)y, ∀ x, y > 0,

ψ4
−1(x)y ≤ ϕ2

−1(xϕ2(y)) ≤ ψ3
−1(x)y, ∀ x, y > 0.

Let E = C[0, 1] × C[0, 1] with the norm ∥(x, y)∥E = ∥x∥ + ∥y∥, where ∥x∥ = max
t∈[0,1]
|x(t)| and ∥y∥ =

max
t∈[0,1]
|y(t)|. It is obvious that E is a Banach space.

Set P = {(x, y) ∈ E : x(t) ≥ 0, y(t) ≥ 0, min
t∈[θ,1]

(x(t) + y(t)) ≥ θα−1∥(x, y)∥E}, where θ is a real constant

and 0 < θ < 1.
By [22], we define the following operators Aη and Aζ:

Aη(x, y)(t) =
∫ 1

0
G(t, qs)ϕ1

−1(
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs, t ∈ [0, 1],

Aζ(x, y)(t) =
∫ 1

0
G(t, qs)ϕ2

−1(
ζ

Γq(γ)

∫ s

0
(s − qτ)(γ−1)g(τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs, t ∈ [0, 1],
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where G(t, qs) is defined by (2.3). Let A(x, y) = (Aη(x, y), Aζ(x, y)), (x, y) ∈ E. Then by the literature
[22], we easily know that the fixed points of the operator A are solutions of the system of fractional
q-difference equations (1.1).

Lemma 2.6. A : P→ P is completely continuous.

Proof. For (x, y) ∈ P, we easily have Aη(x, y)(t) ≥ 0, Aζ(x, y)(t) ≥ 0,∀t ∈ [0, 1].
By (2.5), for t ∈ [θ, 1], we have

Aη(x, y)(t) =
∫ 1

0
G(t, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥

∫ 1

0
tα−1G(1, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥ θα−1
∫ 1

0
G(1, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

= θα−1∥Aη(x, y)∥.

(2.6)

Similar to the proof of (2.6), when t ∈ [θ, 1], we easily have

Aζ(x, y)(t) =
∫ 1

0
G(t, qs)ϕ−1

2 (
ζ

Γq(γ)

∫ s

0
(s − qτ)(γ−1)g(τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥ tα−1
∫ 1

0
G(1, qs)ϕ−1

2 (
ζ

Γq(γ)

∫ s

0
(s − qτ)(γ−1)g(τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥ θα−1∥Aζ(x, y)∥.

(2.7)

By (2.6) and (2.7), we get

min
t∈[θ,1]

(Aη(x, y)(t) + Aζ(x, y)(t)) ≥ θα−1(∥Aη(x, y)∥ + ∥Aζ(x, y)∥) = θα−1∥A(x, y)∥E. (2.8)

From (2.8), we have A(P) ⊂ P.
In the following, we prove A : P→ P is completely continuous. Firstly, we prove A is bounded.
Let D ⊂ P be bounded. Namely, there exists K > 0 such that ∥(x, y)∥E < K,∀(x, y) ∈ D. By the

continuity of f and g, we know that there exists M > 0 such that

max
t∈[0,1],(x,y)∈D

| f (t, x(t) + φ(t), y(t) + φ(t))| < M, (2.9)

max
t∈[0,1],(x,y)∈D

|g(t, x(t) + φ(t), y(t) + φ(t))| < M. (2.10)

By (2.9), (2.10) and Lemma 2.4, for (x, y) ∈ D, we get

|Aη(x, y)(t)| ≤
∫ 1

0
G(1, qs)ϕ−1

1 (
ηM
Γq(γ)

∫ s

0
(s − qτ)(γ−1)dqτ)dqs, (2.11)

|Aζ(x, y)(t)| ≤
∫ 1

0
G(1, qs)ϕ−1

2 (
ζM
Γq(γ)

∫ s

0
(s − qτ)(γ−1)dqτ)dqs. (2.12)
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By (2.11) and (2.12), we easily know that A(D) is bounded. Secondly, we prove A is equicontinuous
on D. Namely, for each (x, y) ∈ D,∀ε > 0,∃δ > 0 such that |t2 − t1| < δ, we have

|Aη(x, y)(t2) − Aη(x, y)(t1)| < ε, |Aζ(x, y)(t2) − Aζ(x, y)(t1)| < ε.

In fact, assume that 0 < t1 < t2 < 1, then we have

|Aη(x, y)(t2) − Aη(x, y)(t1)|

= |

∫ 1

0
(G(t2, qs) −G(t1, qs))ϕ1

−1(
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs|

≤

∫ 1

0
|G(t2, qs) −G(t1, qs)|ϕ−1

1 (
ηM
Γq(γ)

∫ s

0
(s − qτ)(γ−1)dqτ)dqs

≤

∫ t1

0
|(1 − qs)(α−2)(t2

α−1 − t1
α−1)|

1
Γq(α)

ϕ−1
1 (

ηM
Γq(γ)

∫ s

0
(s − qτ)(γ−1)dqτ)dqs

+

∫ t2

t1
|(1 − qs)(α−2)(t2

α−1 − t1
α−1) − (t2 − qs)(α−1)|

1
Γq(α)

ϕ−1
1 (

ηM
Γq(γ)

∫ s

0
(s − qτ)(γ−1)dqτ)dqs

+

∫ 1

t2
|(1 − qs)(α−2)(t2

α−1 − t1
α−1)|

1
Γq(α)

ϕ−1
1 (

ηM
Γq(γ)

∫ s

0
(s − qτ)(γ−1)dqτ)dqs.

(2.13)

By (2.13), we have
|Aη(x, y)(t2) − Aη(x, y)(t1)| → 0(t1 → t2).

Similarly, we also have

|Aζ(x, y)(t2) − Aζ(x, y)(t1)| → 0(t1 → t2).

Hence, by Arzela-Ascoli theorem and the continuity of f and g, we have A : P → P is completely
continuous. □

3. Main results

In the following, we give the denotations that we need in this section.
Let

f0 = lim sup
x+y→0+

max
t∈[0,1]

f (t, x + φ(t), y + φ(t))
ϕ1(x + y)

, g0 = lim sup
x+y→0+

max
t∈[0,1]

g(t, x + φ(t), y + φ(t))
ϕ2(x + y)

,

f∞ = lim inf
x+y→∞

min
t∈[θ,1]

f (t, x + φ(t), y + φ(t))
ϕ1(x + y)

, g∞ = lim inf
x+y→∞

min
t∈[θ,1]

g(t, x + φ(t), y + φ(t))
ϕ2(x + y)

.

For f0, g0, f∞, g∞ ∈ (0,∞), we denote that

D1 =
ψ2( θ

2−2α

2M3
)

f∞
, D2 =

ψ1( 1
2M1

)

f0
,

D3 =
ψ4( θ

2−2α

2M4
)

g∞
, D4 =

ψ3( 1
2M2

)

g0
.
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Let
f̄0 = lim inf

x+y→0+
min
t∈[θ,1]

f (t, x + φ(t), y + φ(t))
ϕ1(x + y)

, ḡ0 = lim inf
x+y→0+

min
t∈[θ,1]

g(t, x + φ(t), y + φ(t))
ϕ2(x + y)

,

f̄∞ = lim sup
x+y→∞

max
t∈[0,1]

f (t, x + φ(t), y + φ(t))
ϕ1(x + y)

, ḡ∞ = lim sup
x+y→∞

max
t∈[0,1]

g(t, x + φ(t), y + φ(t))
ϕ2(x + y)

.

For f̄0, ḡ0, f̄∞, ḡ∞ ∈ (0,∞), we give the following denotations:

Z1 =
ψ2( θ

2−2α

2M3
)

f̄0
, Z2 =

ψ1( 1
2M1

)

f̄∞
,

Z3 =
ψ4( θ

2−2α

2M4
)

ḡ0
, Z4 =

ψ3( 1
2M2

)

ḡ∞
,

where

M1 =

∫ 1

0
G(1, qs)ψ1

−1(
sγ

Γq(γ + 1)
)dqs, M2 =

∫ 1

0
G(1, qs)ψ3

−1(
sγ

Γq(γ + 1)
)dqs,

M3 =

∫ 1

θ

G(1, qs)ψ2
−1(

1
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)dqτ)dqs,

M4 =

∫ 1

θ

G(1, qs)ψ4
−1(

1
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)dqτ)dqs.

Theorem 3.1. (1) Assume that f0, g0, f∞, g∞ ∈ (0,∞),D1 < D2,D3 < D4, then for each η ∈ (D1,D2)
and ζ ∈ (D3,D4), the system of fractional q-difference equations (1.1) has at least one positive solution.

(2) Assume that f0 = 0, g0, f∞, g∞ ∈ (0,∞),D3 < D4, then for each η ∈ (D1,∞) and ζ ∈ (D3,D4),
the system of fractional q-difference equations (1.1) has at least one positive solution.

(3) Assume that f0, f∞, g∞ ∈ (0,∞), g0 = 0,D1 < D2, then for each η ∈ (D1,D2) and ζ ∈ (D3,∞),
the system of fractional q-difference equations (1.1) has at least one positive solution.

(4) Assume that f0 = g0 = 0, f∞, g∞ ∈ (0,∞), then for each η ∈ (D1,∞) and ζ ∈ (D3,∞), the system
of fractional q-difference equations (1.1) has at least one positive solution.

(5) Assume that f0, g0 ∈ (0,∞), f∞ = ∞ or f0, g0 ∈ (0,∞), g∞ = ∞, then for each η ∈ (0,D2) and
ζ ∈ (0,D4), the system of fractional q-difference equations (1.1) has at least one positive solution.

(6) Assume that f0 = 0, g0 ∈ (0,∞), g∞ = ∞ or f0 = 0, g0 ∈ (0,∞), f∞ = ∞, then for each η ∈ (0,∞)
and ζ ∈ (0,D4), the system of fractional q-difference equations (1.1) has at least one positive solution.

(7) Assume that f0 ∈ (0,∞), g0 = 0, g∞ = ∞ or f0 ∈ (0,∞), g0 = 0, f∞ = ∞, then for each η ∈ (0,D2)
and ζ ∈ (0,∞), the system of fractional q-difference equations (1.1) has at least one positive solution.

(8) Assume that f0 = g0 = 0, g∞ = ∞ or f0 = g0 = 0, f∞ = ∞, then for each η ∈ (0,∞) and
ζ ∈ (0,∞), the system of fractional q-difference equations (1.1) has at least one positive solution.

Proof. In the following, we only prove the Cases (1) and (6).
Case (1): Since η ∈ (D1,D2) and ζ ∈ (D3,D4), we easily know that there exists ε > 0 such that

0 <
ψ2( θ

2−2α

2M3
)

f∞ − ε
≤ η ≤

ψ1( 1
2M1

)

f0 + ε
, (3.1)
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0 <
ψ4( θ

2−2α

2M4
)

g∞ − ε
≤ ζ ≤

ψ3( 1
2M2

)

g0 + ε
. (3.2)

For the above ε > 0 in (3.1) and (3.2), there exists r1 > 0 such that

f (t, x + φ, y + φ) ≤ ( f0 + ε)ϕ1(x + y), t ∈ [0, 1], 0 ≤ x + y ≤ r1, (3.3)

g(t, x + φ, y + φ) ≤ (g0 + ε)ϕ2(x + y), t ∈ [0, 1], 0 ≤ x + y ≤ r1. (3.4)

Let W1 = {(x, y) ∈ E : ∥(x, y)∥E < r1}. For (x, y) ∈ P ∩ ∂W1, we have

0 ≤ x(t) + y(t) ≤ ∥x∥ + ∥y∥ = ∥(x, y)∥E = r1, ∀t ∈ [0, 1].

By Lemmas 2.4, 2.5 and (3.1)–(3.4), we have

Aη(x, y)(t) =
∫ 1

0
G(t, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≤

∫ 1

0
G(t, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1)( f0 + ε)ϕ1(x(τ) + y(τ))dqτ)dqs

≤

∫ 1

0
G(1, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1)( f0 + ε)ϕ1(r1)dqτ)dqs

≤

∫ 1

0
G(1, qs)ψ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1)( f0 + ε)dqτ)dqs · r1

≤ ψ−1
1 (η( f0 + ε))

∫ 1

0
G(1, qs)ψ−1

1 (
sγ

Γq(γ + 1)
)dqs · r1

≤
r1

2
=
∥(x, y)∥E

2
.

(3.5)

and

Aζ(x, y)(t) =
∫ 1

0
G(t, qs)ϕ−1

2 (
ζ

Γq(γ)

∫ s

0
(s − qτ)(γ−1)g(τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≤

∫ 1

0
G(t, qs)ϕ−1

2 (
ζ

Γq(γ)

∫ s

0
(s − qτ)(γ−1)(g0 + ε)ϕ2(x(τ) + y(τ))dqτ)dqs

≤

∫ 1

0
G(1, qs)ϕ−1

2 (
ζ(g0 + ε)
Γq(γ)

∫ s

0
(s − qτ)(γ−1)ϕ2(r1)dqτ)dqs

≤

∫ 1

0
G(1, qs)ψ−1

3 (
ζ(g0 + ε)
Γq(γ)

∫ s

0
(s − qτ)(γ−1)dqτ)dqs · r1

≤ ψ−1
3 (ζ(g0 + ε))

∫ 1

0
G(1, qs)ψ−1

3 (
sγ

Γq(γ + 1)
)dqs · r1

≤
r1

2
=
∥(x, y)∥E

2
.

(3.6)

By (3.5) and (3.6), we have

∥A(x, y)∥E = ∥Aη(x, y)∥ + ∥Aζ(x, y)∥ ≤ ∥(x, y)∥E,∀(x, y) ∈ P ∩ ∂W1. (3.7)
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For ε > 0 in (3.1) and (3.2), from the definitions of f∞ and g∞, there exists r̄2 > 0 such that

f (t, x + φ, y + φ) ≥ ( f∞ − ε)ϕ1(x + y), t ∈ [θ, 1], x + y ≥ r̄2, (3.8)

g(t, x + φ, y + φ) ≥ (g∞ − ε)ϕ2(x + y), t ∈ [θ, 1], x + y ≥ r̄2. (3.9)

Take r2 = max{2r1, θ
1−αr̄2}. Let W2 = {(x, y) ∈ E : ∥(x, y)∥E < r2}. For (x, y) ∈ P ∩ ∂W2, we have

mint∈[θ,1](x(t) + y(t)) ≥ θα−1∥(x, y)∥E = θα−1r2 ≥ r̄2.

By (3.8), (3.9) and Lemmas 2.4 and 2.5, we have

∥Aη(x, y)∥ ≥ Aη(x, y)(θ)

=

∫ 1

0
G(θ, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥

∫ 1

θ

G(θ, qs)ϕ−1
1 (

η

Γq(γ)

∫ s

θ

(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥

∫ 1

θ

G(θ, qs)ϕ−1
1 (

η

Γq(γ)

∫ s

θ

(s − qτ)(γ−1)( f∞ − ε)ϕ1(x(τ) + y(τ))dqτ)dqs

≥

∫ 1

θ

θα−1G(1, qs)ϕ−1
1 (

η

Γq(γ)

∫ s

θ

(s − qτ)(γ−1)( f∞ − ε)ϕ1(θα−1∥(x, y)∥E)dqτ)dqs

≥ θ2α−2
∫ 1

θ

G(1, qs)ψ−1
2 (

η

Γq(γ)
( f∞ − ε)

∫ s

θ

(s − qτ)(γ−1)dqτ)∥(x, y)∥Edqs

= θ2α−2ψ−1
2 (η( f∞ − ε))

∫ 1

θ

G(1, qs)ψ−1
2 (

1
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)dqτ)dqs · r2

≥
∥(x, y)∥E

2
,

(3.10)

and

∥Aζ(x, y)∥ ≥ Aζ(x, y)(θ)

=

∫ 1

0
G(θ, qs)ϕ−1

2 (
ζ

Γq(γ)

∫ s

0
(s − qτ)(γ−1)g(τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥

∫ 1

θ

G(θ, qs)ϕ−1
2 (

ζ

Γq(γ)

∫ s

θ

(s − qτ)(γ−1)g(τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥ θα−1
∫ 1

θ

G(1, qs)ϕ−1
2 (

ζ

Γq(γ)

∫ s

θ

(s − qτ)(γ−1)(g∞ − ε)ϕ2(x(τ) + y(τ))dqτ)dqs

≥ θα−1
∫ 1

θ

G(1, qs)ϕ−1
2 (
ζ(g∞ − ε)
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)ϕ2(θα−1∥(x, y)∥E)dqτ)dqs

≥ θ2α−2
∫ 1

θ

G(1, qs)ψ−1
4 (
ζ(g∞ − ε)
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)dqτ)dqs · ∥(x, y)∥E

= θ2α−2ψ−1
4 (ζ(g∞ − ε))

∫ 1

θ

G(1, qs)ψ−1
4 (

1
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)dqτ)dqs · ∥(x, y)∥E

= θ2α−2ψ−1
4 (ζ(g∞ − ε))M4 · r2

≥
1
2

r2 =
∥(x, y)∥E

2
.

(3.11)
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From (3.10) and (3.11), we have

∥A(x, y)∥E = ∥Aη(x, y)∥ + ∥Aζ(x, y)∥ ≥ ∥(x, y)∥E,∀(x, y) ∈ P ∩ ∂W2. (3.12)

By (3.7), (3.12) and Lemma 2.1, we know that A has at least one fixed point (x, y) ∈ P ∩ (W2\W1).
So the system of fractional q-difference equations (1.1) has at least one positive solution. The proof of
the case (1) is completed.

Case (6): Since η ∈ (0,∞) and ζ ∈ (0,D4), we easily know that there exists ε > 0 such that

0 < η < ψ1(
1

2M1
)
1
ε
, ψ4(

θ2−2α

M4
)ε < ζ < ψ3(

1
2M2

)
1

g0 + ε
. (3.13)

Since f0 = 0 and g0 ∈ (0,∞), for the above ε > 0 in (3.13), we know that there exists r3 > 0 such
that

f (t, x + φ, y + φ) < εϕ1(x + y), t ∈ [0, 1], 0 ≤ x + y ≤ r3, (3.14)

g(t, x + φ, y + φ) < (g0 + ε)ϕ2(x + y), t ∈ [0, 1], 0 ≤ x + y ≤ r3. (3.15)

Let W3 = {(x, y) ∈ E : ∥(x, y)∥E < r3}. By (3.13), (3.14) and Lemma 2.5, for any (x, y) ∈ P∩∂W3, t ∈
[0, 1], we have

Aη(x, y)(t) =
∫ 1

0
G(t, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≤

∫ 1

0
G(t, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1)εϕ1(x(τ) + y(τ))dqτ)dqs

≤

∫ 1

0
G(1, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1)εϕ1(r3)dqτ)dqs

≤

∫ 1

0
G(1, qs)ψ−1

1 (
ηε

Γq(γ)

∫ s

0
(s − qτ)(γ−1)dqτ)dqs · r3

= ψ−1
1 (ηε)

∫ 1

0
G(1, qs)ψ−1

1 (
sγ

Γq(γ + 1)
)dqs · r3

<
r3

2
=
∥(x, y)∥E

2
.

(3.16)

By (3.16), we have

∥Aη(x, y)∥ ≤
∥(x, y)∥E

2
,∀(x, y) ∈ P ∩ ∂W3. (3.17)

By (3.13), (3.15) and Lemma 2.5, similar to the proof of (3.16), we easily obtain

∥Aζ(x, y)∥ ≤
∥(x, y)∥E

2
,∀(x, y) ∈ P ∩ ∂W3. (3.18)

By (3.17) and (3.18), we have

∥A(x, y)∥E = ∥Aη(x, y)∥ + ∥Aζ(x, y)∥ ≤ ∥(x, y)∥E,∀(x, y) ∈ P ∩ ∂W3. (3.19)
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Since g∞ = ∞, for ε > 0 in (3.13), we know that there exists r̄4 > 0 such that

g(t, x + φ, y + φ) ≥
1
ε
ϕ2(x, y), t ∈ [θ, 1], x, y ≥ 0, x + y ≥ r̄4. (3.20)

Take r4 = max{3r3, r̄4θ
1−α}. Let W4 = {(x, y) ∈ E : ∥(x, y)∥E < r4}. For any (x, y) ∈ P ∩ ∂W4, we can

easily know that
min
t∈[θ,1]

(x(t) + y(t)) ≥ θα−1∥(x, y)∥E = θα−1r4 ≥ r̄4. (3.21)

Hence, by (3.20), (3.21) and Lemma 2.5, for any (x, y) ∈ P ∩ ∂W4, we have

Aζ(x, y)(θ) =
∫ 1

0
G(θ, qs)ϕ−1

2 (
ζ

Γq(γ)

∫ s

0
(s − qτ)(γ−1)g(τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥

∫ 1

θ

G(θ, qs)ϕ−1
2 (

ζ

Γq(γ)

∫ s

θ

(s − qτ)(γ−1)g(τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥ θα−1
∫ 1

θ

G(1, qs)ϕ−1
2 (

ζ

Γq(γ)
1
ε

∫ s

θ

(s − qτ)(γ−1)ϕ2(x(τ) + y(τ))dqτ)dqs

≥ θα−1
∫ 1

θ

G(1, qs)ϕ−1
2 (

ζ

Γq(γ)
1
ε

∫ s

θ

(s − qτ)(γ−1)ϕ2(θα−1∥(x, y)∥E)dqτ)dqs

≥ θα−1
∫ 1

θ

G(1, qs)ψ−1
4 (

ζ

εΓq(γ)

∫ s

θ

(s − qτ)(γ−1)dqτ · θ
α−1∥(x, y)∥E)dqs

= θ2α−2ψ−1
4 (
ζ

ε
)
∫ 1

θ

G(1, qs)ψ−1
4 (

1
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)dqτ)dqs · r4

= θ2α−2ψ−1
4 (
ζ

ε
)M4 · r4

≥ r4 = ∥(x, y)∥E.

(3.22)

By (3.22), we have
∥A(x, y)∥E ≥ ∥Aζ(x, y)∥ ≥ ∥(x, y)∥E,∀(x, y) ∈ P ∩ ∂W4. (3.23)

Hence, by (3.19), (3.23) and Lemma 2.1, we can obtain that A has at least one fixed point (x, y) ∈ P∩
(W4\W3). So the system of fractional q-difference equations (1.1) has at least one positive solution. □

Theorem 3.2. (1) Assume that f̄0, ḡ0, f̄∞, ḡ∞ ∈ (0,∞), and Z1 < Z2,Z3 < Z4, then for each η ∈ (Z1,Z2)
and ζ ∈ (Z3,Z4), the system of fractional q-difference equations (1.1) has at least one positive solution.

(2) Assume that f̄0, ḡ0, f̄∞ ∈ (0,∞), ḡ∞ = 0, and Z1 < Z2, then for each η ∈ (Z1,Z2) and ζ ∈ (Z3,∞),
the system of fractional q-difference equations (1.1) has at least one positive solution.

(3) Assume that f̄0, ḡ0, ḡ∞ ∈ (0,∞), f̄∞ = 0, and Z3 < Z4, then for each η ∈ (Z1,∞) and ζ ∈ (Z3,Z4),
the system of fractional q-difference equations (1.1) has at least one positive solution.

(4) Assume that f̄0, ḡ0 ∈ (0,∞), f̄∞ = ḡ∞ = 0, then for each η ∈ (Z1,∞) and ζ ∈ (Z3,∞), the system
of fractional q-difference equations (1.1) has at least one positive solution.

(5) Assume that f̄∞, ḡ∞ ∈ (0,∞), f̄0 = ∞ or f̄∞, ḡ∞ ∈ (0,∞), ḡ0 = ∞, then for each η ∈ (0,Z2) and
ζ ∈ (0,Z4), the system of fractional q-difference equations (1.1) has at least one positive solution.

(6) Assume that f̄0 = ∞, ḡ∞ = 0, f̄∞ ∈ (0,∞) or f̄∞ ∈ (0,∞), ḡ∞ = 0, ḡ0 = ∞, then for each
η ∈ (0,Z2) and ζ ∈ (0,∞), the system of fractional q-difference equations (1.1) has at least one positive
solution.
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(7) Assume that f̄0 = ∞, ḡ∞ ∈ (0,∞), f̄∞ = 0 or ḡ∞ ∈ (0,∞), ḡ0 = ∞, f̄∞ = 0, then for each
η ∈ (0,∞) and ζ ∈ (0,Z4), the system of fractional q-difference equations (1.1) has at least one positive
solution.

(8) Assume that f̄0 = ∞, f̄∞ = ḡ∞ = 0 or f̄∞ = ḡ∞ = 0, ḡ0 = ∞, then for each η ∈ (0,∞) and
ζ ∈ (0,∞), the system of fractional q-difference equations (1.1) has at least one positive solution.

Proof. We will only prove the Cases (1) and (6). Since the other proofs are similar, so we omit.
We firstly prove the Case (1). Since η ∈ (Z1,Z2) and ζ ∈ (Z3,Z4), there exists ε > 0 such that

0 <
ψ2( θ

2−2α

2M2
)

f̄0 − ε
≤ η ≤

ψ1( 1
2M1

)

f̄∞ + ε
, 0 <

ψ4( θ
2−2α

2M4
)

ḡ0 − ε
≤ ζ ≤

ψ3( 1
2M2

)

ḡ∞ + ε
(3.24)

From the definitions of f̄0 and ḡ0, we easily know that there exists R1 > 0 such that

f (t, x + φ, y + φ) ≥ ( f̄0 − ε)ϕ1(x + y), t ∈ [θ, 1], x, y ≥ 0, x + y ≤ R1, (3.25)

g(t, x + φ, y + φ) ≥ (ḡ0 − ε)ϕg(x + y), t ∈ [θ, 1], x, y ≥ 0, x + y ≤ R1. (3.26)

Let W1 = {(x, y) ∈ E : ∥(x, y)∥E < R1}. By (3.24), (3.25) and Lemma 2.5, for any (x, y) ∈ P ∩ ∂W1,
we can get

Aη(x, y)(θ) =
∫ 1

0
G(θ, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥

∫ 1

θ

G(θ, qs)ϕ−1
1 (

η

Γq(γ)

∫ s

θ

(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥

∫ 1

θ

G(θ, qs)ϕ−1
1 (
η( f̄0 − ε)
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)ϕ1(x(τ) + y(τ))dqτ)dqs

≥ θα−1
∫ 1

θ

G(1, qs)ϕ−1
1 (
η( f̄0 − ε)
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)ϕ1(θα−1∥(x, y)∥E)dqτ)dqs

≥ θα−1
∫ 1

θ

G(1, qs)ϕ−1
1 (
η( f̄0 − ε)
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)dqτ · ϕ1(θα−1∥(x, y)∥E)dqτ)dqs

≥ θα−1
∫ 1

θ

G(1, qs)ψ−1
2 (
η( f̄0 − ε)
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)dqτ)θα−1∥(x, y)∥Edqs

= θ2α−2ψ−1
2 (η( f̄0 − ε))

∫ 1

θ

G(1, qs)ψ−1
2 (

1
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)dqτ)dqs · R1

= θ2α−2ψ−1
2 (η( f̄0 − ε))M3 · R1

≥
∥(x, y)∥E

2
.

(3.27)

By (3.24), (3.26) and Lemma 2.5, for any (x, y) ∈ P ∩ ∂W1, we have
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Aζ(x, y)(θ) =
∫ 1

0
G(θ, qs)ϕ−1

2 (
ζ

Γq(γ)

∫ s

0
(s − qτ)(γ−1)g(τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥

∫ 1

θ

G(θ, qs)ϕ−1
2 (

ζ

Γq(γ)

∫ s

θ

(s − qτ)(γ−1)g(τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥

∫ 1

θ

G(θ, qs)ϕ−1
2 (

ζ

Γq(γ)

∫ s

θ

(s − qτ)(γ−1)(ḡ0 − ε)ϕ2(x(τ) + y(τ))dqτ)dqs

≥ θα−1
∫ 1

θ

G(1, qs)ϕ−1
2 (

ζ

Γq(γ)

∫ s

θ

(s − qτ)(γ−1)(ḡ0 − ε)ϕ2(θα−1∥(x, y)∥E)dqτ)dqs

≥ θα−1
∫ 1

θ

G(1, qs)ψ−1
4 (
ζ(ḡ0 − ε)
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)dqτ)θα−1∥(x, y)∥Edqs

= θ2α−2 · ψ−1
4 (ζ(ḡ0 − ε))

∫ 1

θ

G(1, qs)ψ−1
4 (

1
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)dqτ)dqs · ∥(x, y)∥E

≥
∥(x, y)∥E

2
.

(3.28)

By (3.27) and (3.28), we have

∥A(x, y)∥E = ∥Aη(x, y)∥ + ∥Aζ(x, y)∥ ≥ ∥(x, y)∥E,∀(x, y) ∈ P ∩ ∂W1. (3.29)

Let F(t, u) = max
0≤x+y≤u

f (t, x + φ, y + φ), G∗(t, u) = max
0≤x+y≤u

g(t, x + φ, y + φ). Then we have

f (t, x + φ, y + φ) ≤ F(t, u), t ∈ [0, 1], x, y ≥ 0, x + y ≤ u,

g(t, x + φ, y + φ) ≤ G∗(t, u), t ∈ [0, 1], x, y ≥ 0, x + y ≤ u.

Similar to the proof of [33], we know that

lim sup
u→+∞

max
t∈[0,1]

F(t, u)
ϕ1(u)

≤ f̄∞, lim sup
u→+∞

max
t∈[0,1]

G∗(t, u)
ϕ2(u)

≤ ḡ∞.

Clearly, we know that there exists R2 > 0 such that

F(t, u)
ϕ1(u)

≤ lim sup
u→+∞

max
t∈[0,1]

F(t, u)
ϕ1(u)

+ ε ≤ f̄∞ + ε, u ≥ R2, t ∈ [0, 1],

G∗(t, u)
ϕ2(u)

≤ lim sup
u→+∞

max
t∈[0,1]

G∗(t, u)
ϕ2(u)

+ ε ≤ ḡ∞ + ε, u ≥ R2, t ∈ [0, 1].

Hence, we have

F(t, u) ≤ ( f̄∞ + ε)ϕ1(u), G∗(t, u) ≤ (ḡ∞ + ε)ϕ2(u) t ∈ [0, 1], u ≥ R2. (3.30)

Let R2 = max {2R1,R2}, and W2 = {(x, y) ∈ E : ∥(x, y)∥E < R2}, for any (x, y) ∈ P ∩ ∂W2, we get

f (t, x + φ, y + φ) ≤ F(t, ∥(x, y)∥E), t ∈ [0, 1], (3.31)
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g(t, x + φ, y + φ) ≤ G∗(t, ∥(x, y)∥E), t ∈ [0, 1]. (3.32)

By (3.30)–(3.32), for any (x, y) ∈ P ∩ ∂W2, we have

Aη(x, y)(t) =
∫ 1

0
G(t, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≤

∫ 1

0
G(1, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1)F(τ, ∥(x, y)∥E)dqτ)dqs

≤

∫ 1

0
G(1, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1)( f̄∞ + ε)ϕ1(∥(x, y)∥E)dqτ)dqs

≤

∫ 1

0
G(1, qs)ψ−1

1 (
η( f̄∞ + ε)
Γq(γ)

∫ s

0
(s − qτ)(γ−1)dqτ)∥(x, y)∥Edqs

= ψ−1
1 (η( f̄∞ + ε))

∫ 1

0
G(1, qs)ψ−1

1 (
1
Γq(γ)

∫ s

0
(s − qτ)(γ−1)dqτ)dqs · R2

= ψ−1
1 (η( f̄∞ + ε))

∫ 1

0
G(1, qs)ψ−1

1 (
sγ

Γq(γ + 1)
)dqs · R2

≤
∥(x, y)∥E

2
,

(3.33)

and

Aζ(x, y)(t) =
∫ 1

0
G(t, qs)ϕ−1

2 (
ζ

Γq(γ)

∫ s

0
(s − qτ)(γ−1)g(τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≤

∫ 1

0
G(1, qs)ϕ−1

2 (
ζ

Γq(γ)

∫ s

0
(s − qτ)(γ−1)G∗(τ, ∥(x, y)∥E)dqτ)dqs

≤

∫ 1

0
G(1, qs)ϕ−1

2 (
ζ

Γq(γ)

∫ s

0
(s − qτ)(γ−1)(ḡ∞ + ε)ϕ2(∥(x, y)∥E)dqτ)dqs

≤

∫ 1

0
G(1, qs)ψ−1

3 (
ζ(ḡ∞ + ε)
Γq(γ)

∫ s

0
(s − qτ)(γ−1)dqτ)∥(x, y)∥Edqs

= ψ−1
3 (ζ(ḡ∞ + ε))

∫ 1

0
G(1, qs)ψ−1

3 (
sγ

Γq(γ + 1)
)dqs · R2

≤
∥(x, y)∥E

2
.

(3.34)

By (3.33) and (3.34), we have

∥A(x, y)∥E = ∥Aη(x, y)∥ + ∥Aζ(x, y)∥ ≤ ∥(x, y)∥E,∀(x, y) ∈ P ∩ ∂W2. (3.35)

By (3.29), (3.35) and Lemma 2.1, we know that A has at least one fixed point (x, y) ∈ P∩ (W2 \W1),
so the system of fractional q-difference equations (1.1) has at least one positive solution. The proof of
the case (1) is completed.

In the following, we prove the Case (6). Since f̄0 = ∞, f̄∞ ∈ (0,∞), ḡ∞ = 0, we can easily know
that there exist ε > 0 and R3 > 0 such that

ψ2(
θ2−2α

M3
)ε < η <

ψ1( 1
2M1

)

f̄∞ + ε
, (3.36)
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0 < ζ < ψ3(
1

2M2
)
1
ε
, (3.37)

and
f (t, x + φ, y + φ) ≥

1
ε
ϕ1(x + y), t ∈ [θ, 1], x, y > 0, 0 ≤ x + y ≤ R3. (3.38)

Let W3 = {(x, y) ∈ E : ∥(x, y)∥E < R3}. For t ∈ [θ, 1], (x, y) ∈ P ∩ ∂W3, we easily know that

min
t∈[θ,1]

(x(t) + y(t)) ≥ θα−1∥(x, y)∥E.

By (3.36) and (3.38), we have

Aη(x, y)(θ) =
∫ 1

0
G(θ, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥

∫ 1

θ

G(θ, qs)ϕ−1
1 (

η

Γq(γ)

∫ s

θ

(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≥ θα−1
∫ 1

θ

G(1, qs)ϕ−1
1 (

η

Γq(γ)ε

∫ s

θ

(s − qτ)(γ−1)ϕ1(x(τ) + y(τ))dqτ)dqs

≥ θα−1
∫ 1

θ

G(1, qs)ϕ−1
1 (

η

Γq(γ)ε

∫ s

θ

(s − qτ)(γ−1)ϕ1(θα−1∥(x, y)∥E)dqτ)dqs

≥ θ2α−2ψ−1
2 (
η

ε
)
∫ 1

θ

G(1, qs)ψ−1
2 (

1
Γq(γ)

∫ s

θ

(s − qτ)(γ−1)dqτ)dqs

= θ2α−2ψ−1
2 (
η

ε
)M3 · ∥(x, y)∥E ≥ ∥(x, y)∥E.

(3.39)

So by (3.39), we have

∥A(x, y)∥E ≥ ∥Aη(x, y)∥ ≥ ∥(x, y)∥E,∀(x, y) ∈ P ∩ ∂W3. (3.40)

Similar to the proof of [33], we obtain

lim sup
u→+∞

max
t∈[0,1]

F(t, u)
ϕ1(u)

≤ f̄∞, lim sup
u→+∞

max
t∈[0,1]

G∗(t, u)
ϕ2(u)

= 0.

So we know that for above ε > 0 in (3.36) and (3.37), there exists R4 > 0 such that

F(t, u)
ϕ1(u)

≤ lim sup
u→+∞

max
t∈[0,1]

F(t, u)
ϕ1(u)

+ ε ≤ f̄∞ + ε,∀ t ∈ [0, 1], u ≥ R4,

G∗(t, u)
ϕ2(u)

≤ lim sup
u→+∞

max
t∈[0,1]

G∗(t, u)
ϕ2(u)

+ ε ≤ ε,∀ t ∈ [0, 1], u ≥ R4,

so we have
F(t, u) ≤ ¯( f∞ + ε)ϕ1(u),∀t ∈ [0, 1], u ≥ R4,

G∗(t, u) ≤ εϕ2(u),∀t ∈ [0, 1], u ≥ R4.
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Let R4 = max {2R3,R4} and W4 = {(x, y) ∈ E : ∥(x, y)∥E < R4}. We easily have

f (t, x + φ, y + φ) ≤ F(t, ∥(x, y)∥E),∀ t ∈ [0, 1],

g(t, x + φ, y + φ) ≤ G∗(t, ∥(x, y)∥E),∀ t ∈ [0, 1].

Hence, for any t ∈ [0, 1] and (x, y) ∈ P ∩ ∂W4, we get

Aη(x, y)(t) =
∫ 1

0
G(t, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1) f (τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≤

∫ 1

0
G(1, qs)ϕ−1

1 (
η

Γq(γ)

∫ s

0
(s − qτ)(γ−1)F(τ, ∥(x, y)∥E)dqτ)dqs

≤

∫ 1

0
G(1, qs)ϕ−1

1 (
η( f̄∞ + ε)
Γq(γ)

∫ s

0
(s − qτ)(γ−1)ϕ1(∥(x, y)∥E)dqτ)dqs

≤

∫ 1

0
G(1, qs)ψ−1

1 (
η( f̄∞ + ε)
Γq(γ)

∫ s

0
(s − qτ)(γ−1)dqτ)dqs · ∥(x, y)∥E

= ψ−1
1 (η( f̄∞ + ε))

∫ 1

0
G(1, qs)ψ−1

1 (
sγ

Γq(γ + 1)
)dqs · ∥(x, y)∥E

≤
∥(x, y)∥E

2
,

(3.41)

and

Aζ(x, y)(t) =
∫ 1

0
G(t, qs)ϕ−1

2 (
ζ

Γq(γ)

∫ s

0
(s − qτ)(γ−1)g(τ, x(τ) + φ(τ), y(τ) + φ(τ))dqτ)dqs

≤

∫ 1

0
G(1, qs)ϕ−1

2 (
ζ

Γq(γ)

∫ s

0
(s − qτ)(γ−1)G∗(τ, ∥(x, y)∥E)dqτ)dqs

≤

∫ 1

0
G(1, qs)ϕ−1

2 (
ζε

Γq(γ)

∫ s

0
(s − qτ)(γ−1)ϕ2(∥(x, y)∥E)dqτ)dqs

≤

∫ 1

0
G(1, qs)ψ−1

3 (
ζε

Γq(γ)

∫ s

0
(s − qτ)(γ−1)dqτ)dqs · ∥(x, y)∥E

= ψ−1
3 (ζε)

∫ 1

0
G(1, qs)ψ−1

3 (
sγ

Γq(γ + 1)
)dqs · ∥(x, y)∥E

≤
∥(x, y)∥E

2
.

(3.42)

So by (3.41) and (3.42), we have

∥A(x, y)∥E = ∥Aη(x, y)∥ + ∥Aζ(x, y)∥ ≤ ∥(x, y)∥E,∀(x, y) ∈ P ∩ ∂W4. (3.43)

By (3.40), (3.43) and Lemma 2.1, we know that A has at least one fixed point (x, y) ∈ P ∩ (W4 \W3).
Hence the system of fractional q-difference equations (1.1) has at least one positive solution. □
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4. Applications

Example 4.1. We consider the following system of fractional q-difference equations:

−D
1
2
q (ϕ1(D

5
2
q x))(t) = η f (t, x (t) , y (t)) , 0 < t < 1,

−D
1
2
q (ϕ2(D

5
2
q y))(t) = ζg (t, x (t) , y (t)) , 0 < t < 1,

x(0) = Dqx(0) = 0, Dqx(1) = 1, D
5
2
q x(0) = 0,

y(0) = Dqy(0) = 0, Dqy(1) = 1, D
5
2
q y(0) = 0,

(4.1)

where q = 1
2 , ϕ1(u) = u, ϕ2(u) = |u|−1u. Take f (t, x, y) = t(x + y − 2φ(t))2, g(t, x, y) = t(x + y), where

φ(t) = 4+
√

2
7 t

3
2 . By a simple calculation we get

f0 = lim sup
x+y→0+

max
t∈[0,1]

f (t, x + φ(t), y + φ(t))
ϕ1(x + y)

= lim sup
x+y→0+

max
t∈[0,1]

t(x + y) = 0,

g0 = lim sup
x+y→0+

max
t∈[0,1]

g(t, x + φ(t), y + φ(t))
ϕ2(x + y)

= lim sup
x+y→0+

max
t∈[0,1]

t(x + y + 2φ(t)) =
2
7

(4 +
√

2),

g∞ = lim inf
x+y→∞

min
t∈[θ,1]

g(t, x + φ(t), y + φ(t))
ϕ2(x + y)

= lim inf
x+y→∞

min
t∈[θ,1]

t(x + y + 2φ(t)) = ∞;

and ψ1(x) = ψ2(x) = x, ψ3(x) = ψ4(x) = 1, D4 ≈ 0.6465.
Then, for each η ∈ (0,∞) and ζ ∈ (0, 0.6465), by Theorem 3.1 Case (6) we obtain that the system

(4.1) has at least one positive solution.

Example 4.2. We consider the following system of fractional q-difference equations:

−D
1
2
q (ϕ1(D

5
2
q x))(t) = η f (t, x (t) , y (t)) , 0 < t < 1,

−D
1
2
q (ϕ2(D

5
2
q y))(t) = ζg (t, x (t) , y (t)) , 0 < t < 1,

x(0) = Dqx(0) = 0, Dqx(1) = 1, D
5
2
q x(0) = 0,

y(0) = Dqy(0) = 0, Dqy(1) = 1, D
5
2
q y(0) = 0,

(4.2)

where q = 1
2 , ϕ1(u) = u, ϕ2(u) = |u|−1u. Take f (t, x, y) = t(x+y−2φ(t))

arctan(x+y−2φ(t)) , g(t, x, y) = t
x+y , where φ(t) =

4+
√

2
7 t

3
2 . By a simple calculation we get

f̄0 = lim inf
x+y→0+

min
t∈[θ,1]

f (t, x + φ(t), y + φ(t))
ϕ1(x + y)

= lim inf
x+y→0+

min
t∈[θ,1]

t
arctan(x + y)

= ∞,

ḡ∞ = lim sup
x+y→∞

max
t∈[0,1]

g(t, x + φ(t), y + φ(t))
ϕ2(x + y)

= lim sup
x+y→∞

max
t∈[0,1]

t
x + y + 2φ(t)

= 0,

f̄∞ = lim sup
x+y→∞

max
t∈[0,1]

f (t, x + φ(t), y + φ(t))
ϕ1(x + y)

= lim sup
x+y→∞

max
t∈[0,1]

t
arctan(x + y)

=
2
π

;

and ψ1(x) = ψ2(x) = x, ψ3(x) = ψ4(x) = 1, Γ 1
2
( 5

2 ) ≈ 1.1906, Γ 1
2
(3

2 ) ≈ 0.9209, M1 ≤ 0.2991, Z2 ≥

2.6259.
Then, for each η ∈ (0, 2.6259) and ζ ∈ (0,∞), by Theorem 3.2(6) we obtain that the system (4.2)

has at least one positive solution.
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5. Conclusions

The system of fractional q-difference equations plays an important role in the study of many fields,
such as quantum mechanics, mathematical physics equations and so on, for example, see [16,17,24,35]
and the references therein. In [35], by using some classical fixed point theorems, the authors studied the
existence of nontrivial solutions of a system of fractional q-difference equations with Riemann-Stieltjes
integrals conditions. In this paper, we investigate the existence of positive solutions for a system of
fractional q-difference equations with generalized p-Laplacian operators and two parameters. The
system in this paper is different from that of [35]. We give some assumptions which are combinations
of superlinearity and sublinearity of the nonlinear terms f and g. Under those assumptions, by using
Guo-Krasnosel’skii fixed point theorem, we obtain some existence results of positive solutions in terms
of different values of the parameters η and ζ. In fact, since the system studied in this paper contains
generalized p-Laplacian operators, the obtained results in this paper can enrich the relevant knowledge
of theories for the system of fractional q-difference equations and expand the range of the possible
applications. However, this study still has certain limitations, as we only investigated the existence
of positive solutions. In the future, some further work can continue to be considered such as the
uniqueness and multiplicity of positive solutions and iterative sequences of positive solutions, the case
where the nonlinear terms may be changing sign or the generalized p-Laplacian operator becomes a
p(t) -Laplacian operator, etc.
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