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Abstract: The issues of exponential projective synchronization and adaptive exponential projective
synchronization are analyzed for quaternion-valued memristor-based neural networks (QVMNNS5) with
time delays. Different from the results of existing decomposition techniques, a direct analytical ap-
proach is used to discuss the projection synchronization problem. First, in the framework of measurable
selection and differential inclusion, the QVMNNsS is transformed into a system with parametric uncer-
tainty. Next, the sign function related to quaternion is introduced. Different proper control schemes
are designed and several criteria for ascertaining exponential projective synchronization and adaptive
exponential projective synchronization are derived based on Lyapunov theory and the properties of
sign function. Furthermore, several corollaries about global projective synchronization are proposed.
Finally, the reliability and validity of our results are substantiated by two numerical examples and its
corresponding simulation.

Keywords: quaternion-valued memristor-based neural networks; time delays; global exponential
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1. Introduction

Memristor, was predicted theoretically by Chua in 1971 [1], did not attract much scholars’ attention
until Hewllet Packard laboratories created the first nanometer-sized memristor successfully in 2008
[2,3]. As the fourth fundamental circuit element after resistor, capacitor, and inductor, compared with
the traditional circuit element, it cannot only change its own properties when the external electrical
signal flows but also remember the latest value between the voltage shutdown and the next opening.
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These advantages help the memristor to be used to simulate synapses in the biological nervous system;
thereby, human brains can be better simulated. By replacing the synapse in traditional neural networks
(NNs) with memristor, the memristor-based neural networks(MNNs) can be created, which may help
us build artificial NN better than other NNs. Therefore, research concerning MNNs has become a hot
spot and some remarkable research results about MNNs have been reported [4, 5].

Quaternion, as a special case of the Clifford algebra, initially was introduced and proposed by
Hamilton [6]. For decades, since the commutativity law of multiplication was no longer available
to quaternion, the research on quaternion was not widely exciting until its advantages in image pro-
cessing [7] were discovered. Since then, the quaternion was introduced into neural networks, and the
quaternion-valued neural networks (QVNNs) model was created. At present, QVNNs have exhibited
great prospects for utilization in the color image compression, night vision at color low light level,
posture control for satellite [8,9] and other fields [10, 11]. Additionally, the dynamics of QVNNs have
triggered the research interest of excellent scholars from domestic and foreign countries. However, due
to the non-exchangeability of quaternion multiplication, the research method adopted in real-valued
NNs and complex-valued NNs cannot be directly applied to QVNNSs, which makes it more difficult to
explore the dynamics of QVNNSs. In addition, compared with the real-valued NNs and complex-valued
NN, the dynamics behavior of QVNNSs is more complex since a quaternion consists of a real part and
three imaginary parts. Therefore, studying the dynamics characteristics of QVNNS is a meaningful and
challenging topic. Recently, some interesting results about QVNNSs have been reported [12-21].

Synchronization, as a crucial dynamical behavior of NNs, has attracted the attention of researchers
due to its promising prospects for utilization in information science, image processing, and secure
communication. So far, scholars have proposed several synchronization patterns including anti-
synchronization control [22,23], fixed-time synchronization control [24-28], projection synchroniza-
tion control [29], and so on. Projective synchronization (PS) means that master-slave systems are
synchronized by a specific proportional factor. For the control systems, PS is an extremely important
dynamics behavior, which extends complete synchronization and anti-synchronization control. Differ-
ent from PS of real-valued NNs, PS of QVNNs considers the quaternion proportional factor, which
improves the complexity and diversity of synchronization. Additionally, the PS issues related to real-
valued NNs or complex-valued NN are special cases of PS problems for QVNNSs. Therefore, studying
PS of QVNNSs has important theoretical and practical value. So far, some interesting results about PS
have been reported [30,31].

Adaptive control is a significant synchronization control method. If adaptive laws are designed
appropriately, they can automatically adjust controller parameters in line with the states of systems so
that the master-slave system can achieve synchronization. Currently, some meaningful results about
the adaptive synchronization of NNs are mostly concentrated on real domains and plural domains [32,
33], while the exploration in quaternion domains is relatively rare. Fortunately, some scholars began
considering this problem in the quaternion field. In [34], the adaptive PS of fractional-order delayed
QVNNs was successfully explored. Nevertheless, as far as the authors know, there are no previous
reports concerning the exploration of adaptive exponential projective synchronization for QVMNNSs
with time delays.

Motivated by the above discussions, we aim to investigate the controls of exponential projective
synchronization for QVMNNs with time delays. The distinctive contributions of this work are reflected
as follows:
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1) It is the first study to explore the adaptive exponential projective synchronization and exponential
projective synchronization for QVMNNs with time delays.

2) Using the one-norm method, the measurable selection and differential inclusion, combined with
the sign function of quaternion, two different control schemes that are easy to implement are designed,
which can achieve exponential projective synchronization and adaptive exponential projective synchro-
nization, respectively.

3) The theoretical results proposed in this paper can be easily extended to control synchronization
problems of other QVNNSs, such as complete synchronization and anti-synchronization. It is obvious
that it will enrich the literature on exploring control synchronization problems for QVNNs.

The remaining contents of this work are outlined as follows. In Section 2, we introduce the model
and its initial information, the definitions and lemmas needed to discuss. In Section 3, we design
different proper control schemes and obtain criteria about exponential projective synchronization and
adaptive exponential projective synchronization. In Section 4, the reliability and validity of the theo-
retical results proposed in this work are tested and verified by two numerical examples.

Notations: Q and R denote quaternion field and real field, respectively. A quaternion x = x) +
x D1+ xPj + xPk € Q, x* = 1 — xPi — xVj — xPk denotes conjugate. ||x||; = [x©] + |x?| + [x] + |xP]
denotes the one-norm. The one-norm of y = (yi, ..., y,)” € Q" is written as ||y, = ZZ:] [yl

2. Problem description and preliminaries

In this work, we will consider the QVMNNs model with time delays through the following:

Xp(1) = —apx)y(1) + Z bpg(xp (D)) f4(x4(1)) + Z Cpg(Xp(0)84(xq(t — V) + 1,(2) 2.1
g=1 g=1
where p = 1,2,...,n. At time ¢, x,(t) € Q denotes the state of the pth neuron. f,(-), g,(-) € Q are the
activation functions of the gth neuron. a, > 0 is the self-feedback connection weight. b,,(), ¢,4(-) € Q
denote the memristive connection weights without and with delays, respectively. v is the transmission
time delays with v > 0. I,(¢) € Q indicates the external input.
From the current-votage characteristics and the nature of memristor, we have:

bl lx,(D)I < H { T llx, (DIl < H
b,.,(x,(1)) = pg> P P Cpo(X,(1)) = pg’ P P 2.2
pa(5p(1)) { bﬁq, lx, (DIl > H,, rap(1)) C,T,q, lx,(OIl1 > H,, 2.2)

bTT bT CTT

where the switching jump H, > 0, and b, , by, ¢, ,

about memristances.

The initial values for system (1) are x,(s) = ¥,(s) € C([to — v,%],Q), p = 1,2,...n. Moreover,
x(1) = (x1(D), ..., x,(0)), let x(r) € C([to — v, 1p],Q").

Let by = 501 + b7 ), by = 31T = b1 ), &pg = 3(chT + 1), Epg = 3(cIT = ), system (2.1) can
be rewritten as

c;q € Q, p,g = 1,2,...,n, are known constants

(1) = =apxy (D) + Y (B + Abpy (6, (D)) f (x4 (1)
g=1
+ D@+ Acp ()8 (1 =) + I, (1), (2.3)
q=1
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where

Ep(p ”xp(t)”l < Hp»

~ 2.4
e o0 > Hy Y

Acpq(xp(t)) = {

Abyg(xp(1)) = [ZP‘I’ llx,(OIly < Hp,
~bpg> I, (Olls > H,,

Next, recall that the use of differential inclusion theory, system (2.3) is equivalent to the following
differential inclusion:

ip(t) € =apxy(t)+ ) (bpg + ol =bpg, byg]) fy(x, (1)

g=1

> (g + cOl=Epglpg)2g (Xt = v)) + 1,(0). (2.5)

g=1

According to the measurable selection theory, there exist two measurable functions r,,(f) = nll,q(t) .

(bIT = BT ) € col=bypg, bpg] and wy(1) = wh () - (3T = ¢I ) € co[—E)y, Epg] such that

(1) = =%y (1) + D (B + Tpg (D) Fy(g(D) + D (g + Wpg(1)24 (et = 1) + (1), (2.6)
g=1 q=1

I I 11
where ﬂpq(t), wpq(t) € co[—-3, 3]

For master system (2.1), we design the slave system as follows:

Yp(t) = =apy,(t) + Z bpg(yp(0)fq(g()) + Z CpgVp(D)8q(g(t = v)) + 1(2) + u, (1), (2.7)

g=1 g=1

where y,(f) € Q denotes the state of the pth neuron and u,(f) denotes the controller to be designed.
The initial values for system (7) are y,(s) = ¢,(s) € C([to — v,%],Q), p = 1,2,..n. Moreover,
X(t) = (X] (t)9 ceey Xn(t)), let X(t) € C([tO - U, t()]’ Qn)

Analogously, system (2.7) can be can be rewritten as

W) = —apy,(n)+ Z(l;pq + Abpa(yp (D)) f5(yg(1))
g=1

+ > (@pg + Acp0p (OOt = 1)) + 1,(0) + uy (1), (2.8)
g=1
where
| By Iyl < H,, _ { Epgs @l < Hy,
Ab”q(y”(”)‘{ e ol > Hye T G 0l > Hy 2

Analogously, system (2.8) can be converted as the following differential inclusion:
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$p(0) € =apyp(®) + Y (b + col=bpg, bpg) fy(3g(1)

g=1

(@ + COl=Epgs Epg)gg gt = 1)) + I(0) + 10, (0). (2.10)

q=1

Next, by applying the similar method, there exist two measurable functions y,,(f) = y[qu(t) . (b;qT -

b? ) € col=byy, bpgl and 8,4(1) = 6, (1) - (I — ¢! ) € co[~E g, E)y] such that

50 = =)+ Y B+ YogODF040) + ) Cpg + 8120t = 1)
q=1 g=1
+1,(1) + up(2), (2.11)
1 1

where y},(1), 6}, (1) € co[-3, 5].

Letting 0 ,(1) = y,(t) — ax,(t) as projective synchronization error signal, then error systems between
(2.1) and (2.7) can be expressed as:

o) = =apoy (D) + > By + VogOFy 0 ) = Fil@xg@)) + > (Bpg + VpgO) fylexy (1)
q=1 gq=1
= > @by + VpgONF @ (1) + D @yt = Tg(D) f (g () + 10,(1)
q=1 q=1

+(l - a’)lp(t) + Z(qu + 6pq(t))(gq(yq(t - U)) - gq(a'qxq(t - U)))
g=1

n

+ Z(qu + 6pq(t))gq(a/qxq(t - U)) - Z a’(apq + 5pq(t))gq(xq(t - U))
g=1

q=1
3 @B (1) = w18, (xy (1 = V). (2.12)
g=1
Before going further, we introduce the following hypotheses, lemmas and definitions.

Hypothesis 1. For any p = 1,2, ...,n, the activation function f,(-) and g,(-) satisfy the Lipschitz
condition. Additionally, for Yv;, v, € Q, there exist positive constants /, and m, such that

1f,(v1) = oWl < Llvi = valli,  llgp(vi) = gp(W)lli < myllvi = valls.
Hypothesis 2. For any p = 1,2, ..., n, the activation function f,(-) and g,(-) satisfy:

WOl < Ly, llgpOlh < M,

where L,, M, € R are positive constants.
Lemma 1 [35]. Let any x(¢) = (x((?), ..., X,(1)), ¥() = (y1(?), ..., yu(t)) € Q", p > 0, then

D) x"(1)sgn(y(1)) + sgn(y())"x(®) < 2llx(@)|h;
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ii) D™ (x* () sgn(x(1)) + sgn(x(1))" x(t)) = X" (t)sgn(x(1)) + sgn(x(t))" (1),
llx(@®ll1 # 0;
iii) [[x(@)y®lly < [x@ILyOll;-
Lemma 2 [24]. Assume that function Z(¢) is nonnegative when ¢ € (t — ¢, o0) and satisfies the

following inequality:
D™Z(t) < —aZ(t) + Bz(t), >k

where a, 8 are positive constants @ > 8 and z(¢) = sup Z(s). Then,

t—c<s<t
Z(1) < z(D)e” ),
holds, in which, r is the positive solution of the equation
a—Pe’ =0.

Lemma 3 [36]. Assume that functions f(¢) and g(¢) are continuous on [#, %;], f(t) >0, >0,8>0
are constants. If

s <a+ f (F(De(2) + Bz,

then |
g < (a -f-lgT)eﬁl fudz

wheret € [t1,], T =1, — 1.
Definition 1. Systems (2.1) and (2.7) are considered to achieve globally exponential projective
synchronization, if there exist a projective coefficient @« € Q and two constants 8, M > 0 such that

limlly(® = axlly < M sup [lp(s) = ap(s)lle ™.

s€[—uv,tp]
Definition 2 [34]. Systems (2.1) and (2.7) are considered to achieve globally projective synchro-
nization, if there exists a projective coeflicient @ € Q such that lim|[y(¢) — ax(?)||; = O.
>0

Definition 3. A sign function for quaternion ¢ = ¢ + i + ¢’j + ¢k € Q can be defined as
sgn(q) = sgn(q”) + sgn(q™)i + sgn(g"j + sgn(g™k.
3. Main results

In this chapter, via quaternion analysis technique and appropriate Lyapunov functional, the criteria
that ensure exponential projective synchronization and adaptive exponential projective synchronization
are obtained.

3.1. Exponential projective synchronization analysis

To achieve the exponential projective synchronization, the following controller is designed:

ap(7)
"o, @ly

wy(t) = —d, o () — h — (I,(1) — (1)), 3.1)
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where d,,h, >0,and p = 1,2,3, ..., n.
Theorem 3.1 If Hypotheses 1-2 hold, there exist positive constants d,,, h, such that the following
conditions are satisfied:

2a, +dy) = > (bl + bl + b7 = b, II, > 0,
g=1
(1+ llally) D Ubhr + byl + b5y = bh DLy + 2Nl D Ibhr = bl Il Ly
q=1 q=1

+(1 + [lally) Z(Ilc§§ + c,fqlll + IIc,T,qT - c,fqlh)Mq + 2l Z IIC,Z,T - c,fqlllmq —2h, <0,
g=1 g=1
&E-n>0, (3.2)

where p = 1,2, ...n, and

£ = min(2(a, +dy) = 3 (6} + bl +11bj; = B0,
g=1

n

T T TT T

n - mgjf;{z(ncfm + qulll + ||qu - qu”])mp}-
<psn

Then, systems (2.1) and (2.7) can achieve the global exponential projective synchronization under
the controller (3.1).

Proof. Consider a Lyapunov functional as follows:
V() = ) o (Osgn(oy,(0) + D sgney (1) oy, (3.3)
p=1 p=1
Then, calculate the derivative of V(¢) with respect to ¢ along the solutions of system (2.12), one has:

V(?)

D T Dsgn(oy,(0) + D sgniey (1) 6p(t)

p=1 p=1

= = > @y + dy)(sgn(o (1)) T (1) + Tp(1)sgn(c (1))
p=1

£ D NFGg0) = £ @xyD)By + ¥ (D)sgn(ory(1)

p=1 g=1

+5gn( (1) By + ¥ ON (D) = e (1))
£ 3 S U@ O) B}y + ¥ (158 (D) + 5gn(T (1) (Bpg + ¥pgD) iz, ()

p=1 g=1

= 3 S UL O) By + V(D) s, (D) + 5g1(T (1)) By + 7DD (g (D)

r=1 ¢=1
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g xg) (v, (1) = 7, (D), sgn(o (1))

+581(0 p (1)) (Y pg (1) = 7pg(1) fo (X4 (D)}

+ (80t = V) = gL(@x,(t = V)(Ehy + 8o ) 5gn(0 (1))

+Sgn(0-p(t))*(5pq + 6pq(t))(gq(yq(t - U)) - gq(a/qxq(t - U)))}
+ Z D 158(0 (D) @pg + g (124Xt = V) + iagXg(t = V)(Ep, + 6y, (D) sgn(T (D))

p=1 g=1
n

- {gj](xq(t - U))(E;q + 5;q(t))a;7sgn(0-p(t)) + Sgn(o-p(t))*a(épq + 5pq(t))g(xq(t - U))}
p=1 g=1
> {58n(a (1) B 1) = Wpg(1)gx(t = 1)
p=1 g=1
187 (gt = V)G, (1) = Wi (), 5gn(0 (1))
o, (D)
llop (Il

Ho 00 * 4
_;(h”msg”(%(’)” sgn(ap(t)"hy )- (3.4)

From Lemma 1, Hypothesis 1-2, the following inequalities can be obtained:

3040 - £ @xO))B, + ¥pg(D)sgn( (1)

p=1 g=1

#7580 (1) Bpg + ¥pg(0) X (10 (0) = i@, (1))

P
< Z Z; 211(Bpg + VO Sy (D) = flaxgOD:
pi=
< Z Z; 1b5g + by + 27, (DB = by lllog @l
=
< Zl Zn;(nb,{; + bplli + 1l = by DIl Ol
=
2 Zn;(g:;(yqa = V) = g(@x,(t = V)T, + 6, (D)sgn(c (1))
=

£ gm0y (0 (g + 0pg(D)(Zg0g(t = 1) = gylax,(t = 1))

p=1 ¢=1

IA

DD 2@ + g (D)@g((t = ) = gyt = )l

r=1 ¢=1
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n n
TT T 1 T T
D llehy + chy + 273, (0chy = cpllimgllog(t = v)ll

<
p=l g=1
n n
TT T TT T
< 2> liepd + chlli+lichy = ch lmgliorg(t = vl
p=1 g=1

DTN £ @x 0B}, + ¥y D)sgnie, (1)

p=1 g=1
£ 2 D580 (g +7pg(0) fy@xg(D)
p=1 g=1
< 0D 2B + V) fylax @)y
p=1 g=1
< >0 > Ubgy + Bl + 11 = by liLy,
p=1 g=1

DD~ Fr G O)By + ¥ () sy (1)) = 5gn(a (1) @By + ¥pg (D) f(xg(1)

< Zn; ZH; 20lelil1Bpg + ¥ paON1Lf (Xg()I
< Zn;zn;llalh(llbﬁ + b,T,qlll + IIb,T,qT - b,fqlh)Lq,
zn; Z; SO (0) = 7, (D), 581(0 (D) + 58(0H(D) A1) = T (1) X fixy (1)
< Zn; Zn; 201y pg(®) = 7pg Ol fo (g (D1
. iiznaunwg—b;qn%

DD s8n(0 (1) g + Spg(DE(@gxyt = 1)) + D" " @h@gXy(t = V))&, + 63, (1)) X sgn(ap(1))

p=1 g=1 p=1 g=1
n n
< 0D 2@y + Spg)gg(@gxy(t = )
p=1 g=1
n n
TT T TT T
< > > liehd + chll +lichy = cp )M,
p=l g=1

DD =iyt = D@ + 6 ()81 (D) = D sgn(0p(0)) @@y + 6pg(1)) X gLkt = 1)

p=l g=1 p=1 g=1
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DD 2lellilicsg + 8p @Izt = )

<
p=1 g=1
< > > lladiichy +cpyll + lichy = chllM,,
p=1 g=1
DT (1)) (B (1) = wpg(D)glx,(t = )
p=1 g=1
£ gt = U)B), (1) = W (), X sgn(e (1)
p=1 g=1
< DD 2MaliliSng () = whglhllgCey(t = vy
p=1 g=1
< > > 2elilichy = b M, (3.5)
p=1 g=1

Combine with inequalities (Eq 3.4) and (Eq 3.5), one can get

V@) < <2ap+dp) ) oyl + Y, D (I + I + 1677 = B0l
p=1

p=1 g=1

n n
TT T TT T
#  2(lleht + chll+ ek = el gl e = il

p=1l ¢=1

# A+ llall) Y AbLT + Bl + 1By = b lDLg
p=1 q=1
#2lledly Y165 = b lliLy + (1 + llall) D ek + chylly +lichy = cp )M,
g=1 q=1
#2llally Y eld = el 1M, - 2h,)
gq=1

n

D=2, +dy) + Y (LT + bl Il + k% = B IIDL el

<
p=1 g=1
#°3ely + ch i+ liehy = el llomyllory (e = v)ll
p=1 g=1
< —min(2ay+dy) - Dby + bl + 6L = b, IDLH D @l
- q=1 p=1
TT T TT T
+lrg%{;(ncq,, + eIl + 11etT = el llm,) ; llomp(t = V)lly
_ ¢ n
= —EV(O'(Z‘)) + EV(O'(I —-v)). 3.6)
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Thus, from Lemma 2, we have
V(t) < sup V(s)e™,

—vu<s<0

where g - ge"“ =0.

Now, based on Definition 1, a conclusion that systems (2.1) and (2.7) can reach the global exponen-
tial synchronization via the given controller (3.1) can be safely obtained. This completes the proof.

Corollary 3.1 If Hypotheses 1-2 hold, there exist positive constants d,, h,, k, such that the follow-
ing conditions are satisfied:

2a, +d,) - an(nbgj +b] Iy +11b]) — by, — 2k, > 0,
g=1
(1+Wmojim%3+b;m+Hd§—bgmﬂ@+MMh§]wZ—b;qu
g=1 q=1
+(1+ IIalll)an(llc,qu +cp i +licyy —ch llnM,
g=1
+2llall; Z liche = cplliMy =2k, <0,
g=1
Zn:(ucgpf +cpll + ey — el llom, — 2k, <0, (3.7)
g=1

where p = 1,2, ...,n.

Then, systems (2.1) and (2.7) can realize global projective synchronization under the controller
(3.1).

Proof. Consider the following Lyapunov function:

V(i) = Z 0';(t)sgn(0'p(t)) + Z sgn(o () o, (1) + k, Z f O';(S)Sgl’l(O'p(S))
p=1 p=1 p=1 Y1V
+ Z sgn(o,(s)) o ,(s)dz. (3.8)
p=1
Calculate the derivative of V(¢), one has:

V(1)

D a5 nsgn(o,(0) + Y sgn(ay(0)'ap(0) + 2 Y kllo,dll =2 D kylloy(t = vl
p=1 p=1 p=1 p=1

< Y (=2ay +dy)+ Y (IbGy + bl + 1By = Bl + 2k, Hie ()l
p=1 g=1
+ O e + el + liehy = ehlim, = 2k Nyt = )l
p=1 g=1
< 0.
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Thus, based on Definition 2, systems (2.1) and (2.7) are globally synchronized. This completes the
proof.

Furthermore, it is worth mentioning that when the projective coefficient in controller satisfy @ = 1
and @ = —1, from Corollary 3.1, systems (2.1) and (2.7) can achieve global synchronization and anti-
synchronization in complete synchronization sense, respectively.

3.2. Adaptive exponential projective synchronization analysis

To achieve the adaptive exponential projective synchronization, the following adaptive control
scheme is proposed:
up(t) = up (1) + up(t),
up1(t) = —kp(N0 (1),
pa1) = =y i = (I(0) = @l (),
kp(1) = Dyllo (Dl

where D, > 0,4, >0and p=1,2,3,...,n.
Theorem 3.2 If Hypotheses 1-2 hold, there exist positive constants D, 4, and k, such that the
following conditions are satisfied:

(3.9)

1 n
(ap + Dy —kp) = 5 > (Ib + Bl + 163 = b 101, > 0.
g=1
1 n
~Ap + 5+ ledi) Z(llbqu + byl + by = byl
q=1
1 - n
51+ llall) Z(llcg +cl i+ lleps = cp llDMy + lledly Z 177~ T IIiL,
q=1 q=1

n
TT T
Hlalh Y llchy = cf M,
q=1
<0,

1 n
—k, + 3 Z(nc;{ +cpll+ ey — el llnm, <0, (3.10)
gq=1

where p = 1,2, ...,n.

Then, systems (2.1) and (2.7) can achieve global exponential projective synchronization under the
adaptive controller (3.9).

Proof. Consider a Lyapunov functional as follows:

n

1 < 1 Il 1
Vo = 5 ; o Dsgn(@ (1) + 5 Y sgn(ey 1) o,(0) + 5 ; b, k(0 - D,

p=1

+% ; kp j:_v o ,(5)sgn(op(s)) + sgn(o () o ,(s)dz,
(3.11)
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where
1 n
Dy > ~ay+ky+> DGy + Bl + 1B = b, lI)L,.
g=1

Then, calculate the derivative of V(#) with respect to ¢ along the solutions of system (2.12), we can
get that

, 1Y BN o 1
V@) = 5 D 0 0sgn(o, )+ 5 Y sgn(o, () ap(n) + Y (e = Dyiy(0)
p=1 p=1 p=1 P

+ > Kol @l = Zl pllory (2 = V)l
p:

p=1
n

1 .
= —5 ) ap(sgn(o (1) o (1) + o, () sgn(o (1))

p=1
1 - - % % T % %
+3 ; ;{(fq V(D) = F1@x ())(B, + 5y (D) sgn(T (1))
+581(T (D)) (Bpg + Vg ), (vg() = fylax ()}
] & < -
+3 U (@x 0)B, + 75, (0)sgn(a (D))

+58n(T (1)) (Bpg + ¥ pg(D) fy(@xy(1)))

1 n n B B
=3 2 2 GOV Bhg + ¥y ()t 580 (0) + 5gn(0 (1) @by + YD f (1))

+2 D SO0~ s 0)
+58n(07p (1)) (Y pg (1) = 7pg (D) fo(x4(1))}

+% p; ,,; (g2 0gt = V) = g(@x,(t — V)@, + 65, (D) sgn(c (1))
+58n(0p(1))"(Cpg + 6pg(D)(8g(Vq(t = V) = gg(gXe(t — 1))}

+% p: q: {581(0 (1)) (Epy + 8,y (£))g (@ x,(t — U))
+81(@g X (1 = V)T, + 85, (1) sgn(o (D)}

_ % " (g (xyt = V&S, + 6% () s8n( (1)

o +5gn(0 (1)) Ay + 6,0 (D)g(x,(t — V)
+% ,; ; {5gn(T (1)) (S g (1) — W pg(1)g(x,(t — 1))

87 (gt = V(G (D) — Wi (D) sgn(0 (1))
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n

= > = > Dyl @l + Y kpllory @l = ) Kplloy(t = vl
p=1 p=1 p=1

p=1

Combined with the above inequality (Eq 3.5), one has:

. n 1 n n
V@) < ~ap+Dy=ky) 3l @l + 5 3 > b+ bl + 116} = b Il llory o)l
p=1

p=1 g=1

1 X - T T TT T
43 2 D liegy + el +llegy = cgyllm, = 2k oy = o)l

p=1 g=1

(3.12)

1 n n n
43 DA+ llall) Db+ byl + 116y = b lILy + 2lally ) 1677 = by,
p=1 g=1 q=1

n
TT T TT T
+(1+llell) D (leh + chlly + lichy = ch oM,
g=1

n
TT T
#2llelly Y llchy = cp My, - 24,)
g=1

n

1 n
D@y + Dy = k) + 5 3 (bl + Bl + 1B = b 1)o@l
g=1

p=1

IA

IA

£ > Nl 0l
p=1

where & = min{(a, + Dy = k) = 3 Sy (Ibf + byl + 1B = B, l1)i,) > 0. Obviously.

VO +&X0 llop@ll < 0.
Hence,

3l (0l < V0~ ¢ f S (oMb
p=1 0 p=1

From Lemma 3, we have

>l @l < V)™,
p=1

According to Lyapunov function (3.12), one can obtain
n n 1
VO) = ) llepOll + ) 7,690 =D,
p=1 p=1
1 v [
+§kp Z I O';(S)Sgl’l(O'p(S)) + sgn(op(s)) o ,(s)dz,
p=1 "V

where k,(0) is the initial value of «,(z).

(3.13)

(3.14)

(3.15)

(3.16)
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Then,
0

1 n
5 Z k,,f O';(S)Sgl’l(O'p(S)) + sgn(op(s)) o ,(s)dz
p=1

< > kv sup {llop(s)lh ). (3.17)
p=1

—u<s<0

Furthermore, we can find a positive constant M such that

n

=1
2, 76O =Dy < M sup (Y o, O} (3.18)
p=1 P

—u<s<0 =1

From inequalities (Eq 3.15)—(Eq 3.18), we can obtain

n

2Nl Olli < M+ H+ e sup () loy(lh,
le —Uu<s< p:1

where H = max{k,v}.

P
Equivalently,

lo@lly < VM + H + 1™ sup {llo(s)ll1}

—u<s<0

can be easily obtained.

Therefore, the conclusion that systems (2.1) and (2.7) can reach the global exponential synchro-
nization under the given adaptive control scheme (3.9) can be safely obtained. This completes the
proof.

Corollary 3.2 If Hypotheses 1-2 hold, there exist positive constants D, 4, and k, such that the
following conditions are satisfied:

@y + Dy~ k) - %imbgj B I+ BT = B i, > 0,
=
S0+l i(llb,f,f T
<
b4 ||a||1>i<||c§5 v+ T - oM,
2

Flely S 1L~ B, L+l el — €T, 1M, — 4, <,

g=1 q=1
. ST + el + 1T = e lm, <O

g=1

where p = 1,2, ...,n.

Electronic Research Archive Volume 31, Issue 9, 5609-5631.



5624

Then, systems (2.1) and (2.7) can realize global projective synchronization under the adaptive con-
troller (3.9).
Proof. Consider a Lyapunov function as:

n n n 1
V@) = ) oy nsen(o,(0) + ) sgn(@p ) op(0)+ Y o= (1) = Dy)?
p=1 7P

p=1 p=1

+ Z kpf 0, (5)sgn(o,(s)) + sgn(o,(s)) o p(s)dz,
=1 t-v

(3.19)
where
2D, > —2a,+2k,+ ) (b} + byl + b)) = BLIDL,. (3.20)
g=1
Calculate the derivative of V(¢), we have
v - * - % . : 2 .
V) = Y opDsgn(, ) + ) sgn(ep ()00 + Y T=(0(1) = Dy)iy (1)
p=1 p=1 p=1 p
23 kplloy Ol =2 > ko llory (e = )l
p=1 p=1
< =2ap+ Dy =kp) Dl @l + > > Wbk + bhll + 167 = b IDLyllory 0
p=1 p=1 g=1
+ DIl + e+ liehy = €hlM, = 2k iyt = vl
p=1 g=1
# A+ llall) Y b+ byl + b5y = b IDLg + lledl > 165 = byl Ly
p=1 g=1 g=1
+(1+llell) D (licpd + chlli +lichy = cp )M,
gq=1
Hialli D lichy = chlliMy = 2,)
q=1
< 0, (3.21)

hold.

Then, based on Definition 2, we can conclude that systems (2.1) and (2.7) can reach the global
synchronization under the given adaptive scheme (3.9). This completes the proof.

Remark 1. It is worth mentioning that complete synchronization is a special case of projective
synchronization, so projective synchronization criteria proposed by this paper can be applied to the
problem of synchronization for other QVNNSs in complete synchronization sense [37]. In addition,
since QVNNSs is considered as a generalization of real value NNs (RVNNs) and complex value NNs
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(CVNNS), so the conclusions mentioned above can also be applied to RVNNs and CVNNSs [24, 38].
These manifests that the theoretical results presented in our paper are more general.

Remark 2. Different from the technique taken in [20, 37,39], the QVNNSs are transformed into
equivalent four RVNNSs or two CVNNSs. In our work, the QVNNS’ was treated as an entirety without any
decomposition directly, the advantage is that it can be applied to the situation that activation functions
cannot be decomposed into real-imaginary parts. To some extent, it decreases conservativeness.

4. Numerical examples

Example 1. Consider the system (2.1) as master system, then the slave system with controller is
designed as:

yp(t) = _apyp(t) + Z bpq(yp(t))fq(yq(t)) + Z Cpq(yp(t))gq(yq(t - U)) - dpo-p(t)
q=1 q=1

(1)

e, 0l

+al,(t) p=1,2, “4.1)

where a, = 2, time delays v = 0.50. Choose the activation functions f,(x,(t)) = tanh(x,(1)),
gp(xp(1)) = tanh(x,(1)), the external inputs /,(¢) = 0.10 + 0.25i — 0.10j + 0.30Kk, />(z) = 0.80 + 0.10i —
0.20j + 0.20k, the memristive connection weights as

piGeyey = | 040+ 0401 +0.205+ 030k, [lxi(®lly > 1.5,
=0 20.30 — 0.40i — 0.20§ — 020k, [lx (Dl < 1.5,
by = { 04302510155+ 018k, (0l > 15,
RWWI=N 0,55 +0.12i - 0255 + 0.11k, |l < 1.5,
b (ot = | 0300300 + 025§+ 030k, ezl > 1.5,
AEET000.20 - 0.40i — 0.25§ - 040k, |lx®0)]; < 1.5,
sty = | 0-30— 0300 +0.30§+ 040k, ezl > 1.5,
228029030 - 0.50i +0.15j + 0.18k,  |lxa(0)ll; < 1.5,
Gy = | 0357012 +0.22) + 0.10k, v (0l > 1.5,
) =900.30 - 0308 + 0.20§ + 0.10k, [ ()l < 1.5,
Gy = | 0420121012 = 0.13k, [lx (0l > 1.5,
) =030 +0.12i - 021§ — 033k, @)L < 1.5,
(o = { 010+ 011i=0131 - 0.12k, (0l > 1.5,
A=Y _0.30 - 0.20i - 0.20j - 020k, @)l < 1.5,
(o) = { 0-30+0301=020 030k, [0l > 1.5,
22U =020+ 0.30i - 030§ — 0.20k,  [x®l < 1.5.

Obviously, ; =2, m; =2, L; =2, M; =2,i=1,2.

Let projective coefficient @ = 0.50 + 0.50i + 0.50j — 0.50k, h; = h, = 5, d, = d, = 8, then the
conditions in Theorem 3.1 is satisfied. Therefore, under the controller (3.1), master system (2.1) and
slave system (4.1) can achieve the global exponential projective synchronization. Under the initial
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conditions x;(0) = —0.50 — 0.50i + 0.50j — 0.50k, x,(0) = 0.60 — 0.70i — 0.70j — 0.50Kk, y,(0) =
0.50 + 0.50i — 0.80j + 0.50k, y,(0) = —0.60 — 0.10i + 0.30j + 0.30Kk, the trajectories of error are shown
in Figure 1, which verify the validity of conclusion proposed in Theorem 3.1.
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0.1 I I I I I I I
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t

Figure 1. The trajectories of error O'g)(t), O';,i)(l‘), O'g)(t), O'Ef)(t) in Example 1.

Remark 3. As writer knows, the decomposition method can not handle the situation that activation
functions cannot be decomposed. Hence, when tanh(x,(t)), which is not easily decomposed, is chose
as activation functions, [31] cannot be dealt. However, here, we can easily deal this situation, which
proves our method is less conservative.

Example 2. Consider the system (2.1) as master system, then the slave system with adaptive con-
troller is designed as

IO = =apypO)+ ) by 040) + D CppD)8gt = )
q=1 q=1
0

Pl 0l

+al,(t) p=1,2. 4.2)
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where a, = 2, time delays v = 1, the external inputs /,(1) = —0.70 + 0.30i + 0.50j + 0.25k, L(?) =
—0.40 + 0.201 + 0.30j + 0.60k, the memristive connection weights as same as value in Example 1,
choose the activation functions as

1 1 ) 1 ) 1
filx(0) = oot i+ S+ =
L+en @ 1T+en @ [+ 0 1400
fala) = ——— iy
x(1) = —j :
o 1420 1450 14 e’éﬂ(’)'] 1+e%®
1 1 ) 1 ) 1
1(x1(1) = + —j + —j +
R B B 7 ST
1 1 ] 1 ] 1
82(x2(1)) = 5 o

+ —i+ —j+
1+e2® 1420 14707 420
IICDCC, li = 2, m; = 2, Li = 2, Mi = 2, i= 1,2
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Figure 2. The trajectories of error O'g)(t), O'E,i)(t), O';,j)(l‘), O'Ef)(t) in Example 2.

Then, for projective coefficient @ = 0.50, choose parameters 4; = A, =25, D, =17, D, = 8, k; =
k, = 5, which satisfy the condition of Theorem 3.2. Therefore, under the adaptive scheme (3.1), master
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system (2.1) and slave system (4.2) can achieve adaptive exponential projective synchronization. Under
the initial conditions x;(0) = —1.10 — 1.30i — 1.50j — 1.10k, x,(0) = 0.30 — 0.10i — 0.30j — 0.50k,
v1(0) = 0.15 + 0.151 — 0.18j + 0.15k, y,(0) = —1.20 — 1.10i + 1.30j + 1.30k, «,(0) = k»(0) = 0.15, the
trajectories of error are depicted in Figure 2, which verify the validity of theoretical analysis proposed
in Theorem 3.2.

5. Conclusions

In this work, the issues of exponential projective synchronization and adaptive exponential pro-
jective synchronization were addressed for QVMNNSs with time delays. The results proposed in this
paper are general and cover other dynamic behaviors such as complete synchronization, complete
anti-synchronization and so on. On the basis of converting QVMNNSs into a system with parametric
uncertainty, by utilizing the sign function related to quaternion, we designed different control schemes
and proposed the corresponding criteria to guarantee the exponential projection synchronization and
adaptive exponential projection synchronization of the discussed model, respectively. In addition, we
have given two numerical examples and corresponding simulations to verify the reliability and validity
of the theoretical analysis.

Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant
61703354; the Sichuan National Applied Mathematics construction project 2022ZX004; the CUIT
KYTD202243; the Scientific Research Foundation of Chengdu University of Information Technology
KYTZ202184; the Scientific Research Fund of Hunan Provincial Science and Technology Department
2022])J30416; the Scientific Research Funds of Hunan Provincial Education Department 22A0483.

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. L. Chua, Memristor-the missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507-519.
https://doi.org/10.1109/TCT.1971.1083337

2. D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing memristor found, Nature,
453 (2008), 80-83. https://doi.org/10.1038/nature06932

3. J.. M. Tour, T. He, The fourth element, Nature, 453 (2008), 42-43.
https://doi.org/10.1038/453042a

Electronic Research Archive Volume 31, Issue 9, 5609-5631.


http://dx.doi.org/https://doi.org/10.1109/TCT.1971.1083337
http://dx.doi.org/https://doi.org/10.1038/nature06932
http://dx.doi.org/https://doi.org/10.1038/453042a

5629

10.

11.

12.

13.

14.

15.

16.

17.

X. Qin, C. Wang, L. Li, H. Peng, Y. Yang, L. Ye, Finite-time projective synchronization of
memristor-based neural networks with leakage and time-varying delays, Physica A, 531 (2019),
121788. https://doi.org/10.1016/j.physa.2019.121788

Y. Shi, J. Cao, G. Chen, Exponential stability of complex-valued memristor-based neu-
ral networks with time-varying delays, Appl. Math. Comput., 313 (2017), 222-234.
https://doi.org/10.1016/j.amc.2017.05.078

W. R. Hamilton, Lectures on Quaternions, 1853.

S. Pei, C. Cheng, A novel block truncation coding of color images using a
quaternion-moment-preserving principle, IEEE Trans. Commun., 45 (1997), 583-595.
https://doi.org/10.1109/26.592558

T. Isokawa, T. Kusakabe, N. Matsui, F. Peper, Quaternion neural network and its application, in
KES 2003: Knowledge-Based Intelligent Information and Engineering Systems, (2003), 318-324.
https://doi.org/10.1007/978-3-540-45226-3_44

S. Gupta, Linear quaternion equations with application to spacecraft attitude propagation,
in 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339), (1998), 69-76.
https://doi.org/10.1109/AERO.1998.686806

N. Matsui, T. Isokawa, H. Kusamichi, F. Peper, H. Nishimura, Quaternion neural net-
work with geometrical operators, J. Intell. Fuzzy Syst., 15(2004), 149-164. Available from:
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs00236.

Y. Cheng, Y. Shi, The exponential synchronization and asymptotic synchronization of quaternion-
valued memristor-based Cohen-Grossberg neural networks with time-varying delays, Neural Pro-
cess. Lett., 2023 (2023). https://doi.org/10.1007/s11063-023-11152-0

Z. Tu, Y. Zhao, N. Ding, Y. Feng, W. Zhang, Stability analysis of quaternion-valued neural net-
works with both discrete and distributed delays, Appl. Math. Comput., 343 (2019), 342-353.
https://doi.org/10.1016/j.amc.2018.09.049

R. Wei, J. Cao, Global exponential synchronization of quaternion-valued memristive
neural networks with time delays, Nonlinear Anal.-Model. Control, 25 (2020), 36-56.
https://doi.org/10.15388/namc.2020.25.15724

Y. Liu, D. Zhang, J. Lu, J. Cao, Global pu-stability criteria for quaternion-valued
neural networks with unbounded time-varying delays, Inf. Sci., 360 (2016), 273-288.
https://doi.org/10.1016/j.ins.2016.04.033

Y. Tan, X. Wang, J. Yang, J. Hu, Robust exponential stability for discretetime quaternion-valued
neural networks with time delays and parameter uncertainties, Neural Process. Lett., 51 (2020),
2317-2335. https://doi.org/10.1007/s11063-020-10196-w

X. Xu, Q. Xu, J. Yang, H. Xue, Y. Xu, Further research on exponential stability for
quaternion-valued neural networks with mixed delays, Neurocomputing, 400 (2020), 186-205.
https://doi.org/10.1016/j.neucom.2020.03.004

Y. Li, J. Xiang, B. Li, Almost periodic solutions of quaternion-valued neutral type high-order
hopfield neural networks with state-dependent delays and leakage delays, Appl. Intell., 50 (2020),
2067-2078. https://doi.org/10.1007/s10489-020-01634-2

Electronic Research Archive Volume 31, Issue 9, 5609-5631.


http://dx.doi.org/https://doi.org/10.1016/j.physa.2019.121788
http://dx.doi.org/https://doi.org/10.1016/j.amc.2017.05.078
http://dx.doi.org/https://doi.org/10.1109/26.592558
http://dx.doi.org/https://doi.org/10.1007/978-3-540-45226-3_44
http://dx.doi.org/https://doi.org/10.1109/AERO.1998.686806
http://dx.doi.org/https://doi.org/10.1007/s11063-023-11152-0
http://dx.doi.org/https://doi.org/10.1016/j.amc.2018.09.049
http://dx.doi.org/https://doi.org/10.15388/namc.2020.25.15724
http://dx.doi.org/https://doi.org/10.1016/j.ins.2016.04.033
http://dx.doi.org/https://doi.org/10.1007/s11063-020-10196-w
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.03.004
http://dx.doi.org/https://doi.org/10.1007/s10489-020-01634-2

5630

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Y. Li, X. Meng, Almost periodic solutions for quaternion-valued shunting inhibitory cellular neural
networks of neutral type with time delays in the leakage term, Int. J. Syst. Sci., 49 (2018), 2490-
2505. https://doi.org/10.1080/00207721.2018.1505006

Q. Song, L. Long, Z. Zhao, Y. Liu, F. E. Alsaadi, Stability criteria of quaternion-
valued neutral-type delayed neural networks, Neurocomputing, 412 (2020), 287-294.
https://doi.org/10.1016/j.neucom.2020.06.086

Y. Cheng, Y. Shi, Exponential synchronization of quaternion-valued memristor-based neural net-
works with time-varying delays, Int. J. Adapt. Control Signal Process., 37 (2023), 1762—-1781.
https://doi.org/10.1002/acs.3597

Y. Shi, X. Chen, P. Zhu, Dissipativity for a class of quaternion-valued memristor-based
neutral-type neural networks with time-varying delays, Math. Methods Appl. Sci., 2023 (2023).
https://doi.org/10.1002/mma.9551

W. Xu, S. Zhu, X. Fang, W. Wang, Adaptive anti-synchronization of memristorbased
complex-valued neural networks with time delays, Physica A, 535 (2019), 122427.
https://doi.org/10.1016/j.physa.2019.122427

Z. Wu, Z. Wang, T. Zhou, S. Tan, Global synchronization and antisynchronization of fractional-
order complex-valued gene regulatory networks with time-varying delays, IEEE Access, 8 (2020),
150555-150572. https://doi.org/10.1109/ACCESS.2020.3016706

D. Xie, Y. Jiang, M. Han, Global exponential synchronization of complex-valued neural net-
works with time delays via matrix measure method, Neural Process. Lett., 49 (2019), 187-201.
https://doi.org/10.1007/s11063-018-9805-9

Y. Shi, J.  Cao, Finite-time  synchronization of memristive Cohen-Grossberg
neural networks with time delays,  Neurocomputing, 377 (2020, 159-167.
https://doi.org/10.1016/j.neucom.2019.10.036

L. Feng, C. Hu, J. Yu, H. Jiang, S. Wen, Fixed-time synchronization of coupled mem-
ristive complex-valued neural networks, Chaos, Solitons Fractals, 148 (2021), 110993.
https://doi.org/10.1016/j.chaos.2021.110993

J. Wang, Y. Tian, L. Hua, K. Shi, S. Zhong, S. Wen, New results on finite-time synchronization
control of chaotic memristor-based inertial neural networks with time-varying delays, Mathemat-
ics, 11 (2023), 684. https://doi.org/10.3390/math 11030684

D. Chen, W. Zhang, J. Cao, C. Huang, Fixed time synchronization of delayed
quaternion-valued memristor-based neural networks, Adv. Differ. Equations, 2020 (2020), 92.
https://doi.org/10.1186/s13662-020-02560-w

J. Meng, X. Wang, Generalized projective synchronization of a class of delayed neural networks,
Mod. Phys. Lett. B, 22 (2008), 181-190. https://doi.org/10.1142/S0217984908014596

S. Yang, C. Hu, J. Yu, H. Jiang, Projective synchronization in finitetime for fully quaternion-
valued memristive networks with fractional-order, Chaos, Solitons Fractals, 147 (2021), 110911.
https://doi.org/10.1016/j.chaos.2021.110911

Electronic Research Archive Volume 31, Issue 9, 5609-5631.


http://dx.doi.org/https://doi.org/10.1080/00207721.2018.1505006
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.06.086
http://dx.doi.org/https://doi.org/10.1002/acs.3597
http://dx.doi.org/https://doi.org/10.1002/mma.9551
http://dx.doi.org/https://doi.org/10.1016/j.physa.2019.122427
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2020.3016706
http://dx.doi.org/https://doi.org/10.1007/s11063-018-9805-9
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2019.10.036
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.110993
http://dx.doi.org/https://doi.org/10.3390/math11030684
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02560-w
http://dx.doi.org/https://doi.org/10.1142/S0217984908014596
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.110911

5631

31.

32.

33.

34.

35.

36.

37.

38.

39.

W. Zhang, H. Zhang, J. Cao, H. Zhang, F. E. Alsaadi, A. Alsaedi, Global projective synchroniza-
tion in fractional-order quaternion valued neural networks, Asian J. Control, 24 (2022), 227-236.
https://doi.org/10.1002/asjc.2485

J. Hu, C. Zeng, Adaptive exponential synchronization of complex-valued cohen-grossberg neu-
ral networks with known and unknown parameters, Neural Networks, 86 (2017), 90-101.
https://doi.org/10.1016/j.neunet.2016.11.001

W. He, J. Cao, Adaptive synchronization of a class of chaotic neural net-
works with known or unknown parameters, Phys. Lett. A, 372 (2008), 408-416.
https://doi.org/10.1016/j.physleta.2007.07.050

W. Zhang, C. Sha, J. Cao, G. Wang, Y. Wang, Adaptive quaternion projective synchronization of
fractional order delayed neural networks in quaternion field, Appl. Math. Comput., 400 (2021),
126045. https://doi.org/10.1016/j.amc.2021.126045

T. Peng, J. Qiu, J. Lu, Z. Tu, J. Cao, Finite-time and fixed-time synchroniza-
tion of quaternion-valued neural networks with/without mixed delays: an improved
one-norm method, [EEE Trans. Neural Networks Learn. Syst., 33 (2021), 7475-7487.
https://doi.org/10.1109/TNNLS.2021.3085253

X. Yang, J. Cao, Exponential synchronization of delayed neural networks with discon-
tinuous activations, IEEE Trans. Circuits Syst. I Regul. Pap., 60 (2013), 2431-2439.
https://doi.org/10.1109/TCS1.2013.2244451

R. Wei, J. Cao, Fixed-time synchronization of quaternion-valued memristive neural networks with
time delays, Neural Networks, 113 (2019), 1-10. https://doi.org/10.1016/j.neunet.2019.01.014

D. Liu, S. Zhu, K. Sun, Global anti-synchronization of complex-valued memris-
tive neural networks with time delays, IEEE Trans. Cybern., 49 (2019), 1735-1747.
https://doi.org/10.1109/TCYB.2018.2812708

J. Liu, J. Jian, Global dissipativity of a class of quaternion-valued bam neural networks with time
delay, Neurocomputing, 349 (2019), 123-132. https://doi.org/10.1109/TCYB.2018.2812708

) ©2023 the Author(s), licensee AIMS Press. This
1S an open access article 1stribute under the
= i icle distributed under  th

MS AJMS Press

@ terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 31, Issue 9, 5609-5631.


http://dx.doi.org/https://doi.org/10.1002/asjc.2485
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2016.11.001
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2007.07.050
http://dx.doi.org/https://doi.org/10.1016/j.amc.2021.126045
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2021.3085253
http://dx.doi.org/https://doi.org/10.1109/TCSI.2013.2244451
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2019.01.014
http://dx.doi.org/https://doi.org/10.1109/TCYB.2018.2812708
http://dx.doi.org/https://doi.org/10.1109/TCYB.2018.2812708
http://creativecommons.org/licenses/by/4.0

	Introduction
	Problem description and preliminaries
	Main results
	Exponential projective synchronization analysis
	Adaptive exponential projective synchronization analysis

	Numerical examples 
	Conclusions

