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Abstract: N-terminal acetylation is a specific protein modification that occurs only at the N-terminus 
but plays a significant role in protein stability, folding, subcellular localization and protein-protein 
interactions. Computational methods enable finding N-terminal acetylated sites from large-scale 
proteins efficiently. However, limited by the number of the labeled proteins, existing tools only focus 
on certain subtypes of N-terminal acetylated sites on frequently detected amino acids. For example, 
NetAcet focuses on alanine, glycine, serine and threonine only, and N-Ace predicts on alanine, glycine, 
methionine, serine and threonine. With the growth of experimental N-terminal acetylated site data, it 
is observed that N-terminal protein acetylation occurs on nearly ten types of amino acids. To facilitate 
comprehensive analysis, we have developed MTNA (Multiple Types of N-terminal Acetylation), a 
deep learning network capable of accurately predicting N-terminal protein acetylation sites for various 
amino acids at the N-terminus. MTNA not only outperforms existing tools but also has the capability 
to identify rare types of N-terminal protein acetylated sites occurring on less studied amino acids. 

Keywords: protein translational modification; protein acetylation; N-terminal acetylated sites; 
deep learning 
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1. Introduction  

Protein acetylation is one of the most common types of protein post-translational modification 
(PTM) in eukaryotes [1], and it is involved in the regulation of many cellular processes [2]. Acetylation 
can be categorized into two main types based on different substrates: amino-terminal acetylation (Nα-
acetylation) [3] and lysine acetylation (Nε-lysine acetylation) [4]. 

Nα-acetylation is an irreversible co-translational modification that targets the acetyl groups to the 
α-amino group of amino-terminal residues. Such modification occurs in more than 80% of human 
proteins [5] and plays a significant role in several biological processes, such as protein stability [6], 
folding [7], subcellular localization [8] and protein-protein interactions (PPIs) [9]. In contrast, Nε-
lysine acetylation is a reversible post-translational modification of protein whereby the acetyl group is 
transferred to the E-amino group of lysine residues to neutralize the positive charge of the lysine, which 
directly affects the electrostatic state of the modified protein [10]. It regularizes gene expression by 
modifying core histone tails by histone acetyl-transferases (HATS) or histone deacetylases (HDACs). 
A growing number of studies reveal that many diseases, including developmental disabilities [11] and 
cancers [12], are associated with these two types of N-terminal acetylation. Therefore, the 
identification of N-terminal protein acetylated sites is vital for understanding the function of proteins 
in cells.  

Up until now, various biological approaches have been employed to accurately identify protein 
N-terminal acetylated sites. These include the radioanalytical method [13], chromatin 
immunoprecipitation (ChIP) [14] and mass spectrometry [15]. However, these wet laboratory 
experiments suffer from limitations such as labor-intensive procedures, high failure rates and costliness. 
With the accumulation of known protein N-terminal acetylated sites, computational prediction 
methods were developed to overcome these problems. 

Most of the existing computational tools put more effort into identifying Nε-lysine protein 
acetylated sites but less on Nα-acetylated sites. However, these lysine-specific tools cannot be 
generalized to predict Nα-acetylated sites [16]. Only a few tools are specifically designed to target all 
types of acetylated sites, such as NetAcet [17] and NT-AcPredictor [18]. 

NetAcet proposed a neural network to predict whether the first three positions of a protein are 
subject to N-terminal acetylated modifications. NT-AcPredictor investigated the first five residues to 
predict their possible N-terminal acetylated sites. However, those tools suffered from the shallow 
perspective fields (considering only the top 3–5 residues) and the single input modality (individually 
taking sequence or physiochemical properties in featurization) in modeling. These limitations will lead 
to incomplete and biased representations of proteins for identifying their N-terminal acetylated sites. 

This study presents a predictor named MTNA for predicting Multiple Types of N-terminal 
Acetylation. We designed a deep ensemble architecture to learn deep representations from two 
modalities, including sequences and physiochemical properties. Two types of deep graphics are 
integrated by a self-attention strategy, which drives our model to pay more attention to the informative 
components in merged representation generation. Our model outputs the acetylated sites at the first 30 
positions from N-terminal with such merged representations. In addition, we analyzed the effectiveness 
and informative distribution of learned representations via saliency map [19] and UMAP (uniform 
manifold approximation and projection) [20] to interpret our model, which may provide new insights 
into the learned patterns related to N-terminal protein acetylated sites. 
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2. Materials and methods 

2.1. Data collection 

We retrieved the N-terminal acetylated proteins from the Swiss-prot [21] database using the 
keyword “N?-acety”. Since such search may return some acetylation enzymes, we filter them out 
according to their annotations with 64 keywords such as “transferase”, “hydrolase”, “kinase”, etc. To 
keep consistent with the training scale in the existing tools, we built our training set and test set with 
the N-terminal acetylated proteins before Jan 2016, which is the approximate time the tools were 
released. Furthermore, to avoid overestimation, we removed the proteins from a training set with 30% 
similarity to the test set using CD-HIT [22]. After processing, 3477 N-terminal acetylation 
modification sequences were left as our training data with 794 protein sequences as test data.  

Our work involves seven types of N-terminal acetylation we collected from the Swiss-prot 
database: N-acetylalanine (short in A), N-acetylcysteine (short in C), N-acetylglycine (short in G), N-
acetylmethionine (short in M), N-acetylserine (short in S), N-acetylthreonine (short in T), N-
acetylvaline (short in V). Table 1 shows the numbers of each type of N-terminal acetylated site. 

Table 1. The number of each type of N-terminal acetylated site. 

Acetylated types Training set Test set 
A 1233 293 
C 15 45 
G 54 34 
M 1049 336 
S 905 130 
T 207 34 
V 25 32 

2.2. Data preprocessing and analysis 

Biological experiments show that N-terminal acetylation occurs on one protein’s first 30 amino 
acids. Hence, we will identify the acetylated sites on proteins’ first 30 amino acids [1]. Existing tools 
consider removing the first residue, methionine (M), because N-terminal acetylation occurs at the N-
terminus, and the start codon translates into methionine in the first position of each sequence. However, 
recent analysis has shown that acetylation can indeed occur on Methionine as the first residue. 
Therefore, we have decided to keep methionine in our study. 

To exclude irrelevant amino acids far away from N-terminal, we cut out 60 amino acids from the 
N-terminal of proteins per sample. Compared to the existing works [17,18] that employed a window 
size of five or seven, our selection can conserve the context from protein sequences. For better 
demonstrating the potential sequential patterns on the fragments, we analyzed the first 60 amino acids 
of all N-terminal acetylated proteins from the training set using the WebLogo 3 website [23]. WebLogo 
is a sequence analysis tool that is used to visualize and analyze protein or DNA sequences. It allows 
users to generate a graphical representation of sequence logos which displays the conservation and 
variability of amino acids or nucleotides at each position in a sequence alignment. The x-axis identifies 
the position of the first 60 bits of the sequence, and the y-axis in WebLogo represents the height or 
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frequency of occurrence of each amino acid or nucleotide at a particular position. The higher the 
symbol on the y-axis, the more frequently that specific residue is found at that position in the 
sequence alignment. 

 

Figure 1. WebLogo graph of N-acetylcysteine. 

Taking N-acetylcysteine as an example, Figure 1 shows the first residue, methionine (M), serves 
as the start codon of the sequence, while the second residue, cysteine (C), exhibits a high level of 
conservation. The 11th amino acid enriches valine (V), and the 26th amino acid fixes to aspartic acid 
(D). These positional preferences are clues for N-terminal protein acetylated sites. Meanwhile, we also 
observed that the signals led to the scattering of acetylated sites at all 60 positions of N-terminal 
proteins. It inspired us to consider not only the short-range but also the long-range dependency of 
residual compositions to identify protein N-terminal acetylated sites in this work. 

To evaluate our proposed method fairly, we used a 5-fold cross-validation strategy to split the 
collected data [24]. In 5-fold cross-validation, the training data was randomly divided into 5 non-
overlapping and equal-sized subsets. Of the five subsets, one subset was assigned for validating the 
model, and the remaining four subsets were treated as training data. The training and validation 
processes were repeated five times to calculate the average unbiased validation results. 

2.3. Data encoding 

To convert the protein fragments into a computational format, we encoded each fragment into 
two types of code: one-hot vector and physicochemical properties. 

2.3.1. One-hot coding 

According to Figure 1, some underlying sequential patterns are located at protein around 
acetylated sites. To encode the fragment sequences, one-hot vector was employed in this work [18]. In 
one-hot coding, each 60 amino acid fragment is represented as a 60*20 2-dimensional (2D) matrix, 
which consists of a 20-dimensional binary vector with a one in the index corresponding to the amino 
acid in the protein sequence. In the encoding scheme, every protein fragment will be mapped to an 
exclusive and sparse matrix, quantifying amino acids and maintaining their relative positions. 
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2.3.2. Physicochemical properties coding 

Some studies indicate that there are strong connections between some physicochemical properties 
of amino acids and various protein translational modifications [25]. To introduce this potential 
modality to N-terminal acetylated site prediction, we encoded each protein fragment by all the 
physicochemical properties from the AAindex [26] and looked for the most critical physicochemical 
properties information by observing the gradient when training the model. Finally, we chose the top 
25% of the physicochemical features with the highest contribution during training as inputs for the 
model, totaling 531 dimensions. 

2.4. The architecture of MTNA 

We initially designed an LSTM (long short-term memory) network based on one-hot encoding 
due to the conservation of the sequence. However, as mentioned earlier, we preserved the first residue, 
methionine, in the sequence. However, due to the primary ability of LSTM networks to capture long-
range information, the sequence-based subnetwork was unable to predict whether N-acetylmethionine 
would occur. Therefore, we introduced physicochemical properties as additional encoding to enhance 
the input information. Additionally, we specifically designed a CNN model to capture the short-range 
information within the input sequence. Finally, we designed two different subnets for two input 
modalities to better obtain the residual descriptions from the sequence fragments. The architecture of 
MTNA is shown in Figure 2. 

As shown in Figure 2, the one-hot network consists of two layers of LSTM and one LayerNorm 
layer. Subsequently, a linear layer is applied to reduce the dimensionality. The physicochemical 
property subnetwork comprises four layers of CNN (convolutional neural network) followed by one 
linear layer. After each CNN layer, regularization is performed on each batch. Similarly, a linear layer 
is applied at the end for dimensionality reduction. The results from the two subnets are inputted into 
the ensemble network and then undergo dimensionality reduction via two linear layers to generate the 
prediction results. 

The PTM site is related to its structure [18], so the long-range information of the protein fragment 
needs to be considered to detect the structural motifs that may be sparse in the sequences. We chose 
the LSTM layer to process the one-hot vector to extract the long-range information as follows. 

 𝑓 = 𝜎(𝑊 ∙ ℎ , 𝑥 + 𝑏 ) (2.1) 

 𝑖 = 𝜎(𝑊 ∙ ℎ , 𝑥 + 𝑏 ) (2.2) 

 𝐶 = tanh (𝑊 ∙ ℎ , 𝑥 + 𝑏 ) (2.3) 

 𝐶 = 𝑓 ∗ 𝐶 + 𝑖 ∗ 𝐶 (2.4) 

 𝑜 = 𝜎(𝑊 ℎ , 𝑥 + 𝑏 ) (2.5) 

 ℎ = 𝑜 ∗ tanh (𝐶 ) (2.6) 

where 𝑥   is the current amino acid on the sequence, and ℎ   is the hidden representation of its 
previous neighboring amino acid. LSTM holds the amino acid upstream information in cell 𝐶  by 
multiplying 𝑥  and ℎ  with a learnable weight matrix 𝑊 , called short-term memory. The LSTM 
achieves long-term memory in a cell 𝐶  by multiplying 𝑥  and ℎ  with another learnable weight 
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matrix 𝑊 . With input amino acids from the sequence accumulated, the cell state 𝐶  will overlay 
the updated information from the current amino acid by 𝑓   and further restrain some historical 
information. Hence, the important long-range feature of input protein fragments will be enhanced by 
such “memory” and “forget” operations.  

 

Figure 2. The architecture of MTNA. 
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On the other side, local sequential information is also contributed to protein N-terminal 
acetylation. We designed some CNN layers to extract the short-range information from the protein 
fragments for the modality of physiochemical properties. 

 𝑧(𝑢, 𝑣) = ∑ ∑ 𝑥 , . 𝑘 ,  (2.7) 𝑋 is the physicochemical properties of protein fragments, and 𝐾 is the convolution kernel. In 
such a CNN layer, 𝑋 is convoluted with its neighbors inside the learnable kernel with size of 𝑖 × 𝑗, 
resulting in a position-aware local latent representation 𝑍 . After four CNN layers in MTNA, the 
physicochemical properties at each position output a 19-dimensional embedding 𝑍 as the local-
range descriptor. 

After concatenating the embedding of the LSTM and CNN subnet outputs, we put them into a 
self-attention [27] layer to enhance the informative components across two modalities. 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥( )𝑉 (2.8) 𝑄, 𝐾 and 𝑉 represent query, key and value by multiplying the input merged embedding with 
three learnable matrixes. 𝑄 multiplied with 𝐾  calculates their inter-relation, which helps reveal the 
implicit importance of each component from the input embedding. Then, multiplication of the 
importance with 𝑉 will lead to an enhanced embedding, allowing MTNA to pay more attention to the 
informative positions. This enhanced embedding will be used in making prediction results at the final 
linear layer. 

2.5. Training strategy 

N-terminal protein acetylated site prediction is a typical imbalanced classification. In this work, 
we employed focal loss [28] to control the data imbalance and the interference from some hard-to-
identify samples. Focal loss is defined as follows: 

 𝐹𝐿(𝑝 ) = −𝜕 (1 − 𝑝 ) log(𝑝 ) (2.9) 

 𝑝 = 𝑝                   𝑖𝑓  𝑦 = 1      𝑝 − 1        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        (2.10) 

where 𝑝  are the logits of positive samples. 𝛾 is the sample weight and set to 0.033 according to the 
distribution between positives and negatives in the training set. 𝛿  is the modulation factor to scale 
the contribution from complex cases and set to 2 based on [28]. 

For training MTNA, we chose the Adam optimizer with an initial learning rate of 0.001 and a 
decay rate of 0.8. We also arranged the early stopping strategy checking at each epoch. The training 
process will stop if the validation loss cannot improve within 15 epochs. Once a model comes to 
converging, we can input any test sequences to the trained model to identify N-terminal protein 
acetylated sites.  

Due to the imbalanced distribution of positives and negatives, we evaluated our method and the 
existing tools via metrics indicating the performance from the positive and negative perspectives, such 
as sensitivity (SN), specificity (SP), Matthews correlation coefficient (MCC) and F1-score [29]. At the 
same time, we performed a comparison with other tools using the average precision (AP) and area 
under curve (AUC) metrics, which derive from the precision-recall curve (PR curve) and receiver 
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operating characteristic curve (ROC curve) [30]. The PR curve is a curve of precision versus recall 
(sensitivity) for all possible cut-offs for a test. ROC is a plot between true sensitivity and false 1–
specificity for all potential cut-offs for a test. AP is the area under the PR curve, and AUC is the area 
under the ROC. These two metrics reflect the overall performance compared to other evaluation 
metrics. Hence, we employ them in the comparisons between MTNA and other tools. 

3. Results and discussion 

3.1. Performance of MTNA 

Table 2 lists the averages and the variances of performance for each type of N-terminal protein 
acetylated sites from 5-fold cross-validation. 

Table 2. Performance of MTNA with 5-fold cross-validation. 

Acetylated type SN SP MCC F1-Score AP AUC 

N-acetylalanine (A) 0.921 ± 0.02 0.998 ± 0.00 0.908 ± 0.01 0.922 ± 0.01 0.874 ± 0.05 0.986 ± 0.00 

N-acetylcysteine (C) 0.789 ± 0.19 0.999 ± 0.00 0.868 ± 0.11 0.949 ± 0.05 0.960 ± 0.04 0.999 ± 0.00 

N-acetylglycine (G) 0.922 ± 0.05 0.998 ± 0.00 0.888 ± 0.07 0.920 ± 0.05 0.860 ± 0.08 0.982 ± 0.00 

N-acetylmethionine (M) 0.729 ± 0.04 0.995 ± 0.00 0.710 ± 0.03 0.734 ± 0.03 0.775 ± 0.03 0.983 ± 0.01 

N-acetylserine (S) 0.871 ± 0.01 0.997 ± 0.00 0.857 ± 0.01 0.868 ± 0.01 0.747 ± 0.07 0.980 ± 0.01 

N-acetylthreonine (T) 0.782 ± 0.13 0.995 ± 0.00 0.772 ± 0.06 0.801 ± 0.07 0.756 ± 0.09 0.979 ± 0.02 

N-acetylvaline (V) 0.641 ± 0.28 0.991 ± 0.00 0.593 ± 0.22 0.761 ± 0.14 0.698 ± 0.28 0.986 ± 0.01 

ALL 0.816 ± 0.03 0.997 ± 0.00 0.812 ± 0.02 0.820 ± 0.01 0.821 ± 0.02 0.985 ± 0.01 

As shown in Table 2, MTNA achieved good results in all involved types of N-terminal 
acetylated sites. Such excellence comes from our architecture’s multiple modalities and feature 
learning ability. MTNA works with two input modalities, including sequences and physiochemical 
properties, further designing two subnets to learn their deep representations. The separate subsets 
detect global and local information using LSTM layers and CNN layers. These deep representations 
get a weighted combination in the following self-attention layer. Such design gives the power of 
comprehensively describing the residues at protein N-terminal and leads to predicting the N-terminal 
acetylated sites accurately. 

3.2. Performance of MTNA 

To further indicate the superiority of MTNA, we compared MTNA with the currently available 
N-terminal acetylated tools, NetAcet [17] and NT-AcPredictor [18], with the independent set. Since 
these benchmark tools provide evaluation scores, AP and AUC were chosen as objective measures to 
evaluate the models. The comparative results on an independent test dataset are presented in Tables 3 
and 4, respectively. 

3.2.1. Comparison of MTNA and NetAcet 

NetAcet only supports identifying N-acetylalanine, N-acetylglycine, N-acetylserine and N-
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acetylthreonine, and it just looks into the first three amino acids from a protein fragment. Meanwhile, 
MTNA can predict all types of N-terminal acetylated sites at the first 30 positions. We calculated the 
metrics based on the predictions of the first three amino acids for N-acetylalanine, N-acetylglycine, N-
acetylserine and N-acetylthreonine on the independent test set. 

As shown in Table 3, NetAcet cannot detect any N-acetylglycine sites from the independent set, 
while MTNA can identify most of them according to its 0.981 AUC. Among the other three types, 
MTNA also performed better than NetAcet.  

NetAcet develops a fully connected neural network to combine all input physiochemical 
properties but fails to introduce sequential and positional information. Meanwhile, MTNA implicitly 
extracts sequential features along with LSTM-based operation position by position. In addition, 
physicochemical properties also complement in MTNA. Hence, MTNA overall beats NetAcet on the 
acetylated types of its interest. 

Table 3. Comparison of MTNA and NetAcet with independent test set. 

Acetylated type Metric NetAcet MTNA 
N-acetylalanine (A) AP 0.716 0.880 

AUC 0.766 0.998 
N-acetylglycine (G) AP - 0.879 

AUC - 0.981 
N-acetylserine (S) AP 0.589 0.775 

AUC 0.651 0.983 
N-acetylthreonine (T) AP 0.504 0.811 

AUC 0.641 0.996 

3.2.2. Comparison of MTNA and NT-AcPredictor 

NT-AcPredictor predicts the type of N-terminal acetylation on the fragments by a rule-based 
decision tree approach. Since it can only calculate acetylation sites for the first 10 residues, we only 
use the first 10 residues to compute the metrics when comparing. 

As shown in Table 4, MTNA gained higher APs and AUCs on most N-terminal acetylated types 
except for N-acetylmethionine. It is observed that NT-AcPredictor performed poorly on N-
acetylthreonine and N-acetylvaline. This is because the developers did not consider these two types in 
their rule summary. Hence, the decision tree is insensitive to the two types. MTNA can naturally cover 
all types of N-terminal acetylated sites involved in the training data as it is a data-driven predictor and 
does not require any feature engineering. This advantage will bring MTNA better generalization. On 
N-acetylmethionine, NT-AcPredictor performed perfectly, but MTNA failed in a few cases in AP and 
AUC. For such types with explicit patterns, a rule-based model can easily achieve better results than 
data-driven approaches. However, our deep architecture can still get superior performance in most cases. 
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Table 4. Comparison of MTNA and NT-AcPredictor with independent test set. 

Acetylated types Metric NetAcet MTNA 
N-acetylalanine (A) AP 0.883 0.874 

AUC 0.940 0.986 
N-acetylcysteine (C) AP 0.764 0.960 

AUC 0.878 0.999 
N-acetylglycine (G) AP 0.426 0.860 

AUC 0.703 0.982 
N-acetylmethionine (M) AP 1.000 0.775 

AUC 1.000 0.983 
N-acetylserine (S) AP 0.698 0.747 

AUC 0.844 0.980 
N-acetylthreonine (T) AP 0.117 0.756 

AUC 0.543 0.979 
N-acetylvaline (V) AP 0.121 0.698 

AUC 0.545 0.986 

3.3. Model interpretation 

In order to whiten the black box of our deep architecture, we attempted to analyze the 
effectiveness and contributions of its intermediate embedding. 

3.3.1. Correlation analysis of two subnets 

To check the independence between the embedding from the one-hot subnet and physicochemical 
property subnet, we calculated their Pearson correlation coefficients (PCCs), and the density curves of 
their PCCs are shown in Figure 3. 

 

Figure 3. The density curves of PCC between the embedding from one-hot subnet and 
physicochemical property subnet. 
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In Figure 3, the x-axis represents the PCCs between two embeddings from two subsets on all 
training protein fragments, and the y-axis denotes the density of each PCC bin. The low PCCs between 
these two embeddings indicate that the input modalities describe a protein fragment from different 
perspectives. This suggests that the two subnets can generate complementary embeddings, which can 
be utilized in ensemble learning at the subsequent self-attention layer. The informative embeddings 
lay a solid foundation for precisely identifying N-terminal protein acetylated sites. 

3.3.2. Positional embedding analysis 

In this work, we employed saliency map at the last layer of MTNA to demonstrate the positional 
patterns of N-terminal acetylated sites. The salience map [19] is a visualization technique based on the 
gradient to show the contributions from input signals to outputs. 

 

Figure 4. The contribution of each location to model results. 

Figure 4 indicates the contribution of the amino acid at each position to model output. For N-
terminal acetylated site prediction, the first 10 amino acids play a more important role than other 
positions. This implies that N-terminal acetylated site prediction is a particular PTM compared to 
lysine acetylated sites, since its major signals concentrate at the N-terminal. That might be why the 
existing tools investigate the first 3–5 positions. However, the latter positions also provide useful 
information in our model, resulting in better performance than the tools only considering shallow 
perspective fields. 

3.3.3. UMAP analysis for embedding from different layers 

To observe the distinctive ability of the intermediate embedding from each hidden layer, 
UMAP [20] is adopted to reduce the dimensions of these embeddings to a 2-dimensional vector. 
Thereby, the discrimination of these embeddings can be observed from the scatter plots on the 2-
dimensional vectors. 
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Figure 5. The scatter plots of 2D embeddings from different layers by UMAP. 
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The plots from the dimension-reduced vectors of each layer’s embedding are shown as Figure 5, 
where the green dots represent the acetylated amino acids, and the blue dots are the non-acetylated 
ones. It can be seen that the positives and negatives are gradually separated along with the deeper CNN 
layers in the physicochemical property subnet. Similarly, after two LSTM layers, the embeddings of 
positives and negatives are also gradually separated, and the positives are also getting concentrated. 
These figures indicate that with deeper layers the generative embeddings obtain a better distinctive 
ability for identifying N-terminal protein acetylated sites. 

4. Conclusions 

In this study, we have designed a deep ensemble learning architecture called MTNA that performs 
better N-terminal protein acetylated site prediction. We compared MTNA with two existing N-terminal 
protein acetylated site prediction tools with an independent set. The results show that our predictor has 
stronger robustness and generalization than other tools. Further experiments of model interpretation 
exhibited that our input modalities contain rich information for describing protein fragments, the 
positional preference for N-terminal acetylated sites and the distinguishability of generative 
embeddings from our architecture. Our study improved the performance of N-terminal acetylated site 
prediction and provided new insights into deep learning network design for this field. Through 
continuous experimentation, we found that when retaining the first residue of the input sequence, 
methionine, the network fails to recognize N-acetylmethionine sites without the introduction of 
additional features. However, this issue can be effectively addressed by employing an ensemble 
learning strategy. In future experiments, we intend to incorporate protein language pre-training models 
to extract high-dimensional features from the sequences, aiming to address this issue more effectively. 
Our source code is available at https://github.com/Chenyb939/N-terminal-Acetylation. 
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