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Abstract: We are concerned with the space-time decay rate of high-order spatial derivatives of solu-
tions for 3D compressible Euler equations with damping. For any integer ¢ > 3, Kim (2022) showed
the space-time decay rate of the k(0 < k < ¢ — 2)th-order spatial derivative of the solution. By
making full use of the structure of the system, and employing different weighted energy methods for
0<k<?l-2k=1¢-1,k ={, it is shown that the space-time decay rate of the (£ — 1)th-order

3_t-1

and (th-order spatial derivative of the strong solution in weighted Lebesgue space L2 are t"#~ = *7 and
A respectively, which are totally new as compared to that of Kim (2022) [1].
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1. Introduction and main results

In this paper, we investigate the space-time decay rate of the (¢ — 1)th-order and ¢th-order spatial
derivatives of the strong solution for the 3D compressible Euler equations with damping, which takes
the following form:

p; +div(pu) = 0,
(ou), + div(pu ® u) + Vp” = —Apu, (1.1)
(0w li=0 = (po, tto) »

where (x, 1) € R3 xR, is the spatial coordinate and time. p = p(x, ) and u = u(x, t) represent the density
and velocity respectively. The pressure p = p(p) satisfies the y-law with the adiabatic exponent y > 1.
The constant 4 > 0 models the damping effect.

1.1. History of the problem

We review some closely related results to this topic as follows. For the one-dimensional Cauchy
problem, [2-6] presented a series of results on convergence rates for the nonlinear diffusion waves,
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[7-10] considered the asymptotic behavior of weak entropy solutions in vacuum and [11] focused
on the well-posedness for compressible Euler equations with physical vacuum singularity. We also
refer the readers to [12, 13] for the initial-boundary value problem. For multidimensional cases, Jang
and Masmoudi [14] showed the well-posedness for the compressible Euler equations with physical
vacuum singularity. Wang and Yang [15] gave the global existence and the pointwise estimates of
the solution with small data, Sideris et al. [16] used an equivalent reformulation of the system (1.1)
to obtain the effective energy estimates. Liao et al. [17] studied the L” convergence rate of the planar
diffusion waves by using approximate Green functions and the energy method. Fang et al. [18] obtained
the existence and asymptotic behavior of C! solutions in some Besov space by using the spectral
localization method. Tan and Wang [19, 20] improved the decay result of the velocity in the L?>-norm
that is (1 + )73 by using different methods. As for the initial boundary value problem, we refer the
interested readers to [15,21-23]. For the decay rate of the strong solution to the Cauchy problem
(1.1), under the assumption that ||(o9 — 0, uo)||yc With the integer £ > 3 was sufficiently small and
lloo — Pl + ||uo||L% was finite, Chen and Tan [24] showed the temporal decay rate for the solution of
(1.1) to be as follows:
IV -0, s A+ 20 <k < 0),
IVu)||,, s 1+ 720 < k< - 1), (12)
[Vu@)||,, s (1+ 0732

Based on (1.2), for any integer ¢ > 3, Kim [1] obtained that the space-time decay rate of the solution
for the system (1.1) is O(t‘%‘§+%) ,0<k<(€-2.

Noticing that there is no space-time decay rate of the (£ — 1)th-order or {th-order spatial derivative of
solution to (1.1), the main motivation behind this paper is to significantly contribute to the resolution of
this issue. More precisely, we establish the space-time decay rates of the (£ — 1)th-order and {th-order
spatial derivatives of the strong solution for (1.1).

1.2. Reformulation

In this paper, as in [16, 25], we reformulate the Cauchy problem (1.1) as follows. Introduce the

sound speed
up) = \p'(p),
and set iz = u(p) to correspond to the sound speed at a background density p > 0. Define
2 _
n=—(up) = f1).
vy—-1
Then, (1.1) can be rewritten as

n+padivu = —u-Vn - vndivu,
u; + Au + gVn = —u - Vu — ynVn, (1.3)

(n, 1) |i=0 (1o, uo) ,

where
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1.3. Notations

C and C; are time independent constants, which may vary in different places. L” and H’ denote the
usual Lebesgue space L? (R3) and Sobolev spaces H’ (R3) = Wt? (R3) with norms || - ||;» and || - ||y¢
respectively. We denote ||(f, 2)llx := || fllx +||gllx for simplicity. The notation f < g means that f < Cg.
We often drop the x-dependence of the differential operators, that is Vf = V. f = (0,,f, 0x,f> 0x, f)
and V¥ denotes any partial derivative 0* with the multi-index «, |@| = k. For any o € R, denote the
weighted Lebesgue space by LY (R3) (2 < p < +0), where

L (%) = {f(x) R S R o = fR If (ol < +oo}.

Then, we can define the weighted Sobolev space as follows:

H; (R3) = {f €L; (RB) | ||f||§,;,(R3) = kZ ||Vk”||iz,(R3) < +°°}-

1.4. Main results

We extend the work of Kim [1], which showed the space-time decay rate of the k(0 < k < {—-2,{ >
3)th-order derivative of the strong solution for the system (1.3) as follows in Lemma 1.1. Based on
(1.2) and the result of Kim [1], we can prove the space-time decay rate of the k(0 < k < {)th-order
derivative of the strong solution. It covers the results of Kim [1]. For the convenience of the readers,
we outline the space-time decay rates of the (£ — 1)th-order and {th-order derivatives of the solution in
the following Theorem 1.2.

Lemma 1.1. (Refer to Theorem 1.2 in [1]) For any integer € > 3, the initial data (ngy, uy) € H¢ (R3),
where ||(ng, uo)|| e is sufficiently small and ||nyl|; + ||l/to||L% is finite; Then, the strong solution (n,u) of
the system (1.3) such that

3_k

IV (@) » = O(r+2v3), (1.4)
forall0 <k<{-2 0>0andt>T, whereT is large enough.

Theorem 1.2. For any integer € > 3, the initial data (ngy, uy) € H* (R3) N H (R3), where ||(ng, ug)|| g is
sufficiently small and ||ng||; + ||M0||L% is finite; Then, the strong solution (n, u) of the system (1.3) such
that ,
||V[—l(n’ ”)(t)”Lg, =0 (f%_%+%) ,
4

V(@] = 0(ri74+%),

forallo > 0andt > T, where T is large enough.

(1.5)

IS

Remark 1.3. Kim [1] did not give the (£ — 1)th-order and £th-order spatial derivatives of the strong so-
lution for the system (1.3) since the term ||Vk(n, u)(-, t)|| Lo (k=0,...,£-2)is involved in the following
energy inequality

k-1

_ k
(IV5 n]| . + [V ], ) K ) + Z K)T

d -~
d—‘K (r <
t B=0 B=0

2
B ||a
|Vn]
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<Cr K@) + Crw K@)'T, (1.6)

where K(1) = Y5 VP (n, u)”i%_ (0 < k < €—2). Noticing that the estimate in (1.6) is the sum
of the estimates of I;(1 < j < 5) given in (3.3). To prove (1.5), we need to develop some new
thoughts, and our strategy can be outlined as follows. First, we make full use of the structure of (1.3)
to reduce the order of the spatial derivative of the solution (see (3.6) and (3.8)). Second, we make
delicate energy estimates for /; respectively, and we employ different weighted energy methods for
0<k<{-2,k=1C¢-1,k={in the process. We can refer the readers to the proofs of (3.9) and (3.17)
for more details.

Now, let us outline the strategies of proving Theorem 1.2 and explain the main difficulties in the
process. We use the strategy of induction, delicate weighted energy estimates and the interpolation
trick to prove Theorem 1.2. According to (1.4), Theorem 1.2 holds for k = 0 and k = 1. Using the
strategy of induction and delicate weighted energy estimates, one has

d— _ e
B0 < Cor TE(1) + C{CHDFEWN T + Cyr 30,

where E(t) = ||Vk(n, u)”iz. Combining the interpolation trick, we can prove that Theorem 1.2 holds

for 0 < k < ¢. The main difficulty is that Lemma 2.2 does not work in weighted Lebesgue space L2. To
overcome the difficulty, we fully use the structure of (1.3) to reduce the order of the spatial derivative
of the solution, and we make delicate weighted energy estimates. For the sake of simplicity, we only
take the trouble term <|x|2”V€n, Vi(ndiv u)> in (3.6) as an example. First, by fully using the structure
of (1.3), to obtain an equation of div u given in (3.4), and by substituting (3.4) into this term, one has

A+vn

(1P, (=) v + (a2 Vo, (—2— ) vin,
A+vn A+vn

+ <|x|2”vfn, v’ ( n
A+vn

-Vn +
S v ()

)u . Vn> + good terms
=K, + K; + K3 + good terms. (1.7)

Next, we will focus on the main trouble terms K;(j = 1,2, 3). For the term K, by employing integration
by parts, it holds that

1
2ot e\ _ L 2 c.2
<|x| Vin, uv n>— 2<V(|x| u), |V n|>. (1.8)
For the term K,, we have
<|x|2(rV[n,( L )V"n,>
A+vn
1d2€2(”)>12f2d(”)
- _ - v/ , _ v , — s 1.9
2dl<|x| Vinl A+vn 2 IVl dt\1+vn (1.9)
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where ”V{f””ig - <|x|2‘T|an|2, (L» is equivalent to ||V€n||i‘2r,

- since ||ngl| e 1s sufficiently small, and the
fact that

d( n )_ Al(@divu + u - Vo + vadiv u)]
dt \A1+vn] (1 + vn)? ’

Noticing that Lemma 2.2 does not work in LZ, for the term K3, we need to employ some new ideas.
The key observation here is to use Holder’s inequality skillfully to get

()
A+vn

S
L!

Peazm ( )u - Vn

[VEn |, 1l 1Vl (1.10)

A+vn L2|

where

16l el

2
S(IV2ull, + 19ulliz, + e, + 19l + 2 ) (see 2.1)).

With (1.8)—(1.10) in hand, we can bound the trouble terms K;,K; and K3 properly.

The paper is organized as follows. In Section 2, we present some lemmas, which are used frequently
throughout this paper. In Section 3, using the strategy of induction, delicate weighted energy estimates
and the interpolation trick, we prove Theorem 1.2.

2. Preliminaries
Lemma 2.1. (Gagliardo-Nirenberg inequality) Let O < i, j < k; Then,

vérl

L’

1
L4

i1 _(J N (k1
5‘;—(3 q)“ ““(3 )

Especially, when p =3,q =r =2,i = j=0and k = 1, combining Cauchy’s inequality, we have

VAl = 971"

where a satisfies

1 1
WAl S WAL IVAN S Ul s

when p =c0,q=r=2,i=0,j=1andk =2, combining Cauchy’s inequality, we have

Wl < IVAR VA < 19 A1l

and

I Al < (I G Dl 92 @ ).
S(IV2Alls + 19 ALz + 1ALz, + 19z + 1fllz ) 2.1)

whilei= j=0,k=1,a=1and p=q =r =2, combining Minkowski’s inequality, we have
51" fllze IV (31 All < (19 Al + 1712 ).- (2.2)
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Proof. This is a special case of [26] and some simple inferences.

Lemma 2.2. Assume that the function f(o) satisfies

f©@) ~ o and ||f*()|| < Ci for any k > 1,

then for any integer k > 0 and p > 2, we have

Vs, < C|[V¥e]l, -
Proof. Refer to Lemma A.4 of [24] for p = 2 and the Lemma 2.2 of [27] for p > 2.

Lemma 2.3. The vector function f € Cy (R3) and bounded scalar function g such that

20 .
fR3 (lel ) fgdx

Proof. The left side of the above inequality can be rewritten as

< llgllz2 ANl -

‘20’[ leza_zxj(?,-xjgﬁdx
R3

Using Holder’s inequality, we have

f3 (V |x|2‘7) - fgdx

R

< llgllzllfllz2_ -
-1

Lemma 2.4. (Interpolation inequality with weights) If p,r > 1,s + n/r,a + n/p,5 + n/q > 0 and
0<60<1then

£l < WAIG IIfIIigg
for [ € C5 (R") provided that

1 6 1-6
- = -+ —,
r.p q
and
s=60a+(1-0).
Especially, while s = p=q=2,0=" s =0~ 1,0 = 0 and B = 0, we have
ol 1
1Al < IA1LS I 23)

Proof. We compute

f |x|Sr|f|rdx — f |x|a/9r|f|97|x|ﬁ(l—9)r|f|(l—9)rdx
U U
A=6)r

»\F L,
S( f (leo‘g’lfle’)"’ a’x) ( f (|x|ﬁ(1_9)’|f|(1—9)r)<1—€)r dx) ‘
v U

Thus, we complete the proof of Lemma 2.4.
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Lemma 2.5. (Gronwall-type Lemma) Let ay > 1,a; < 1,a; < 1, and 8, < 1,5, < 1. Assume that a
continuously differential function F : [1, 00) — [0, 00) satisfies

d —a -« - o1—-1

SO <G F(n) + Cut 'FOP' + Cot F(P + C3t 7t > 1

F(1) < Ko,

where Cy, C1,C5,C3,Ky = 0 and o; = }:—Z’ > 0 fori = 1,2. Assume that oy > 0, then, there exists a

constant C* depending on ay, a1, 1, @2, 3, Ko and C;,i = 1,2,3, for all t > 1, such that F(t) < C*t".

Proof. We can refer to Lemma 2.1 of [28].
3. The proof of Theorem 1.2

According to (1.2), for all 0 < k < £ and ¢t > T, where T is large enough, we have
[V @) s 5 3.1)

We will take the strategy of induction to prove Theorem 1.2 as follows. According to (1.4), Theorem
1.2 holds for k = 0 and k£ = 1. By the general step of induction, assume that the estimate (1.5) holds
forO<m<k-12<k<¥?),1ie.,

V™ () ()3 < O (173727, (3.2)

for 0 < m < k — 1. Then, we need to verify that (3.2) holds for m = k. Applying V* to each equation
of (1.3); and (1.3),, multiplying the (1.3), and (1.3), by |x*” V¥n and |x*” V¥u respectively, summing
them up and then integrating over R?, we have

2
7

Ld oy
57, IV w)

+ AVl
- 207\ | vk, vk _ {1200k, vk
‘“LV('X' ) ViV dx <|x| Vn,V(an)>

<|x|2"vkn, V¥ (n div u)> - (|x|2"vku, V* (u - Vu)>
—y <|x|2fkau, V¢ (n - Vn)>

5
=1, (3.3)

For 0 < k < ¢, there exist the terms involving V¥*!(n, u) in (3.3). To reduce the order of V¥*!(n, u), we
have to use the equations div «# and Vn as derived from (1.3) as follows:

4

-Vn +

divy = — M (3.4)
A+vn
-Vu +

Vn:—u u+ u (3.5)
A+vn
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Substituting (3.4) and (3.5) into (3.3), we have
1d
5 7 IV, + a7,

=i fR v (Ix*7) - V¥nV¥u dx = (1x*"V¥n, V¥ (@Vn))

A+vn A+vn

-Vu+ 1
vy, v (10 Vet AW +v<|x|2ffv’<u,vk( il )>
A+vn A

v
+y <|x|2‘Tan, vk (”” ”)> +y <|x|2fkan, vk (ﬂ» — (P, V(- Vi)

+vn

7
=>J; (3.6)

Applying Lemma 2.3 and Cauchy’s inequality, one has
1 < ||V VE RVl
S”Vku”Lg”anHLfr_,

S€K2||Vku||i(2r + CKZ(E)”V](n”izil. (3.7)
For J,, using integration by parts, we obtain

Jy =— <|x|2‘kan, v (an)>

k
== (Vi ) = 3 G (P Y, Vv )
1

-
:% <V(|XI2<Tu), Ian|2> _ Z cr <|x|20'vkn, Vmuvk—m+ln> .
m=1

Using Minkowski’s inequality, Holder’s inequality, Lemmas 2.3 and 2.1 (Gagliardo-Nirenberg inequal-
ity), (3.1) and (3.2), and Cauchy’s inequality, we have

k
Z |x|ZGvknvmuvk—m+ 1 n

m=1

ol < |V A7) Vel +

L!

k-2
2 _
<l Vo]l o (V0] + 1Vl [ 9]l + D 9™l [0 (|95 0
L2 L2 LG 4 Ly Ly
m=

ul  [1Vll 5 [192]] .+ ([l [[9A]
+ [V o (19 920+ (95l (9] 190
k k 2 k|2 k k 2
S IVrll o 902+ (192l (99l + 195l (970, (192
~||VM||H‘V”L2,V”L2 +VuH1VnLg+ VuLgVnL%,TVnH1

-1

k=2
"l [Vl 5 ]y 195 ][9] [
+Z|IV uH]VnLiV nL(2r+V ”LiangvnHl

m=2

—3 ||k k -1 k|12 k k _S_kyo S ok
<t |[Va|, [V IVl + (9|5 [1*n] el |
<t VnL?rani,l—H V”L?,+ VuLgVnchr +t V”L?,
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st [P, 7l + i =

For J;, we have

1 nu-Vn
ZJ. = 2avk Vk
% 3 <|x| " ( A+vn )>

:<|x|2‘TVk V- Vn)> +k<|x|2‘Tan V( )vk - Vn)>
ﬂ+ A+vn
k=2
+ 7 O (1 n, Vvt
m=2

+ <|x|2fkan, vkl (L)V (u - Vn)> + <|x|2”v’<n, V"( " )u - Vn>
A+vn A+vn

5
=" s (3.9)
j=1

Using integration by parts, we obtain

s :<|x|2‘TVk " V- Vn)>
/l+vn
k
20wk k+1 20wk k—j+1
Vén - c< Vin, iy yhi >
<|x| /l+vn > ]Z::‘ A + vn u

k
1 n ; n . .
=—= V( ol ),Vk 2>+ cf< 7V¥n, VIuvEt >
2< g A+ IV JZ::‘ AR A+ " "

Applying Minkowski’s inequality, Holder’s inequality, Lemmas 2.3 and 2.1 (Gagliardo-Nirenberg in-
equality), (3.1), (3.2) and Cauchy’s inequality, we have

n d S
sl || waseoreta], + 2 e f“nllLll

* |x|2‘TV (/l -:lvn

)uIan|2

L!

k k k112
Slinlls |l |90 2 [[V¥7]| 2+ IVl |[9¥0),
Lo' L(r—l Lo‘

k=2
o 3 Wl 9, 9l
j=2
9l 9 9%+ 5Pl 9 -

k
+ IVl e lull - ||V n||L2

S 7ot P Y

k=2
> N ully 9l 9]
+ ||V uﬂlan?,V 2

J=2
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+ [0l 119l 9+ (9"l (9] (192

+ [Vl 9l 90
s 9 9l [l o
P [l ||vkn||
<7 ||Vk(n,u)|| +173 ||an||L2 itk (3.10)
—1

Applying Minkowski’s inequality, Holder’s inequality, Lemmas 2.2 and 2.1 (Gagliardo-Nirenberg in-
equality), (3.1), (3.2) and Cauchy’s inequality, we obtain

k-2
k||2 ' k k=1—j+1
2l <197l |l [[Vn o + 1Vl (1950 [V
L(r = L L(r L(r
]:
k—1 k
+ 9l [l 19 |
) k-2
’ ‘ Pl [V (19
Sl 19 [l + 2 0l 9%l
J:

|Vl [Vl (1920
_ 2 _S_ki,o_5
SO |VEny + 75 96

<O || Vhal, + i (3.11)

k=2 k—m
k k— 1
asl < Z||an||L°° IVnll,. > IV7ull, . 19 ]l
0

m=2 J=

k=2 k—m

m+1 k Jj+1 k—m—j+1
97l (19l D 97 el 197
m=2 Jj=0
5_k,o_5

-3-3+9-3 k
SRR |/ nIILg,
<8 ||V, + 3 (3.12)

|J34] <

i1 (4 fm) } 95l (1l [[92n], + 190l 19l )

<Vl Il 15l (9], + 192, )
+ V24, (||V2n|| +(1Vnll,2 )]
< |||, + i (3.13)

n
e ()
5.5l A+vnl/ll2

k k 2 2
<[IVinll o 90l (192l 2 + IVallzz |+ ladlzz +Vully + iz ) 92,

k
[V4n|| > 11Xl ll o 1V ]
(o

st‘5||V"n|| + ke (3.14)
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Substituting (3.10)—(3.14) into (3.9), we have
k k I kto
3 <3 [V ), + |V n||L2 IR e (3.15)
For J4, we have to use the equation n, derived from (1.3), as follows:

n,=—(@divu+u-Vn+vndivu). (3.16)

Applying (3.16), J4 can be rewritten as

1 k n N
), = <|xl2‘Tan, n,> + Z o <|x|2f’v’<n, & (m)vk mn,>
Ld | ook 2 > L/ ook 2 d ( n )
ey e 2 xporiviape, £
2 dt <|x| IVonls vn 2 IVl dt\1+vn

k

+Z <|x|2‘7an Vm(ﬁ )Vkm >

1d | ook o > 2ok o @divu+u-Vn +vndivu)
=—— i\ + = d\%

2dt <| vl SRR (A + vn)?

k<| 7Vkn, V( )V"_1 (udivu + u - Vi + vndiv u)>

A+vn
k=2
cr <|x|2‘TVk v (—) VA (@ divu + u - Vi + vn div u)>
— A+vn

k<|x|2(rvkn Vk 1 ( n
A

+vn

_ <|x|20'vkn’ Vk (
1d
T2dr

)V(pdivu+u-vn+vndivu)>

;—m)(pdivu+u-vn+vndivu)>

20017k, 12
\v}
<|x| VEnP, ;

A
n > + —J4’1 + J4’2 + J4’3 + J4’4 + J4’5. (317)
A+vn

Applying Minkowski’s inequality, Holder’s inequality, Lemmas 2.2 and 2.1 (Gagliardo-Nirenberg in-
equality), (3.1), (3.2) and Cauchy’s inequality, we obtain

k112
ol V][> IVl + ludl 1Vl + llall s V)

1
A+ vn)* |~
< [0l (15l 19l [52],  15 [52],)

<t ||an||L2 : (3.18)

Mzl < 1Vall [[V4]] o ([94u]],2 + 6, )l [V, )]
k=2
+ 3 90, 94 ] + 9 ] 19 0
j=1

<[[92ll 119l (19l + 191 0l [ 0]
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k=2

+ 2 IV ]| [V ), + IV s [V ),
j=1
Sl 9l + 7[99 ], + 73R V]

st ||VEn, u)” 3k

k—m

k=2
|J4,3| <Z V"l ||an||L2 (”Vk ! ||L2 + Z ||V](n ”)“Lw ”Vk " j+l(n ”)”LZ

Jj=0

k-2 k—m

m=2

ST [V, 4+ 73 V|

j=0

2
L(r

v ()| et (19l

0wl [V )] g + 190wl IV, )l )

<9l 9l (9l + 92l ) 09 (52 + 52 )

V%l (1925 + 1971 )]
S_k,o_5

S_k,o_5
S o, o
<t Vn 2 +t Vn 2

<3 ||an|| 43k

v ( - fm) . (Xt allz + [V a2 161" O, )l 119, w0 )

<[Vl IVl [V )] + 19 G )iz + i, 2
+IVe w2 + w2 (1 + [V )],

_5 2 _5_
<t ||VEa|, + R

|Jas] <

Substituting (3.18)—(3.22) into (3.17), we have

vd
W <2 & <|x|2‘f|vk 2,

o > + O [Vrmwj, + criThe,

A+vn

Using the same arguments as J, J3 and J, for Js, Je and J; respectively, we have

sl <74 [V, ”)”Lz 1 ||Vk“||Lz + ke
-1

L e L

-1

/7] Sidi <|x|2(r|vku| 11y > +Ct 3 ||Vk(n u)” + Ct*%*/ﬁLa’.

197l 9] . [||vk Tl + [V ), IV ),

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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Substituting (3.7), (3.8), (3.15), (3.23) and (3.24) into (3.6), and noticing that € is small enough, then
there exists a large enough 7 such that
1d k 2 20 (k12 k12 n Aok |12
S [||V (nw)fs, + v<|x| (VEnl + [VEup), m>] + 5 V¥l
<[V, + [V w|), + 3R, (3.25)
LO' Lo'fl

for all t > T. Defining

2 n
H(®) = ||[V¢@n, +<2"V"2+V"2,—>,
(0 = [V |5 + v (PTAVRE + 1V up), ——
it is obvious that there exist two positive constants C and C such that C ||V"(p, u)”i2 < H@ <

C ||Vk(p, u)” 2 Thus, H(¢) is equivalent to ||Vk(p, u)” and (3.25) can be rewritten as

L27

1 A
57 IV @l + 5 9l
_3 k 2 _3 k 2 3 _kto
<t ||V, u)||L(2r +173 ||V (n, u)”L(zr_1 1T (3.26)
Substituting (2.3) and (3.1) into (3.26), we have

1d

A
MG ), + 5|

<71 ||VE G, u)||  + IV, u)|| o u>||v + ik

2(0’ 1)

<V wl, +t("*>%||vk<n wll,” -+ (3.27)

Denoting E(7) := ||Vk(n u)|| we can obtain

L27
—E(t) < Cot TE®@) + C, {3 DFE(N) T + Cyr 37k,

If o > 2 + k, then we can apply Lemma 2.5 with g = 3 > L, = (%+§)§ <landp = = <1,

et _ 3
I k + o. Thus,

E(r) < Crito, (3.28)

for all t > T. The Theorem 1.2 is proved for all o > 5 + k and the conclusion for the case of [O + k]
is proved by Lemma 2.4 (Interpolation inequality w1th weights). More precisely, by combmmg 3.1
and (3.28), we have

_90
o

IV G, @)l 2, SIVE(n, u)(t)ll IV¥(n, u)(t)ll £k, (3.29)

HNq‘O

forall > T and o € [0, 0], where [0, 2 + k] € [0, 07 ](c > 2 + k). Thus, we have covered the proof of
Theorem 1.2.
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