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Abstract: In this paper, we utilize the semi-discretization method to construct a discrete model from a
continuous predator-prey model with herd behaviour and group defense. Specifically, some new results
for the transcritical bifurcation, the period-doubling bifurcation, and the Neimark-Sacker bifurcation
are derived by using the center manifold theorem and bifurcation theory. Novelty includes a smooth
transition from individual behaviour (low number of prey) to herd behaviour (large number of prey).
Our results not only formulate simpler forms for the existence conditions of these bifurcations, but also
clearly present the conditions for the direction and stability of the bifurcated closed orbits. Numerical
simulations are also given to illustrate the existence of the derived Neimark-Sacker bifurcation.
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1. Introduction and preliminaries

Over the past several decades, the predator-prey interaction has become a hot point of studies in
biomathematics [1-10]. Because differential equations can assume that generations overlap and that
populations vary continously in time, the general model for predator-prey interaction may be written
as { dx

dt = f (x)x − g(x, y)y,
dy
dt = h(x, y)y − my,

(1.1)

where x and y are expressed as prey and predator population sizes (or densities), respectively, f (x)
denotes the growth rate of prey with the absence of predator, g(x, y) represents the amount of prey
consumed per predator per unit time, h(x, y) is on behalf of per capita predator production, and m is the
intrinsic death rate of predator. See also [1].
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Due to the realistic meaning of f (x), one can assume that the prey grows logistically with growth
rate r and carrying capacity k in the absence of predator (i.e., f (x) = r(1 − x

k )). Hence the system (1.1)
can be written as { dx

dt = rx(1 − x
k ) − g(x, y)y,

dy
dt = eg(x, y)y − my,

(1.2)

where e is the conversion effciency.
As for the functional response g(x, y), there are many different kinds of forms. Bian et al. proposed

a system with the Beddington-DeAngelis funcional response [5]; De Assis et al. proposed a system
with the square-root functional response [7] and so on. Notice the fact that in the natural ecosystem,
many species may gather together and form herds to either search for food resources or to defend the
predators, which means that all members of a group do not interact at one time. This behaviour is often
called herd behaviour. In this paper, one talks about the following system [6,7]: dx

dt = rx(1 − x
k ) − axy

√
x+h̃
,

dy
dt =

eaxy
√

x+h̃
− my.

(1.3)

Here, the funcional response ax
√

x+h̃
can be expressed as the function of the ratio of prey to predator,

where h̃ is a threshold for the transition between herd grouping and solitary behaviour and a is the
maximum value of prey consumed by each predator per unit time. In this system, all parameters are
positive. The biological meanings for the parameters r, k, e, and m are the same as in (1.2).

For the sake of simplicity of mathematical analysis, let x
k → x,mt → t, y

ek → y, r
m → γ,

ae
√

k
m →

β, h̃
k → h, then one can derive an equivalent form of the system (1.3) as follows: dx

dt = x(γ(1 − x) − βy
√

x+h
),

dy
dt = y( βx

√
x+h
− 1).

(1.4)

This continuous system has been discussed in [6,7], but its discrete version has not been investgated
as of yet. To be honest, it is very difficult to solve a complicate continuous equation or system without
using computer. Therefore, one natuarally wishes to consider the corresponding discrete version of a
continuous model. One tries to use various methods to derive the discrete model of the system (1.4)
to make it easily studied [8–16]. In this paper, we adopt a semi-discretazation method, which does not
need to consider the step size, to derive its discrete model. For this, suppose that [t] denotes the greatest
integer not exceeding t. Consider the average change rate of the system (1.4) at integer number points 1

x(t)
dx
dt = γ(1 − x([t])) − βy([t])

√
x([t])+h

,
1

y(t)
dy
dt =

βx([t])
√

x([t])+h
− 1.

(1.5)

It is easy to see that the system (1.5) has piecewise constant arguments, and that a solution (x(t), y(t))
of the system (1.5) for t ∈ [0,+∞) has the following characteristics:

1) on the interval [0,+∞), x(t) and y(t) are continuous;
2) when t ∈ [0,+∞) except possibly for the points {0, 1, 2, 3, · · · }, dx(t)

dt and dy(t)
dt exist.
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The following system can be obtained by integrating the system (1.5) over the interval [n,t] for any
t ∈ [n, n + 1) and n = 0, 1, 2, · · ·  x(t) = xneγ(1−xn)− βyn√

xn+h (t − n),

y(t) = yne
βxn√
xn+h
−1(t − n),

(1.6)

where xn = x(n) and yn = y(n). Letting t → (n + 1)− in the system (1.6) produces xn+1 = xneγ(1−xn)− βyn√
xn+h ,

yn+1 = yne
βxn√
xn+h
−1
,

(1.7)

where the parameters h, β, γ > 0, and their biological meanings are the same as in (1.4). The system
(1.7) will be considered in the sequel.

The rest of the paper is organized as follows. In Section 2, we investigate the existence and stability
of the fixed points of the system (1.7) in detail. In Section 3, we derive the sufficient conditions for
transcritical bifurcation, period-doubling bifurcation, and Neimark-Sacker bifurcation of the system
(1.7) to occur. In Section 4, numerical simulations are performed to illustrate the above theoretical
results. In the end, some brief conclusions are stated in Section 5.

2. Existence and stability of fixed points

Considering the biological meaning of the system (1.7), we discuss the existence and stability of
non-negative fixed points of the system (1.7) in this section. By solving the equations of fixed points
of system (1.7)

x = xeγ(1−x)− βy
√

x+h , y = ye
βx
√

x+h
−1
,

it’s easy to find that there are three nonnegative fixed points E0 = (0, 0), E1 = (1, 0), and E2 = (x0, y0)
for β >

√
h + 1, where

x0 =
1 +

√
1 + 4hβ2

2β2 , y0 = γx0(1 − x0).

The Jacobian matrix of the system (1.7) at a fixed point E(x, y) is

J(E) =

 eγ (1−x)− β y
√

h+x

(
1 − γx + β xy

2 (h+x)3/2

)
−
β x e

γ (1−x)− β y
√

h+x
√

h+x

y e
β x
√

h+x
−1

(
β
√

h+x
−

β x
2 (h+x)3/2

)
e
β x
√

h+x
−1

 ,
whose charactertistic polynomial reads as

F(λ) = λ2 − Tr(J(E))λ + Det(J(E)),

where

Tr(J(E)) = eγ (1−x)− β y
√

h+x

(
1 − γx +

β xy
2 (h + x)3/2

)
+ e

β x
√

h+x
−1
,

Det(J(E)) = eγ (1−x)− β y
√

h+x
+
β x
√

h+x
−1

(
1 − γx +

β xy
2 (h + x)3/2 +

β2xy
h + x

−
β2 x2y

2 (h + x)2

)
.
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In order to analyze the properties of the fixed points of the system (1.7), we utilize the Appendix
definition and Lemma [17–19].

By using Definition 5.1 and Lemma 5.2 in the Appendix, the following conclusions can be obtained.

Theorem 2.1. The fixed point E0 = (0, 0) of the system (1.7) is a saddle.

The proof for this theorem is simple and omitted here.

Theorem 2.2. The type of the fixed point E1 = (1, 0) of the system (1.7) complies with the following
results:

Table 1. Properties of the positive fixed point E1.

Conditions Eigenvalues Properties

0 < γ < 2
0 < β <

√
h + 1 |λ1| < 1, |λ2| < 1 sink

β =
√

h + 1 |λ1| < 1, |λ2| = 1 non − hyperbolic
β >
√

h + 1 |λ1| < 1, |λ2| > 1 saddle
γ = 2 |λ1| = 1 non − hyperbolic

γ > 2
0 < β <

√
h + 1 |λ1| > 1, |λ2| < 1 saddle

β =
√

h + 1 |λ1| > 1, |λ2| = 1 non − hyperbolic
β >
√

h + 1 |λ1| > 1, |λ2| > 1 source

Proof. The Jacobian matrix J(E1) of the system (1.7) at the fixed point E1 reads

J(E1) =

 1 − γ − β
√

h+1

0 e
β
√

h+1
−1

 .
Obviously, λ1 = 1 − γ and λ2 = e

β
√

h+1
−1.

When 0 < γ < 2, |λ1| < 1. If 0 < β <
√

h + 1, then |λ2| < 1, so E1is a sink; if β =
√

h + 1, then
|λ2| = 1, therefore E1 is non-hyperbolic; if β >

√
h + 1, meaning |λ2| > 1, then E1 is a saddle.

When γ = 2, which reads |λ1| = 1, E1 is non-hyperbolic.
When γ > 2, |λ1| > 1. If 0 < β <

√
h + 1, then |λ2| < 1, so E1 is a saddle; if β =

√
h + 1, then

|λ2| = 1, therefore E1 is non-hyperbolic; if β >
√

h + 1, implying |λ2| > 1, then E1 is a source. The
proof is complete.

We can easily derive the following result.

Lemma 2.3. Consider the function f (x) = 4x2 − 4x + 7 + (2x − 7)
√

4x2 + 20x + 1 with x ∈ (1,∞).
Then f (x) is strictly increasing for x ∈ (1,∞), Furthermore, f (x) has a unique positive root X0 in (2,
2.5).

Proof. Evidently, f ′(x) = 4(2x − 1) + 16x2+32x−68
√

4x2+20x+1
and f ′′(x) = 8 + 64x3+520x2+912x712

(
√

4x2+20x+1)3
> 0, so, for x > 1,

f ′(x) > f ′(1) = 0. Hence, f (x) is strictly increasing for x ∈ (1,∞). Again, f (2) = 15 − 3
√

57 < 0 and
f (2.5) = 22 − 2

√
76 > 0. Therefore, f (x) has a unique positive root X0 in (2, 2.5).

Now consider the stability of the fixed point E2.
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Theorem 2.4. For β >
√

h + 1, E2 = (x0, y0) = ( 1+
√

1+4hβ2

2β2 , γ
1+
√

1+4hβ2

2β2 (1 − 1+
√

1+4hβ2

2β2 )) is a positive
fixed point of the system (1.7).

Let X0 be the unique positive root of the function f (x) = 4x2−4x+7+ (2x−7)
√

4x2 + 20x + 1 in (2,

2.5). Put β0 =
√

4h + 2 and h0 =
4β4−4β2+7+(2β2−7)

√
4β4+20β2+1

72β2 . Denote γ0 =
8β2(1+

√
1+4hβ2)

3(1+4hβ2)+(7−2β2)
√

1+4hβ2+4(1−β2)
,

where h > h0. Then the following consequences hold about the fixed point E2 illustrated in the Table 2.

Table 2. Properties of the fixed point E2.

Conditions Eigenvalues Properties

0 < h ≤ X0−2
4

√
h + 1 < β ≤

√
X0

0 < γ < γ0

β < β0 |λ1| < 1, |λ2| < 1 sink
β = β0 |λ1| = 1, |λ2| = 1 non − hyperbolic
β > β0 |λ1| > 1, |λ2| > 1 source

γ = γ0 λ1 = −1, λ2 , −1 non − hyperbolic
γ > γ0 |λ1| > 1, |λ2| < 1 saddle

β >
√

X0

h ≤ h0 |λ1| > 1, |λ2| > 1 source

h > h0

0 < γ < γ0 |λ1| > 1, |λ2| > 1 source
γ = γ0 λ1 = −1, λ2 , −1 non − hyperbolic
γ > γ0 |λ1| > 1, |λ2| < 1 saddle

h > X0−2
4

√
h + 1 < β ≤

√
X0

0 < γ < γ0 |λ1| < 1, |λ2| < 1 sink
γ = γ0 λ1 = −1, λ2 , −1 non − hyperbolic
γ > γ0 |λ1| > 1, |λ2| < 1 saddle

β >
√

X0

h ≤ h0

β < β0 |λ1| < 1, |λ2| < 1 sink
β = β0 |λ1| = 1, |λ2| = 1 non − hyperbolic
β > β0 |λ1| > 1, |λ2| < 1 source

h > h0

0 < γ < γ0

β < β0 |λ1| < 1, |λ2| < 1 sink
β = β0 |λ1| = 1, |λ2| = 1 non − hyperbolic
β > β0 |λ1| > 1, |λ2| < 1 source

γ = γ0 λ1 = −1, λ2 , −1 non − hyperbolic
γ > γ0 |λ1| > 1, |λ2| < 1 saddle

Proof. The Jacobian matrix J(E2) of the system (1.7) at the fixed point E2 is

J(E2) =
 1 − γ x0 +

γ (1−x0)
2β2 x0

−1
γ (1 − x0)(1 − 1

2β2 x0
) 1

 ,
whose characteristic polynomial can be written as

F(λ) = λ2 − pλ + q, (2.1)

where

p = 2 − γ x0 +
γ (1 − x0)

2β2x0
, q = 1 + γ(1 − 2x0).
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Note that x0 =
1+
√

1+4hβ2

2β2 , y0 = γx0(1 − x0), and E2 = (x0, y0) is a positive fixed point, so 0 < x0 < 1.
It’s easy to calculate that

F(1) = γ(1 − x0)

√
1 + 4hβ2

1 +
√

1 + 4hβ2
> 0,

F(−1) = 4 + γ[1 − 3x0 +
1 − x0

2β2x0
]

= 4 −
γ(6β2x2

0 − (2β2 − 1)x0 − 1)
2β2x0

= 4 −
γ(3(

√
1 + 4hβ2)2 + (7 − 2β2)

√
1 + 4hβ2 + 4(1 − β2))

2β2(1 +
√

1 + 4hβ2)
.

If 6β2x∗2 − (2β2 − 1)x∗ − 1 = 0 and x∗ > 0, then x∗ = 2β2−1+
√

4β4+20β2+1
12β2 . Simultaneously, it is easy to

prove x∗ < 1
2 .

Notice that 0 < h < β2 − 1. Moreover, x0 > (=, <)x∗ ⇔ h > (=, <)h0. Additionally, β2 − 1 − h0 =
68β4−68β2−7−(2β2−7)

√
4β4+20β2+1

72β2 .

Set x = β2 > 1. Denote

f (x) = 4x2 − 4x + 7 + (2x − 7)
√

4x2 + 20x + 1

and
g(x) = 68x2 − 68x − 7 − (2x − 7)

√
4x2 + 20x + 1.

Lemma 2.3 tells us that f (x) is strictly increasing for x > 1 and has a unique positive root X0 in (2,
2.5). From this one can see

h0 < (=, >)0⇔ f (β2) < (=, >)0⇔ β < (=, >)
√

X0.

Obiviously, g(1) = 18 > 0, and g′(x) = 68(2x−1)
√

4x2+20x+1−16x2−32x+68
√

4x2+20x+1
> 68(2x−1)(2x+1)−16x2−32x+68

√
4x2+20x+1

=

256x2−32x
√

4x2+20x+1
> 0. So, g(x) > g(1) > 0 for x > 1. This implies that h0 < β

2 − 1 always holds.
It is easy to see x0 > (=, <)x∗ ⇔ 6β2x2

0 − (2β2 − 1)x0 − 1 > (=, <)0. From F(−1) =

4 − γ(6β
2 x2

0+2β2 x0+x0−1)
2β2 x0

= 0, one has

γ =
8β2x0

6β2x2
0 − (2β2 − 1)x0 − 1

=: γ0 =
8β2(1 +

√
1 + 4hβ2)

3(1 + 4hβ2) + (7 − 2β2)
√

1 + 4hβ2 + 4(1 − β2)
.

Again, β > (=, <)β0 =
√

4h + 2⇔ x0 < (=, >)
1+
√

1+4hβ2
0

2β2
0

= 1
2 .

Now, one considers the following two cases:

1) Case I: 0 < h ⩽ X0−2
4 . Then β0 =

√
4h + 2 ≤

√
X0.

(a) Subcase 1:
√

h + 1 < β ≤
√

X0. Then h0 ≤ 0 < h, implying x∗ < x0 and γ0 > 0.
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i. If 0 < γ < γ0, then F(−1) > 0.
• For β < β0, q < 1, which reads |λ1| < 1 and |λ2| < 1 by Lemma 6.2(i.1). So, E2 is a

sink;
• For β = β0, q = 1. Lemma 6.2(i.5) shows that |λ1| = |λ2| = 1, so E2 is non-hyperbolic;
• For β > β0, q > 1. Lemma 6.2(i.4) shows that |λ1| > 1 and |λ2| > 1, so E2 is a source.

ii. If γ = γ0, then F(−1) = 0. In other words, −1 is a root of the characteristic polynomial,
namely E2 is non-hyperbolic.

iii. If γ > γ0, then F(−1) < 0. Using Lemma 6.2(i.3), we conclude that |λ1| < 1 and |λ2| > 1,
so E2 is a saddle.

(b) Subcase 2: β >
√

X0. Then h0 > 0.
i. If 0 < h ≤ h0, then 0 < x0 ≤ x∗, implying that 6β2x2

0 − (2β2 − 1)x0 − 1 ≤ 0. So,
F(−1) ≥ 4 > 0. From β >

√
X0 ≥ β0, we see q > 1. Lemma 6.2(i.4) shows that |λ1| > 1

and |λ2| > 1, so E2 is a source.
ii. If h > h0, then x∗ < x0 < 1, implying that γ0 > 0.

A. If 0 < γ < γ0, then F(−1) > 0. For β >
√

X0 ≥ β0, q > 1. Lemma 6.2(i.4) shows that
|λ1| > 1 and |λ2| > 1, so E2 is a source.

B. If γ = γ0, then F(−1) = 0. In other words, −1 is one root of the characteristic
polynomial, namely, E2 is non-hyperbolic.

C. If γ > γ0, then F(−1) < 0. Lemma 6.2(i.3) shows that |λ1| < 1 and |λ2| > 1, so E2 is a
saddle.

2) Case II: h > X0−2
4 . Then β0 =

√
4h + 2 >

√
X0.

(a) Subcase 1:
√

h + 1 < β ≤
√

X0. Then h0 ≤ 0 < h, so, x∗ < x0 and hence r0 > 0.
i. If 0 < γ < γ0, then F(−1) > 0. For

√
h + 1 < β ≤

√
X0 < β0, q < 1, which reads |λ1| < 1

and |λ2| < 1 by Lemma 6.2(i.1). Therefore, E2 is a sink.
ii. If γ = γ0, then F(−1) = 0. Hence, E2 is non-hyperbolic.

iii. If γ > γ0, then F(−1) < 0. Lemma 6.2(i.3) shows that E2 is a saddle.
(b) Subcase 2: β >

√
X0. Then h0 > 0.

i. If X0−2
4 < h ≤ h0, then x0 ≤ x∗, so, F(−1) ≥ 4 > 0.

• For
√

X0 < β < β0, q < 1, which reads |λ1| < 1 and |λ2| < 1 by Lemma 6.2(i.1), thus,
E2 is a sink;
• For β = β0, q = 1. Lemma 6.2(i.5) shows that |λ1| = |λ2| = 1, so E2 is non-hyperbolic;
• For β > β0, q > 1. It follows from Lemma 6.2(i.4) that |λ1| > 1 and |λ2| > 1, hence E2

is a source.
ii. If h > h0, then x∗ < x0, so, γ0 > 0.

A. If 0 < γ < γ0, then F(−1) > 0.
• For

√
X0 < β < β0, q < 1. Lemma 6.2(i.1) tells us E2 is a sink;

• For β = β0, q = 1. Therefore, E2 is non-hyperbolic;
• For β > β0, q > 1. Lemma 6.2(i.4) shows that E2 is a source.

B. If γ = γ0, then F(−1) = 0, which shows E2 is non-hyperbolic.
C. If γ > γ0, then F(−1) < 0. Using Lemma 6.2(i.3), we conclude that |λ1| < 1 and
|λ2| > 1, so E2 is a saddle.
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Summarizing the above analysis, the proof is complete.

3. Bifurcation analysis

In this section,we apply the center manifold theorem and bifurcation theory to investigate the local
bifurcation problems of the system at the fixed points E1 and E2.

3.1. For fixed point E1 = (1, 0)

It follows from Eq (1.4) that the fixed point E1 always exists, regardless of what values the param-
eters β and γ take. One can see from Theorem 2.2 that the fixed point E1 is a non-hyperbolic fixed
point when β =

√
h + 1 or γ = 2. As soon as the parameters β or γ goes through corresponding critical

values, the dimensional numbers for the stable manifold and the unstable manifold of the fixed point
E1 vary. Therefore, a bifurcation probably occurs. Now, the considered parameter case is divided into
the following three subcases:

Case I: β =
√

h + 1, γ , 2;
Case II: β ,

√
h + 1, γ = 2;

Case III: β =
√

h + 1, γ = 2.
First we consider Case I: β =

√
h + 1, γ , 2, i.e., the parameters (h, β, γ) ∈ Ω1 ={

(h, β, γ) ∈ R3
+ | h > 0, β > 0, γ > 0, γ , 2

}
. Then, the following result is obtained.

Theorem 3.1. Suppose the paramenters (h, β, γ) ∈ Ω1. Let β1 =
√

h + 1. If the parameter β varies in a
small neighborhood of the critical value β1, then the system (1.7) experiences a transcritical bifurcation
at the fixed point E1 when the parameter β goes through the critical value β1.

Proof. First, assume that un = xn − 1, vn = yn − 0, which transforms the fixed point E1 to the origin,
and the system (1.7) to  un+1 = (un + 1)e−γ un−

βvn√
un+h+1 − 1,

vn+1 = vne
β(un+1)
√

un+h+1
−1
.

(3.1)

Second, giving a small perturbation β∗ of the parameter β around β1, i.e., β∗ = β−β1 with 0 < |β∗| ≪
1, and letting β∗n+1 = β

∗
n = β

∗, the system (3.1) is perturbed into
un+1 = (un + 1)e−γ un−

(β∗n+β1)vn
√

un+h+1 − 1,

vn+1 = vne
(β∗n+β1)(un+1)
√

un+h+1
−1
,

β∗n+1 = β
∗
n.

(3.2)

By the Taylor expansion, the system (3.2) at (un, vn, β
∗
n) = (0, 0, 0) can be written as

un

vn

β∗n

→

1 − γ −1 0

0 1 0
0 0 1



un

vn

β∗n

 +

g1(un, vn, β

∗
n) + o(ρ3

1)
g2(un, vn, β

∗
n) + o(ρ3

1)
0

 , (3.3)

where ρ1 =

√
u2

n + v2
n + β

∗
n

2,
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g1(un, vn, β
∗
n) = u2

n(
γ2

2
− γ) +

v2
n

2
+ unvn(γ − 1 +

1
2(h + 1)

) −
vnβ
∗
n

√
h + 1

−
v3

n

6

+ u3
n(−
γ3

6
+
γ2

2
) + u2

nvn(
1

2(h + 1)
−

3
8(h + 1)2 + γ −

γ

2(h + 1)
−
γ2

2
)

+ unv2
n(

1
2
−

1
2(h + 1)

−
γ

2
) +

v2
nβ
∗
n

√
h + 1

+ unvnβ
∗
n(

γ
√

h + 1
−

1
√

h + 1
+

1

2(h + 1)
3
2

),

g2(un, vn, β
∗
n) = unvn(1 −

1
2(h + 1)

) +
vnβ
∗
n

√
h + 1

+
u2

nvn

2
(1 −

1
h + 1

)2 +
vnβ
∗
n

2

2(h + 1)

+ unvnβ
∗
n(

2
√

h + 1
−

1

(h + 1)
3
2

).

It is easy to derive the three eigenvalues of the matrix

A =


1 − γ −1 0

0 1 0
0 0 1

 ,
to be λ1 = 1 − γ and λ2 = λ3 = 1 with corresponding eigenvectors

ξ1 =


1
0
0

 , ξ2 =

− 1
γ

1
0

 , ξ3 =


0
0
1

 .
Notice 0 < γ , 2 implies that |λ1| , 1.
Set T = (ξ1, ξ2, ξ3), i.e.,

T =


1 − 1

γ
0

0 1 0
0 0 1

 ,
then,

T−1 =


1 1

γ
0

0 1 0
0 0 1

 .
Taking the following transformation

(un, vn, β
∗
n)T = T (Xn,Yn, δn)T ,

the system (3.3) is changed into the following form
Xn

Yn

δn

→

1 − γ 0 0

0 1 0
0 0 1



Xn

Yn

δn

 +

g3(Xn,Yn, δn) + o(ρ3

2)
g4(Xn,Yn, δn) + o(ρ3

2)
0

 , (3.4)
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where ρ2 =
√

X2
n + Y2

n + δ
2
n,

g3(Xn,Yn, δn) = g1(Xn −
1
γ

Yn,Yn, δn) +
1
γ

g2(Xn −
1
γ

Yn,Yn, δn),

g4(Xn,Yn, δn) = g2(Xn −
1
γ

Yn,Yn, δn).

Assume on the center manifold

Xn = h(Yn, δn) = a20Y2
n + a11Ynδn + a02δ

2
n + o(ρ2

3),

where ρ3 =
√

Y2
n + δ

2
n, then, from

Xn+1 =(1 − γ)h(Yn, δn) + g1(h(Yn, δn) −
1
γ

Yn,Yn, δn)

+
1
γ

g2(h(Yn, δn) −
1
γ

Yn,Yn, δn) + o(ρ2
3),

h(Yn+1, δn+1) =a20Y2
n+1 + a11Yn+1δn+1 + a02δ

2
n+1 + o(ρ2

3)

=a20(Yn + g2(Xn −
1
γ

Yn,Yn, δn)2

+a11(Yn + g2(Xn −
1
γ

Yn,Yn, δn)δn + a02δ
2
n + o(ρ2

3),

and Xn+1 = h(Yn+1, δn+1),we obtain the center manifold equation

(1 − γ)h(Yn, δn)+g1(h(Yn, δn) −
1
γ

Yn,Yn, δn)

+
1
γ

g2(h(Yn, δn) −
1
γ

Yn,Yn, δn) + o(ρ2
3)

=a20(Yn + g2(Xn −
1
γ

Yn,Yn, δn)2

+a11(Yn + g2(Xn −
1
γ

Yn,Yn, δn)δn + a02δ
2
n + o(ρ2

3).

By comparing the corresponding coefficients of terms with the same order in the above center
manifold equation, it is easy to derive that

a20 =
−2h − γ − 1
γ3(2h + 2)

, a11 =
1 − γ

γ2
√

h + 1
, a02 = 0.

Therefore, the system (3.4) restricted to the center manifold is given by

Yn+1 = f1(Yn, δn) :=Yn + g2(h(Yn, δn) −
1
γ

Yn,Yn, δn) + o(ρ3
3)

=Yn +
2h + 1
γ(2h + 2)

Y2
n −

Ynδn
√

h + 1
+ o(ρ2

3)
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It is not difficult to calculate

f1(Yn, δn)|(0,0) = 0,
∂ f1

∂Yn
|(0,0) = 1,

∂ f1

∂δn
|(0,0) = 0,

∂2 f1

∂Yn∂δn
|(0,0) = −

1
√

h + 1
, 0,
∂2 f1

∂Y2
n
|(0,0) =

2h + 1
γ(h + 1)

, 0.

According to (21.1.43)–(21.1.46) in [24, p507], for a transcritical bifurication to occur, all condi-
tions hold, hence, the system (1.7) undergoes a transcritical bifurcation at the fixed point E1. The proof
is over.

Next we consider Case II: β ,
√

h + 1, γ = 2. By Theorem 2.2, one can see that λ1 = −1 and
|λ2| , 1when β ,

√
h + 1, γ = 2. Thereout, the following result can be derived.

Theorem 3.2. Let γ1 = 2. Suppose the paramenters (h, β, γ) ∈ Ω2 ={
(h, β, γ) ∈ R3

+ | h > 0, β > 0, β ,
√

h + 1, γ > 0
}
. If the parameter γ varies in a small neighbor-

hood of the critical value γ1, then the system (1.7) undergoes a period-doubling bifurcation at the
fixed point E1 when the parameter γ goes through the critical value γ1.

Proof. Shifting E1 = (1, 0) to the origin O(0, 0) and giving a small perturbation γ∗ of the parameter γ
at the critical value γ1 with 0 < |γ∗| ≪ 1, the system (3.1) is changed into the following form: un+1 = (un + 1)e−(γ∗+2) un−

βvn√
un+h+1 − 1,

vn+1 = vne
β(un+1)
√

un+h+1
−1
.

(3.5)

Set γ∗n+1 = γ
∗
n = γ

∗, then (3.5) can be seen as
un+1 = (un + 1)e−(γ∗+2) un−

βvn√
un+h+1 − 1,

vn+1 = vne
β(un+1)
√

un+h+1
−1
,

γ∗n+1 = γ
∗
n.

(3.6)

By the Taylor expansion, the system (3.6) at (un, vn, β
∗
n) = (0, 0, 0) can be expended into

un

vn

β∗n

→

−1 −

β
√

h+1
0

0 e
β
√

h+1
−1 0

0 0 1



un

vn

β∗n

 +

g5(un, vn, γ

∗
n) + o(ρ3

4)
g6(un, vn, γ

∗
n) + o(ρ3

4)
0

 , (3.7)

where ρ4 =
√

u2
n + v2

n + γ
∗
n

2,

g5(un, vn, γ
∗
n) = v2

n
β2

2(h + 1)
+ unvn(

β
√

h + 1
+

β

2(h + 1)
3
2

) − vnγ
∗
n

+
2u3

n

3
− v3

n
β3

6(h + 1)
3
2

− unvn(
β

2(h + 1)
3
2

−
3β

8(h + 1)
5
2

)

+ u2
nγ
∗
n − unv2

n(
β2

2(h + 1)2 +
β2

2(h + 1)
) + unvnγ

∗
n
β

√
h + 1

,

g6(un, vn, γ
∗
n) = unvn[β(

1
√

h + 1
−

1

2(h + 1)
3
2

) e( β
√

h+1
−1)]

Electronic Research Archive Volume 31, Issue 8, 4484–4506.



4495

− u2
nvne( β

√
h+1
−1)[β(

1

2(h + 1)
3
2

−
3

8(h + 1)
5
2

) −
β2( 1

√
h+1
− 1

2(h+1)
3
2
)2

2
].

It is not difficult to derive the three eigenvalues of the matrix

A =


−1 −

β
√

h+1
0

0 e
β
√

h+1
−1 0

0 0 1

 ,
to be λ1 = −1, λ2 = e( β

√
h+1
−1) and λ3 = 1 with corresponding eigenvectors

ξ1 =


1
0
0

 , ξ2 =

−

β

(e
β
√

h+1
−1
+1)
√

h+1
1
0

 , ξ3 =


0
0
1

 .
Notice β ,

√
h + 1 implies |λ2| , 1.

Set T = (ξ1, ξ2, ξ3), i.e.,

T =


1 −

β

(e
β
√

h+1
−1
+1)
√

h+1
0

0 1 0
0 0 1

 ,
then,

T−1 =


1 β

(e
β
√

h+1
−1
+1)
√

h+1
0

0 1 0
0 0 1

 .
Taking the following transformation

(un, vn, γ
∗
n)T = T (Xn,Yn, δn)T ,

the system (3.7) is changed into the following form
Xn

Yn

δn

→

−1 0 0

0 e
β
√

h+1
−1 0

0 0 1



Xn

Yn

δn

 +

g7(Xn,Yn, δn) + o(ρ3

5)
g8(Xn,Yn, δn) + o(ρ3

5)
0

 , (3.8)

where ρ5 =
√

X2
n + Y2

n + δ
2
n,

g7(Xn,Yn, δn) = g5(Xn −
β

(e
β
√

h+1
−1
+ 1)
√

h + 1
Yn,Yn, δn)

+
β

(e
β
√

h+1
−1
+ 1)
√

h + 1
g6(Xn −

β

(e
β
√

h+1
−1
+ 1)
√

h + 1
Yn,Yn, δn),

g8(Xn,Yn, δn) = g6(Xn −
β

(e
β
√

h+1
−1
+ 1)
√

h + 1
Yn,Yn, δn).
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Suppose on this center manifold

Yn = h(Xn, δn) = b20X2
n + b11Xnδn + b02δ

2
n + o(ρ2

6),

where ρ6 =
√

X2
n + δ

2
n, which must satisfy

Yn+1 =e
β
√

h+1
−1h(Yn, δn) + g8(Xn, h(Yn, δn), δn) + o(ρ3

6).

Similar to Case I, one can establish the corresponding center manifold equation. Comparing the
corresponding coefficients of terms with the same type in the equation produces

b20 = 0, b11 = 0, b02 = 0.

That is to say, Yn = h(Xn, δn) = o(ρ2
6). Therefore, the center manifold equation is given by

Xn+1 = f2(Xn, δn) := −Xn + g7(Xn, h(Yn, δn)

= − Xn + g5(Xn −
β

(e
β
√

h+1
−1
+ 1)
√

h + 1
h(Xn, δn), h(Xn, δn), δn)

+
β

(e
β
√

h+1
−1
+ 1)
√

h + 1
g6(Xn −

β

(e
β
√

h+1
−1
+ 1)
√

h + 1
h(Xn, δn), h(Xn, δn), δn)

+o(ρ3
6)

= − Xn − Xnδn + X2
nδn +

2
3

X3
n + o(ρ3

6).

Thereout, one has

f 2
2 (Xn, δn) = f2( f2(Xn, δn), δn) = Xn + 2Xnδn + Xnδ

2
n −

4
3

X3
n + o(ρ3

6).

Therefore, the following results are derived:

f2(0, 0) = 0,
∂ f2

∂Xn
|(0,0) = −1,

∂ f 2
2

∂δn
|(0,0) = 0,

∂2 f 2
2

∂X2
n
|(0,0) = 0,

∂2 f 2
2

∂Xn∂δn
|(0,0) = 2 , 0,

∂3 f 2
2

∂Xn
3 |(0,0) = −8 , 0,

which, according to (21.2.17)–(21.2.22) in [24, p516], satisfy all conditions for a period-doubling
bifurcation to occur. Therefore, the system (1.7) undergoes a period-doubling bifurcation at E1. Again,

−
∂3 f 2

2

∂X3
n
|(0,0)/

∂2 f 2
2

∂Xn∂δn
|(0,0) = 4(> 0).

Therefore, the period-two orbit bifurcated from E1 lies on the right of γ1 = 2.
Of course, one can also compute the following two quantities, which are the transversal condition

and non-degenerate condition for judging the occurrence and stability of a period-doubling bifurcation,
respectively (see [3,15–18]),

α1 =(
∂2 f2

∂Xn∂δn
+

1
2
∂ f2

∂δn

∂2 f2

∂Xn
2 )|(0,0),
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α2 =(
1
6
∂3 f2

∂Xn
3 + (

1
2
∂2 f2

∂Xn
2 )2)|(0,0).

It is easy to say α1 = −1 and α2 =
2
3 . Due to α2 > 0, the period-two orbit bifurcated from E1 is

stable. The proof is complete.
Finally, we consider Case III: β =

√
h + 1, γ = 2. At this time, the two eigenvalues of the linearized

matrix evaluated at this fixed point E1 are λ1 = −1 and λ2 = 1. The bifurcation problem in this case is
very complicated and will be considered future work.

3.2. For fixed point E2 = ( 1+
√

1+4hβ2

2β2 , γ
1+
√

1+4hβ2

2β2 (1 − 1+
√

1+4hβ2

2β2 ))

Consider the bifurcation of the system (1.7) at the fixed point E2. The parameters are divided into
the following three cases:

Case I: β =
√

4h + 2, γ , 8(4h+2)
4h+1 ;

Case II: β ,
√

4h + 2, γ = 8β2(1+
√

1+4hβ2)

3(
√

1+4hβ2)2+(7−2β2)
√

1+4hβ2+4(1−β2)
;

Case III: β =
√

4h + 2, γ = 8(4h+2)
4h+1 .

According to our calculations, there is no bifurcation under Case II. Additionally, the bifurcation
problem in case III is very complicated and will be considered future work. Therefore, we only con-
sider Case I.

Suppose the paramenters

(h, β, γ) ∈ Ω3 = {(h, β, γ) ∈ R3
+ | h > 0, β > 0, γ > 0, γ ,

8(4h + 2)
4h + 1

}.

Then the following result may be obtained.

Theorem 3.3. Suppose the paramenters (h, β, δ) ∈ Ω3 and meet γ < 8(4h+2)
4h+1 . Let β2 =

√
4h + 2. Then

the system (1.7) undergoes a Neimark-Sacker bifurcation at the fixed point E2 when the parament β
varies in a small neighborhood of the critical value β2. Moreover, if L < (>)0 in (3.13), then a (an)
stable (unstable) invariant closed orbit is bifurcated out from the fixed point E2 of system (1.7) when
β > (<)β2.

Proof. First, give a small perturbation β∗∗ of the parameter β around β2 in the system (3.1), i.e.,

β∗∗ = β − β2 with 0 < |β∗∗| ≪ 1, and set x01 = x01(β∗∗) = 1+
√

1+4h(β∗∗+β2)2

2(β∗∗+β2)2 and y01 = γx01(1 − x01). Under
the perturbation, the system (3.1) reads un+1 = (un + x01)e

−γ(1−(un−x01))− (β∗∗+β2)[vn+γx01(1−x01)]
√

un+x01+h − x01,

vn+1 = (vn + y01)e
( (β∗∗+β2)(un+x01)
√

un+x01+h
−1)
− y01.

(3.9)

The characteristic equation of the linearized equation of the system (3.9) at the origin (0,0) is

F(λ) = λ2 − p(β∗∗)λ + q(β∗∗) = 0, (3.10)

where

p(β∗∗) = 2 − γx01 +
γ(1 − x01)

2(β∗∗ + β2)2x01
,
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q(β∗∗) = 1 + γ(1 − 2x01).

Notice β2 =
√

4h + 2. For γ < 8(4h+2)
4h+1 , −2 < p(0) < 2, q(0) = 1, so p2(0) − 4q(0) < 0, and hence the

two roots of F(λ) = 0 are
λ1,2(β∗∗) = ω ± µi,

where ω = −1
2 p(β∗∗), µ = 1

2

√
4q(β∗∗) − p2(β∗∗).

It is easy to obseve that |λ1,2(β∗∗)| =
√

q(β∗∗) and (|λ1,2(β∗∗)|)
∣∣∣
β∗∗=0

=
√

q(0) = 1. Therefore, a
Neimark-Sacker bifurcation probably occurs.

The occurrence of the Neimark-Sacker bifurcation requires the following two conditions to be sat-
isfied:

1)
(

d|λ1,2(β∗∗)|
dβ∗∗

)∣∣∣∣∣
β∗∗=0
, 0;

2) λi
1,2(0) , 1, i = 1, 2, 3, 4.

Notice (d|λ1,2(β∗∗)|
dβ∗∗

)∣∣∣∣∣
β∗∗=0
=

γ (2h + 1)

(4 h + 1)
√

4 h + 2
, 0.

Obviously λi
1,2(0) , 1 for i = 1, 2, 3, 4, so the two conditions are satisfied.

Second, in order to derive the normal form of the system (3.9), one expands (3.9) in power series
up to the third-order term around the origin to get

un+1 = a10un + a01vn + a20u2
n + a11unvn + a02v2

n

+a30u3
n + a21u2

nvn + a12unv2
n + a03v3

n + o(ρ3
7),

vn+1 = b10un + b01vn + b20u2
n + b11unvn + b02v2

n

+b30u3
n + b21u2

nvn + b12unv2
n + b03v3

n + o(ρ3
7),

(3.11)

where ρ7 =
√

u2
n + v2

n,

a10 =
γ

8h + 4
−
γ

2
+ 1, a01 = −1,

a20 = (
γ

2
−
γ

8h + 4
)2 − γ +

γ

4h + 2
−

3γ
32(h + 1

2 )2
,

a11 = γ + −
γ

4h + 2
+

1
2h + 1

− 2, a02 = 1,

a30 =

(
γ −

γ

4 h + 2

) (
γ

2
−

γ

8 h + 4

)
−

3 γ

16
(
h + 1

2

)2 +
3 γ

(
γ

2 −
γ

8 h+4

)
32

(
h + 1

2

)2

+
5 γ

64
(
h + 1

2

)3 −

(
γ − γ

4 h+2

) ((
γ − γ

4 h+2

) (
γ

6 −
γ

24 h+12

)
−

3 γ

32 (h+ 1
2 )2

)
2

,
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a21 = 2 γ −
(
γ −

γ

4 h + 2

) (
γ

6
−

γ

24 h + 12

)
+

1
h + 1

2

−
3

8
(
h + 1

2

)2 −
γ

2 h + 1

−

γ

2 −
γ

8 h+4

2 h + 1
−

(
γ − γ

4 h+2

) (
2 γ
3 −

γ

6 h+3 +
1

2 h+1

)
2

+
3 γ

16
(
h + 1

2

)2 ,

a12 =
γ

4 h + 2
−

1
h + 1

2

− γ + 2, a03 = −
2
3
,

b10 =
γ

(
1 − 1

4 h+2

)
2

, b01 = 1, b20 =
γ [2(1 − 1

4h+2 )2 − 1
h+ 1

2
− 3

8(h+ 1
2 )2 ]

4
,

b02 = 0, b11 = 2 −
1

8h + 4
,

b03 = 0, b21 = 2
(
1 −

1
4 h + 2

)2

−
1(

h + 1
2

) + 3

8
(
h + 1

2

)2 , b12 = 0,

b30 =
γ

4

(
2 −

1
2 h + 1

) 2
(
1 − 1

4 h+2

)2

3
−

1
2 h + 1

+
3

16
(
h + 1

2

)2 ,


−
γ

4

 2√
h + 1

2

−
1

2
(
h + 1

2

)3/2


 1

2
√(

h + 1
2

) − 3

16
(
h + 1

2

)3/2


+
γ

4

 3

4
(
h + 1

2

)2 −
5

16
(
h + 1

2

)3

.
Take matrix

T =

0 a01

µ 1 − ω

 , then T−1 =

ω−1
µa01

1
µ

1
a01

0

 .
Make a change of variables

(u, v)T = T (X,Y)T ,

then the system (3.11) is changed to the following form:(
X
Y

)
→

(
ω −µ

µ ω

) (
X
Y

)
+

(
F(X,Y) + o(ρ4

8)
G(X,Y) + o(ρ4

8)

)
, (3.12)

where ρ8 =
√

X2 + Y2,

F(X,Y) = c20u2 + c11uv + c02v2 + c30u3 + c21u2v + c12uv2 + c03v3,

G(X,Y) = d20u2 + d11uv + d02v2 + d30u3 + d21u2v + d12uv2 + d03v3,

u = a01Y , v = µX + (1 − ω)Y,
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c20 =
a20(ω − 1)
µa01

+
b20

µ
, c11 =

a11(ω − 1)
µa01

+
b11

µ
, c02 =

a02(ω − 1)
µa01

+
b02

µ
,

c30 =
a30(ω − 1)
µa01

+
b30

µ
, c21 =

a21(ω − 1)
µa01

+
b21

µ
, c12 =

a12(ω − 1)
µa01

+
b12

µ
,

c03 =
a03(ω − 1)
µa01

+
b03

µ
, d20 =

a20

a01
, d11 =

a11

a01
, d02 =

a02

a01
, d30 =

a30

a01
,

d21 =
a21

a01
, d12 =

a12

a01
, d03 =

a03

a01

Furthermore,

FXX |(0,0) = 2c02µ
3, FXY |(0,0) = c11a01µ + 2c02µ(1 − ω),

FYY |(0,0) = 2c02a2
01 + 2c11a01(1 − ω), FXXX |(0,0) = 6c03µ

3,

FXXY |(0,0) = 2c21a01µ
2 + 6c03µ

2(1 − ω),
FXYY |(0,0) = 2c21a2

01µ + 4c12a01µ(1 − ω) + 6c03µ(1 − ω)2,

FYYY |(0,0) = 4(1 − ω)3 + 6c30a3
01 + 4c21a2

01(1 − ω) + 6c12a01(1 − ω)2,

GXX |(0,0) = 2d02µ
3,GXY |(0,0) = d11a01µ + 2d02µ(1 − ω),

GYY |(0,0) = 2d02a2
01 + 2d11a01(1 − ω),GXXX |(0,0) = 6c03µ

3,

GXXY |(0,0) = 2d21a01µ
2 + 6d03µ

2(1 − ω),
GXYY |(0,0) = 2d21a2

01µ + 4d12a01µ(1 − ω) + 6d03µ(1 − ω)2,

GYYY |(0,0) = 4(1 − ω)3 + 6d30a3
01 + 4d21a2

01(1 − ω) + 6d12a01(1 − ω)2.

To determine the stability and direction of the bifurcation curve (closed orbit) for the system (1.7),
the discriminating quantity L should be calculated and not to be zero, where

L = −Re
( (1 − 2λ1)λ2

2

1 − λ1
ζ20ζ11

)
−

1
2
|ζ11|

2 − |ζ02|
2 + Re(λ2ζ21), (3.13)

ζ20 =
1
8

[FXX − FYY + 2GXY + i(GXX −GYY − 2FXY)]|(0,0),

ζ11 =
1
4

[FXX + FYY + i(GXX +GYY)]|(0,0),

ζ02 =
1
8

[FXX − FYY − 2GXY + i(GXX −GYY + 2FXY)]|(0,0),

ζ21 =
1

16
[FXXX + FXYY +GXXY +GYYY

+ i(GXXX +GXYY − FXXY − FYYY)]|(0,0).

Based on [24–26], we see that if L < (>)0, then an attracting (a repelling) invariant closed curve
bifurcates from the fixed point for β > (<)β2.

The proof of this theorem is complete.
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4. Numerical simulation

In this section, we utilize Matlab to perform numerical simulations to validate the above theoretical
analysis through utilizing bifurcation diagrams, phase portraits, maximum Lyapunov expoents, and
fractal dimensions of the system (1.7) at the fixed point E2.

(a) β ∈ (1.4, 1.85) (b) β ∈ (1.4, 1.85)

Figure 1. Bifurcation of the system (1.7) in (β, x)-plane and maximal Lyapunov exponents.

Consider the fixed point E2. Vary β in the range (1.4, 1.85), and fix γ = 2, h = 0.2 with the initial
value (x0, y0) = (0.4, 0.5). Figure 1(a) shows that the existence of a Neimark-Sacker bifurcation at the
fixed point E2 = (0.5, 0.5) when β = β2 =

√
2.8 ≈ 1.6733. Figure 1(b) describes the spectrum of

maximum Lyapunov exponents, which are positive for the parameter β ∈ (1.4, 1.85), which leads to
chaos in system (1.7). For this, the interested readers may refer to [28] to create an electronic emulator
to get immediate results.

The phase portraits associated with Figure 1(a) are drawn in Figure 2. When β increases, a circular
curve enclosing the fixed point E2 appears.

By choosing a different initial value (x0, y0) = (0.52, 0.48) and three same values of β, the corre-
spending phase portraits are plotted in Figure 3. Figure 2 implies that the closed curve is stable outside,
while Figure 3 indicates that the closed curve is stable inside. That is to say, a stable invariant closed
curve around the fixed point E2 occurs. This agrees with the conclusion in Theorem 3.3.
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(a) β = 1.665 (b) β = 1.667 (c) β = 1.669

(d) β = 1.67 (e) β = 1.672 (f) β = 1.674

(g) β = 1.675 (h) β = 1.676 (i) β = 1.679

Figure 2. Phase portraits for the system (1.7) with γ = 2, h = 0.2 and different β with the
initial value (x0, y0) = (0.4, 0.5) outside the closed orbit.

(a) β = 1.675 (b) β = 1.676 (c) β = 1.679

Figure 3. Phase portraits for the system (1.7) with γ = 2, h = 0.2 and different β with the
initial value (x0, y0) = (0.52, 0.48) inside the closed orbit.
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5. Conclusions

In this paper, we consider a predator–prey model with the prey individual behaviour and herd be-
haviour. By using the semi-discretization method, the continuous system (1.4) is transformed to the dis-
crete system (1.7). Under the given parametric conditions, we demonstrate the existence and stability of

three nonnegative fixed points E0 = (0, 0), E1 = (1, 0) and E2 = ( 1+
√

1+4hβ2

2β2 , γ
1+
√

1+4hβ2

2β2 (1− 1+
√

1+4hβ2

2β2 )).
By using the center manifold theory, we determine the existence conditions of transcritical bifurcation
and period-doubling bifurcation in the fixed point E1 and the Neimark-Sacker bifurcation at the fixed
point E2 of system (1.7). we also derive that E2 is asymptotically stable when β > β2 =

√
4h + 2 and

unstable when β < β2. Additionally, the system (1.7) undergoes a Neimark-Sacker bifurcation when
the parameter β goes through the critical value β2. The occurrence for this phenomenon of Neimark-
Sacker bifurcation indicates the coexistence of prey and predator when the parameter β = β2.

Our findings indicate that the proposed discrete model shows a behaviour similar to the one found in
the corresponding continuous model [27]. In particular, it gives rise to stable populations limit cycles.
Ecologically, this means that the suggested response function may be adequate if we want to model the
prey herd behaviour that takes place only for a sizable population, namely when the population level
settles in a certain threshold (critical value).
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Appendix

We here give a definition and a key Lemma.

Definition 5.1. Let E(x, y) be a fixed piont of the system (1.7) with multipliers λ1 and λ2.
(i) If |λ1| < 1 and |λ2| < 1, E(x, y) is called sink, so a sink is locally

asymptotically stable.
(ii) If |λ1| > 1 and |λ2| > 1, E(x, y) is called source, so a source is

locally asymptotically unstable.
(iii) If |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1), E(x, y) is called

saddle.
(iv) If either |λ1| = 1 or |λ2| = 1, E(x, y) is called to be non-hyperbolic.
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Lemma 5.2. Let F(λ) = λ2 + Bλ + C, where B and C are two real constants. Suppose λ1 and λ2 are
two roots of F(λ) = 0. Then the following statements hold.

(i) If F(1) > 0, then
(i.1) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and C < 1;
(i.2) λ1 = −1 and λ2 , −1 if and only if F(−1) = 0 and B , 2;
(i.3) |λ1| < 1 and |λ2| > 1 if and only if F(−1) < 0;
(i.4) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and C > 1;
(i.5) λ1 and λ2 are a pair of conjugate complex roots and, |λ1| = |λ2| = 1

if and only if −2 < B < 2 and C = 1;
(i.6) λ1 = λ2 = −1 if and only if F(−1) = 0 and B = 2.

(ii) If F(1) = 0, namely, 1 is one root of F(λ) = 0, then another root
λ satisfies |λ| = (<, >)1 if and only if |C| = (<, >)1.

(iii) If F(1) < 0, then F(λ) = 0 has one root lying in (1,∞). Moreover,
(iii.1) the other root λ satisfies λ < (=) − 1 if and only if F(−1) < (=)0;
(iii.2) the other root −1 < λ < 1 if and only if F(−1) > 0.
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