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Abstract: In this paper, we developed a SIRV epidemic model based on a vaccination
game, incorporating vaccination dynamics and data memory effects using the Caputo fractional
derivative. This approach effectively captured the nonlocal and power-law characteristics of influenza
transmission. We confirmed the model’s biological well-posedness, proved the uniqueness and
existence of solutions, and analyzed stability. Furthermore, we established global Ulam-Hyers stability.
The results showed that the epidemic incidence depended on the number of reproductions in the system.
Through the Griinwald-Letnikov method, we developed the numerical simulations. We validated our
theoretical findings and provided insights into the impact of vaccination on influenza progression. Our
simulations revealed that strategic vaccination decisions were influenced by individual perceptions of
the benefits and costs to achieving control of the influenza disease.

Keywords: influenza; vaccination game; Caputo fractional derivative; Ulam-Hyers stability;
Lyapunov stability.

1. Introduction

Influenza is a global infectious disease that affects humans. It has taken away millions of lives in
the 20th century [1]. These viruses become seasonal influenza after widespread transmission.
Influenza typically spreads through respiratory droplets, such as coughing and sneezing. For most
individuals, influenza is mild, and people usually recover fully within 3 to 5 days. However, in some
cases, the severity of the disease can lead to hospitalization and death. Symptoms include fever,
fatigue, cough, and in severe cases, viral pneumonia. Furthermore, the emergence of novel influenza
strains, including pandemic strains like HIN1 in 2009, underscores the necessity for ongoing
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monitoring, accurate prediction, and effective control strategies. Generally, the compartment model is
used to simulate disease progression and control. This model is widely used in the epidemiological
study of infectious diseases, a concept first proposed by Kermack and McKendrick [2]. Many
researchers have previously attempted to model influenza using the compartment model [3,4]. The
complexity of influenza transmission dynamics, which involves intricate interactions, necessitates the
development of sophisticated mathematical models to gain insights into its spread and to inform
public health interventions.

While medications are used to treat influenza, the most effective way to prevent the disease is
vaccination [1]. Mass vaccination campaigns [5] have successfully controlled the spread of smallpox
and polio, ultimately leading to their eradication. Some individuals who require vaccination can
develop severe complications from influenza, such as viral pneumonia, and may even die from
flu-related complications [6]. However, the public’s understanding of influenza vaccines is limited,
and many people fail to appreciate the seriousness of the disease fully. Influenza vaccination is
primarily conducted voluntarily. Therefore, it is essential to develop a more effective vaccination
program to establish a comprehensive strategy for vaccine distribution. MacDonald was the first to
propose the infectious disease compartment model that incorporates vaccination [7]. Since then,
numerous simple compartmental mathematical models have been widely utilized to assess the impact
or potential impact of vaccination on the transmission of certain human diseases. Shim [8] studied the
SIR and SIS models of vaccination. Gumel et al. [9] used the SEVIR model to study the spread of
SARS. It is important to recognize that vaccination is not a one-time solution. Yan et al. [10] studied a
new class of SIRV models for influenza vaccination. To effectively control outbreaks, we must adapt
our vaccination strategies as needed, which includes promoting booster shots and developing vaccines
to combat newly mutated strains.

Game theory constitutes a mathematical framework that examines strategic decision-making
among rational individuals or groups in circumstances entailing conflict or cooperation.
Decision-making behaviors of individuals can be effectively simulated using game theory. Its
application in epidemiology has gained significant traction, especially in comprehending how
individual behaviors transform during an epidemic, encompassing vaccination decisions, social
distancing, and adherence to public health measures. We can consider the strategic interactions
among individuals as they make decisions that impact their own and others’ health. For example,
individuals might assess the costs and benefits of vaccination, considering factors such as the
perceived risk of infection, the vaccine’s efficacy, and potential side effects. By modeling human
decision-making processes within game-theoretic frameworks, researchers can investigate how
individual actions affect the overall dissemination of influenza and how these actions can be
influenced by incentives. Game theory has been utilized to model the behavioral choices of
individuals during the transmission of infectious diseases. Researchers’ utilization of game theory to
predict the spread of epidemic infectious diseases has emerged as a significant branch of modern
bio-mathematics. We need to contemplate how individuals respond to vaccination. Hence, it is
indispensable to employ game theory to investigate vaccination strategies. We assume that all players
are rational and that the actual strategies of each individual interact within the game-theoretic context.
Christ Bauch established a dynamic SIR model using game theory [11]. Bauch and Bhattacharyya
proposed a model for vaccine delay strategies that account for age structure [12]. Liu et al. [13] used
game theory to study chickenpox vaccination with age structure. In some models, it is assumed that
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individuals will imitate the behavior of their neighbors in a certain grid [14-16]. Reluga developed
game theory models that use stochastic differential equations for modeling [17, 18]. Game-theoretic
models that consider individual differences are typically represented using individual networks, which
consider individual heterogeneity [19,20]. These studies have demonstrated that gaming strategies are
efficacious in preventing and controlling the spread of infectious diseases. They can be optimized to
minimize costs, budgets, and the number of infections.

Traditional epidemiological models, often based on integer-order differential equations, have been
instrumental in understanding the fundamental mechanisms of disease transmission. However, these
models may not fully capture the long-memory effects, non-local interactions, and heterogeneous
responses frequently observed in real-world epidemic systems. With the development of fractional
calculus theory, an increasing number of researchers are beginning to apply it in biology to more
accurately describe the behavior of model systems. In contrast to integer-order models, fractional
derivative epidemic models have better systematic memory characteristics. The Caputo fractional
derivative, a specific type of fractional derivative, has attracted considerable attention in recent years
due to its capacity to model systems that show memory effects and non-Markovian behavior—traits
intrinsic to many biological and epidemiological processes. Additionally, fractional models possess
one more degree of freedom than integer models when fitting data. Furthermore, fractional
differential equations are more suitable than integer differential equations for describing non-local
phenomena and can provide more realistic explanations. The fractional-order infectious disease
model can not only describe the transmission process of infectious diseases in the population more
accurately but also predict the development trend of infectious diseases better. Fractional derivatives
are introduced into the model in a specific way, such as replacing the integer derivative with the
Caputo fractional derivative. In recent years, studying of models involving fractional calculus has
proliferated. Many researchers have studied diseases such as dengue [21], measles [22], AIDS [23],
and influenza [24] using fractional-order derivative. Li et al. [25] used new parameter estimation
techniques to study multi-term fractional dynamical epidemic models. Defterli [26] studied
temperature-dependent fractional order dengue models. Koziot et al. [27] studied a fractional order
SIR model for COVID-19. Miskovic-Stankovic et al. [28] studied a fractional order derivative model
for different drugs. These studies demonstrate the utility of the fractional-order system by illustrating
its ability to provide more accurate and nuanced insights into complex dynamical processes, such as
those observed in infectious disease modeling.

In this paper, we investigate the effects of vaccination information and infection information on
individuals’ behaviors regarding vaccination, based on the transmission dynamics between
individuals. Drawing on the objective laws of infectious diseases, we consider a fractional-order
model that incorporates the vaccination game and conduct a mathematical analysis of this model. Our
innovation primarily involves the introduction of a game-theoretic framework for fractional-order
systems, as well as the incorporation of a reality-based individual behavioral response function into
the model. We develop a simulation based on the aforementioned factors. Furthermore, the model we
establish can serve as a valuable tool for policymakers and public health officials. By simulating
various scenarios and assessing the impact of different interventions, policymakers can identify the
most effective strategies for mitigating the spread of influenza. This can lead to more informed and
targeted public health policies that are better equipped to address the challenges posed by infectious
diseases. Consider that integrating a fractional-order model with game theory can yield a model that
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more accurately represents real-world situations. This is an aspect that is lacking in this study. Not
only that, but the novelty of this paper lies in our development of a nonlinear response function for a
more realistic simulation of vaccination. Additionally, we analyze the Ulam-Hyers stability in a
fractional-order system.

The structure of this article is as follows: In the next section, we introduce the establishment of the
model. In Section 3, we extend the model to fractional order and analyze it. In Section 4, we analyze
the Lyapunov stability and the Ulam-Hyers global stability of the model. In Section 5, we analyze
the model’s behavior, investigate the impact of different parameters on the spread of influenza, and
discuss the implications of our findings for public health policy and practice. We conclude the paper
in Section 6.

2. SIRV Mathematical model based on ODE

In this section, we present the novel model. Considering the transmission characteristics of
influenza and the vaccination status, we first consider the classical SIR model and add the V
compartment based on the SIR model. We assume that the spread of influenza is uniform and that the
probability of transmission is proportional to the frequency of contact between susceptible and
infected individuals. We also assume that deaths due to the disease are negligible and that the total
population remains constant. People are divided into four compartments: S: susceptible, I: infected,
R: recovered, and V: immunized. Susceptible individuals will enter the infection compartment after
effective contact with infected individuals, and infected individuals recover from a certain proportion
and then enter the recovery compartment. Because the continuous mutation of the influenza virus
requires annual updates to the vaccine to prevent the disease effectively, we only consider only
infection for a short period (less than a year). We assume that the recovered population is permanently
immune. Our influenza epidemic model is shown in Figure 1. From the figure, we can deduce the
following system of differential equations

1S
S/(I)ZMN—IBT—O'XS—,US + ¢V,

o BIS
I(t)—T—YI—,UL (2.1)
R'(t) = yI — uR,

V'(t) = oxS — ¢V — uV.

S represents susceptible individuals, I represents infected individuals, R represents recovered
individuals, and V represents immunized individuals. o represents the effectiveness of vaccination,
with o € [0,1]. ¢ represents the rate at which vaccine effectiveness diminishes. g is the effective
transmission rate, y denotes the recovery rate, and 1/u represents the average life expectancy of this
model population. We ignore the mortality rate from influenza. Furthermore, x € [0, 1] stands for the
vaccination rate, which is simulated by means of game theory. In this model, we assume that the total
populationis N. Let N =S +V+I+R,and s = S/N,i = I/N,r = R/N, and v = V/N, such that
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s +v+1i+r = 1. The model can be simplified to

s'(t) = u— Bis — oxs — us + ¢v,
/() = Bis — yi — i, (2.2)
V() = oxs — v — uv.

It was noted that x followed vaccination behavior. The vaccination situation is closely related to many
factors. It is assumed here that voluntary vaccination is available to individuals across the population,
and that individuals are influenced by and respond nonlinearly to information about the costs of
strategies in their current state. The probability that the considered strategy will be adopted can
generally be assumed to be proportional to the difference between the expected returns of the two
strategies. Therefore, we first quantify the human behavioral tendencies by dividing the costs into the
costs of infection and the costs of vaccination. We first assume that the cost of inoculation is ¢, and
the cost of infection as ¢;. From the meaning of 5, we set the rate of individual infection as Si. We
assume that vaccination is effective. Thus, the cost of infection for an unvaccinated individual as Sic;.
We define information function g(z) as follows

g1(1) = Bic; = . (2.3)

If g1(x) > 0, people are more likely to get vaccinated, and vice versa if g;(x) < 0.

The impact of the severity of the outbreak on vaccination also requires consideration here. Hence,
we also consider the new infection to be another information function. When people realize that the
number of new cases is relatively large, they consider the current outbreak more serious. This means
that the need for vaccination has become even greater. Hence, the next thing we consider is the number
of new cases per day. We set it to g»(1).

82(t) = BNis. (2.4)

These two information functions are not equivalent, so let the weights be m, and we set the net
information function by
8(1) = mg (1) + (1 — m)g>(0).

Here, 0 < m < 1. If m = 0, vaccination behavior is determined by g,(f). When m = 1, it is
completely determined by g;(#). This models the effects of different weights.

In fact, depending on the situation, the response function is not always linear. Moreover, we
consider the impact of information transmission on individuals’ vaccination behavior. This is so the
individuals will imitate their neighbors. In real life, individuals also have limited social circles. We
assume that individuals imitate the behavior of others, but not in a completely arbitrary manner.
Instead, we assume that individuals can only learn from their neighbors within a specified network.
We assume that the response function for the behavior of inoculation conforms to the Fermi rule.
Using the Fermi function [29], we define the behavioral response as

1 1

here b > 0 represents the strength of selection. When b is larger, the individual is more sensitive to
information, suggesting a greater level of rationality.

(2.5)
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Finally, we derive the equation for behavioral changes with x by classical imitation dynamics
method [11]. Similar to this, we assume that individuals randomly select other members of the
population at a fixed, constant rate. If the strategy of the sampled individual yields a higher payoff, it
is adopted with a probability proportional to the anticipated increase in payoff. In this model, fz(?)
represents the payoff gain associated with switching to the vaccinator strategy. When fz() > O,
nonvaccinators probably become vaccinators, but not vice versa. x denote the relative frequency of
vaccinators. If individuals sample at rate of o, then a non-vaccinator samples vaccinators at rate ox.
Consequently, a non-vaccinator adopts the vaccinator strategy with probability afx(f), where a is the
constant. Hence, the dynamic of x when fz(¢) > 0 is governed by:

X'(t) = (1 = x)oxfr(t)a, (2.6)

(1 — x) represents the frequency of individuals who are not vaccinated. Conversely, if fz(f) < O, it
follows from a similar step that

X' (1) = —xo (1 = x)(—fr(D)a, 2.7)

Taking k = oa is a coeflicient for imitation intensity, we obtain
X' (1) = kx(1 — x) fr(2). (2.8)
Afterwards, it is concluded that the system we want to study as follows:

§'(t) = u — Bis — oxs — us + ¢v,
i'(t) = Bis — yi — ui,
VI(t) = oxs — ¢v — uv,

X'(t) = kx(1 = x) fz(2).

2.9

In summary, we developed a new ODE model by incorporating an additional compartment into the
traditional SIR model and integrating it with vaccination game theory. This extended model captures
the dynamics of vaccination strategies within the population and examines how these strategies
influence disease transmission. To simplify the analysis, we streamlined the model by eliminating one
of the equations, thereby maintaining its essential features while enhancing clarity.

K Ju H
Lle T
S

3% oSx

)

Figure 1. Transfer diagram of the model.
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3. Fractional-order model and its analysis

In this section, given the advantages of fractional derivatives, we introduce the definition of
fractional calculus and generalize our proposed model to fractional-order systems.

3.1. Fractional-order derivatives: concepts and definitions

Fractional derivatives are considered a more effective approach to modeling disease epidemics
because they accurately capture the memory effect that often influences people’s responses to
diseases. The non-negativity and boundedness of the solutions of this fractional-order system are then
proved. Finally, the existence and uniqueness of the solution under certain conditions are proved. We
will begin by providing the definition of the Caputo derivative.

Definition 1. [30] For an integrable function f, set « € R*, m — 1 < a < m, the a order Caputo
derivative of function f is given by

Drf(t) = f (t =" f"(r)dr, t>0. (3.1)

The Riemann-Liouville fractional mtegral of a is given by

I f(t) = 1 f (t -1 f(r)dr, t>0. (3.2)
I'la) Jo

Definition 2. [30] The Laplace transform of order a of the Caputo differential operator is given by

E

ZLIDYfH)](s) = s*ZLLf(1)] - s“_H f20), m-l<a<m, meN. (3.3)

Iy
o

or

m _ on—1 _ Jm=2 g . _ £m-1)
LD f)(s) = LT OI= O = 2 0) = = f77(O), a4

Sm—a

Definition 3. [30] The Mittag-Leffler function of order n > 0 is defined by

E,(2) = Z F(]n T (3.5)

The two-parameter Mittag-Leffler function with ny,n, > 0 is defined by

Ey 3.6
(@) = Z Iﬂ(Jnl +1;) :0)
And we give the Laplace transform of two-parameter Mittag-Leffler function
k1 paB
P Re(p) > |al. (3.7)

@ E(k) ] — ,
[E, 5 (£ar®)] = e

Finally, we give the generalized mean value theorem.
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Lemma 1. Generalized mean value theorem [31]. For(0 < a <1, let g(t) € C([a, b]) and CD?g(t) €
(a, b]. Then it holds

g(t) = gla) + L CD;’g(n)(t —a), 0<n<t, Vte(a,b]. (3.8)
I'(a)

We generalize the model to the following system in terms of the Caputo derivative.

IS
DS (1) :pN—ﬁT —oxS —uS + ¢V,

1S
D) = ’87 —yI -,

DR(t) = yI - R, (3.9)
DEV(t) = oxS — ¢V — uV,

1 1
Cna _ _ - =
Dy x(t) = kx(1 x)(1 g 2).

3.2. Nonnegative solution of model

In this section, we demonstrate that the fractional system (3.9) is biologically well-posed. Next, we
demonstrate that the solution of system (3.9) is nonnegative and bounded at all times, or that A is an
invariant set,

A:{(S,I,V,R)‘S >0,1>0, VZO,RZO,S+I+V+R§N}CR4.

Lemma 2. For S(0) > 0, I(0) > 0, R(0) > 0 and V(0) > O, the solution of the system (3.9) is
nonnegative.
Proof. First, we consider the trajectory of the solution of (3.9) along the §-axis, i.e., I(0) = R(0) =
V(0) = 0, S(0) > 0. From the first equation in (3.9), we have
‘DS (t) = uN — oxS — uS. (3.10)
Taking the Laplace transform of both sides of the Eq (3.10),

s L[S ()] = s*7'S(0) + %/JN —(ox+ ) ZIS®)]. (3.11)
Then,
5o 1
ZIS®)] = mS(O) + E,uN. (3.12)

By inverse Laplace transform, we have
oy, _MN o
SO = SOE(—(ox +)t) + ——[1 = Eo(—(ox + )1*)] 2 0. (3.13)
ox+u

Electronic Research Archive Volume 32, Issue 12, 6792-6821.



6800

Using similar argumentation, we respectively get trajectories of the solution of (3.9) along the /-
axis, R-axis, and V-axis,

1() = I(0)Eo(—(y + w)t*) > 0, (3.14)
V(1) = VIO E,(—(¢ + )t*) > 0, (3.15)
R(®) = R(O)E,(—ut™) > 0. (3.16)

Finally, we state that the solution of the model (3.9) is positive in the A as follows: We set 7 > 0
such that S(7) = 0, I(f) > 0, R(f) > 0, V(f) > 0, and S(¢) < S (7). On this plane, DS (¢)|,< = uN > 0.
By the generalized mean value theorem, we obtain

1 -
St)—-S{E) = —DIS()(t-D", telib). (3.17)
['(a)
We conclude that S () > S (7). This contradicts our previous assumption 7. This analysis is similar
for 1(¢), R(t) and V(¢). O

Lemma 3. The solutions S (), I(t), R(t) and V(t) of the model (3.9) are bounded when they are positive.

Proof. According to the conclusion of Lemma 2 we can get that when ¢ > 0, D?S (1), “D?I(t), “D*R(?),
DrV(r) > 0. If we set N(r) = S(¢) + I(t) + R(¢) + V(z), with the simple calculation, obtain that

D*N(t) = 0.

Clearly, when ¢t > 0, N(t) = N. It shows that S(¢), I(t), R(t) and V(¢) are bounded and the set A is a
positively invariant region of R*. O

3.3. Existence and uniqueness of solution

Next, we introduce the existence and uniqueness of a solution of the system (3.9) by imposing
certain conditions.
We notice that the system (3.9) can be rewritten as follows

DIS(t) = fi(1,S (1)),
DI I(t) = fo(t, 1(1)),
DIR®) = f3(t, R(®)),
DIV = filt, V),
Dyx(t) = f5(t, x(t)).

IS
Si(t,S(6)) = uN - /% —oxS§ —uS + ¢V, (3.18)

1S
L 1) = ﬁT -yl —pul,

ft,R(@) =yl — uR,
fa@, V(1) = oxS — ¢V —uV,

1 1
f5(t, x(0) = kx(1 = x) (m - 5).
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Let X(¢) = (S, I, R, V,x)T, and we define f(t,X(?)) = (f,)T,i=1,2,...,5and T € R*. Then, the system
(3.9) is equivalent to

‘DX(1) = f(t, X(®)), XO0)=X,>0, te€[0,T), O<a<l. (3.19)

We turn it to integral representation:

X(t) = X(0) + I £(t, X (1)), (3.20)
X(1) = X(0) + 1 f (t — ) f(r, X(7))dT. (3.21)
(@) Jo

For our analysis, we consider E = C([0, T); R?), the Banach space of continuous functions with the
norm

IXlle = sup [X(®)],  where [X(1)] = [S@)] + (D] + [R(D] + [V(©)] + [x(D)]. (3.22)

Moreover, we define a operator P : E — E by

(PX)(1) = Xo + b (t — 1) f(r, X(1))dr. (3.23)
(@) Jo

we observe that P is well-defined due to the continuity of f.

Theorem 1. The function f defined in (3.18) is a Lipschitz function on E.

Proof. Set X = (§,1,R, V, X) represents another point in E. According to the Lemma 2 and Lemma 3,
we find the by,b,,bs3, and b, satisty

IS O < b1, DI < Do, IROI] < b3, IVl < by, [|x(D)]] < 1. (3.24)
First, discuss the fi of f, we can observe that
_ IN IS _
lfi(t, X) = fi(t, X)| = 'BT —(oxS +p) - 'BT - (oxS +/1)|
1S — IS . _
= "BT —(oc(xS —x8) + u(S - S))'
< %(blll—l_l +by|S =S +obilx—x +1S = S|) +ulS - S|
b ~ b -
= (ﬁ—N2 +o+wp)lS -S| +/%|1—1| + obylx — XI.
(3.25)
Here, we set L; = max{‘% + 0+ u, ﬁ%, oby}. Similarly, we obtain L,, L3, L4, Ls. L, = max{ﬁ% +
y +u, 22}, Ly = max{u, v}, Ls = ¢ + u, Ls = k. Finally, claim that
£z, X(®) = f(2. X, Dlle < LIX — X, (3.26)
whereL:L1+L2+L3+L4+L5. O
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Theorem 2. Set M = oD +1) Af ML < 1, then there exists a unique solution of (3.19) on [0, T).

Proof. We utilize Banach contraction mapping principle on P. By definition,

sup | f(z,0)|l = N

t€[0,T)

We define « > ”X‘l’”% and a closed convex set B, = {X € E : ||X||[g < «k}. We show that PB, C B,.

Note that f satisfies the Lipschitz condition by inequality (3.26). Let a point X € B,, we obtain

IPX||g = sup {Xo + —f(t " f(x, X(T))dT}
1€[0,T) I'(a)
< |Xol + = sup {f(t D f(n, X(@) - f(7,0)] + | f(x, O)I)dT}
F(CY) 1€[0,T)
1
< |Xol + = sup {f(t— D f (L X(0) = f(@Olg + I f(x, O)IIE)dT}
['(a) 1€[0,T)

LiiX|lg + N a1
< |Xo| + F(a) IEOT){f (t—1) d‘r}

a—1
r(a) Sl‘é% {f ¢-7 dT}

Lk + N

INa+1)

= |Xo| + M (Lk + N)

<k (3.27)

< | Xol +

= |Xo| +

Therefore, PB, C B, and P is a self-map. Now, we prove that P is a contraction. We set X, X € E
satisfying (3.19), and observe that

IPX = PX|lz = sup [(PX)(1) - (PX)(0)]

1€[0, T)
= —— sup { f -0 f(r, X(0) - f(5, X(T))IdT}
F(a) 1€[0,T)
. _ a1
r(a) les[lég){ f (t =7 X(7) - X(T)Idf}
<ML|X - XIIE. (3.28)

According the condition ML < 1, P is a contraction mapping. By the Banach contraction mapping

principle, P has a unique fixed point on [0, T'). O
We prove that the solution of the model (3.19) can be extended to [0, +c0).

Theorem 3. Set M = TasD +1) If ML < 1, then there exists a unique solution of Eq (3.19) on [0, +00).

Proof. Note that ¢t € [0,T), X(¢) is bounded. We show that there exists lim,_,7- X(#) = X*. It means

dn € [0,7T) such that fort € (, T), || X(¢) — X*(¢)|| < &. Set t; and 7y, and for Ve > 0,

& < [IX(5) — X7l + 11X () — X (@)l (3.29)
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1 i
<3+ T(@) fo [ =" = (6 =D @ X@ldr

. f (b - O Lfx, XDlldr
< M[(Tk - Ik)a + (TZ - l‘](f)].

Then, for a large k > ky, we conclude that

<IX-X< = + - =
e<|| I >t 3
This makes a contradiction and, thus, the limit lim,_,7- X(¢) exists. To make the solution X continuous
on [0, T), we define X(T) = lim,_,7- X(¢). In this way, we prove that this solution is continuous on
[0, T).
Set h < +oco0. According to the integral representation (3.21) and Theorem 2, we obtain

(PX)(t) = Xo + —— f (t — 1) f(r, X(7))dr

F( )
=X, + m( f (t = 1) f(r, X(1)dr + f (t — 1) f(z, X(1))d7)
=X +— f (t — 1) f(1, X(1))dr. (3.30)
) Jr
Set «;, > % and a closed convex set B, = {X € E : ||X||g < «}. Similar to Theorem 2, we conclude

that according to the Banach contraction mapping principle, P has a unique fixed point X* on [T, T + h].
Hence, we get the new solution

o {X te[0,7),

X* te[T.T+h. (3.31)

Hence, [0, T'] is not the maximal interval of existence for the solution. Finally, we prove the uniqueness
of the model similar to Theorem 2. Note that f satisfies the Lipschitz condition by inequality (3.26).
Set 2 solutions X and X satisfy (3.19) observe that

IPX — PX||x = s[%% (PX)(7) = (PX)(1)]

= =~ sup { f (=@ X(@) - f(x, X(T))IdT}

F(a) 1€[0,T)

_— a—1
F(a) zes[%%{f (-0 X() - X(T)|dT}

<ML|IX - X||g. (3.32)
According the condition ML < 1, P is a contraction mapping. By the Banach contraction mapping

principle, P has a unique fixed point on [0, +c0).
]
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4. Stability analysis

In this section, we provide an analysis of the equilibria in this model. We first set the left hand side
of (3.19) to zero to solve each equilibrium point. It is equivalent to finding equilibria for an integer-
order model. Then, we analyze the local stability of each equilibrium point. The uniformly Lyapunov
stability of solution in the fractional model follows from [32].

4.1. Boundary equilibria and their existence

We find the equilibrium E, = (s,,i,, V,;, x,) of the system (2.2). First, we set the left hand side of
(2.9) to zero to solve each equilibrium point. Based on the reality, we know that x € [0, 1], and firstly
consider the condition x = 0 and x = 1.

Set x = 0, and we obtain the following equations

0=pu—-pLis—us+ v,
0 =pis—yi—ui, 4.1)
0=—¢v—puv.

When i = 0, there is a disease-free equilibrium
E, =(1,0,0,0).

If i # 0, the endemic equilibrium is

E,

_(vrH pB-y - )
B By+w T

According to the given method of [33], we obtain the basic reproduction number %, of the model.
Here, we set .% and ¥ as

53 (u+I
0 —uN +uS +oSx— ¢V

o — —

7= 0 V= —oSx+ ¢V +uV (4.2)
0 -yl + uR

We obtain that F = (8S), V = (u + ). Finally, we set Sy = 1, and obtain

B
pty

Ko = p(FV™") =

Due to the significance of the model, we consider that the equilibria should, in the nonnegative cone,
be

A = {(SYH iﬂ’ Vn)

s, >0, i, >0, vnzo}cR3.

We verify the conditions under which equilibria exist within the region. E; belongs to A. When i, > 0,
we conclude that £, € A. By computation, i, > 0 is equal to %, > 1.
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Next, we consider that the condition of x = 1. We obtain

0=u—-pPis—os—us+ ¢v,
0 = Bis —yi — ui,
O=0s—¢v—puv.

When i = 0, there is a disease-free equilibrium

E3=( pt9 0 d 1)-

u+o+o pu+¢+o’

There is no doubt that E5 € A by simple calculation.
From i # 0, we obtain the equilibrium E,

1 o
E =\7" ] ’ —71 .
4(%ﬁﬂ%w+@ )
We indirectly represent iy and state the existence of E4. We set

pté

" arera

called effective reproduction number. Then we obtain

Z, -1 pu
Ky u+y

iy =

By calculating this, we can obtain the existence condition E4 € A is

X, > 1.

4.2. Internal equilibrium and its existence

Finally, we set the right sides of all equations to 0, and obtain

0=pu—-pBis—oxs—us+ov,
0 = Bis —yi — ui,
0=o0xs—¢v—puv,

0 = x(1 — x)fr(2).

4.3)

4.4)

4.5)

Solve the equation, we obtain Es = (ss,is, Vs, X5). Moreover ss = ﬂ%’o' x'(t) = 0, such that g(r) = 0, by

calculating, we obtain
mc,

5 B N —m O+ 1)

Using ss, i5, we shall express vs, xs.

= ssisPB— ssu
Vs =
u
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1 isP3
=1-— -2 4.6
Hy  Rop (+0)
_ B +wvs
=D (4.7)

Next, we will determine the conditions for existence of Es, i.e.,

Es € FS = {(Sn’ In, Vi, xn)

O<s,,<1,0<in<1,0<vn<1,0<xn<1}cR4.

When %, > 1, we find that 0 < 55 < 1.
By 0 < m < 1, such that is > 0. Hence, by (4.6), we obtain vs < 1. For simplicity, we define R as

I

R=—"—. (4.8)
YHu

Assume that Z, < R < %, (4.6) and (4.7) mean 0 < x5 < 1. From R > 1 we can verify that Es € I's.

4.3. Lyapunov stability

In this section, we prove the Lyapunov stability of the equilibria points in system (3.19). For the
Caputo fractional-order linear model, the French mathematician Denis Matignon [34] obtained the
following conclusion:

Theorem 4. For a fractional-order system (3.19), its eigenvalue A; satisfies

T
/11' > =,
|arg A;] >

if and only if the fractional-order system (3.19) is locally Lyapunov asymptotically stable.

As shown in Figure 2, when @ = 1, it is the normal Lyapunov stability problem for integer-order
systems, and the Lyapunov stability condition for integer-order models is necessary for the stability
of fractional-order systems with order a. Hence, it is equivalent to analyzing the local stability of an
integer-order system. The integer-order Lyapunov stability of the model is discussed next.

Im/li %

Stable region Unstable region

ReA i

Figure 2. The stability region of the fractional-order model (3.19).
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First, we linearize the system using Taylor series expansions. For example, we linearize s'(z).
We write the right hand side of s'(¢) as f(s,i,v, x). After expanding the function around E,, we
have:

ds _ N of e Of
E—f(En)Hs Sn)as+(l ln)al.+(v vn)av+(x xn)ax+0(p)‘ 4.9)

o(p) represents infinitesimals of higher order. We know that f(E,) = 0. We sety; = 5 — s,,, Yo = 1 — I,

Y3 =V=Vy Y4 =x—x,and & = %, 4 - %2 ..., we obtain:

§'(t) = —=(Bi, + L + 0X,)S — BSpl — OS,x + Pv. (4.10)
Similarly,

§'(t) = —=(Bi, + U+ 0X,)s — BSpi — T85,X + ¢v,

/(1) = Birs + Bis, — (y + 0.

l/() Bins + Bis, — (y + pi @11

V() = 0($uX + X,5) — (¢ + v,

X =A+A +A,,
where

be 25D, (1 — m)N(1 — x,,)x,Bk
4, = 2l = mNQ = x)x8k (4.12)
(1 + ebs0)2
A be b50(1 — x)x(c;mpB +(1- m)N,Bs,,)k, “.13)
(1 + e b80)2
A, = k(1 -2x,) ! ! 4.14)
x = —zXy)|—/—/—/—— =, .
| +ebs0 2

where @ = m(Bi,c; — ¢,) + (1 — m)BN s,i,,.

Next, we analyze the Lyapunov stability of E,,.

According to the theory of linear ODE systems, we set the solution of the system is (s,i,v, x) =
eV (¢, 6, 63, ¢1). A and ¢; are constants. We obtain the characteristic equations of E,,.

_(Bin tu+ O-xn) -4 _Bsn ¢ —0Sp
lBll’l (ﬂsn - (7 + ,Ll)) - A 0 0 _
ox, 0 (P -2 s, =0. 4.15)
As(En) Al(En) O Ax(En) -4
First, we analyze equilibria E(1,0, 0, 0)

-1 - ¢ o
0 B-+w)—-Aa 0 0 _
0 0 b+ - o =0. (4.16)
0 0 0 A(E) - A

The equation has four solutions of A given by
A = —u < 0,

Electronic Research Archive Volume 32, Issue 12, 6792-6821.



6808

Ao :ﬁ—(’}/+/l),WhCIl%0 <1, 14 <0,
A3=—(p+p <0,
A= AdE) = k(= - 1) <0,
When all solutions A; have negative real parts, we can judge that this point is locally asymptotically

stable in this system. Hence, we have:

Proposition 1. E, is locally asymptotically stable if %, < 1.

We consider E,(££, #6229 () ()), we obtain

B’ Bly+w
—Bi +u)— A1 —Bs; 1) —0s;
ﬁ(;z _oﬂ ~(¢ +(L) -2 022 =0 (417
0 0 0 A(Ey)—A
A solution 1; = k ( 1+el}m - %) , when Z, < R, 4, < 0. Actually, Z, < R is equal to:

upcim + N(1 —m)
YtH

1
cimu + uN(1 —m)(y + /,L)B + mc, >0

This means that: g(r) > 0.

A =—(¢+uw <0.
To determine if the real part of these two roots, 43 and Ay, is less than 0, we use a simpler method.
We solve this equation

Bt =2 Bs| _

Py =0 (4.18)

or equivalently

A2 +ad+ag=0, (4.19)

where a; = Bi, + u,ar = B*s»i». We conclude that a; > 0,a, > 0if %, > 1. According to Routh-
Hurwitz criterion, we have the following results:

Proposition 2. E, is locally asymptotically stable if 1 < %, < R.

Subsequently, we consider E;(-£ 0, < 1), we obtain:

put+op+o? prop+o’
—-(u+o0)-21 —[s3 1) -3
0 Bss—(y+w)—-2 0 0 _
0 0 —(p+u)—A 0 s3 =0. (4.20)
0 0 0 Ax(E3) -4

Note that 4; = A (E3) = k( L_ _ %) > (0 owing to % > 0. Hence, we have:

1+¢~bs®

Proposition 3. E; is always not stable.
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] 1 :
Consider E4(g—;oa L4, m’ b:

~Bis+p+o)—A —Bsy ¢ —084
Bis -2 0 0 |_,
o 0 —-(p+w-4 Sy '
0 0 0 A(Ey) -2

A solution A, = A (E;) > 0if %, > R. We discuss the other three solutions.

~Bis+p+o)-A4 —Bss ¢
Bis 2 0 - 0.
o 0 —(p+w—-4

4.21)

(4.22)

This is equal to A3+b, A2 +byA+b; = 0 where by = (u+¢)+(Bis+u+0), by = (¢y+(y+¢)(ﬁi4+u+o-)+%),

bs = (i + $)%. We observe that: by > 0,by > 0,b3 > 0.
By calculating, we obtain

by bs

1 bz :blbz—b3>0.

then, we conclude that:
Proposition 4. E, is locally asymptotically stable if %, > 1.

Finally, we consider E5(%, is, Vs, X5):

—Bis+u+oxs)—1  —Bss ¢ —0ss
Bis -A 0 0 |
O Xs 0 —(p+u)—A1 oss
As(Es) Ai(Es) 0 -

This is equal to A* + ¢; 4> + 4% + ¢34 + ¢4 = 0. Here,
¢y = PBis +2u+ oxs + ¢,
¢y = BPisss + Buis + 1 + A(Es)sso + xspo + Bdis + ue,
c3 = B + @)isss + BoA(Es)isss + poAy(Es)ss,
c4 = BAi(Es)oisssp.

By calculating, we obtain:
c1>0,c0>0,c3>0,c4 >0,

and we set
C; C3
F, = =cicp—c3 >0,
1 (%)
CiT C3 1
2
Fro=11 ¢ ca :C3(C1€2—C3)—C1C4>O.
C1 €3

Hence, we obtain:

Proposition 5. Es is locally asymptotically stable when %, < R < %, and F, > 0, F, > 0.

(4.23)

(4.24)

(4.25)
(4.26)
(4.27)
(4.28)

(4.29)

(4.30)

(4.31)
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4.4. Ulam-Hyers global stability

Next, we turn to the fractional model. The study of Ulam-Hyers stability has its origins in a question
posed by S. Ulam in 1940 as to whether an exact solution must necessarily exist in the neighborhood
of an approximate solution to a given equation [35]. We set X is a solution of (3.19), and define the
function X € E is a solution of (3.19) if and only if

DIX(®) = f(t,X(1) + h(®), Rl < &. (4.32)
The definition of Ulam-Hyers stability of the system (3.19) is

Definition 4. If there exists Cx > 0 such that for any € > 0, there exists a function X € E for every
solution X € E that satisfies the system (3.19), and

IX() - X()lle < Cke, t€[0,T).
Then the fractional-order model (3.19) is Ulam-Hyers stable.

We also define the generalized Ulam-Hyers stability by

Definition 5. If there exists Yyx : Rt — R* with yx(0) = O such that for any € > 0, there exists a
function X € E for every solution X € E that satisfies the system (3.19), and there are

IX(1) = X(0)lle < yxe, te[0,T).
Then, the fractional-order model (3.19) is generalized Ulam-Hyers stable.

We prove that the model (3.19) is Ulam-Hyers stable and generalized Ulam-Hyers stable.

Theorem 5. Let the hypothesis of Theorem 2 hold, then the fractional-order model (3.19) is Ulam-
Hyers stable and generalized Ulam-Hyers stable.

Proof. Let X be the only solution of model (3.19), and X is the solution that satisfies (4.32).
IX = Xlle = sup |X(2) - X(2)|,

t€[0,T)

= sup
1€[0,T)

X() - Xo—mf(t 0" f(r, X(1))dT

X() - Xo—m f (t =0 f(r, X(0)dr

+ sup —f(t (N 1|f(T X(T)) f(r, X(7))|dr. (4.33)
refo,ry I'(@)

< sup
t€[0,T)

By the simple calculation and condition (4.32), we obtain

X - o—m f -0, X(1)| <

consequently,

X = X||g <Ms+— sup f (t - ) YX () - X(1)ldT,
['(@) 1€[0,T)
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< Me+ ML||X - X||g. (4.34)
We obtain ||[X — X||z < Ce, C = ]_%L. Hence, the model is Ulam-Hyers stable. Considering the

continuity of M and L, we conclude that it is generalized Ulam-Hyers stable. The condition set here
holds on domain A, so the solution is globally stable. O

5. Simulation and application

In this section, in order to provide evidence for the study discussed in this paper, we use examples
and models of influenza transmission, along with data from the paper, to demonstrate the impact of
vaccination on influenza and its influence on model dynamics. Moreover, we verify the conclusions that
we reached earlier and subsequently derive a strategy for vaccination. By conducting these simulations,
we gain insights into how fractional derivatives and parameters fine-tuning affect the model’s forecasts,

thereby fostering a more profound comprehension of the model’s dynamic properties.

5.1. Fractional-order model simulation and discussion

Population
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(a) The effect of different @ orders on S (7).
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t

(b) The effect of different a orders on I(t).
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(c) The effect of different a orders on R(r).
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(d) The effect of different a orders on V(t).

Figure 3. Effect of different fractional-orders @ on Example 1.
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(a) Evolution dynamics of x(0) = 0 in Example 1.
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(b) Evolution dynamics of x(0) = 0.01 in Example 1.
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(c) Evolution dynamics of x(0) = 1 in Example 1.

50

Figure 4. The effect of vaccination rate x(0) on disease development in Example 1.
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Figure 5. Immediate impact of vaccination on disease dynamics.

We use Griinwald-Letnikov method for simulation [36,37]. To introduce our numerical simulation,

we utilize the parameters of Example 1.

Example 1. We set N = 1000,u = 0.05,8 = 3.5,y = 0.6,c, = 1,b = 0.8,¢ = 0.05,¢; = 30,m =
0.9,k =0.5,0 = 0.8, in the fractional model.
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It can be seen that the disease erupts rapidly at # < 10 and then tends to a more stable state. In
addition, we can see how the values change with different values of « in Figure 3. Here, the value of
a clearly influences the state of model change. By varying the fractional order a, we can identify a
curve that best fits the actual data. This is also one of the advantages of the fractional system. That is
fractional-order models have one more degree of freedom than integer order models. In fact, the model
has some other properties which we will analyse below. We can verify that it satisfies the Lyapunov
stability condition, i.e.,

0.598 =%, <R =1.078 < 5.384 = %, 5.1

Next, we take x(0) as the boundary value, that is x(0) = 0, x(0) = 1 and x(0) = 0.01. Here o =
0.95. Figure 4 verifies the stability of the equilibrium point. Additionally, it is possible to visualize
the effect of changes in vaccination rates on the overall model. The effectiveness of vaccination for
disease control is verified from the change in /(7). Figure 5 illustrates the impact of vaccination on the
prevalence of the disease.

Through a comprehensive analysis and comparison of these figures, we can clearly observe the
significant changes that occurred before and after the implementation of the vaccination program. This
leads us to the strong conclusion that a scientific, standardized, and widespread vaccination strategy is
essential for effectively controlling the spread of the epidemic and significantly interrupting the chain
of transmission of the disease. This reveals that as the vaccinated population expands, the number
of new infections declines markedly, and the scale of outbreaks is effectively curtailed. When the
vaccination strategy is implemented, even in the presence of an infectious individual, the disease can
be maintained at a low prevalence, thereby alleviating pressure on the healthcare system.

5.2. Effect of parameters on vaccination rate and disease control

We simulate x to see the effect of different factors on vaccination rates. First, we simulate the
Example 1 above for @ = 1 in Figure 6. We find vaccination rates oscillating.

0.8

0.7r

0.6

o
o

Vaccination rate
°© o o
N w IS

o
-

0

0 100 200 300 400 500
t

Figure 6. The vaccination rate x in Example 1 simulation for o = 1.

These fluctuations not only reflect the dynamic changes in the public’s willingness to receive
vaccinations but also highlight the complexities and challenges associated with vaccination efforts.
This observation aligns with our objective understanding of social behavior patterns and the
effectiveness of public health interventions. As vaccination rates reach a certain high level, public
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enthusiasm for vaccination tends to diminish. Following the initial control of the epidemic, some
individuals may develop an optimistic belief that the crisis has passed, leading to a decreased sense of
urgency regarding continued vaccination. Furthermore, those who have been vaccinated may, after
experiencing the short-term protection offered by the vaccine, underestimate the importance of its
long-term benefits, thereby increasing the risk of vaccine expiration. This phenomenon is consistent
with the observations derived from the model. Next, we observe the effect of fractional order « on the
model. In continuously monitoring vaccination rates, it is evident that vaccination rates do not exhibit
a simple linear increase or a stable state; instead, they display a pronounced oscillating pattern over
time. We find that as the fractional order a decreases, the oscillations also decrease and converge to
the equilibrium more quickly in Figure 7.

Vaccination rate
o
IS

o] 100 200 300 400 500
t

Figure 7. Comparison of various « and their influence on vaccination rates in Example 1.

The fact that different initial values of x; also give the same convergence results for the model
verifies the existence of internal equilibrium points in Figure 8.

1
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Figure 8. The effect of different initial values on Example 1.

The cost of vaccines are undoubtedly crucial considerations. This is not only directly related to the
accessibility of vaccines but also have a profound impact on vaccination rates. Therefore, how
vaccine costs jointly influence vaccination rates is essential for formulating scientific and rational
vaccination strategies, optimizing resource allocation, and enhancing public health. Specifically,
vaccine cost is a critical factor affecting the public’s willingness and ability to vaccinate. When
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vaccine costs are low, more families and individuals can afford vaccinations, leading to a substantial
increase in vaccination rates. The Figure 9 clearly indicates that as vaccine costs decrease,
vaccination rates can reach relatively high levels. This phenomenon suggests that reducing vaccine
costs is an effective strategy for expanding vaccination coverage and improving herd immunity.
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0

Figure 9. Impact of different vaccine costs on vaccination rates on Example 1.

For epidemic control, the most important thing is the internal equilibrium point. Next, we study the
effect of parameters on the internal equilibrium point. We use influenza transmission data and models
to illustrate the implementation of vaccination plans, establishment of immune barriers, and attainment
of vaccine control effects. We put the set parameters into Table 1.

Table 1. The values of parameters in the model

Parameters Meanings Values References
N Population 1 400 000 000 [38]

o Vaccine efficacy 0.57 [39]

1/u Average age 75 years [38]

B Transmission rate 0.2 days™ [40]

1/y Recovery time 7 days [40,41]

) Waning rate of vaccine 0.0069 [42]

Ci Cost of infection risk 588.3 yuan [43]

Cy Cost of vaccination risk 67.1 yuan [43]

We examine the effect of individual parameters on the scale of the disease. First, we need to verify
the conditions under which the equilibrium point exists.

0.0168 = %, < R =1.0001 < 1.418 = %, (5.2)

If the cost of vaccination is higher, it will lead to a greater reluctance for people to get vaccinated
in Figure 10(a). Similarly, if the cost of infection is low, it can also lead to the situation depicted in
Figure 10(b). The graph also illustrates that the proportion of infections is is an increasing function of
m. This proves our assumption. When the cost of vaccination is very low (let ¢, = 0), people are more
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likely to choose to get vaccinated. At this time, the infection rate is is = 0. For influenza control, it is
crucial to reduce the cost of vaccines.

Finally, we can conclusively state that reducing the cost of vaccines and increasing public
awareness are not only essential but also pivotal strategies for effectively controlling outbreaks. By
making vaccines more affordable, we can ensure broader access and higher vaccination rates among
vulnerable populations, thereby significantly mitigating the spread of infectious diseases.
Additionally, enhancing public awareness through educational campaigns and informative media
outlets empowers individuals to adopt preventive measures and receive vaccinations, further
reinforcing our collective defenses against influenza pandemics.
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(c) The relationship of m and is.

Figure 10. Influences of vaccination cost c,, infection cost ¢;, weight m with infection
proportion is.

5.3. Discussion

In this section, we discuss the results obtained in the previous sections. Through a comprehensive
analysis and comparison of these figures, we can clearly observe the significant changes that occurred
before and after the implementation of the vaccination program. Our findings underscore the essential
role of a scientific, standardized, and widespread vaccination strategy in effectively controlling the
spread of the epidemic and substantially interrupting the chain of disease transmission. The
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simulation reveals a compelling trend: as the vaccinated population increases, the number of new
infections declines markedly, and the scale of outbreaks is effectively curtailed. This demonstrates
that, even in the presence of infectious individuals, a robust vaccination strategy can maintain the
disease at a low prevalence, thereby alleviating considerable pressure on healthcare systems.

The cost of vaccines is a crucial factor in this analysis. It is not only directly related to the
accessibility of vaccines but also significantly impacts vaccination rates. Specifically, the cost of
vaccines plays a vital role in determining the public’s willingness and ability to vaccinate. When
vaccine costs are low, more families and individuals can afford vaccinations, resulting in a substantial
increase in vaccination rates. This indicates that reducing vaccine costs is an effective strategy for
expanding vaccination coverage and improving herd immunity. Conversely, when the cost of
vaccination is elevated, it results in increased reluctance among individuals to receive vaccinations.
Lower costs promote wider access and higher vaccination rates among vulnerable populations, which
significantly reduces the spread of infectious diseases. However, merely reducing costs is not enough;
enhancing public awareness is equally crucial. Educational campaigns and informative media can
empower individuals to adopt preventive measures and obtain vaccinations, thereby strengthening our
collective defenses against influenza pandemics. By integrating affordability with awareness, we can
ensure that vaccination programs are both accessible and effective.

In conclusion, reducing the cost of vaccines and increasing public awareness are not only essential
but also pivotal strategies for effectively controlling outbreaks. By making vaccines more affordable,
we can broaden access and elevate vaccination rates among those most susceptible to infection,
significantly mitigating the spread of disease. Additionally, enhancing public awareness through
targeted educational initiatives reinforces preventive behaviors and encourages vaccination uptake,
further strengthening our collective resilience against influenza and other infectious diseases.
Together, these strategies create a robust framework for public health intervention and epidemic
control.

6. Conclusions

We propose a novel Caputo fractional model that incorporates vaccination strategies. We have
proven the existence and uniqueness of the solution by applying theories in Banach Space to this
model and have analyzed the stability of Lyapunov and Ulam-Hyers. Additionally, we conducted
numerical simulations with various parameter values. Due to the freedom of the «, the findings indicate
that the fractional model significantly enhances the accuracy of disease modeling. We analyze the
oscillatory patterns of vaccination rates and determine their relevance. The effectiveness of this model
in predicting disease outbreaks has been demonstrated. We analyzed the internal equilibrium to explore
the relationship between disease prevalence and various parameters. This study is highly significant
for improving the accuracy of disease models and developing more effective strategies to control the
spread of influenza.

In the future, we will also explore the incorporation of additional real-world factors into the model
to more accurately simulate the dynamics of influenza transmission, for example, the effect of social
distance. We could consider incorporating stochastic dynamics into the model to enhance its realism
in simulations. Additionally, parameter estimation techniques can be employed to determine specific
parameters, thereby facilitating the creation of scenarios for disease control. Furthermore, optimal
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control methods can be utilized in this study to devise a more effective strategy.
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