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Abstract: Revisiting a newly reported modified Chen system by both the definitions of @-limit and
w-limit set, Lyapunov function and Hamiltonian function, this paper seized a multitude of pairs of
potential heteroclinic orbits to (1) Ey and E., or (2) E, or (3) E_, and homoclinic and heteroclinic
orbits on its invariant algebraic surface Q = z — ;—z = 0 with cofactor —2a, which is not available in the
existing literature to the best of our knowledge. Particularly, the theoretical conclusions were verified
via numerical examples.
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1. Introduction

In this paper, we review a recently reported modified Chen system and examines its singular orbits,
giving some new insights into it and extending the existing results [1]. It not only contains the classic
Chen system as a special case, but also gives rise to multi-wings attractors with the higher largest
Lyapunov exponent. To further understand its nature, we will consider the existence of homoclinic
and heteroclinic orbits, which involve some real world applications [2-9], i.e., heart tissue, neurons,
cell signalling, chemistry, biomathematics and mechanics, etc. Particularly, when planetary scientists
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design space missions, the heteroclinic connections between period orbits need to be studied in planar
restricted circular three body problem [10-12].

For the sake of the following discussion, the concepts of homoclinic and heteroclinic orbits are
introduced, i.e., a heteroclinic (resp., homoclinic) orbit is a type of orbit doubly asymptotic to two
different equilibrium points or closed orbits (resp., the same equilibrium point or closed orbit) [13, 14].
In order to uncover homoclinic and heteroclinic orbits, Shilnikov et al. developed a powerful tool, a
combination of contraction map and boundary problem, and categorized chaos of three-dimensional
quadratic autonomous differential systems, i.e., chaos of the Shilnikov homoclinic or heteroclinic orbit
type, or the hybrid type with both Shilnikov homoclinic and heteroclinic orbits, etc. [14].

With a combination of definitions of the @-limit and w-limit set and the Lyapunov function, Li et al.
revisited the Chen system and proved the existence of a pair of heteroclinic orbits of it [15]. Inspired by
that example, other researchers began to consider heteroclinic orbits of other Lorenz-like systems [16—
25] one after another. When studying the Tricomi problem on homoclinic and heteroclinic orbits [26],
Leonov formulated the fishing principle and applied it to Lorenz-type systems [27]. Through tracing
the stable and unstable manifolds of the Shimizu-Morioka model, Tigan and Turaev [28] detected a
pair of homoclinic orbits to the origin. Wiggins, Feng and Hu [13, 29] also utilized the Melnikov
method to study homoclinic and heteroclinic orbits and, thus, determined chaos in the sense of Smale
horseshoes, such as its existence, stability, bifurcation, mutual position between the stable and the
unstable manifold, and so on.

More importantly, some bifurcations of homoclinic or heteroclinic orbits may shed light on the
problem of the nonlinear relationship between equilibria and the number of multi-wings/scrolls [1, 30,
31]. Recently, Gilardi-Veldzquez et al. [32] collided two heteroclinic orbits to create a new square
chaotic attractor, providing a mechanism to establish bistability in a new class of piecewise linear
(PWL) dynamical systems. By rupturing heteroclinic-like orbits of a class of PWL systems, Escalante-
Gonzalez and Campos [33] revealed hidden attractors coexisting with self-excited ones.

So far as is known, scholars seldom consider homoclinic and heteroclinic orbits of the modified
Chen system [1]. To achieve this target, we reinvestigate it and present the following main contribution:

1) Utilizing a combination of definitions of the a-limit and w-limit set and the Lyapunov function
to prove that there may exist many pairs of heteroclinic orbits to (1) Ey and E. or (2) E, or (3) E_.

2) Applying a Hamiltonian function to prove that there may exist multitudinous potential homo-
clinic orbits to E and E., and heteroclinic orbits to E. on the invariant algebraic surface z = g

This paper is organized as follows. The new modified Chen system is introduced and the main
results are reported in Section 2. In Section 3, one derives the existence of multitudinous potential
homoclinic and heteroclinic orbits. At last, the conclusions are given in Section 4.

2. New modified Chen system and the main results

In this section, we consider the modified Chen system [1]:

x =aly—x),
vy =cy—xz(1 —ksin(k2)) + (c — a)x, 2.1)
z = -—bz+ xy,

where a, ¢, k, ki, b € R. Apparently, for k = 0, system (2.1) reduces to the Chen system. Of particular
interest is that the new added term k sin (k;z) guarantees the creation of multi-wings attractors with
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higher largest Lyapunov exponent coexisting with multiple equilibria, as illustrated in [1, Figures 2—4,
p-2]. Next, we mainly focus on its multiple homoclinic and heteroclinic orbits.
First of all, let us present equilibria of system (2.1):

Proposition 2.1. 1) If b = 0, then E, = {(0, 0, 2)|z € R} is non-isolated equilibria.
2) WhenVo # 0, 2c —a = o[l —ksin(ky0)], bo > 0, and a # 0. System (2.1) may have many pairs
of equilibria: E, = {(x Vbo,+ Vbo,o)bo > 0,2c —a = o[l — ksin (k;0)]}, except for Ey = (0,0, 0).

We arrive at heteroclinic orbits in the case of non-Hamiltonian modified Chen system (2.1):
Proposition 2.2. If2c >a>c¢>0,b>2a>0,Yo >0, 2c —a = o[l — ksin (k;0)], then
(i) there are no homoclinic orbits to E, or E_, or heteroclinic orbits to E, and E_ in system (2.1);

(ii) multitudinous potential heteroclinic orbits to (1) Ey and E., or (2) E, or (3) E_ exist in system
(2.1).

Finally, we give homoclinic and heteroclinic orbits on the invariant algebraic surface z = 7~ in the
following statement.

Proposition 2.3. Suppose ¢ = a, b—2a = 0, A = x2 — i + 2[“2 sm(k”‘ ) — cos (%)], 2a° =
x2(1 - ksm( )) and T, _“xz + ;—: - [ sin (k'x ) — = co (k'x )], then thefollowmg two assertions
hold.

1) If A > 0, then system (2.1) has a pair of homoclinic orbits to Ey: y = x £ VA.
2)If A+ T, > 0, then system (2.1) has a multitude of heteroclinic or homoclinic orbits to E..:

y=x+ VA +T,, x| <|x.|
3. Homoclinic and heteroclinic orbit and proofs of Proposition 2.2 and 2.3

In this section, we first study the existence of heteroclinic orbits when 2¢ > a > ¢ > 0, b > 2a > 0,
Yo > 0,and 2c —a = o[l — ksin (k;0)], as [15-25].

To facilitate derivation, denote by ¢,(qo) = (x(¢; xo), ¥(¢; o), 2(t; z0)) a solution of system (2.1) with
the initial value gy = (xo,y0,20) € R>. Let y~ (resp., y*) be the negative (resp., positive) branch
of the unstable manifold W*(E,) corresponding to —x; < O (resp. x, > 0) ast — —oo, i.e., y* =
&7 (qo)|p7 (qo) = (Fx4(t; x0), Fy+(t;¥0), 2+(t: 20)) € W(Ep),t € R}.

Put the first Lyapunov function

Vi($:(q0) = Vi(x,y,2) = [2=299(y — x)2 4 2a(=bz + x2)? + (b - 2a)(=bo + x*)?]

2c-a

with the derivative of it along trajectories of system (2.1):
dVi(¢:(q0)) 2ab(b—2a)c(a~
Sy = R0 - 07 - 2ab(-be + ) 3.1)

for the case of b > 2a > 0 and sin (k;z) = sin (k;0°), and the second one
Va(i(q0) = Va(x,y,2) = 3[4a’c(y — x)* + (2¢ — a)(—2a0 + x*)*]
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with the corresponding derivative:

dVa (¢
Va(o (QO))|(2 b= —46120'(61 _ C)(y _ X)2 (3.2)
for the case of b =2a >0,z = = and s1n(k'x ) = sin (ko).
Here, one only considers the case of heteroclinic orbits to £y and E.. The other case of heteroclinic
orbits to E. or E_ is similar to the ones in [24,25] and is omitted.

For proving Proposition 2.2, one introduces the following result.

Proposition 3.1. When 2¢ > a > ¢ >0, b > 2a > 0, Vo > 0, and 2¢ — a = o[l — ksin (k,0)], the
following two assertions are right.

(i) If A t1 5, such that t; <t and V1 2(¢:,(q0)) = Vi2(6,(q0)), then qq is only one of the equilibria.

(i) If lim ¢(qo)i—-c0 = Eo, and A1 € R, x(t; x0) < 0, then Vi ,(Eo) > Vi2(¢:(q0)) and x(t; xo) < 0 for
all t € R. Therefore, g, € W"(E)).

Proof. ) If 2¢c > a > ¢ > 0,b > 2a > 0, Yo > 0, and 2¢c — a = o[l — ksin(k,0)], then one
arrives at M| an S < 0 from Eqgs (3.1) and (3.2). On the basis of the hypothesis (i), one obtains

M| on = =0, Vt € (t;, 1), and derives that ¢ is one stationary point, i.e.,

x(t; x0) = y(t, yo) = 2(t520) =0 (3.3)

namely, X(¢; xo) = a(y — x) = 0 implies x(¢) = xo and y(¢,y9) = 0, y(¥) = yo = 0, Vt € R.

Since z = g is an invariant algebraic surface of system (2.1) with cofactor —2a for b = 2a [34],
#.(qo) € {y — x = 0} results in Eq (3.3).

(i1) Due to lim ¢,(go);—- = Eo and x(z; x9) < 0, ¢ € R, gy cannot be a fixed point. Otherwise,
0 < Via(Ep) £V 2(¢,0(q0)) dtyp € R. Therefore, one arrives at Vi ,(¢;,(q0)) < Via(és,(qo)), Ity € R.
Based on M| an S < 0, Vi2(¢,(q0)) = Vi2(di,(qo)) and assertion (i), go is one stationary point.
The condition lim,_,_., ¢,(qo) = E¢ leads to gy = Ey and x(t; xo) = 0, V¢ € R. A contradiction happens.
The fact Vi ,(Ey) > V12(é:(qo)) holds, ¥Vt € R.

Next, let us show x(z, xp) < 0, ¥t € R. If not, A7 € R, x(¢, xy) > 0. Based on the hypothesis (ii), one
obtains x(1”, xo) < 0, 3¢ € R. As aresult, x(r, xo) = 0, 7 € R. According to Vi2(Eo) > Vi2(d:(q0)),
Vt € R, one gets ¢.(qo) € {(x,y,2) : V12(Ep) > Via(x,y,2)} N {x = 0}, which is contradiction. Actually,
both {(x,y,2) : Vi(Eo) > Vi(x, 3,2} N {x = 0} = {(x,y,2) : 1220702 4 2ab?22 + (b — 2a)b? 2] <
G2} and {(x,y.2) © Va(Eo) > Va(x.y. 0} N {x = 0} = {(x,.2) : 240 + 2Q2¢ - a)d’c-
2(2c — a)a*c?} are all empty. So, Yt € R, x(t, g9) < 0. The proof is completed.

From Proposition 3.1, one proves Proposition 2.2 as follows.

Proof of Proposition 2.2: (i) When2c¢ >a >c¢>0,b>2a>0,Yo > 0,and 2c—a = o[1—ksin (k;0)],
there are neither homoclinic orbits to £, or E_, nor heteroclinic orbits to £, and E_ in system (2.1).
Otherwise, suppose p(f) = (x,y,z) is a homoclinic orbit to E+ or E, or heteroclinic orbit to E’i,
where VE, € E, and VE € E_, i.e., tl_l)r_rio p(t) = e, 11_1)5130 p(t) = e,, where e_ and e, satisfy either

e_=e, € {E/_9E05 E;.} or {e—’e+} = {E,_9E;_}
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dV12(¢:(q0))
Based on —|(2'])

yr < 0, one arrives at

Viales) 2 Vip(p(0) 2 Vio(es). (3.4)

In any case, the relation V) 5(e_) = V;,(e,) all hold, which also leads to V; »(p(#)) = V) 2(e-). According
to the assertion (i) of Proposition 3.1, p(¢) is just one stationary point. In a word, homoclinic orbits to
E, or E_, or heteroclinic orbits to £, and E_ do not exist in system (2.1).

(ii) Next, one proves that p(f) is a heteroclinic orbit to Ey and E_, i.e., tl_l)l;lgo p(t) = E_. On the basis

of the definition of p(¢) and the second assertion of Proposition 3.1, V;,(Ey) > V;2(p(#)) holds, which
also yields lim p(r) # Ey, i.e., lim p(t) = E_.
t—+00 t—+00
At last, let us show that, if system (2.1) has a heteroclinic orbit to Ey and E | then this orbit is Just

p(0).
Suppose p*(t) = (x*(¢), y*(¢), 7*(¢)) is a solution of system (2.1) such that

lim p*(t) = e;, lim p*(r) = ¢],
t——00 t—+o0

where e} and e} satisfy {e}, ef} = {Eo, E}. Since “2040| | <0, V1 € R, Vis(ep) 2 Via(p(0) 2

Via(e?) holds. Due to Vi2(Eg) > Vio(E.), one gets e = Egand el = E_, i.e.,
lim p* () = Ey, lim p*(t) = E_,
t——00 t—+00

which yields p* (f) € ¥~ based on the assertion (ii) of Proposition 3.1. Since system (2.1) is symmetrical
w.r.t. the z—axis, there exists a unique heteroclinic orbit pi(r) € y*, i.e., lim pZ(¢) = Ey, lim pi(¢) =
——00 t—+00
E..
Due to the term of ksin (k;z), E. may include many isolated stationary points E, and, thus, may
generate many heteroclinic orbits to Ey and E.. The proof is over.

140
120 -
100
80 [
60 [

40

j{ AAA

-20

z.*(1-0.5.*sin(z))-21

40 . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
4

Figure 1. Nine solutions of 21 = z(1-0.5 sin z) with z > 0 when (a, ¢, k, k) = (35,28,0.5, 1).
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Table 1. The dynamics of E'. with (a, c, k, ki, b) = (35,28,0.5,1,70),i=1,2,---,9.
E. Classification FEigenvalues

E! =(+33.7984,+33.7984,16.319)  Stable focus  —3.5 + 95.3515i,-70

E2 = (+36.0705, +36.0705, 18.5869) Saddle 97.589, -104.589, -70

E3 = (+39.1608, +39.1608,21.9081) Stable focus  —3.5 + 134.9i, 70

E? = (+42.2435,+42.2435,25.493)  Saddle 137.312,-144.312,-70

E3 = (+44.086, +44.086,27.7653) Stable focus  —3.5 + 158.18i,-70

ES = (+47.4648,+47.4648,32.1844) Saddle 153.3704, -160.3704, -70
E7 = (+48.5721,+48.5721,33.7036)  Stable focus  —3.5 + 166.07i, =70

E? = (£52.1592,+52.1592,38.8655) Saddle 135.592,-142.592, -70

Ei = (+£52.662, £52.662,39.6184)

Stable focus

-3.5+ 142.18i,-70

Table 2. The dynamics of E'. with (a, ¢, k, ki, b) = (35,28,0.5,1,75),i = 1,2,--- ,9.

E. Classification Eigenvalues

E! = (+34.9846,+34.9846,16.319)  Stable focus  —3.5 + 98.7041i,-75

E2 = (+37.3365, +37.3365, 18.5869) Saddle 101.1325, -108.1325, =75
E3 = (+40.5353,+40.5353,21.9081) Stable focus  —3.5 + 139.64i, 75

E? = (+43.7261,+43.7261,25.493)  Saddle 142.2534,-149.2534,-75
E3 = (+45.6333,+45.6333,27.7653) Stable focus  —3.5 + 163.73i, 75

ES = (+49.1307,+49.1307,32.1844) Saddle 158.8772,-165.8772, =75
E7 = (£50.2769, +50.2769,33.7036)  Stable focus  —3.5 + 171.9i,-75

E? = (£53.9899, +53.9899, 38.8655) Saddle 140.4712,-147.4712,-75

E® = (+£54.5104,

+54.5104,39.6184)

Stable focus

-3.5+147.19i, =75

40

30

N 20

10

100

-100

-100 100
y

(@) b =10

Figure 2. When (a, c,k, ki) = (35,28,0.5,1) and (xb

40

30

10

100

0

-100 100

(b) b=175

2 302 1) = (£0.13,£1.3,1.6) x 107,

(a) b = 70, system (2.1) has a pair of heteroclinic orbits to Ei and E,, which coexist with
EL2426789. (b) b = 75, system (2.1) has a pair of heteroclinic orbits to E! and E,, which

coexist with Ei
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Set (a,c,k, ki) = (35,28,0.5,1), b = 70,75. The nontrivial equilibria of system (2.1) satisfies
2c —a = z(1 — ksin (k2)), i.e., 21 = z(1 — 0.5sin(z)) with z > 0. At this time, system (2.1) has nine
pairs of nontrivial equilibria: E’. = (+ bz, £ bz, z;), where z; = 16.319, z, = 18.5869, z3 = 21.9081,
24 = 25.493, z5 = 27.7653, z¢ = 32.1844, z; = 33.7036, zg = 38.8655, and 79 = 39.6184, as depicted
in Figure 1 and Tables 1 and 2.

-50

35 40

35

30
30

25 25
20
20
15

15 10

10 100
%0 -100 -100
o ) 50 0 0 -50
X -50 100 % y X -100 100 %0 y
©) ()
Figure 3. When (a,c,k,ki,b) = (3528,05,1,70), (a) (') =

(£36.0705, £36.0705, 18.5868) (resp., (£36.0705, +£36.0705, 18.587)), a pair of heteroclinic
orbits to E2 and E. (resp., E3), (b) (x)%,y7°%,2)) = (£42.2435,+42.2435,25.494) (resp.,
(£42.2435, +42.2435,25.492)), a pair of heteroclinic orbits to Ef and E3 (resp., E), (c)
(5,378, 20) = (£47.4648,£47.4648,32.1845) (resp., (+47.4648, +47.4648, 32.1843)),
a pair of heteroclinic orbits to ES and EL (resp., E3), (d) (x0'%y0'%z) =
(£52.1592, £52.1592,38.8656) (resp., (£52.1592,+52.1592,38.8654)), a pair of hete-
roclinic orbits to E® and E] (resp., E3). These figures suggest that system (2.1) has

multitudinous potential heteroclinic orbits to E, or E_.

In contrast to the Lorenz-like systems [19, 20, 24, 25], Figures 2—4 show multitudinous heteroclinic
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orbitsto (1) Eg and E,, (2) E., (3) E_.

Remark 1. Motivated by [16], a pair of homoclinic orbits to E, may exist in the scenario of non-
Hamiltonian modified Chen system (2.1) when (a,c,k,k;,b) = (1,0.8,0.5,1,1.088966), as shown in
Figure 5.

Remark 2. When a = ¢, V, is a first integral. Proposition 2.2 includes the result on heteroclinic orbits
givenin [15, 16] as a special case when k = 0.

7 40

35 T
\ .
30 / 20

|
\

25 J\\ e g 25
N L \ 20

20 \ | E}
\‘i\!/ 15
15 V] 10

N
5
1(1)8 -100 100
50 -50 0 s M0
0 5 50 ¢ 0 0
X 4100 100 y X -100 100 y
© )
Figure 4 When (a,c,k,ki,b) = (35,28,0.5,1,75), (a) (x)""%yl1%22) =
g . s Ly Ry KT, - bl £l o~y ) ) 0 7y0 ,ZO -

(£37.3365, £37.3365, 18.5868) (resp., (+£37.3365, +37.3365, 18.587)), a pair of heteroclinic
orbits to E2 and E! (resp., E3), (b) (x,>'"*, ', 20) = (£43.7261, £43.7261,25.494) (resp.,
(£43.7261, £43.7261,25.492)), a pair of heteroclinic orbits to Ei and Ei (resp., EL), (¢)
(x>0, 9010, 28 = (£49.1307, £49.1307,32.1845) (resp., (+49.1307, £49.1307,32.1843)),
a pair of heteroclinic orbits to ES and El (resp., EL), (@) (x"'%,y"%.2) =
(£53.9899, £53.9899, 38.8656) (resp., (+53.9899, +53.9899, 38.8654)), a pair of heteroclinic
orbits to E% and E7 (resp., E3). These figures suggest that system (2.1) has multitudinous

potential heteroclinic orbits to E, or E_.
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.0783,1.0783,1.0677)

15

0.5

E,=(0.0,0)

Figure 5. When (a,c,k,k,b) = (1,0.8,0.5,1,1.088966) and (x,° y,°z}) =
(+0.13,£1.3,1.6) x 1077, a pair of homoclinic orbits to E, may exist in system (2.1).
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Figure 6. Fifteen pairs of nontrivial equilibria S ; when (a,c,k, k) = (35,35,0.5,1), i =
1,2,---,15.
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Figure 7. When (a, ¢, k, k1, b) = (35,35,0.5, 1,70), (a) (b) eight pairs of homoclinic orbits to
S’ and S of system (3.5), (c) eight pairs of homoclinic orbits to E%. and Ej of system (2.1),
i=2,4,6,8,10,12, 14.
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Figure 8. Fifteen pairs of nontrivial equilibria S"i when (a,c,k, k) = (-35,-35,0.5,1),
i=1,2,---,15.
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Figure 9. When (a,c,k, k;,b) = (-35,-35,0.5,1,-70), (a) (b) eight pairs of homoclinic

orbits to S’ and S, of system (3.5), (c) eight pairs of homoclinic orbits to E. and E, of
system (2.1),i = 2,4,6,8,10,12, 14.

Finally, for b = 2a, let us consider homoclinic and heteroclinic orbits on the invariant algebraic
2 . .
surface z = g—a [34] of system (2.1), i.e., the ones of following system:

X :a(y_X),
y = ey— S0 —ksin ()] + (c - a)x.

When ¢ = a, system (3.5) reduces into a Hamiltonian system with the corresponding Hamiltonian
function

(3.5)

A ak o kxr kx? ki x?

H(x,y) = —axy + oy? + — [k—% sin (5) = 7~ cos (5 ). (3.6)

2 8a 2k
Obviously, the equilibrium points of system (3.5) are S = (0,0), S, = (£x, +x) for 2a*> = x*(1 -
2
k sin (2—2)). Further, the proof of Proposition 2.3 easily follows and is omitted here.
Set (a,c, k, k) = (£35,+35,0.5, 1), except for S, Figures 6 and 8 show another fifteen pairs of
nontrivial equilibria S"i of system (3.5), i.e., the E’i of system (2.1), i = 1,2,---,15, as shown in
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Tables 3 and 4. Obviously, S’ are included in E. and are not listed here, i =

1,2,---,15. Fur-

ther, system (3.5) (resp., (2.1)) has eight pairs of homoclinic orbits to S’ and S (resp., E. and Ey),
i =2,4,6,8,10,12, 14, as depicted in Figures 7 and 9. Being different from the ones [25, 35], the

heteroclinic orbits to S, (resp., E.) are not observed in numerical simulation.

Table 3. The dynamics of E% with (a, ¢, k, ki, b) = (35,35,0.5,1,70),i = 1,2,--- ,15.

E,

Classification

Eigenvalues

E! = (£40.4862, +40.4862, 23.4162)
E? = (+40.9545, +40.9545, 23.9610)
E3 = (+44.8424, +44.8424,28.7263)
E* = (£46.7089, +46.7089, 31.1674)
ES = (+49.2008, +49.2008, 34.5817)
E® = (+51.4735, +51.4735,37.8503)
E7 = (£53.286, +53.286, 40.5628)

EB = (£55.7622, +55.7622, 44.4203)
E® = (+£57.1156, +57.1156, 46.6027)
E!® = (£59.7153, +59.7153,50.9417)
E!! = (£60.7207, +60.7207, 52.6715)
E'2 = (£63.4129, +63.4129, 57.4457)
E!® = (£64.1281, +64.1281, 58.7488)
E* = (£66.9144, +66.9144, 63.9648)
E'S = (+67.3528, +67.3528, 64.8057)

Andronov-Hopf bifurcation
Saddle
Andronov-Hopf bifurcation
Saddle
Andronov-Hopf bifurcation
Saddle
Andronov-Hopf bifurcation
Saddle
Andronov-Hopf bifurcation
Saddle
Andronov-Hopf bifurcation
Saddle
Andronov-Hopf bifurcation
Saddle
Andronov-Hopf bifurcation

+72.37i,-70
+73.1982,-70
+168.62i, =70
+174.6572,-70
+210.461, —70
+217.0728,-70
+240.471i, =70
+245.134,-70
+261.48i, =70
+261.5179, =70
+272.84i, =70
+263.8527,-70
+271.2i,-70
+241.3816,-70
+245.161,-70

Table 4. The dynamics of E’i with (a, ¢, k, k1, b) = (-35,-35,0.5,1,-70),i=1,2,---,15.

E,

Classification

Eigenvalues

E!
E:
E}
E}
E}
ES

= (£42.5879, £42.5879, -25.9104)
= (£44.0511, +44.0511, -27.7214)
= (+47.0547, +47.0547, -31.63006)
= (£49.1642, £49.1642, -34.5303)
= (£51.2773,£51.2773, -37.5623)
= (£53.6664, +53.6664, —41.144)

E7 = (+55.2308, +55.2308, —43.5777)
E8 = (£57.7749, +57.7749, —47.6848)
E? = (£58.9443, +58.9443, —49.6347)
E!® = (£61.5922, +61.5922, —54.1943)
E!l = (£62.4478, +62.4478, -55.7104)
E!? = (£65.1845, £65.1845, —60.7003)
EDB = (£65.7631,+65.7631, —61.7826)
E!* = (£68.6152, +68.6152, -67.2578)
ED = (£68.8911, +68.8911, -67.7998)

Shilnikov-Hopf bifurcation
Saddle
Shilnikov-Hopf bifurcation
Saddle
Shilnikov-Hopf bifurcation
Saddle
Shilnikov-Hopf bifurcation
Saddle
Shilnikov-Hopf bifurcation
Saddle
Shilnikov-Hopf bifurcation
Saddle
Shilnikov-Hopf bifurcation
Saddle
Shilnikov-Hopf bifurcation

+138.54i,70
+142.9652,70
+191.48i,70
+198.1574,70
+226.65i, 70
+232.5816,70
+252.09i,70
+254.8295,70
+268.491, 70
+264.7765,70
+2.7403i, 70
+257.1704,70
+262.71i,70
+205.6317,70
+207.64i,70
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4. Conclusions

In the present work, the existence of homoclinic orbits and heteroclinic orbits of both cases of non-
Hamiltonian and Hamiltonian modified Chen system was proved based on definitions of both a-limit
set and w-limit set, the theory of the Lyapunov function, and the Hamiltonian function. In the former
case, there existed multitudinous potential heteroclinic orbits to (1) Ey and E., (2) E,, or (3) E_ in
that modified Chen system. In the latter case, there was a multitude of potential homoclinic orbits
to Ey and E. or heteroclinic orbits to E. on the invariant algebraic surface z = % Moreover, when
(a,c,k, k) = (35,28,0.5,1), b = 70,75 (resp., (a,c,k,kyi,b) = (£35,+35,0.5,1,+70)), numerical
simulations illustrated nine pairs of heteroclinic orbits (resp., eight pairs of homoclinic orbits). What
follows is to study the multi-wing Lii system [1], Lorenz system, and other hyperchaotic Lorenz-like
systems.
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