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Abstract: We propose an asymptotic concentration approach combined with isogeometric analysis 

(IGA) for the topology optimization of two-dimensional (2D) linear elasticity structures under the 

commonly-used framework of the solid isotropic materials and penalty (SIMP) model. Based on the 

SIMP framework, the B-splines are used as basis functions to describe geometric model in structural 

finite element analysis, which closely combines geometric modeling with structural analysis. 

Isogeometric analysis is utilized to define the geometric characteristics of the 2D linear elasticity 

structures, which can greatly improve the calculation accuracy. In addition, to eliminate the 

gray-scale intervals usually caused by the intermediate density in the SIMP approach, we utilize the 

asymptotic concentration method to concentrate the intermediate density values on either 0 or 1 

gradually. Consequently, the intermediate densities representing gray-scale intervals in topology 

optimization results are sufficiently eliminated by virtue of the asymptotic concentration method. The 

effectiveness and applicability of the proposed method are illustrated by several typical examples. 
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1. Introduction  

As an advanced method, structural topology optimization (TO) aims to search and seek the 

optimal layout of materials in the design domain under the conditions of objective functions and 

various constraints, and generally involves multidisciplinary knowledge. Meanwhile, as a powerful 

tool of product design in the initial stage, structural TO can greatly reduce the labor of the designers 

and shorten the design cycle of the product. In addition to making the product design more efficient, 

structural TO can make the product meet various design requirements at a lower cost through 

various simulation experiments. Since Bendsøe and Kikuchi put forward the homogenization 

approach in 1988 [1], structural TO has attracted widespread attention and its related research has 

been rapidly developed. Many categories of theories and methodologies on TO have been 

successively proposed, such as the density-based TO method/algorithm [2–6], the evolutionary 

structural optimization (ESO) method [7–9], the level set method (LSM) [10–15], the parameterized 

level set method (PLSM) [16–18] (it should be noted that parametric level sets have been presented 

to solve the inverse problem of detecting inclusion interfaces in a piezoelectric structure [16] 5–6 

years prior to the approaches [17,18]), the meshless method [19], the phase field method [20], the 

modified guide-weight method [21], and so on. Zhou and Rozvany [2] and Mlejnek [3] proposed a 

function interpolation model by the solid isotropic material with penalisation (SIMP) scheme within 

the framework of variable density principle. In the SIMP scheme, a penalty factor is used to polarize 

the element densities during the iterative process of TO. As the optimization iteration progresses, the 

intermediate density variable is polarized to either 0 or 1 gradually, which prevents the optimization 

results from containing as much of the intermediate density as possible, so as to obtain an optimal 

topological structure with a clear boundary. Because the mathematical model of the SIMP scheme is 

relatively intuitive and possesses the advantages of high computational efficiency, it has attracted 

much attention and has been widely applied. Therefore, we carry out the relevant structural TO 

research under the framework of SIMP scheme in this work.  

Structural optimization combined with finite element method is one of the commonly used 

technical approaches and means in engineering design. In the finite element method, interpolation 

polynomials are used to approximate various geometric models. To reduce the geometric description 

error as much as possible, it is necessary to refine the finite element meshes. This process can 

improve the accuracy of the geometric description. However, the refinement of meshes usually leads 

to a significant increase in the number of structural elements, which is bound to generate high 

computational costs [22]. Moreover, when the finite element method is used for structural TO, it is 

usually difficult to obtain smooth boundaries in the optimized results. These problems can be solved by 

some smoothing treatments. However, it is easy to produce large errors in the process of the smoothing 

treatment, which may lead to inconsistencies between the calculation model and the description model. 

Accordingly, Hughes et al. [22] and Cottrell et al. [23] put forward the isogeometric analysis 

(IGA) method based on the integration of computer-aided design (CAD) and computer-aided 

engineering (CAE) frameworks. Based on the isoparametric element idea, the IGA approach uses 

spline basis functions to describe geometric models, and the same basis functions are also used in the 

analysis and design processes. IGA can ensure the accuracy of geometric descriptions, and the 

structural geometry is independent of the discrete degree of structure. Thus, even in the case of 

coarsely meshing, the structure geometry can be accurately represented, and the analysis error caused 

by geometric approximation can be eliminated by the IGA approach [24]. 
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The introduction of the IGA approach provides a new tool of structural TO. Due to the excellent 

characteristics of the IGA approach, researchers have gradually combined the IGA approach with 

various optimization methods to tackle corresponding TO problems. In structural TO, some scholars 

combine the SIMP model with the IGA approach because of its intuitive mathematical model, 

convenient and efficient calculation, and a wide range of applications. Hassani et al. [25] updated the 

design variables in structural TO using the optimization criterion on the basis of the SIMP 

framework and the isogeometric analysis method. Through a series of optimization examples, the 

optimization method was verified to be able to suppress the checkerboard phenomenon frequently 

occurring in the SIMP scheme. In fact, Kumar and Parthasarathy [26] used basis spline (B-spline) 

functions to represent structural geometry and density distribution functions in TO problems prior to 

the work. It can be observed from the numerical examples that the TO method based on B-spline 

basis functions can overcome the defects of the checkerboard phenomenon. However, the method 

cannot eliminate the disadvantages of grid correlation. Subsequently, Qian [27] proposed a TO 

method on the basis of B-spline space, where the optimized structure of arbitrary shape is embedded 

into a rectangular B-spline space, the density value corresponding to the B-spline control point is 

used as the design variable, and the density distribution function is represented by the B-spline basis 

functions. Moreover, it is shown by the method that this density distribution function can play a 

filtering role in the optimization iteration process. Lieu and Lee [28] put forward a multi-resolution 

TO method on the basis of the IGA approach and the SIMP framework, where high resolution design 

can be obtained by only adjusting the refinement level of the analysis unit without increasing the 

amount of calculation. Later, they combined the method with an active phase algorithm to address 

the TO of multi-material structures [29]. Taheri and Suresh [30] proposed an isogeometric method 

for TO with the perimeter constraints and utilized the method to carry on the TO of multi-material 

structures. Montemurro et al. [31–35] proposed the CAD-compatible topology optimization 

methods/algorithms based on non-uniform rational basis spline (NURBS) hyper-surfaces to design 

structures at multiple scales. As for the TO of composites, Ghasemi et al. [36] proposed a design 

methodology based on a combination of IGA, level set, and point wise density mapping techniques 

for the TO of piezoelectric/flexoelectric materials. The fourth order partial differential equations 

(PDEs) of flexoelectricity, which require at least C1 continuous approximations, were discretized 

using NURBS. The point wise density mapping technique with consistent derivatives was directly 

used in the weak form of the governing equations. The boundary of the design domain was implicitly 

represented by a level set function. The accuracy of the IGA model was confirmed through 

numerical examples, including a cantilever beam under a point load and a truncated pyramid under 

compression with different electrical boundary conditions. Additionally, Ghasemi et al. [37] 

proposed a computational design methodology for the TO of multi-material-based flexoelectric 

composites. In the methodology, they adopted the multiphase vector level set (LS) model, which easily 

copes with various numbers of phases, efficiently satisfies multiple constraints, and intrinsically avoids 

either overlap or vacuum among different phases. They extended the point wise density mapping 

technique for multi-material design and used the B-spline elements to discretize the PDEs of 

flexoelectricity. The dependence of the objective function on the design variables was incorporated 

using the adjoint technique. The obtained design sensitivities were used in the Hamilton-Jacobi (H-J) 

equation to update the LS function. They provided numerical examples for two, three, and four phase 

flexoelectric composites to demonstrate the flexibility of the model, as well as the significant 

enhancement in electromechanical coupling coefficients that can be obtained using multi-material TO 
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for flexoelectric composites. Wang et al. [38] proposed a multi-scale isogeometric method for the TO 

with high computational efficiency by combining the IGA approach and the evolutionary 

homogenization method. Gai et al. [39] proposed an explicit isogeometric TO approach based on 

moving morphable voids (MMVs) with closed B-spline boundary curves. They modeled the design 

domain by a NURBS patch, and then employed the NURBS-based IGA for a structural response and 

the well-established adjoint approach for sensitivity analysis. The IGA method based on the SIMP 

framework can overcome all shortcomings brought by the finite element meshes. Nevertheless, 

gray-scale interval problems still exist on boundaries of TO structures obtained by the method. 

In this work, an asymptotic concentration method is proposed for structural TO with the 

B-spline entities and the SIMP framework.  We employ the asymptotic concentration method to 

eliminate the gray-scale interval phenomenon within the SIMP framework for TO, while taking full 

advantage of the IGA approach. Here, only the pseudo-density values at the control points are 

considered as design variables, and the weights are not optimized. The optimization criterion method 

is used to update the design variable, and the asymptotic concentration method is used to update the 

element density variable to solve the TO problem of minimizing structural compliance under a 

volume constraint. Finally, several typical numerical examples are given to verify the optimization 

efficiency and feasibility of the proposed method. 

The rest of this paper is organized as follows. The IGA formula of the plane elasticity problem 

is described in Section 2. The mathematical model of the asymptotic concentration approach 

combined with IGA for the TO of two-dimensional (2D) linear elasticity structures under the 

B-spline-SIMP framework is constructed in Section 3. Different values of parameters are used for 

optimization to study the influence of parameter values on TO in Section 4. The effectiveness of the 

proposed method is illustrated by typical numerical examples in Section 5. Finally, the summary is 

provided in Section 6. 

2. Formulation of isogeometric analysis for plane elasticity problems 

According to the isoparametric element notion in finite element analysis, the IGA approach uses 

NURBS basis functions to describe structural geometric models instead of interpolation polynomials. 

There is no description error when describing the geometric model by the IGA approach. The basic 

principle of the IGA approach is that basis functions for geometric modeling are the same as those 

used for structural analysis. That is to say, the information representing geometry in CAD is used for 

mechanical calculations, so that the structural analysis with high-precision geometric models can be 

realized. NURBS is the most widely used spline in computing and modeling technology of IGA. 

NURBS can accurately express the conic curve, thereby making the free-form surface modeling 

convenient. In addition, NURBS can be combined with many efficient and stable algorithms. This 

study is limited to B-spline entities as opposed to general approaches using NURBS surfaces and 

hyper surfaces as in [31–35] (i.e., we are only considering B-spline entities and not NURBS entities 

to describe the pseudo-density field over the design domain). 

2.1. Description of the basis functions 

The nodal vector of the B-spline curve in one-dimensional space, expressed by

 1,...,][ ++= p21, nξξξI , is a monotone non-decreasing sequence. In the expression, i  represents the 
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i-th node; i (i = 1, 2,…, n + p + 1) indicates the index coordinates of the nodes; p indicates the spline 

order; and n represents the total number of basis functions. If any two adjacent nodes are equidistant, 

the corresponding node vectors are entitled uniform node vectors. If the values of the first node and 

the last node are repeated (p + 1) times, the node vectors are named as open node vectors. In this 

work, we use the uniform open node vectors, which are expressed as follows: 

 bbI n ,...,,,...,a,a,...,][ 2p  +=  .                         (1) 

In Eq (1), the values of a and b are equal to 0 and 1, respectively, and the values of a and b are 

repeated (p + 1) times. 

Given a node vector, when the spline order p equals 0, the basis functions of B-spline are the 

Bernstein’s polynomials, defined recursively as follows: 

i i 1

i,0

1 if
( )

0 otherwise
B

  
 + 

= 


  .                          (2) 

Additionally, given a node vector, when the spline order p is greater than 0, the basis functions 

of B-spline are the Bernstein’s polynomials, which can be defined as follows: 

1

i,p 1, 1 , 1

1 1

( ) ( ) ( )
i p i

i p i p

i p i i p i

B B B
   

  
   

+ +

+ − −

+ + + +

− −
= +

− −
 .                 (3) 

  

The non-zero second-order B-spline basis functions described on the prescribed node vector 

 5,5,5,4,4,3,2,1,0,0,0][ =I  are shown in Figure 1. 

 

Figure 1. The non-zero second-order B-spline basis functions described on the 

prescribed node vector. 

2.2. Refinement of computational domain 

IGA is a numerical calculating approach, and its results are approximate to those of the original 

problem. To improve the calculation accuracy, the model of IGA usually needs to be refined. In the 

IGA approach, there are three refining methods, namely, the h refining method, the p refining method, 

and the k refining method. The first two refining methods are similar to those used in finite element 
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method (FEM), whereas the third refining method, namely the k refining method, is unique to IGA. 

Therefore, the k refining method is briefly described as follows. 

At present, k refinement has become the most widely used refining method in IGA. It makes full use 

of the property of non-interference between order increment and node insertion. There are two different 

algorithmic flows for k refinement: one is to insert the nodes first and then increase the order; the other is 

to increase the order first and then insert the nodes. At the same parameter points, the continuity of the 

curve obtained by the latter algorithm is higher than that obtained by the former algorithm. 

Figure 2 shows the two different algorithmic flows of k refinement: the flow on the left side 

(from Figure 2(a) to Figure 2(b) and then to Figure 2(d)) represents the algorithm of inserting the 

nodes first and then increasing the order; the flow on the right side (from Figure 2(a) to Figure 2(c) 

and then to Figure 2(e)) represents the algorithm of increasing the order first and then inserting the 

nodes. According to Figure 2, one can conclude that the continuity of the basis function obtained by 

the algorithm of node insertion after order increment is higher than that obtained by the algorithm of 

order increment after node insertion. 

 

(a) [I] = {0,0,1,1}, p = 1 

 

 

 

         

(b) Node insertion, p = 1                           (c) Order increment, p = 2 

 

Continued on next page 
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(d) Order increment, p = 2                        (e) Node insertion, p = 2 

Figure 2. The k refinement of basis function defined on the node vector. 

2.3. Solving planar elasticity problem based on the basis functions 

To solve the planar elasticity problem, the B-spline-based approach under the SIMP framework 

is adopted in the TO of two-dimensional structure. Wherein we set a control point density for each 

control point and take each control point density as the design variable, the density of element e can 

be represented by the relevant control points as follows: 

( 1)( 1)

e

1

( , ) ( , )
p q

I I

I

N     
+ +

=

=   .                          (4) 

In Eq (4), (ɛ, ƞ) indicates the centroid coordinates of element e; ( , )IN    indicates the values 

of the basis functions at the centroid of element e; Iρ  represents the density of control points 

relating to the basis function value ( , )IN   ; and (p + 1)(q + 1) indicates the total number of the 

basis functions and the control points that support element e. 

The algebraic equations of the two-dimensional linear elastic problem under static load are 

expressed as follows: 

=
n

e

e 1=

=KU k U F  .                               (5) 

In Eq (5), K indicates the global stiffness matrix; U and F represent the global displacement and 

external force vectors at the control point of the structure, respectively; n indicates the total number of 

discrete elements in the parameter space; and the element stiffness matrix 
ek
 
can be expressed as follows: 

( )
e

T

e eρ Jtd


= k B DB  .                            (6) 
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In Eq (6), eΩ  represents the design area of element e; t represents the thickness of element e; J 

represents Jacobian determinant of geometrical mapping between structural measures [10]; and B 

represents strain displacement matrix of structural element, which is expressed as: 

1,x 2,x

1, 2,

1, 2, 1,x 2,x

... 0 0 ...

0 0 ... ...

... ...

y y

y y

N N

N N

N N N N

 
 

=  
 
 

B                        (7) 

where, 
xi,N  indicates the first order variation of the ith B-spline basis function with respect to the x 

coordinate; yj,N  indicates the first order variation of the jth B-spline basis function with respect to 

the y coordinate; and D indicates the element elastic constant matrix related to planar stress problem, 

which can be described as: 

2

1 0

1 0
1

1
0 0

2

E







 
 
 

=  
−

 −
 
 

D
                              (8) 

where, ν represents Poisson’s ratio of structural material and E represents Young’s modulus of the 

structural material. 

3. Mathematical model of the proposed method 

An asymptotic concentration approach combined with isogeometric analysis is proposed for 

structural TO under the B-spline-SIMP framework, and the mathematical model of the proposed 

method is described in this section. 

3.1. Description of density-based topology optimization 

In the traditional SIMP scheme [40], the relationship between the whole elasticity matrix of the 

materials and the density design variable are expressed as follows: 

( ) ( )e e 0

s
 =D D                                 (9) 

where, 
0D  represents the whole elasticity matrix of solid material; eρ  signifies the density design 

variable; and s signifies the penalty factor, and its value generally equals 3 so as to force intermediate 

density design variables to either 0 or 1. However, when the value of the density design variable 

equals zero, the corresponding Young’s modulus also equals zero, which will lead to the 

ill-conditioned singularity of the structural stiffness matrix during the optimization calculation 
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process. Hence, we utilize the improved SIMP interpolation model, wherein the relationship between 

the density design variable and Young’s modulus in structural TO can be expressed as [41]: 

( ) ( )e e 0 min min( - )
s

E E E E = +                           (10) 

where, 
0E  represents Young’s modulus of solid material and 

minE  is set as a value slightly greater 

than zero, indicating Young’s modulus of structural material when density design variable equals 

zero in structural TO. 

According to Eq (8), the elastic constant matrix of solid materials for the planar stress problem 

can be described by the following formula: 

0
0 2

1 0

1 0
1

1
0 0

2

E







 
 
 

=  
−

 −
 
 

D
  .                        (11) 

In general, structural TO aims to search for and seek the optimal layout of materials in the 

design domain under certain constraint conditions, such as volume and stress constraints, so as to 

obtain the optimal value of structural stiffness. When structural stiffness reaches its maximum value, 

the total structural strain energy will reach its optimal value accordingly. Correspondingly, the 

structural compliance reaches its minimum value. In this work, structural compliance minimization is 

taken as the objective function of TO. According to Eq (5), the calculation formula of structural 

compliance is given as: 

1

2

Tc = U KU  .                                  (12) 

It should be noted that the definition of the compliance provided in this section and used in the 

rest of the manuscript is not the most general one and can be used only when the boundary conditions 

of the Dirichlet type (i.e., on generalised displacements) are zero. As widely discussed in [31], in the 

most general case of inhomogeneous Neumann-Dirichlet boundary conditions, the compliance does 

not coincide with neither the strain energy nor with the work of internal forces (which is twice the 

strain energy), but it is related to the total potential energy of the continuum. 

Therefore, the TO model in this work can be expressed by the following mathematical formula: 

1

1

1 1 1
Minimize : ( ) ( )

2 2 2

Subject to : ,  

         0,                         

         0 1    

n
T T T

e e e e e
e

n

e
e

e

c

g V fV

 



=

=

= = =

=

= − =

 

F U U KU u k u

KU F

∑

∑
.       (13) 

In Eq (13), eρ  refers to the pseudo density of element e, the value of which belongs to the 
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interval [0, 1]; F represents the forces applied on the structure; n represents the total number of finite 

element meshes after discretization of the structural design domain; 
eu  denotes the displacements 

of element e; U represents the displacements of the structural control points; K represents the 

stiffness matrix of the whole structure; ek  represents the stiffness matrix of element e; 
eV  denotes 

the volume of element e; V denotes the total volume of the structural design domain; f represents the 

given volume fraction during structural optimization; and g represents the constraint function to 

ensure that the volume of solid material meets prescribed design requirements. V  and 
eV  are 

respectively expressed as follows: 

dV


=                                     (14) 

e

e e eV d


=                                   (15) 

where, Ω  denotes the global design area of the structure and eΩ  denotes the local design area of 

element e. 

3.2. Asymptotic concentration scheme 

When the SIMP scheme is used for TO, there exists a gray-scale interval represented by the 

intermediate density element in the obtained optimal result. Even though the IGA approach under the 

SIMP framework is used for structural TO, the gray-scale interval still exists in the optimization 

results. To eliminate the gray-scale interval in the obtained optimization structure, the idea of 

asymptotic concentration [42] is employed in this work. The core point of this method is to gradually 

concentrate the material density variable to the specified variable value through multiple iterations. 

By virtue of the asymptotic concentration approach, all of the element density values are gradually 

concentrated from the set intermediate values to 0 and 1, so that the intermediate density values in 

the optimization results can be eliminated. The direction of the asymptotic concentration is from the 

specified value of the asymptotic intermediate density to the initial density of the material at the ends 

of both left and right. Meanwhile, the speed of the asymptotic concentration is determined by 

adjusting the values of the asymptotic parameters er and rr. 

 

Figure 3. Asymptotic concentration process of element density variable in the asymptotic 

concentration approach. 
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When the asymptotic concentration approach is adopted for structural TO, the asymptotic 

concentration process of the element density variables is described in Figure 3. Wherein, the number 

0 represents element density of the void material phase; the number 1 represents element density of 

the solid material phase; the symbol m represents the specified intermediate density to be 

asymptotically concentrated; the symbols a and b represent two coefficients of asymptotic 

concentration, and the ratio of a to b is equal to that of the length of interval [0, m] to the length of 

interval [m, 1]; and the symbol rr is a gradually increasing asymptotic parameter with iterations in 

the structural TO, and its initial value is selected as 0. The asymptotic parameter is equal to the 

increment of rr in each iteration, so the asymptotic parameter represents an increasing rate of the 

parameter rr during optimization iterations. The density value within a certain distance of the 

intermediate density m is asymptotically concentrated on two specified values in the two directions 

of m. The distance is determined by the intermediate density m, the asymptotic parameter rr, and the 

asymptotic concentration coefficients a and b. Specifically, the element density values within the 

interval [m-a*rr, m] will be concentrated on the lower limit of the interval, and the element density 

values within the interval [m, m+b*rr] will be concentrated on the upper limit of the interval by the 

asymptotic concentration approach. The asymptotic parameter rr gradually increases with the number 

of iterations. As a result, the length of the density interval (m-a*rr, m+b*rr) affected by the 

asymptotic concentration gradually increases. Since the density value ranges from 0 to 1, when the 

density interval affected by the asymptotic concentration increases to a certain degree, there will be 

no elements with a density value other than 0 or 1, thereby eliminating the gray interval generated by 

the intermediate density. Therefore, it is crucial to reasonably select the asymptotic parameters a, b, 

and rr. The criterion of the asymptotic concentration approach to update the element density variable 

can be expressed as follows: 

e

enew

e

e

e

* if 0 *

0 if * 0

* if * 1

1 if 1 *

m a rr m a rr m

m a rr m

m b rr m m b rr

m m b rr










−  −  


−   
= 

+   + 
    +

                      (16) 

where, 
e

and new

e
represent the element densities before and after updating with the asympt

otic concentration approach, respectively; m refers to the intermediate density; rr represents a

symptotic parameters; and a and b represent the asymptotic coefficients. During the asymptot

ic concentration, the relationship of the asymptotic coefficients can be described as: 

(1 )

a m

b m

a b







=


= −
 + =

                                (17) 

where, δ  is a prescribed constant with a value equal to one. 

3.3. Sensitivity analysis 

For 2D stress problem, the global stiffness matrix of the structure is expressed by element 
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density as follows [31–35,43]: 

1

eN
s

e e

e


=

=K k
                                 (18) 

where ek  is the element stiffness matrix, which is transformed into: 

e 0 min min 0

e 0 min min 0

(( ) ( - ) )

(( ) ( - ) )

e

s T

e e

s

E E E Jtd

E E E







= + 

= +

k Β D Β

k

    .                 (19) 

Since the element densities are represented by the B-spline basis functions and the control 

points in Eq (4), the element stiffness matrix is converted into a formula expressed by the densities of 

the control points by substituting Eq (4) into Eq (19). The formula is described as follows [43]: 

( 1)( 1)

0 min min 0

1

( 1)( 1)

0 min min 0

1

(( ( , ) ) ( - ) )

(( ( , ) ) ( - ) )

e

p q
s T

e I I e

I

p q
s

I I

I

N E E E Jtd

N E E E

  

  

+ +

=

+ +

=

= + 

= +





k B D B

k

     .         (20) 

By using the same method, the volume formula based on the densities of the control points is 

transformed into: 

( 1)( 1)

,

1

( ( , ) )

e e

p q

e i j e I I e

I

V Jtd N Jtd   
+ +
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When the gradient based method is applied to the structural TO, it is always necessary to 

calculate the sensitivity of the objective and constraint functions with respect to the design variables. 

In particular, in order to obtain the sensitivity of structural compliance, the sensitivity of the element 

stiffness matrix with respect to the density of control points is calculated, which is expressed as [43]: 
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According to the TO model of Eq (12), the sensitivity of the objective function c and the 

element volume Ve with respect to the density of control points are respectively described as [43]: 
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The sensitivity of g in Eq (12) with respect to the density of control points is expresse

d as follows: 

( )
,

,

, ,

,
s t

tot
e s t e e

e Ii j i j

VVg
A R u v

WHρ ρ 


= =

 
         .               (25) 

When the density-based method is applied to the structural TO, the checkerboard phenomenon 

usually appears in the optimization results. This is caused by the situation where the element density 

values 0-1 alternately appear in some areas of the optimal structure. In the process of density-based 

continuous TO, the checkerboard phenomenon will inevitably occur, which has a great impact on the 

optimal structures. The distribution of materials needs to be selected in the area where the element 

density values of 0-1 alternate. Even so, it is difficult to guarantee that the final optimized structure is 

the optimal structure. 

When the traditional SIMP approach is only used for TO, an external filter is usually required to 

suppress the appearance of the checkerboard phenomenon. It is necessary to select the filter type 

suitable for the optimization method, so the addition of density filtering will inevitably cause an 

increase in the calculation amount. However, as for the B-spline basis function, the continuous 

density domain represented by the B-spline can provide a built-in filter for TO due to its excellent 

characteristics [44]. The principle is that B-spline basis functions have characteristics supported by 

local elements, and the density distribution function expressed by the control points and B-spline 

basis functions has the same representation form as density filtering. The built-in filter radii of the 

B-spline basis functions are affected by B-spline order, as well as by node span. Meanwhile, this 

feature also applies to NURBS. As discussed in [31–35], in the context of the density-based TO 

algorithm reformulated in the context of NURBS entities, there is no need to introduce an artificial 

filter because the local support property of the basis functions acts as an implicit filter, thus the 

checkerboard effect and the mesh dependency of the solution can be strongly reduced or even 

avoided. Moreover, as widely discussed in [45], the integer parameters of the NURBS (i.e., number 

of control points and degrees of the Bernstein’s polynomials) can be properly tuned to control the 

size of the local support and, hence, the minimum length scale requirements (without introducing 

an explicit constraint in the problem formulation). 

3.4. Corresponding optimization algorithm 

A lot of existing technical means can be used to solve topological optimization problems, 

including the optimization criterion (OC) approach [7], the method of moving asymptote (MMA) [46], 

the sequential linear programming (SLP) method [47,48], and so on. In the OC approach, 

optimization criterion are derived according to the Karush-Kuhn-Tucker (KKT) conditions and 

formed the OC algorithm, through which the optimal solution can be obtained via multiple iterations. 

When it is used to tackle the single-constraint optimization problems, the OC approach either has a 

high speed of convergence or requires a small number of iterations. By virtue of this advantage, this 

work uses the OC approach to update the design variables.  
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In this method, we take densities of the control points as design variables, so that design 

variables updated by the OC algorithm are densities of the control points rather than densities of 

elements. The specific update criteria are defined as follows: 

e
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where, the parameter mov denotes a preset positive constant with the value of 0.2 used to indicate the 

speed of density change. The parameter ƞ represents the damping coefficient with the prescribed 

value of 0.5. The calculation formula of Be value is defined as follows [42]: 
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           .                       (27) 

In Eq (27), λ denotes Lagrangian multiplier, the value of which can usually be calculated by the 

bisection method. 

3.5. Numerical implementation 

The numerical implementation of the asymptotic concentration approach combined with IGA 

for TO under the B-Spline-SIMP framework is described as follows: 

1) Input the node vector and control point vector needed to construct the geometric structure, 

and use the B-spline functions to construct the initial geometric model; 

2) Construct the IGA grid, and refine the grid with the unique k refinement method of IGA; 

3) Prescribe the structural boundary and load conditions; 

4) Set the value of initial control point density to volume fraction, that is i, jρ f= , and use the 

control point densities and the B-spline basis functions to describe element densities. In this work, 

the densities of all points in an element are set to the same value, and the element densities are 

expressed via the centroid densities of the elements; 

5) Calculate the local stiffness matrix of each element by using the B-spline basis functions, and 

assemble the structural global stiffness matrix according to local stiffness matrix of each element; 

6) Perform the finite element analysis: introduce Young’s modulus expressed by element 

densities into the structural stiffness matrix, calculate the displacement matrix, and then solve the 

objective function and volume fraction, as well as their sensitivity information; 

7) Update control point densities by the OC method, represent the element density variables by 

using the B-spline basis functions and control point densities, and then update the element density 

variables by using the asymptotic concentration approach proposed in this work; 

8) Judge whether the optimized structure satisfies the convergence condition: if optimization 

iteration meets convergence requirement, terminate the loop of optimization iteration and meanwhile 

output optimization result; otherwise, return to Step 6) to continue optimization iteration. 
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The flow chart of TO using the proposed method is shown in Figure 4. 

 

Figure 4. Flow chart of asymptotic concentration approach combined with IGA for TO 

under the B-spline-SIMP framework. 

4. Selection of parameter value in topology optimization 

4.1. Influence of asymptotic parameters on optimization results 

Here, we provide a numerical example involving the TO of planar bracket structure to analyze 

the influence of different asymptotic parameters on optimization results. 

The design domain, boundary, and load conditions of this example are shown in Figure 5. As for 

the design domain with the aspect ratio 2:1, a downward force equal to 1 is applied at the midpoint 

on the right side, whereas the left side is fixed. The entire design domain is discretized to 50 × 100 

quadrilateral elements by virtue of the k refining method. The values of parameters p and q that 
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determine the order of the B-spline basis functions are both set as 1. The thickness of the bracket 

structure is set as 1t = . Young’s modulus associated with the solid material is selected as 
0 1E = . 

Young’s modulus associated with void element is selected as 
min 1e-8E = . Poisson’s ratio is set as 

0.3=γ . The volume fraction is selected as 0.4f = . In this example, several different asymptotic 

parameter values are used to analyze the influence of asymptotic parameters on the TO result. 

Moreover, in the result of this and the following examples, the solid material phase and the void 

material phase are represented by black and white, respectively, and the initial densities of the solid 

material phase and the void material phase are set to 1 and 0, respectively. 

Table 1 displays the results of the TO of the planar bracket structure with different values of 

asymptotic parameter er, by which we can compare the effects of different asymptotic parameter 

values on the optimal topology structure, compliance value curve, number of iterations, and optimal 

compliance value. It is observed from Table 1 that the optimal topological structure obtained by 

the proposed method is almost the same when the asymptotic parameter er takes different values 

of 0.005, 0.007, 0.009, 0.011, and 0.013, respectively. In addition, the compliance value is close to 

the optimal compliance value after just 10 iterations. It can also be found from Table 1 that the value 

selection of the asymptotic parameter er for the same structure has little influence on the TO results. 

Specifically, the value selection of the asymptotic parameter er has only a small impact on the 

optimal compliance, and almost no influence on the optimal topology structure. Moreover, it can be 

seen from Table 1 that when the values of er are 0.005 and 0.007, respectively, the optimal 

compliance values obtained by the proposed method are almost the same; when the values of er are 

greater than 0.007, the optimal compliance value obtained by the proposed method gradually 

increases with the value of er; and the number of optimization iterations gradually decreases when 

the value of er gradually increases. Therefore, when selecting the values of asymptotic parameters, 

we should consider the balance between the calculation amount and the optimal compliance value. 

That is to say, for the selected values of asymptotic parameters, a relatively large number of 

optimization iterations are required to obtain a relatively low optimal compliance value; if 

completing the optimization with a relatively small number of optimization iterations, one will obtain 

a relatively high optimal compliance value. 

 

Figure 5. Boundary and load conditions of the two-bar bracket structure. 
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Table 1. Topological optimization data and results with different asymptotic parameters. 

Asymptotic 

parameter er 

Optimal 

structure 

Local compliance 

curve 

Optimal 

compliance 
Number of iterations 

0.005 

 
 

6.6407 100 

0.007 

 
 

6.6401 72 

0.009 

 
 

6.6485 60 

0.011 

 
 

6.6556 50 

0.013 

  

6.6552 41 
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4.2. Influence of spline order on optimization results 

In the asymptotic concentration approach for the TO under the B-spline-SIMP framework, the 

size of the spline order affects the number of control points and the size of the support interval of the 

basis functions, which in turn affects the computational complexity. Here, a numerical example 

involving the TO of two-point fixed beam structure is used to analyze the influence of different sizes 

of spline order on optimization results. 

 

Figure 6. Boundary and load conditions of the two-point fixed beam structure. 

The design domain, boundary, and load conditions of this example are shown in Figure 6. The 

aspect ratio of the design domain is 2:1. The midpoints on the left and right boundaries of the 

structure are fixed, and a downward force equal to 1 is acted at the center of the structure. The entire 

design domain is discretized to 90 × 45 quadrilateral elements by virtue of the k refining method. 

The value of the asymptotic parameter er is selected as 0.007. The thickness of the beam structure is 

set as 1t = . Young’s modulus associated with the solid material is selected as 
0 1E = . Young’s 

modulus associated with the void element is selected as 
min 1e-8E = . Poisson’s ratio is set as 

0.3=γ . The volume fraction is selected as 0.4f = . In this example, three different orders of 

B-splines, namely the first-order B-spline, the second-order B-spline, and the third-order B-spline are 

used to analyze the influence of B-spline order on optimization results. 
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(a)                                     (b) 

 

(c) 

Figure 7. Optimal topological structures of two-point fixed beam with three different 

orders of B-splines: (a) represents the optimal topological structure with the first-order 

B-spline; (b) represents the optimal topological structure with the second-order B-spline; 

(c) represents the optimal topological structure with the third-order B-spline. 

Figure 7 illustrates the optimal topology results of the two-point fixed beam with different 

orders of B-splines. Figure 8 shows the compliance change curves corresponding to the optimization 

process of the two-point fixed beam with three different orders of B-splines. It is observed from 

Figure 7 that the optimal topology structures obtained by the proposed method are similar with three 

different orders of B-splines. Regarding the change of the compliance value during the optimization 

process, it can be found from Figure 8 that the compliance almost reaches its optimal value within 10 

iterations. In other words, the compliance value changes very little after 10 iterations with all three 

orders of B-splines. For comparison, the data involved in the TO of two-point fixed beam with three 

different orders of B-splines are listed in Table 2. By comparing the compliance values 

corresponding to different spline orders, it is found that the optimal compliance value gradually 

increases with the order of splines. Nevertheless, the total number of optimization iterations seems 

hardly affected by the order of splines. 

It can be found from this example that the required number of optimization iterations seems 

almost the same and similar optimal topology results can be obtained with three different orders of 

B-splines by the proposed method. Nonetheless, the use of different orders of B-splines has a great 

impact on the optimal compliance value. Therefore, for the relatively simple structures, the relatively 

small compliance value can be obtained by choosing a relatively small spline order; for the complex 

structures with high requirements for continuity, a large spline order should be selected to meet the 

requirements. However, the compliance value also gradually increases with the increase of the spline 

order. Therefore, it is necessary to select an appropriate spline order for the TO according to the 

geometric complexity of structure. 
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(a)                                  (b) 

 

(c) 

Figure 8. Compliance change curves in TO of two-point fixed beam structure with three 

different orders of B-splines: (a) represents the compliance change curve with the 

first-order B-spline; (b) represents the compliance change curve with the second-order 

B-spline; (c) represents the compliance change curve with the third-order B-spline. 

Table 2. Data involved in TO of two-point fixed beam structure with three different 

orders of B-splines. 

Spline orders p, q Optimal Compliance Number of iterations Volume fraction 

p = 1, q = 1 10.4409 101 0.400 

p = 2, q = 2 11.3620 102 0.400 

p = 3, q = 3 11.6728 104 0.400 

5. Numerical examples 

Next, the feasibility and optimization efficiency of the proposed method will be verified by a 

couple of typical numerical examples. In all of these examples, the minimum compliance is taken as 

an objective function, and structural TO is performed under the constraint of volume fraction by the 

algorithm proposed in this work. 
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5.1. Two-corner-fixed bridge structure 

Here, an example involving the TO of two-corner-fixed bridge structure is given to analyze the 

influence of mesh refinement on the optimization results obtained by the proposed method. The 

design domain, boundary, and load conditions of this example are shown in Figure 9. The left and the 

right lower corners of the bridge structure are both fixed, whereas a downward force equal to 1 is 

applied at the midpoint on the lower side of the bridge structure. As for the design domain, the aspect 

ratio is 8:3. To analyze the influence of mesh refinement on the optimization results, the entire design 

domain is discretized by the k refining method to three types of quadrilateral meshes, namely 80 × 30, 96 

× 36, and 120 × 45. The value of the asymptotic parameter er is set to 0.007. The thickness of the 

bridge structure is set to 1t = . Young’s modulus associated with the solid material is selected as 

0 1E = . Young’s modulus associated with the void element is selected as 
min 1e-8E = . Poisson’s ratio 

is set as 0.3=γ . The volume fraction is selected as 0.4f = . 

 

Figure 9. Boundary and load conditions of the two-corner-fixed bridge structure. 

 

(a) 

 

(b) 

 
(c) 

Figure 10. Optimal topological structures of two-corner-fixed bridge via the proposed 

method with different types of meshes: (a) represents the optimal topological structure 

with 80 × 30 quadrilateral meshes; (b) represents the optimal topological structure with 

96 × 36 quadrilateral meshes; (c) represents the optimal topological structure with 120 × 

45 quadrilateral meshes. 
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In this example, three different degrees of mesh refinement are used for the TO to analyze the 

influence of mesh refinement on the optimal topological structures obtained by the proposed method. 

Figures 10(a)–(c) show the optimal topological structures of the two-corner-fixed bridge with 

different types of quadrilateral meshes obtained by the proposed method, respectively. It is observed 

from Figure 10 that similar optimal structures can be obtained by using meshes with different 

degrees of refinement, and the obtained optimized structures contain no gray-scale intervals. 

Nonetheless, different degrees of mesh refinement lead to different degrees of smoothness of the 

optimized structure boundary. The finer the meshes are, the weaker the jagged structure boundary is, 

and correspondingly the smoother the structure boundary is; on the contrary, when the meshes are 

coarse, the jagged boundary is relatively obvious, and the smoothness of the structural boundary is 

relatively weak. 

The clear advantages and characteristics of the proposed method are verified by this example: 

even at the level of coarse mesh refinement, the correct and reasonable optimal structure can be 

obtained, and the obtained optimal structure does not contain a gray-scale interval. 

5.2. Cantilever beam structure 

Here, we provide another numerical example involving the TO of a cantilever beam structure to 

substantiate the effectiveness of the method proposed in this work. The design domain, boundary, 

and load conditions of this example are shown in Figure 11. As for the design domain, the aspect 

ratio is 2:1. The cantilever beam is fixed on its left side, whereas a downward force equal to 1 is 

acted at the midpoint on the right side of the cantilever beam structure. The entire design domain is 

discretized to 100 × 50 quadrilateral meshes by virtue of the k refining method. The value of the 

asymptotic parameter er is selected as 0.007. The thickness of the beam structure is set to 1t = . The 

B-spline orders are set as 1p =  and 1q = . Young’s modulus associated with the solid material is 

selected as 
0 1E = . T Young’s modulus associated with the void element is selected as 

min 1e-8E = . 

Poisson’s ratio is set as 0.3=γ . The volume fraction is selected as 0.4f = . This example is 

composed of two numerical cases as follows. 

 

Figure 11. Boundary and load conditions of cantilever beam structure. 



3870 

Electronic Research Archive  Volume 31, Issue 7, 3848-3878. 

In the first case, the proposed method, namely the B-spline-SIMP based asymptotic 

concentration method, is used to accomplish the TO of a cantilever beam structure. When the 

convergence condition is satisfied after 102 iterations, the volume fraction reaches 0.400. At the same 

time, the value of the corresponding structural compliance reaches 75.0760. In this case, Figure 12 shows 

the obtained optimal topological structures. It is observed from Figure 12 that the obtained optimal 

topological structures are in line with those obtained by other classical methods. After about 25 iterations, 

the TO result has already been similar to the optimal structure in the frame. As the optimization iteration 

continues, the structure boundary becomes gradually clear, and the objective function moves towards the 

stable direction until the convergence condition is satisfied. In Figures 12(a)–(c), the TO results contain 

gray-scale intervals. In other words, there is still intermediate density in the optimization results. The 

reason is that the influence area of the asymptotic concentration cannot fully cover the density 

interval. However, as the TO iteration progresses, the area of influence in the asymptotic 

concentration gradually expands. Consequently, the intermediate density will be concentrated, 

thereby causing the gray-scale interval to gradually decrease, until the area of influence in the 

asymptotic concentration covers the entire density interval, and the intermediate density is 

completely polarized to either 0 or 1. The final TO result shown in Figure 12(d) does not contain the 

gray-scale interval any more. 

 

(a)                               (b) 

 

(c)                               (d) 

Figure 12. Optimal topological structures of cantilever beam: (a) Optimal topological 

structure of cantilever beam after 25 iterations; (b) Optimal topological structure of 

cantilever beam after 50 iterations; (c) Optimal topological structure of cantilever beam 

after 75 iterations; (d) Optimal topological structure of cantilever beam after 102 

iterations, namely the final TO result. 

In the second case, the TO of a cantilever beam structure is respectively accomplished by using 

the proposed method and the existing SIMP scheme based on B-spline for comparison. 

In this case, Figure 13 shows the obtained optimal topological structures. It is observed from 

Figure 13 that the obtained optimal topological structures by using the two above-mentioned 
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methods are basically the same. Nevertheless, the obtained optimal topological structures by using 

the two methods have obvious differences in terms of clarity. The reasons for this difference are 

described as follows. The obtained optimal topological structure by using the proposed method has 

no intermediate-density element, so its boundary is completely clear. However, the obtained optimal 

topological structure by using the existing SIMP scheme based on B-spline contains a certain number 

of intermediate-density elements, so its boundary is fuzzy. 

  

(a)                                      (b) 

Figure 13. Obtained optimal topological structures of cantilever beam by using two 

methods: (a) represents obtained optimal topological structure by using the existing 

SIMP scheme based on B-spline; (b) represents obtained optimal topological structure by 

using the proposed method. 

 

(a)                                    (b) 

Figure 14. Compliance changes for TO of cantilever beam structure by using two 

methods: (a) illustrates compliance change by using the existing SIMP scheme based on 

B-spline; (b) illustrates compliance change by using the proposed method. 

Figure 14 shows compliance changes in this case. It is observed from Figure 14 that the 

compliance value 75.0760 is obtained by the proposed method when the corresponding requirements 

for convergence are met after 102 iterations, and the compliance value 79.3368 is obtained by the 

existing SIMP scheme based on B-spline when the corresponding requirements for convergence 

are met after 118 iterations.  
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From the aforementioned TO results in this case, it is observed that the proposed method can 

obtain a smaller compliance value and a clearer structure boundary than the existing SIMP scheme 

based on B-spline under the same conditions. Furthermore, it is also observed that the required 

iterations by the proposed method are fewer than those by the existing SIMP scheme based on the 

B-spline for the same TO problem. Thereupon, the advantages of the proposed method are verified 

through this example. 

5.3. Multi-load bridge structure 

Next, we use another example involving the TO of a multi-load bridge structure to affirm the 

superior performance of the proposed method. The design domain, boundary, and load conditions of 

this example are shown in Figure 15. As for the design domain, the aspect ratio is 8:3. The bridge 

structure is only supported at the lower left and right corners. The former is completely fixed, 

whereas the latter is simply supported. Three downward external forces with values of 2, 1, and 1 are 

respectively applied to the midpoint, quarter point, and three-quarter point of the lower edge of the 

structure.  

In this example, Young’s modulus associated with the solid material is selected as 
0 1E = . 

Young’s modulus associated with void element is selected as 
min 1e-8E = . Poisson’s ratio is set as 

0.3=γ . The volume fraction is selected as 0.4f = . The entire design domain is discretized to 120 

× 45 quadrilateral elements by virtue of the k refining method. The B-spline orders are set as 1p =  

and 1q = . The thickness of the bridge structure is set to 1t = . The asymptotic parameter is selected 

as er = 0.007. 

 

Figure 15. Boundary and load conditions of multi-load bridge structure. 
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(a)                                 (b) 

    

(c)                                 (d) 

Figure 16. Optimized topological structures of multi-load bridge by the existing SIMP 

scheme based on B-spline: (a) represents the optimized topological structure at 25 

iterations; (b) represents the optimized topological structure at 50 iterations; (c) 

represents the optimized topological structure at 75 iterations; (d) represents the optimized 

topological structure at 150 iterations, namely the optimal topological structure. 

  

(a)                                      (b) 

  

(c)                                      (d) 

Figure 17. Optimized topological structures of multi-load bridge by the proposed method: 

(a) represents the optimized topological structure at 25 iterations; (b) represents the 

optimized topological structure at 50 iterations; (c) represents the optimized topological 

structure at 75 iterations; (d) represents the optimized topological structure at 104 

iterations, namely the optimal topological structure. 

Figure 16 shows the optimized topological structures of multi-load bridge by the existing SIMP 

scheme based on B-spline. All the topological structures shown in Figure 16 have fuzzy boundaries, 

which are caused by the intermediate-density elements in the TO process. As the process of the TO 



3874 

Electronic Research Archive  Volume 31, Issue 7, 3848-3878. 

proceeds, the intermediate density will be gradually polarized, the number of intermediate-density 

elements will decrease, and the structure boundary will become relatively clear accordingly. 

Nevertheless, the existing SIMP scheme based on B-spline cannot completely polarize the 

intermediate density to either 0 or 1. Therefore, there are still some intermediate-density elements in 

the final topological structure, so the structure boundary contains a certain degree of gray-scale 

interval. Figure 17 shows the optimized topological structures of the multi-load bridge by the 

proposed method. The topology structures shown in Figures 17(a)–(c) have fuzzy boundaries, which 

is due to the fact that the intermediate-density element has not yet been fully polarized during the 

iteration process. The topology structure shown in Figure 17(d) has a clear structural boundary, 

which signifies that the proposed method can completely polarize the intermediate density value to 0 

or 1. That is to say, when the requirements for convergence are met, the optimization result does not 

contain the intermediate-density element anymore. Hence the structure boundary is completely 

represented by the elements with a density value of either 0 or 1. 

 

(a)                                    (b) 

Figure 18. Compliance changes for TO of multi-load bridge structure by using two 

methods: (a) illustrates compliance change by using the existing SIMP scheme based on 

B-spline; (b) illustrates compliance change by using the proposed method. 

Figure 18 shows the compliance changes for the TO of the multi-load bridge structure obtained 

by using the existing SIMP scheme based on B-spline and the proposed method, respectively. It is 

observed from Figure 18 that the compliance value 254.9795 is obtained by the proposed method 

when the corresponding requirements for convergence are met after 104 iterations, and the 

compliance value 267.4641 is obtained by the existing SIMP scheme based on B-spline when the 

corresponding requirements for convergence are met after 150 iterations. 

From the aforementioned TO results obtained by the two methods, it is observed that the 

proposed method can obtain a smaller compliance value and a clearer structure boundary than the 

existing SIMP scheme based on B-spline under the same conditions. Furthermore, it can also be 

found that the required iterations by the proposed method are fewer than those by the existing SIMP 

scheme based on the B-spline for the same TO problem. Thereupon, the advantages of the proposed 

method are verified once more through this example. 
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6. Conclusions 

We propose an asymptotic concentration approach combined with IGA for the structural TO 

of 2D linear elasticity structures under the B-spline-SIMP framework. In this approach, the control 

point density is first updated by using the optimization criterion method, and then the element density 

represented by the B-spline basis function and control point density is polarized by using the 

asymptotic concentration idea, so as to gradually concentrate all the element density values on either 0 

or 1. In the process of TO, with the increase of iteration number, the element density values are 

gradually polarized to the solid material phase density or the void material phase density, thereby 

resulting in a final structural element density value of either 0 or 1. Thus, the phenomenon of the 

gray-scale interval, which leads to fuzzy structure boundary, is completely avoided. The good 

performance of the proposed method is illustrated by several numerical examples involving the 

structural TO. Compared with the traditional SIMP scheme, this method can accurately describe the 

structural geometry by virtue of IGA in the case of a coarse mesh, and the optimal topology structure 

obtained by this method does not contain the gray-scale intervals. Furthermore, compared with the 

existing SIMP scheme based on B-spline, this method can obtain a relatively clear structural 

boundary and a relatively small compliance with relatively few numbers of iterations in the same 

structural TO problem. 
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