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Abstract: The coal mine internet of things (IoT) communication system is used for real-time 
monitoring of mining production to ensure the safety and reliability of personnel and equipment in the 
mine. To eliminate multipath fading in the process of wireless communication in mines, multiple-
output multiplexing (MIMO) and orthogonal frequency division multiplexing (OFDM) technologies 
are introduced. In this paper, a wireless communication system architecture of IoT in mining based on 
MIMO-OFDM is constructed. Aiming to solve the problems of intersymbol interference and frequency 
selective fading at the receiver, an improved minimum mean square error ordered successive 
interferences cancellation (MMSE-OSIC) signal detection algorithm is proposed. First, the signal-to-
interference plus noise ratio of the received signal is calculated and the calculation results are sorted. 
The lowest signal-to-noise ratio is selected as the weakest signal layer. Then, the MMSE-OSIC 
algorithm is used to extract all of the signals, except the weakest layer. Finally, a maximum likelihood 
(ML) algorithm is used to traverse the whole signal domain; the signal symbol with the smallest 
distance from the weakest signal layer is found as the original signal of the weakest signal layer, and 
it is combined with the signal detected by MMSE-OSIC; then, the final signal detection result is 
obtained. The simulation results show that, compared with three benchmark algorithms, the proposed 
MMSE-OSIC algorithm has better signal detection performance under the conditions of different 
modulation methods and different channel numbers. 
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1. Introduction  

At present, the common problems in underground coal mine communication systems in China are 
poor anti-interference performance, excessive background noise, low reliability and a harsh 
underground environment, which makes intelligent 5G communication equipment unable to achieve 
optimal performance in underground mobile communication systems. Therefore, improving the 
communication quality, anti-interference and noise resistance of existing underground mobile 
communication systems in coal mines, improving spectrum utilization and ensuring communication 
reliability, effectiveness and real-time performance are of great significance for the improvement of 
underground communication technology, safe production in coal mines and the modernization of the 
coal industry [1]. By applying the IoT technology to a coal mine environment, the mining-purposed 
IoT communication system is built, which can provide a new way to solve mine-related safety 
problems. The special working environment in coal mines makes mining production extremely 
dangerous. The use of a mining-purposed IoT system can enable the real-time detection of mining 
production safety conditions, which can effectively improve the reliability of underground personnel 
safety. Therefore, the effectiveness and reliability of the mining-purposed IoT communication system 
is an important guarantee for the safe production in coal mines. Currently, mining wireless 
communication systems include cellular communication (4G/5G), Wi-Fi, wireless sensor networks 
(WSN), ultra-wideband (UWB), visible light communication (VLC), etc. Mining-purposed wireless 
communication technology is mature, and there are many wireless communication methods available 
in mines, but there is a serious multipath fading problem in the actual mining-purposed IoT wireless 
communication system. Multipath fading can destroy the transmission characteristics of signals and 
generate intersymbol interference [2], which degrades the quality of wireless communication systems 
and reduces the reliability of underground communication systems. Therefore, the multipath fading 
problem of signal transmission has become a key factor restricting the communication reliability of 
the mining-purposed IoT system. 

In a mine tunnel, signals affected by the channel environment in the transmission process will 
reach the receiver through multiple paths, resulting in mutual influence of signals, known as 
intersymbol interference. Therefore, eliminating inter-code interference is an important problem faced 
by mining communication systems. Because the traditional anti-multipath fading scheme is difficult 
to effectively implement in underground coal mines, the combination of orthogonal frequency division 
multiplexing (OFDM) technology and multiple-input multiple-output multiplexing (MIMO) 
technology can not only remove the influence of intersymbol interference and solve the problem of 
frequency-selective fading, but it can also increase the channel capacity [3]. MIMO technology makes 
full use of the spatial selectivity by dividing the channel into several sub-channels, causing the system 
capacity to significantly increase and the system spectrum utilization rate to correspondingly improve. 
OFDM can effectively suppress the frequency-selective fading caused by multipath propagation [4]. 
The combination of MIMO technology and OFDM technology allows for full exploitation of their 
respective advantages, which affords more advantages than other technologies. However, in a MIMO-
OFDM system, the multiple receiving antennas at the receiving end receive mostly mixed noise and 
interference signals, so the signal detection technology becomes particularly important and plays a 
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crucial role in improving the performance of the MIMO-OFDM communication system. 
Signal detection is a technique that processes the baseband signal at the receiver to restore the 

transmission and signal. The purpose of MIMO signal detection is to use accurate channel state 
information to remove the influence of noise and interference in the received signal, and thereby 
recover the transmitted symbols. There have been many literature reviews on MIMO signal detection 
methods [5,6]. First, the best signal detection algorithm represented by the maximum likelihood (ML) 
algorithm can globally traverse the entire vector space of the transmitted signal, and this algorithm can 
yield the optimal solution. However, the complexity of this algorithm is high, especially when the 
number of antennas introduce high dimensionality, making the implementation of the algorithm 
extremely difficult. Second, typical linear detection algorithms use a weighted matrix to eliminate 
interference and perform linear filtering on the received signal. For example, zero forcing (ZF) 
detection and minimum mean square error (MMSE), where the ZF detection can remove interference 
between different antennas, but it also amplifies the noise in the process, resulting in higher detection 
errors when the signal-to-noise ratio (SNR) is low. The MMSE detection algorithm is improved on the 
basis of the ZF detection, which can be seen as a matching filter to further balance the effect of noise, 
resulting in better bit error rate (BER) performance. Finally, the most common nonlinear detection 
algorithm is the sequential interference cancellation (SIC) algorithm, which adds a decision feedback 
step to the linear algorithm and can be seen as an improvement of the linear algorithm; examples 
include ZF-SIC detection and MMSE-SIC detection algorithms. However, all of the above three signal 
detection methods have their own advantages and disadvantages and cannot be directly applied to coal 
mine scenarios. Therefore, it is necessary to design a new signal detection algorithm for actual coal 
mine wireless communication systems. 

At present, the research on MIMO-OFDM systems for mines mainly focuses on channel modeling. 
Sun and Chen [7] analyzed the propagation characteristics of signals in a mine and obtained the optimal 
transmission frequency of electromagnetic waves through the use of the actual measurement data in 
the mine. He proposed 5G with large-scale MIMO antennas to be the key technology that will become 
the wireless communication technology for mining in the future. Wang et al. [8] presented a statistical 
model of broadband channels in mine tunnels and established a MIMO-OFDM system for mines. On 
this basis, the transmission performance of MIMO-OFDM technology in multipath fading was 
analyzed. Yao and Wu [9] established the mining-purposed MIMO correlation channel model by 
considering that the channel capacity of underground MIMO would be affected by the scattering 
parameters and antenna array correlation. In [10], a stochastic MIMO channel model was first 
proposed based on the wireless propagation conditions in mine tunnels, and then two spatial correlation 
channel models were established through the use of correcting channel matrices based on an abundant 
scattering environment. Zhang et al. [11] proposed a modeling method for MIMO correlation channels 
in coal mine tunnels. This method utilizes the impact response of electromagnetic waves propagating 
in the tunnel to obtain the frequency response of a single-input single-output system. Liu et al. [12] 
established a MIMO channel model of a coal mine and deduced the spatial correlation function of the 
channel model. Zhang et al. [13] studied the multiple factors affecting the MIMO information channel 
volume in an underground mine and conducted simulation analysis based on the application problems 
of MIMO in the special communication environment of a restricted non-free space in an underground 
mine. In [14], a novel fast recursive successive interference cancellation multi-user detection algorithm 
with inverse detection order is presented to reduce the computational complexity and improve the 
system capacity. A comparison of MIMO-OFDM systems for mines is presented in Table 1. However, 
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most of these existing research methods focus on the analysis of the usability of MIMO-OFDM 
technology in underground mines, and there is relatively little research on signal detection methods for 
resisting multipath fading in underground coal mines. Therefore, it is necessary to investigate a signal 
detection algorithm for MIMO-OFDM systems for mines. 

Table 1. Research comparison of MIMO-OFDM methods for use in mines. 

Reference Key method Feature
[9] Layered space-time codes and space-

time trellis codes. 
Overcome the impact of strong spatial 
correlation

[10] A stochastic MIMO channel model 
and two spatial correlation channel 
models. 

The error rate performance of the complex 
correlation channel model is closer to the 
measured data.

[11] A model of MIMO correlation 
channels. 

The existence of correlation reduces the 
capacity of the channel. Increasing the 
number and spacing of antennas can reduce 
the correlation coefficient and increase the 
channel capacity.

[12] The space-time correlation of MIMO 
channels in mines. 

The higher the spatial correlation of MIMO 
channels in coal mines, the higher the error 
rate of the system.

[13] The MIMO information channel and 
particle swarm algorithm.

The MIMO applied to the mine passageway 
has certain feasibility and practices.

[8] A modified time-varying multipath 
channel. 

Improve the capacity of the system and 
overcome the multipath fading. 

[14] MIMO-OFDM system and MMSE 
filter. 

Reduces the computational complexity and 
yields better detection performance.

[7] Mine-purposed 5G mobile 
communication. 

Improves the stability and reliability of 
wireless communication systems in mines.

Traditional signal detection algorithms can be divided into three categories, namely, linear 
detection algorithms, nonlinear detection algorithms and optimal detection algorithms; detailed 
research on these methods can be found in [15–20]. Wang et al. [21] made use of a traversal search 
technique in an ML detection algorithm to selectively modify the detection results of a zero forcing-
ordered successive interference cancellation (ZF-OSIC) algorithm, so as to improve the detection 
performance with minimal increase in algorithm complexity; however, the detection performance of 
this algorithm is poor. In order to reduce the error probability, a V-BLAST algorithm has been 
proposed [22]. The principle of the V-BLAST algorithm is to preferentially detect the signal with a 
high SNR each time, so as to improve the quality of each judgment and minimize error propagation. 
But, the total computational complexity of this algorithm is too high. Elgabli et al. [23] proposed a 
signal detection algorithm based on the alternating minimization technique. When the number of 
sender antennas is close to the number of receiver antennas, the complexity of the algorithm is lower. 
Wu and Fu [24] proposed a large-scale MIMO signal detection algorithm based on a deep neural 
network; it has the advantages of low complexity, a fast convergence speed and good detection 
performance. Li et al. [25] proposed an end-to-end MIMO system signal detection scheme based on 
deep learning, which has better detection performance than MMSE algorithms in terms of time 
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complexity. Jin and Kim [26] proposed a parallel detection network, which is composed of multiple 
detection networks based on deep learning in parallel. By designing a specific loss function, the 
similarity between detection networks is reduced and the system performance is improved. Liao et al. [27] 
introduced the cyclic structure into the neural network and proposed a low-complexity MIMO system 
detection network. The detection scheme can be trained from scratch, it has a cyclic network structure 
and it can be converted from other deep neural network models. At present, signal detection algorithms 
based on ML are considered to be the most popular type of scheme. To overcome the problem of high 
computational complexity of the ML detection algorithm for the generalized space shift keying (GSSK) 
systems, a low-complexity detection algorithm based on compressed sensing theory was proposed [28]. 
Focusing on the high complexity of the maximal ratio combining (MRC) signal detection in a MIMO 
orthogonal time frequency space (OTFS) system, a low-complexity MRC estimation algorithm was 
proposed [29]. In [30], an improved Richardson signal detection method is proposed; it uses the 
steepest descent and the whole-correction methods to improve the performance of the Richardson 
algorithm. In [31], a method that combines deep learning and successive interference cancellation 
algorithms for uplink signal detection in a massive MIMO system was proposed. Shen et al. [32] 
proposed a new signal detection algorithm for the uplink of MIMO systems that combines the 
orthogonal approximate message passing algorithm with a sparsely connected neural network to form 
a trainable network structure. Based on the structure and sparsity of multi-user generalized spatial 
modulation signals, the detection problem is transformed into a block sparse recovery problem, and a 
block-sparsity adaptive matching pursuit algorithm was proposed [33]. In practical applications, the 
availability of an algorithm depends on its detection performance and computational complexity. 
Unlike surface applications, the environmental parameters for mines are more complex and the 
equipment power is limited.  

Based on the above analysis, this paper mainly focuses on the performance of traditional signal 
detection algorithms in a MIMO-OFDM system under the conditions of a coal mine environment and 
presents an improved MMSE-OSIC signal detection algorithm suitable for the coal mine-purposed IoT 
system. The main contributions of this article are summarized as follows. 

• A MIMO-OFDM signal detection system with mining-purposed IoT is proposed. In this 
system, the capacity of the IoT in mining system is increased by dividing the channel into several 
subchannels by using MIMO technology, and the OFDM technology is used to effectively suppress 
multipath fading. 

• An improved MMSE-OSIC signal detection algorithm is proposed. First, the signal-to-
interference plus noise ratio of the received signal is calculated and the calculated results are sorted. 
The lowest SNR is selected as the weakest signal layer. Then, MMSE-OSIC algorithm is used to extract 
all of the signals except the weakest layer. Finally, an ML algorithm is used to traverse the whole signal 
domain; the signal symbol with the shortest distance from the weakest signal layer is found as the 
original signal of the weakest signal layer and combined with the signal detected by MMSE-OSIC; 
then, the final signal detection result is obtained. 

• The effectiveness of the proposed algorithm is verified through extensive simulations. By 
comparison with ZF, ZF-OSIC and MMSE null criteria algorithms, the effectiveness of the MMSE-
OSIC algorithm is verified. Compared to the classical MMSE-OSIC and ML detection algorithms, the 
proposed algorithm has better performance under the conditions of different modulation methods and 
different channel multipath numbers. 
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2. MIMO-OFDM signal detection system for mining-purposed IoT 

This paper focuses on a MIMO-OFDM signal detection system for mining-purposed IoT, as 
shown in Figure 1. MIMO technology can achieve better multiplexing gain by using multiple antennas, 
thus improving the capacity and reliability of the wireless communication system [34]. The signal is 
encoded into the OFDM system through MIMO, and an OFDM symbol is formed by quadrature 
subcarrier modulation. It is transmitted to the mine by the transmitter, and the spatial information-
related channel is subject to interference by noise in the transmission process; the receiver receives the 
signal into the OFDM system for demodulation. The signal is detected by via a fast Fourier transform, 
and the original signal is finally recovered by MIMO decoding. 

 

Figure 1. MIMO-OFDM signal detection system for mining-purposed IoT. 

Therefore, the signal detection process of a MIMO-OFDM system for mines is described as 
follows: 

1) The signal is encoded by MIMO and then entered into the OFDM system for modulation. 
Through the series parallel conversion, the signal is expressed as 𝑋 , ,…, ; 

2) The signal changes from the frequency domain to the time domain signal through the fast 
Fourier inversion transformation, and with the cyclic prefix, the signal can be expressed as 𝑋(𝑡) , ,…, ; 

3) The signal enters the mine’s spatial correlation channel through the transmitting antenna, and 
it is received by the receiving antenna under the influence of channel noise. The received signal can 
be expressed as 𝑌(𝑡) , ,…, ; 

4) The received signal is demodulated into the OFDM system at the receiving end. After 
removing the cyclic prefix and performing the fast Fourier transform, the signal changes from the time 
domain to the frequency domain, which can be expressed as the fast Fourier transform. The signal 
changes from the time domain to the frequency domain, which can be expressed as 𝑌 , ,…, . The 
subcarrier of the signal is detected by the signal detection technology, and the detected signal can be 
expressed as 𝐾 , ,…, . 

The number of antennas at the transmitting end and the receiving end are respectively set as 𝑁  
and 𝑁 , and the matrix of the mine correlation channel is 𝐻 . Assuming that the channel is only 
affected by additive white Gaussian noise, the mean value of the noise vector 𝑁 is 0 and the variance 
is 𝜎 ; then, 
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 𝑌 = 𝐻 𝑋 + 𝑁 (1) 

For the MIMO-OFDM signal detection system in the mine, when the signal is detected, the 
subcarrier on the orthogonal subchannel is actually detected [35]. When there are K subcarriers, it is 
equivalent to the sum of signal detection for the matrix 𝑁 × 𝑁  of K channels. The notations in this 
paper are listed in Table 2. 

Table 2. List of symbols. 

Symbol Meaning 𝑁  Number of antennas at the transmitter𝑁  Number of antennas at the receiver𝑯  Matrix of correlation channel𝑁 Additive Gaussian white noise𝐾 Number of subcarriers𝑊  Weighted matrix using MMSE𝐻 Channel matrix𝜎  Noise variance𝐼 Unit matrix𝑆𝐼𝑁𝑅 Signal-to-interference-noise ratio𝐸  Energy of the transmitted signal
ℎ  Column 𝑖 of channel matrix𝑟 Received signal𝑠 All symbol sequences at the transmitter𝐶 Spatial domain𝑌  Received signal for i-th detection𝑃(𝑟 𝑠⁄ ) Likelihood function estimation𝑥  The i-th symbol to be detected after sorting𝜎  Statistical information of interference𝑥  Slice value of the i-th symbol to be detected after sorting 

3. MMSE-OSIC detection method 

The MMSE-OSIC method entails the use of one of the OSIC detection algorithms. It uses the 
MMSE as a criterion to extract the signal containing noise and reduce the influence of noise. 

The OSIC algorithm is a nonlinear signal detection algorithm, which itself is an improvement on 
linear detection algorithms MMSE and ZF. OSIC achieves better detection performance with minimal 
increase in complexity [36]. The OSIC algorithm can be roughly divided into several steps, such as 
sorting, zeroization and interference elimination. The whole process can be described as follows: 

• Use the receiving end of the system to sort the sent signals in a certain order after receiving them; 
• Test in sequence according to the order; 
• Subtract the signal detected through quantitative feedback each time from the original 

received signal to avoid the influence of the first detected signal on the subsequent detected signal. 
In turn, the OSIC signal detection process for detecting the signal in its entirety is shown in 

Figure 2. 



3950 

Electronic Research Archive  Volume 31, Issue 7, 3943–3962. 

 

Figure 2. The flowchart of the OSIC signal detection process. 

In Figure 2, 𝑥  represents the i-th symbol to be detected after sorting, 𝑥  is the slice value of 𝑥  
and ℎ  is the i-th column of the channel matrix. Here, the first line of the weighted matrix of the MMSE 
or ZF is used to estimate and slice the first data stream to obtain 𝑥 , and then 𝑥  is subtracted from the 
signal received by the receiver to obtain the remaining signal. The whole process is shown in formula (2). 

 𝑦( ) = 𝑦 − ℎ( )𝑥( ) = ℎ( ) 𝑥( ) − 𝑥( ) + ℎ( )𝑥( ) + ⋯ + ℎ( )ℎ( ) + 𝑛 (2) 

In formula (2), only when 𝑥( ) is completely equal to 𝑥( ) can the interference of the previous 
symbol 𝑥( ) be eliminated when the next symbol 𝑥( ) is estimated, so as to avoid error propagation. 
Therefore, the selection of the estimation sequence and zero-trap criterion is crucial for signal detection. 

The MMSE is one of the commonly used zero-trap criteria. In the MMSE-OSIC algorithm, the 
first line 𝑊  of the MMSE weighting matrix is used to estimate and slice the received data, and 
the corresponding 𝑥  is obtained. The calculation formula for 𝑊  is shown in formula (3). 

 𝑊 = (𝐻 𝐻 + 𝜎 𝐼) 𝐻  (3) 

where 𝐻 represents the channel matrix, 𝜎  represents the noise variance and 𝐼 represents the identity 
matrix of 𝑛 × 𝑛 . 

It can be ascertained from the formula that the influence of noise on signal detection is considered 
in the 𝑊  matrix. 

The MMSE criterion is used to detect signals sorted based on the signal-to-jamming and noise 
ratio (SINR); the posterior SINR can be expressed as 

 𝑆𝐼𝑁𝑅 = , ℎ∑ , ℎ , , 𝑖 = 1,2,3 … , 𝑁  (4) 

where 𝐸  is the energy of the transmitted signal, ℎ is the i-th column of the channel matrix, 𝜎  is the 
statistics of interference and 𝑊 ,  is the i-th row of the weighted matrix. As can be understood from 
the formula, the SINR changes with the mean square error, When the mean square error is the minimum, 
the SINR can achieve the maximum. When the SINR of all received signals is obtained, the layer 
corresponding to the maximum SINR can be found through comparison and detected. Before the next 
detection, the interference generated by the previous signal needs to be eliminated. Assuming that the 
i-th element of the transmitting signal is detected, the specific steps are as follows. First, delete the last 
detected signal and its column in the channel matrix to eliminate its channel gain and obtain a new 
channel matrix: 
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 𝐻 = ℎ , ℎ , … , ℎ , ℎ , … , ℎ  (5) 

Replace the original matrix with the new channel matrix to obtain the new MMSE weighted 
matrix 𝑊 , and repeat the above operations until all components are detected. Calculation in the 
MMSE-OISC algorithm requires 𝑁 (𝑁 + 1) 2⁄  times in total. 

Above all, the MMSE-OISC detection algorithm can be applied to scenes with large interference, 
such as mines, because it takes into account noise factors and has the advantage of low algorithm 
complexity. However, low algorithm complexity also leads to poor signal detection performance. In 
the mine scene, it is of great significance that a mine communication system be able to detect the signal 
accurately and effectively, so this paper focuses on an improved MMSE-OSIC detection algorithm, 
which can adapt to the influence of mine-specific environmental factors to ensure the performance of 
signal detection. 

4. Improved MMSE-OSIC detection algorithm 

4.1. ML detection algorithm 

The ML detection algorithm is recognized as the optimal detection algorithm. When a signal is 
received, the algorithm conducts a global search in all possible transmitting signal domains and looks 
for the transmitting symbol with the shortest distance from the received signal as the original 
transmitting symbol. According to the probability theory, if the system inputs are all sequences of 
information with equal probability, then, by comparing the conditional probability of these information 
sequences and selecting the information sequence with the largest conditional probability, the error 
probability of the decoder can be minimized. If the following formula is satisfied, the decoder will 
select 𝑠, namely, 

 𝑠 = arg max 𝑃(𝑟 𝑠)⁄  (6) 

For all information sequences, formula (9) is the expression for making the decision. If the 
likelihood function 𝑃(𝑟 𝑠)⁄  of a sequence 𝑠 reaches the maximum, the decoder selects the transmitted 
sequence 𝑠. 

Generally, the Bayesian maximum posterior probability criterion is the detection basis of ML 
estimation. When the estimated quantity 𝑠 is a random unknown parameter, the ML function 𝑃(𝑟 𝑠)⁄  
corresponding to 𝑠 needs to be taken as the estimator, i.e., 

 ( )⁄ | ̂ ( ) (7) 

Therefore, the ML detection criterion for MIMO-OFDM systems is expressed as 

 �̂� = argmax∈ ‖𝑟 − 𝐻𝑠‖ (8) 

where 𝑟 is the received signal, 𝐻 is the channel’s fading sparsity and 𝑠 denotes all possible symbol 
sequences sent by the sender. 

According to formula (1), the signal vector expression of a MIMO-OFDM system in a mine is 
established. The optimal ML detection algorithm vector expression can be expressed as 

 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛∈ 𝑝(𝑦|𝐻 , 𝑋) = 𝑎𝑟𝑔𝑚𝑖𝑛∈ ∥ 𝑌 − 𝐻 𝑥 ∥  (9) 
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It can be concluded from formula (9) that signal detection with the ML algorithm requires 
searching each lattice point one by one over the whole spatial domain 𝐶, and |𝐶|  ML metric values 
in total need to be calculated. 

4.2. MMSE-OSIC detection algorithm 

According to the above analysis, the core part of the MMSE-OSIC algorithm can be described as 
the following process: 

Initialization: 𝐺 = (𝐻 𝐻 + 𝜎 𝐼 ) 𝐻 . 
Iterative process: 

 

𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 (G )𝑦 = (G ) Y𝑥 = 𝑄 𝑦Y = Y − H 𝑥G = (H H + 𝜎 I ) H𝑖 = 𝑖 + 1
 (10) 

where represents the j-the row of weighted matrix 𝐺  based on the MMSE zero-notch criterion; 𝑘  
represents the detected signal layer 𝑖, 𝑌  represents the received signal detected for the i-th time, 𝑥  
represents the transmitted signal of the transmitting antenna 𝑘  of the quantitative judgment, 𝐼 is the 
unit matrix and 𝐻  is the 𝑘 -th column of the spatial correlation matrix 𝑯. When 𝑖 = 𝑁 + 1, all 
signals are detected. 

4.3. Improved signal detection algorithm 

According to formula (9), the ML algorithm is the optimal detection algorithm among all signal 
detection algorithms, but, with the increase of modulation order and the number of antennas, the 
amount of computation increases exponentially [37]. ML is often used for low-order simulations to 
compare the performance of other detection algorithms. Because the MMSE-OSIC algorithm 
considers the noise factor, it is suitable for underground mines. The MMSE algorithm has an advantage 
over ML in terms of computational complexity, but its detection performance is still much worse. 
However, note that, the signal can be accurately and effectively detected in mines, which is of great 
significance for a mine communication system. In this work, an improved MMSE-OSIC signal 
detection algorithm is obtained by combining the high performance of the ML algorithm and low 
complexity of the MMSE-OSIC algorithm. 

The SNR formula after detection by the improved MMSE-OSIC algorithm is 

 𝜌 = ‖ ‖ ∼ ‖ ‖  (11) 
where 𝜎  is the transmitted signal energy; 𝜎  is noise energy. ‖𝐺 ‖ is the norm of a weighted matrix 
based on the MMSE zero-notch criterion. It can be understood from formula (11) that the SNR 𝜌  is 
inversely proportional to the norm of 𝐺 . It can be seen from the algorithm flow formula for MMSE-
OSIC that the sorting criterion is to sort the SNR, which is achieved by detecting the strongest SNR 
first so as to reduce the signal interference of this layer to other layers. However, the signal with the 
lowest SNR is of poor quality and has a high possibility of error. If the signal at this layer can be 
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accurately detected, the performance of the system will be improved. Therefore, the influence brought 
by the weakest layer should be eliminated first, and the calculation expression is as follows: 

 𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥 (G )  (12) 

where 𝑘  is the weakest signal layer. 

 

Figure 3. Flowchart of MMSE-OSIC signal detection algorithm. 

After the weakest signal layer is detected by formula (12), the global search and detection of 
the weakest layer is accurately carried out in combination with the best detection performance of 
ML, so as to weaken the interference of the worst signal of this layer in other signals. The remaining 
signals will be detected by applying OSIC according to the MMSE’s zero-trap criterion, and all signals 
will be detected eventually. 
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It should be noted here that the determination of which value is the correct value of the detected 
signal is made by comparing the error metric 𝜁 obtained by traversing the search for various signal 
values, calculated as 

 𝜁 = ‖𝑟 − 𝐻𝑠‖  (13) 

The detection flow of the improved MMSE-OSIC detection algorithm is shown in Figure 3. The 
whole process can be divided into the following four steps: 

1) The receiver receives the signal and calculates the SNR value of each received signal. 
According to the calculated value, the SNR is sorted from small to large. The minimum value (the 
weakest signal layer) is selected for ML detection, various values are traversed and the remaining 
layers are sorted from large to small. 

2) MMSE detection and the sectioning of signals with the maximum SNR value are performed. 
3) The obtained slice value 𝑥  is multiplied by column ℎ  of the channel matrix. 
4) To eliminate the influence of the detected signal of the previous layer, the product of 𝑥  and ℎ  should be subtracted from the signal to obtain the signal that eliminates the interference of the 

detected signal layer, and column ℎ  of the channel matrix used for detection of the upper layer should 
also be removed. 

Repeat Steps 2 to 4 until all signals are detected. 

4.4. Complexity analysis 

The MMSE-OSIC detection algorithm with low complexity is improved by an ML traversal 
search, which reduces the influence of a wrong decision caused by poor signal quality on subsequent 
signals. 

From the perspective of the complexity of the algorithm, when ML detection of signals is carried 
out, it is necessary to conduct a global search for the ownership point of the modulation constellation; 
while the transmitting antenna is 𝑁 , B paths need to be searched. 

When the signal is detected via the MMSE-OSIC technique, the algorithm needs 𝑁 (𝑁 + 1) 2⁄  
operations on the signal. In the improved MMSE-OSIC algorithm, the worst signals are detected via a 
global ML search, all possible values of the modulation lattice points are determined and the remaining 
signals are detected by applying the MMSE-OSIC technique. Because the improved MMSE-OSIC 
algorithm adds the ML global search detection of the worst signal layer, the complexity of the 
improved MMSE-OSIC algorithm is 𝑁 (𝑁 + 1) 2⁄ + 𝐿 , which only increases the traversal of 𝐿 
values compared with MMSE-OSIC detection. 

5. Simulation and results analysis 

5.1. Performance analysis of OSIC algorithm based on different zero-trap criteria 

The ZF, ZF-OSIC, MMSE and MMSE-OSIC algorithms with different zero-trap criteria were 
simulated and compared by using MATLAB simulation software. Considering that most of the non-
line-of-sight path transmission exists in the mine passageway, the Nakagami spatial correlation 
channel model with m = 1 is adopted in order to conform to the characteristics of an underground mine 
channel, which is similar to a Rayleigh channel. In the simulation, we chose the quadrature phase shift 
keying (QPSK) and binary quadrature amplitude modulation (4QAM) methods. QPSK is the most 
commonly used orthogonal phase-shift keying modulation method; it has high spectral efficiency, 
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strong anti-interference ability and is relatively simple to implement in the circuit. QAM is a type of 
orthogonal amplitude modulation method in which the amplitude and phase of the carrier signal are 
used to represent different digital bit encodings during the modulation process. It combines multi-band 
and orthogonal carrier technology to further improve frequency band utilization. 4QAM represents the 
use of four signal points to transmit two bits of information. Generally, the higher the number of 
sampling points, the better the transmission efficiency. However, considering its practicality in 
underground mines, the 4QAM modulation method is chosen here. The system parameters were set as 
shown in Table 3; other simulation parameters can be found in [38–40]. 

Table 3. Simulation parameters.  

Parameter Value
Modulation method QPSK, 4QAM
Subframe length/ms 1 
Antenna configuration 4 × 4
Noise type Gaussian white noise with mean 0 and variance 1 

 

Figure 4. Comparison of OSIC algorithms with different zero-dip criteria under 4 × 4 
antenna QPSK modulation. 

Simulation results are shown in Figures 4 and 5. As we can see in Figures 4 and 5, when the SNR 
value is within the range of 0–5 dBm, the BERs obtained by the four detection algorithms do not differ 
significantly. When the SNR is greater than 5 dB, the BERs of the ZF-OSIC and MMSE-OSIC 
algorithms are significantly lower than those of the ZF and MMSE detection algorithms. Among them, 
under the conditions of the QPSK and 4QAM modulation methods, the maximum difference in BERs 
between the MMSE-OSIC and MMSE algorithms is about 4.2 × 10  and 3.7 × 10 , respectively. 
Therefore, the OSIC algorithm based on sorting criteria can significantly improve the detection 
performance of the linear detection algorithm, and the performance of 4QAM modulation is also better 
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than that of QPSK modulation. Compared with the linear detection algorithm, the OSIC BER decreases 
more with the increase of the SNR (Eb/N0). The detection performance of the OSIC algorithm using 
the MMSE zero-notch criterion is better than that based on the ZF zero-notch criterion; this is because 
the influence factor of noise is considered in the MMSE-OSIC algorithm. 

 

Figure 5. Comparison of OSIC algorithms with different estimation criteria under 4 × 4 
antenna 4QAM modulation. 

5.2. Performance analysis of MMSE-OSIC detection algorithm based on different modulation methods 

MATLAB simulation software was used to simulate the MMSE-OSIC algorithm, the improved 
MMSE-OSIC algorithm and ML detection algorithm in the mining-purposed MIMO-OFDM system. 
In this simulation, we used two modulation methods: binary phase shift keying (BPSK) and QPSK. 
These two methods belong to the phase-shift keying digital modulation method. BPSK has stronger 
noise resistance than QPSK, but the transmission efficiency is worse. BPSK is a two-phase-shift keying 
method, while QPSK is a four-phase-shift keying method, and QPSK modulation ensures both signal 
transmission efficiency and BER performance. The system parameter settings are shown in Table 4. 

Table 4. Simulation parameters. 

Parameter Value
Modulation method BPSK, QPSK
Subframe length/ms 1 
Antenna configuration 4 × 4
Noise type Gaussian white noise with mean 0 and variance 1 

The simulation results are shown in Figures 6 and 7. 
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Figure 6. Performance comparison of MMSE-OSIC, improved MMSE-OSIC and ML 
detection algorithms (BPSK modulation). 

 

Figure 7. Performance comparison of MMSE-OSIC, improved MMSE-OSIC and ML 
detection algorithms (QPSK modulation). 

Figure 6 shows a comparison of the BERs of the MMSE-OSIC algorithm, improved MMSE-
OSIC algorithm and ML detection algorithm using BPSK modulation. Figure 7 shows a comparison 
of the BERs of the MMSE-OSIC, improved MMSE-OSIC and ML detection algorithms using QPSK 
modulation. Comparing Figures 6 and 7, it can be seen that, when the SNR is in the range of 0–4 dB, 
the decrease in BER for each of the three algorithms is relatively smooth. When the SNR is greater 
than 4 dB, the magnitude of the decrease in BER for each of the three algorithms is significantly 
improved. In addition, the improved MMSE-OSIC algorithm has the lowest BER of approximately 10  



3958 

Electronic Research Archive  Volume 31, Issue 7, 3943–3962. 

under BPSK modulation, while the lowest BER under QPSK modulation is approximately 10  . 
Therefore, BPSK modulation is superior to QPSK modulation. As can be seen in Figure 6, the 
performance of the improved MMSE-OSIC algorithm is better than that of the MMSE-OSIC algorithm, 
but it has a slightly higher BER than the ML algorithm, which was shown to be the best performance 
algorithm. From the analysis of algorithm complexity, because the improved MMSE-OSIC pair only 
uses the ML algorithm to traverse search and detect the weakest signal layer, the remaining layers are 
detected by the MMSE-OSIC algorithm. Compared with all of the layers detected by the MMSE-OSIC 
algorithm, the complexity is slightly increased, but the detection performance is significantly improved. 

5.3. Performance analysis of the improved MMSE-OSIC signal detection algorithm based on channel 
multipath number 

MATLAB simulation software was used to conduct a performance simulation of the channel 
multipath at the receiving end of the MIMO-OFDM system based on the improved MMSE-OSIC 
signal detection algorithm. The system parameter settings are shown in Table 5. 

Table 5. Simulation parameters. 

Parameter Value 
Bandwidth/MHz 1 
Subcarrier number 256 
Bits/symbol 2 
Maximum time delay/ms 7 
Space-time coding STBC 
Cyclic prefix/µs 40 
Modulation method BPSK 
Antenna configuration 2 × 2 
Channel multipath number 2, 4, 6 

 

Figure 8. BER of MIMO-OFDM system under different multipath number conditions. 
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Figure 8 is a simulation diagram showing the influence of channel multipath number on the 
performance of the MIMO-OFDM communication system. 

As can be seen in Figure 8, with the increase of the SNR, the BER significantly decreases for 
different multipath numbers, with a multipath number of 6 yielding the lowest BER, almost 
reaching 10 . This indicates that, as the number of multipath channels increases, the performance of 
the communication system improves. This also proves that the MIMO-OFDM communication system 
has the advantage of resisting multipath fading. Coupled with the superior detection algorithm, the 
performance of the whole communication system is improved, and it is of great significance for the 
development of the whole underground mine communication system in the future. 

6. Conclusions 

MIMO technology utilizes spatial multipath effects to enhance the capacity of wireless channels, 
thereby improving the transmission rate and reliability. OFDM technology can achieve parallel 
transmission of multiple subcarriers by dividing a given channel into multiple orthogonal subchannels 
in the frequency domain. Therefore, it is of great significance to study the wireless communication 
system based on MIMO and OFDM in mines. In order to solve the multipath fading problem in IoT 
communication systems for coal mines, a MIMO-OFDM-based coal mine-specific IoT system was 
constructed by combining MIMO and OFDM technologies. Due to the complex environment and 
serious noise interference under the mine, an improved MMSE-OSIC signal detection algorithm has 
been proposed. First, the SINR of the received signal is calculated and sorted. An ML algorithm is used 
to find the weakest layer of the received signal and search for the nearest sending symbol as the original 
sending signal. Then, MMSE-OSIC algorithm is used to extract all signals without the weakest layer 
of the signal. Finally, the improved MMSE-OSIC algorithm was simulated and verified on the MIMO-
OFDM system. Through extensive simulations, we can draw the following conclusions. On the one 
hand, the OSIC algorithm with the MMSE as the zero-trap criterion and SINR as the sorting criterion 
is the optimal signal detection algorithm. On the other hand, due to the complexity of underground 
mine environments and serious noise interference, the MMSE zero-trap criterion and OSIC algorithms 
for sorting the SNR are suitable algorithms for underground mine signal detection algorithms. 
Moreover, the BER of the improved MMSE-OSIC algorithm has been demonstrated to be lower than 
that of the traditional MMSE-OSIC algorithm when the algorithm complexity is not increased 
significantly. The results are of great significance for improving the communication performance of 
IoT systems for mines. However, in order to simplify the analysis, the impact of other environmental 
parameters on the signal transmission process was not considered in this study. In the future, further 
research will be conducted on the characteristics of signal transmission processes in actual mine 
environments, and more widely applicable signal detection algorithms will be proposed. 
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