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Abstract: In this paper a regularization scheme for a family of uncertain fuzzy systems of differential
equations with respect to the uncertain parameters is introduced. Important fundamental properties of
the solutions are discussed on the basis of the established technique and new results are proposed. More
precisely, existence and uniqueness criteria of solutions of the regularized equations are established.
In addition, an estimation is proposed for the distance between two solutions. Our results contribute to
the progress in the area of the theory of fuzzy systems of differential equations and extend the existing
results to the uncertain case. The proposed results also open the horizon for generalizations including
equations with delays and some modifications of the Lyapunov theory. In addition, the opportunities
for applications of such results to the design of efficient fuzzy controllers are numerous.
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1. Introduction

It is well known that the general approaches in fuzzy differential systems are established using the
concept of fuzzy sets, as introduced by Zadeh [1] in 1965. The theory of fuzzy sets and some of their
applications have been developed in a number of books and papers. We will refer the readers to [2–4]
and the references cited there.

On the other hand, the notions of an H−Hukuhara derivative and H− differentiability were intro-
duced in 1983 for fuzzy mappings [5], and the notion of integrals in [6]. Since then, the investigations
of fuzzy differential equations have undergone rapid development. See, for example, [7–14] and the
references therein. The theory of fuzzy differential equations is still a hot topic for research [15–19]
including numerous applications considering fuzzy neural networks and fuzzy controllers [20–25].
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It is also well known that the functionality of many complex engineering systems, as well as, the
long life of their practical operation are provided under the conditions of uncertainties [26]. In fact, due
to inaccuracy in the measurements of the model parameters, data input and different types of unpre-
dictability, uncertain parameters occur in a real system [27]. It is, therefore, clear that the study of the
effects of uncertain values of the parameters on the fundamental and qualitative behavior of a system
is of significant interest for theory and applications [28–34], including fuzzy modeling [35]. Consider-
ing the high importance of considering uncertain parameters, the theory of uncertain fuzzy differential
equations needs future development and this is the basic aim and contribution of our research.

This paper deals with systems of fuzzy differential equations that simulate the perturbed motion of a
system with uncertain values of parameters that belong to a certain domain. A regularization procedure
is proposed for the family of differential equations under consideration with respect to the uncertain
parameter. An analysis of some fundamental properties of the solutions is performed for both, the
original fuzzy system of differential equations and the intermediate families of differential equations.
The introduced regularization scheme expands the horizon for the extension of the fundamental and
qualitative theory of fuzzy differential equations to the equations involving uncertain parameters. The
authors expect that the proposed results will be of particular interest to researchers in the study of the
qualitative properties of such systems, including equations with delays and some modifications of the
Lyapunov theory. In addition, the engineering applications of such results to the design of efficient
fuzzy controllers are numerous.

The innovation and practical significance of our research are as follows:
(i) we introduce a new regularization scheme for uncertain fuzzy differential equations;
(ii) new existence criteria of the solutions of the regularized fuzzy differential equations are pro-

posed;
(iii) the distance between two solutions is estimated;
(iv) the offered regularization scheme reduces a family of fuzzy differential equations to a simple

form that allows analysis of the properties of solutions of both the original fuzzy system of differential
equations, as well as the intermediate families of differential equations.

The rest of the paper is organized according to the following scenario. In Section 2 we provide the
necessary preliminary notes from the theory of fuzzy sets. Some main properties of fuzzy functions
and H−Hukuhara derivatives are also given. In Section 3 we introduce a regularization procedure for
uncertain fuzzy systems of differential equations, and the basic problem of analyzing such systems
based on the developed procedure is presented. In Section 4 conditions for existence of the solutions
of the regularized fuzzy differential equations are established. In Section 5 we offer an estimate of
the distance between solutions of the regularized equations. The closing Section 6 provides some
comments and future directions for research.

2. Fuzzy sets and functions: Preliminary notations and results

This section is mainly based on the results in [2, 4, 14].
The use of fuzzy sets introduced in [1] has facilitated the mathematical modeling and analysis of

real processes that involve uncertain parameters. Recently, the fuzzy set approach achieved significant
development. In this section, we will present some elements from the fuzzy set theory and fuzzy
functions that are necessary for the analysis of uncertain systems.
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2.1. Fuzzy sets

Consider a basic set X with elements of an arbitrary nature. To each element x ∈ X a value of a
membership function ξ(x) is assigned, and the function ξ(x) takes its values from the closed interval
[0, 1].

Following [1], for a function ξ : X → [0, 1], we consider a fuzzy subset of the set X as a nonempty
subset with elements {(x, ξ(x)) : x ∈ X} from X × [0, 1].

For a fuzzy set with a membership function ξ on X its κ-level sets [ξ]κ are defined by

[ξ]κ = {x ∈ X : ξ(x) ≥ κ} for any κ ∈ (0, 1].

The closure of the union of all κ-level sets for a fuzzy set with a membership function ξ in the
general topological space X is called its support, and it is denoted by [ξ]0, i.e.,

[ξ]0 =
⋃
κ∈(0,1]

[ξ]κ.

Note that most often, the space X is the N-dimensional Euclidean space RN equipped with a norm
∥ · ∥.

Next, the Hausdorff distance between two nonempty subsets U and V of RN is defined as

∆H(U,V) = min
{
r ≥ 0 : U ⊆ {V ∪ Vr(0)},V ⊆ {U ∪ Vr(0)}

}
,

where Vr(0) = {x ∈ RN : ∥x∥ < r}, r ≥ 0.
The above distance is symmetric with respect to both subsets U and V . For more properties of

∆H(U,V) we refer the reader to [2, 4, 14].

2.2. The space EN

We will next need the space EN of functions ξ : RN → [0, 1], which satisfy the following conditions
(cf. [2]):

1) ξ is upper semicontinuous;
2) there exists an x0 ∈ R

N such that ξ(x0) = 1;
3) ξ is fuzzy convex, i. e.,

ξ(νx + (1 − ν)y) ≥ min[ ξ(x), ξ(y) ]

for any values of ν ∈ [0, 1];
4) the closure of the set {x ∈ RN : ξ(x) > 0} is a compact subset of RN .

It is well known that [7–14] and [15–19], if a fuzzy set with a membership function ξ is a fuzzy
convex set, then [ξ]κ is convex in RN for any κ ∈ [0, 1].

Since EN is a space of functions ξ : RN → [0, 1], then a metric in it can be determined as

∆(ξ, η) = sup{|ξ(x) − η(x)| : x ∈ RN}.

The least upper bound of ∆H on EN is defined by

d[ξ, η] = sup{∆H([ξ]κ, [η]κ) : κ ∈ [0, 1]}

for ξ, η ∈ EN . The above defined d[ξ, η] satisfies all requirements to be a metric in EN [2].
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2.3. Properties of fuzzy functions

Consider a compact T = [α, β], β > α > 0.
The mapping F : T → EN is strictly measurable, if for any κ ∈ [0, 1] the multivalued mapping

Fκ : T → Pk(RN), defined as Fκ(τ) = [F (τ)]κ, is measurable in the sense of Lebesgue under the
condition that Pk(RN) is equipped with a topology generated by the Hausdorff metric, where Pk(RN)
denotes the family of all nonempty compact convex subsets of RN [11, 36].

The mapping F : T → EN is integrally bounded if there exists an integrable function ω(τ) such that
∥x∥ ≤ ω(τ) for x ∈ F0(τ).

We will denote by
β∫
α

F (τ) dτ the integral of F on the interval T defined as

∫
T

F (τ) dτ =
{ ∫

T

f̄ (τ) dt | f̄ : I → RN is a measurable selection forFκ

}

for any 0 < κ ≤ 1.
The strictly measurable and integrally bounded mapping F : T → RN is integrable on I, if∫

T
F (τ) dτ ∈ EN .

Numerous important properties of fuzzy functions are given in [2, 4, 11].

2.4. Hukuhara-type derivative

Let ξ, η ∈ EN . If there exists ζ ∈ EN such that ξ = η + ζ, ζ is determined as the Hukuhara-type
difference of the subsets ξ and η and is denoted by ξ − η.

If both limits in the metric space (EN ,∆)

lim{[F (τ0 + h) − F (τ0)]h−1 : h→ 0+} and lim{[F (τ0) − F (τ0 − h)]h−1 : h→ 0+}

exist and are equal to L, then the mapping F : T → EN is differentiable at the point τ0 ∈ T , and
L = F ′(τ0) ∈ EN .

The family {DHFκ(τ) : κ ∈ [0, 1]} determines an element F ′(τ) ∈ EN . If Fκ is differentiable, then
the multivalued mapping Fκ is differentiable in the sense of Hukuhara for all κ ∈ [0, 1] and

DHFκ(τ) = [F ′(τ) ]κ,

where DHFκ is the Hukuhara-type derivative of Fκ.
Several basic properties of differentiable mappings F : I → EN in the Hukuhara sense are given

below:

1) F is continuous on T ;
2) For τ1, τ2 ∈ T and τ1 , τ2 there exists an ι ∈ EN such that F (τ2) = F (τ1) + ι;
3) If the derivative F ′ is integrable on T , then

F (σ) = F (α) +

σ∫
α

F ′(τ)dτ;

Electronic Research Archive Volume 31, Issue 7, 3832–3847.



3836

4) If θ0 ∈ E
N and θ0(x) =

{
1, for x = 0,
0, x ∈ RN \ {0}

, then

∆(F (β),F (α)) ≤ (β − α) sup
τ∈T
∆(F ′(τ), θ0). (2.1)

3. Regularization scheme for systems of fuzzy differential equations

In this section, we will introduce a regularization scheme for a system of fuzzy differential equations
with respect to an uncertain parameter.

Consider the following fuzzy system with an uncertain parameter

dξ
dτ
= f (τ, ξ, µ), ξ(τ0) = ξ0, (3.1)

where τ0 ∈ R+, ξ ∈ EN , f ∈ C(R+ × EN × S,EN), µ ∈ S is an uncertain parameter, S is a compact set
in Rl.

The parameter vector µ that represents the uncertainty in system (3.1) may vary in nature and can
represent different characteristics. More precisely, the uncertainty parameter µ:

(a) may represent an uncertain value of a certain physical parameter;
(b) may describe an estimate of an external disturbance;
(c) may represent an inaccurate measured value of the input effect of one of the subsystems on the

other one;
(d) may represent some nonlinear elements of the considered mechanical system that are too compli-

cated to be measured accurately;
(e) may be an indicator of the existence of some inaccuracies in the system (3.1);
(f) may be a union of the characteristics (a)–(e).

Denote
fm(τ, ξ) = co

⋂
µ∈S

f (τ, ξ, µ), S ⊆ Rl, (3.2)

fM(τ, ξ) = co
⋃
µ∈S

f (τ, ξ, µ), S ⊆ Rl (3.3)

and suppose that fm(τ, ξ), fM(τ, ξ) ∈ C(R+ × EN ,EN). It is clear that

fm(τ, ξ) ⊆ f (τ, ξ, µ) ⊆ fM(τ, ξ) (3.4)

for (τ, ξ, µ) ∈ R+ × EN × S.
For (τ, η) ∈ R+ × EN and 0 ≤ κ ≤ 1, we introduce a family of mappings fκ(τ, η) by

fκ(τ, η) = fM(τ, η)κ + (1 − κ) fm(τ, η) (3.5)

and, we will introduce a system of fuzzy differential equations corresponding to the system (3.1) as

dη
dτ
= fκ(τ, η), η(τ0) = η0, (3.6)
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where fκ ∈ C(T × EN , EN), T = [τ0, τ0 + a], τ0 ≥ 0, a > 0, κ ∈ [0, 1].
We will say that the mapping η : T → EN is a solution of (3.6), if it is weakly continuous and

satisfies the integral equation

η(τ) = η0 +

τ∫
τ0

fκ(σ, η(σ)) dσ (3.7)

for all τ ∈ T and any value of κ ∈ [0, 1].
The introduced fuzzy system of differential equations (3.6) is considered as a regularized system of

the system (3.1) with respect to the uncertain parameter.
It is clear that for all τ ∈ T we have diam[ξ(τ)]κ ≥ diam[ξ0]κ, for any value of κ ∈ [0, 1], where

diam denotes the set diameter of any level [2, 4, 11].
The main goal and contribution of the present paper are to investigate some fundamental properties

of the regularized system (3.6) on T and [τ0,∞).

4. Criteria for existence and uniqueness of solutions

In this section we will state criteria for the existence and uniqueness of the solutions of the intro-
duced regularized problem (3.6).

Theorem 4.1. If the family fκ(τ, η) ∈ C(T × EN ,EN) for any κ ∈ [0, 1] and there exists a positive
constant Lκ such that

d[ fκ(τ, η), fκ(τ, η̄)] ≤ Lκd[η, η̄], τ ∈ T, η, η̄ ∈ EN ,

then for the problem (3.6) there exists a unique solution defined on T for any κ ∈ [0, 1].

Proof. We define a metric in C(T,EN) as:

H[η, η̄] = sup
T

d[η(τ), η̄(τ)]e−λτ

for all η, η̄ ∈ EN , where λ = 2 max Lκ, κ ∈ [0, 1]. The completeness of (EN , d)implies the completeness
of the space (C(T,EN),H).

Let ξκ ∈ C(T,EN) for any κ ∈ [0, 1] and the mapping T ξκ is defined as

T ξκ(τ) = ξ0 +

τ∫
τ0

fκ(σ, ξκ(σ))dσ, κ ∈ [0, 1].

From the above definition we have that T ξκ ∈ C(T,EN) and

d[T η(τ),T η̄(τ)] = d

η0 +

τ∫
τ0

fκ(σ, η(σ))dσ, η0 +

τ∫
τ0

fκ(σ, η̄(σ))dσ


= d


τ∫

τ0

fκ(σ, η(σ))dσ,

τ∫
τ0

fκ(σ, η̄(σ))dσ


≤

τ∫
τ0

d[ fκ(σ, η(σ)), fκ(σ, η̄(σ))]dσ < max
κ

Lκ

τ∫
τ0

d[η(σ), η̄(σ)]dσ, τ ∈ T, κ ∈ [0, 1].
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Since d[η, η̄] = H[η, η̄]eλτ, we have

e−λτd[T η(τ),T η̄(τ)] < max
κ

Lκe−λτH[η, η̄]

τ∫
τ0

eλσdσ ≤
max
κ

Lκ

λ
H[η, η̄]. (4.1)

Given the choice of λ, from (4.1) we obtain

H[T η,T η̄] <
1
2

H[η, η̄].

The last inequality implies the existence of a unique fixed point ξκ(τ) for the operator T ξκ which is
the solution of the initial value problem (3.6) for κ ∈ [0, 1].

Now, let us define a second metric in C(T,EN) as follows:

H∗[η, η̄] = sup
T

d[η(τ), η̄(τ)],

where η, η̄ ∈ EN , and consider a family of continuous functions that have equal variation over a given
neighborhood. Such a family of functions is know to be equi-continuous [11].

Theorem 4.2. If the family fκ(τ, η) ∈ C(T × EN ,EN) for any κ ∈ [0, 1] and there exists a positive
constant Ωκ > 0 such that

d[ fκ(τ, η), θ0] ≤ Ωκ, τ ∈ T, η, θ0 ∈ E
N ,

then for the problem (3.6) there exists a unique solution defined on T for any κ ∈ [0, 1].

Proof. Let the set B, B ⊆ C(T,EN) be bounded. Then, according to the definition of the mapping T ,
the set T B = {T ξκ : ξκ ∈ B, κ ∈ [0, 1]} is bounded, if it is equi-continuous, and for any τ ∈ T the set
[T B](τ) = {[T ξκ](τ) : τ ∈ T, κ ∈ [0, 1]} is a bounded subset of EN .

For τ1 < τ2 ∈ T and η ∈ B, we have from (2.1) that

d[T η(τ1),T η(τ2)] ≤ |τ2 − τ1|max
T

d[ f (τ, η(τ)), θ0]

≤ |τ2 − τ1|Ωκ < |τ2 − τ1|Ω,
(4.2)

where Ω = max
κ
Ωκ. This implies the equi-continuity of the set T B.

Also, for any fixed τ ∈ T we have that

d[T η(τ),T η(τ1)] < |τ − τ1|Ω (4.3)

for τ1 ∈ T , η ∈ B.
From the above inequality, we conclude that the set {[T ξκ](τ) : ξκ ∈ B, κ ∈ [0, 1]} is bounded in

the space EN , which, according to the Arzela–Ascoli theorem, implies that the set T B is a relatively
compact subset of C(T,EN).

Next, for κ ∈ [0, 1] and M > 0 we define B∗ = {ξκ ∈ C(T,EN) : H∗[ξκ, θ0] < MΩ,
B∗ ⊆ (C(T,EN),H∗).
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Obviously, T B ⊂ B∗, since ξκ ∈ C(T,EN), κ ∈ [0, 1] and d[T ξκ(τ),T ξκ(τ0)] = d[T ξκ(τ), θ0] ≤
|τ − τ0|Ωκ < MΩ, κ ∈ [0, 1]. Let θ0(τ) = θ0 for τ ∈ T , where θ0(τ) : T → EN . Then

H∗[T ξκ,T θ0] = sup
T

d[(T ξκ)(τ), (T θ0)(τ)] ≤ |τ − τ0|Ωκ < MΩ.

Hence, T is compact. Therefore, it has a fixed point ξκ(t), and according to the definition of T , ξκ(t)
is the solution of the initial value problem (3.6) for κ ∈ [0, 1]. This completes the proof.

Remark 4.3. Theorems 4.1 and 4.2 offered new existence criteria for the regularized system (3.6). The
proposed criteria show that the idea to use a family of mappings and regularize the fuzzy system (3.1)
with respect to uncertain parameters greatly benefits its analysis. Note that due to some limitations and
difficulties in the study of fuzzy differential systems with uncertain parameters, the published results in
this direction are very few [11, 18]. Hence, the proposed regularization procedure complements such
published accomplishments and, due to the offered advantages is more appropriate for applications.
Remark 4.4. The proposed existence results also extend and generalize some recently published ex-
istence results for differential systems with initial and nonlocal boundary conditions [37], where the
fixed-point argument plays a crucial role in manipulating the integral equation, to the fuzzy case.

The validity of Theorem 4.1 is demonstrated by the next example.

Example 4.5. Let fκ(τ, η) = Aκη + Bκ for any value of κ ∈ [0, 1] and Aκ, Bκ ∈ E1. Consider the initial
value problem

dη
dτ
= Aκη + Bκ, (4.4)

η(τ0) = η0 ∈ D0 ∈ E
1. (4.5)

It is easy to show that
| Aκη − Aκη̄ |≤ Lκd[η, η̄],

where Lκ = max | Aκ | for κ ∈ [0, 1].
Therefore, all conditions of Theorem 4.1 are satisfied, and hence there exists a unique solution of

the initial value problem (4.4)-(4.5). The unique solution is of the type

η(τ, τ0, η0) =
⋃
κ∈[0,1]

[
ηκ(τ, τ0, η0), η0 ∈ D0

]
, (4.6)

where

ηκ(τ, τ0, η0) = η0 expAκ(τ−τ0) +

(
Bκ
Aκ

)
[expAκ(τ−τ0) −1]

for any value of κ ∈ [0, 1]. A solution in the form of (4.6) is compact for all t ∈ T and the union
contains all upper and lower solutions of the problem (4.4)-(4.5). For the rationale for this approach,
see [11], pp. 150–155).

Remark 4.6. The conditions of Theorem 4.1 imply the following estimate

d[ fκ(τ, η), fκ(τ, η̄)] ≤ d[ fκ(τ, η), θ0] + [θ0, fκ(τ, η̄] ≤ 2Ωκ

for all t ∈ T , η, η̄ ∈ E1 and any value of κ ∈ [0, 1]. Hence, for Ωκ = 1
2 Lκd[η, η̄] all conditions of

Theorem 4.1. are also satisfied. Therefore, the conditions of Theorem 4.2 are some modifications of
these of Theorem 4.1.
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5. Distance between solutions

Given that the inequalities

fm(τ, η) ≤ fκ(τ, η) ≤ fM(τ, η), κ ∈ [0, 1]

are satisfied for all (τ, η) ∈ T × EN , it is important and interesting to evaluate the distance between two
solutions η(τ), η̄(τ) of the regularized system (3.6) depending on the initial data. This is the aim of the
present section.

Theorem 5.1. Assume the following:
1) The family fκ ∈ C(T × EN ,EN) for any κ ∈ [0, 1].
2) There exists a continuous function g(τ, ζ), g : T × R+ → R, which is nondecreasing with respect

to its second variable ζ for any τ ∈ T, and such that for (τ, η), (τ, η̄) ∈ T × EN and κ ∈ [0, 1],

d[ fκ(τ, η), fκ(τ, η̄)] ≤ g(τ, d[η, η̄]).

3) The maximal solution u(τ, τ0, y0) of the scalar problem

dy/dτ = g(τ, y), y(τ0) = y0 ≥ 0

exists on T .
4) The functions η(τ) and η̄(τ) are any two solutions of the problem (3.6) defined on T , correspond-

ing to initial data (η0, η̄0) such that d[η0, η̄0] ≤ y0.
Then,

d[η(τ), η̄(τ)] ≤ u(τ, τ0, y0), τ ∈ T. (5.1)

Proof. Set d[η(τ), η̄(τ)] = ρ(τ). Then, ρ(τ0) = d[η0, η̄0]. Also, from (3.7), for any κ ∈ [0, 1] we obtain

ρ(τ) = d

η0 +

τ∫
τ0

fκ(σ, η(σ))dσ, η̄0 +

τ∫
τ0

fκ(σ, η̄(σ))dσ


≤ d


τ∫

τ0

fκ(σ, η(σ))dσ,

τ∫
τ0

fκ(σ, η̄(σ))dσ

 + d[η0, η̄0]. (5.2)

Using (5.2) we get

ρ(τ) ≤ ρ(τ0) +

τ∫
τ0

d[ fκ(σ, η(σ)), fκ(σ, η̄(σ))]dσ

≤ ρ(τ0) +

τ∫
τ0

g(σ, d[η(σ), η̄(σ)])dσ = ρ(τ0) +

τ∫
τ0

g(σ, ρ(σ))dσ, τ ∈ T. (5.3)

Applying to (5.3) Theorem 1.6.1 from [38], we conclude that the estimate (5.1) is satisfied for any
τ ∈ T and κ ∈ [0, 1].
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Remark 5.2. The estimate offered in Theorem 5.1 is based on the integral equation, and on the existence
and uniqueness results established in Section 4. Such estimations are crucial in the investigation of the
qualitative properties of the solutions when the Lyapunov method is applied. Hence, the proposed
result can be developed by the use of the Lyapunov technique in the study of the stability, periodicity
and almost periodicity behavior of the states of the regularized system (3.6).

Condition 2 of Theorem 5.1 can be weakened while maintaining its statement.

Theorem 5.3. Assume that Condition 1 of Theorem 5.1 holds, and that the following are true:
1) There exists a family of functions gκ ∈ C(T × R+,R) such that

lim sup{[d[η + h fκ(τ, η), η̄ + h fκ(τ, η̄)]]h−1 − d[η, η̄] : h→ 0+} ≤ gκ(τ, d[η, η̄])

for any κ ∈ [0, 1] and (τ, η), (τ, η̄) ∈ R+ × EN .
2) The maximal solution uκ(τ, τ0, y0) of the scalar problem

dy/dτ = gκ(τ, y), y(τ0) = y0 ≥ 0. (5.4)

is defined on T .
Then,

d[η(τ), η̄(τ)] ≤ u(τ, τ0, y0), τ ∈ T,

where η(τ) and η̄(τ) are any two solutions of the problem (3.6) defined on T , corresponding to initial
data (η0, η̄0) such that d[η0, η̄0] ≤ y0 and u(τ, τ0, y0) = max

κ
uκ(τ, τ0, y0).

Proof. Denote again ρ(t) = d[η(τ), η̄(τ)]. Then, for the difference ρ(τ + h) − ρ(τ), h > 0, we have

ρ(τ + h) − ρ(τ) = d[η(τ + h), η̄(τ + h)] − d[η(τ), η̄(τ)]

≤ d[η(τ + h), η(τ) + h fκ(τ, η(τ))] + d[η̄(τ) + h fκ(τ, η̄(τ)), η̄(τ + h)]

+d[h fκ(τ, η(τ)), h fκ(τ, η̄(τ))] − d[η(τ), η̄(τ)], κ ∈ [0, 1].

From the above inequalities, we get

D+ρ(τ) = lim sup{[ρ(τ + h) − ρ(τ)]h−1 : h→ 0+}

≤ lim sup{[d[η(τ) + h fκ(τ, η(τ)), η̄(τ) + h fκ(τ, η̄(τ))]]h−1 : h→ 0+}

−d[η(τ), η̄(τ)] + lim
h→0+

sup
{[

d
[
η(τ + h) − η(τ)

h
, fκ(τ, η(τ))

]]}
+ lim

h→0+
sup

{
d
[

fκ(τ, η̄(τ)),
η̄(τ + h) − η̄(τ)

h

]}
≤ gκ(τ, d[η, η̄]) = gκ(τ, ρ(τ)), τ ∈ T for all κ ∈ [0, 1]. (5.5)

The conclusion of Theorem 5.3 follows in the same way as in Theorem 5.1 by applying Theorem
1.6.1 from [38] to (5.5). Hence, for any κ ∈ [0, 1] we get

d[η(τ), η̄(τ)] ≤ uκ(τ, τ0, y0)

and, therefore, d[η(τ), η̄(τ)] ≤ u(τ, τ0, y0) for τ ∈ T . The proof of Theorem 5.2 is complete.
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Theorems 5.1 and 5.3 offer also the opportunities for estimating the distance between an arbitrary
solution η(τ) of the regularized problem (3.6) and the “steady state” θ0 ∈ E

N of (3.6).

Corollary 5.4. Assume that Condition 1 of Theorem 5.1 holds, and that the family of functions g∗κ ∈
C(T × R+,R) is such that

(a) d[ fκ(τ, η), θ0] ≤ g∗κ(τ, d[η, θ0]) or
(b) lim sup{[d[η + h fκ(τ, η), θ0] − d[η, θ0]]h−1 : h→ 0+} ≤ g∗κ(τ, d[η, θ0]) for all τ ∈ T, κ ∈ [0, 1].
Then d[η0, θ0] ≤ y0 implies

d[η(τ), θ0] ≤ u(τ, τ0, y0), τ ∈ T, (5.6)

where u(τ, τ0, y0) = max
κ

uκ(τ, τ0, y0), uκ(τ, τ0, y0) is the maximal solution of the family of comparison
problem

dy/dτ = g∗κ(τ, y), y(τ0) = y0 ≥ 0,

and η(τ) is an arbitrary solution of the problem (3.6) defined on T , corresponding to the initial value
η0.

Corollary 5.5. If in Corollary 5.4, g∗κ(τ, d[η, θ0]) = λ(τ)d[η, θ0] with λ(τ) > 0 for τ ∈ T, then the
estimate (5.6) has the form

d[η(τ), θ0] ≤ d[η0, θ0] exp


τ∫

τ0

λ(σ)dσ

 , τ ∈ T

for any κ ∈ [0, 1].

Remark 5.6. All established results for the regularized system (3.6) can be applied to obtain corre-
sponding results for the uncertain fuzzy problem (3.1). Thus, the proposed regularized scheme offers a
new approach to study a class of fuzzy differential systems with uncertainties via systems of type (3.6),
which significantly simplifies their analysis and is very appropriate for applied models of type (3.1).
This will be demonstrated by the next example.

Remark 5.7. The proposed regularized scheme and the corresponding approach can be extended to
more general systems considering delay effects, impulsive effects and fractional-order dynamics.

Example 5.8. We will apply Theorem 5.1 to estimate the distance between a solution of the problem
(3.1) and the equilibrium state θ0. To this end, we consider a particular function g(τ, ζ) from Condition
2 of Theorem 5.1. We transform the fuzzy equation in (3.1) by using the regularized process to the
form

dξ
dτ
= fκ(τ, ξ) + g(τ, ξ, µ), (5.7)

where g(τ, ξ, µ) = f (τ, ξ, µ) − fκ(τ, ξ) for all µ ∈ S. Further we will suppose that fκ ∈ C(T × EN ,EN)
for all κ ∈ [0, 1] and g ∈ C(T × EN × S,EN), T ⊆ [τ0, α], g(τ, 0, µ) , 0 for all τ ≥ τ0.

Let fκ(τ, ξ) and g(τ, ξ, µ) be such that for all τ ∈ T there exist continuous positive functions Ω(τ)
and o(τ) satisfying the hypotheses

1) d[ fκ(τ, ξ), θ0] ≤ Ω(τ)d[ξ, θ0] for all κ ∈ [0, 1];
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2) d[g(τ, ξ, µ), θ0] ≤ o(τ)dq[ξ, θ0] for all µ ∈ S;

3) ψ(τ0, τ) = (q − 1)dq−1[ξ0, θ0]
τ∫

τ0

o(σ) exp
[
(q − 1)

σ∫
τ0

Ω(υ)dυ
]
dσ < 1, q > 1.

For the family of equations (5.7), we assume that Hypotheses 1–3 are fulfilled for all τ, σ ∈ [τ0, α].
Then, the deviations of any solution ξ(τ) of (5.7) from the state θ0 ∈ E

N are estimated as follows

d[ξ(τ), θ0] ≤ d[ξ0, θ0] exp
( τ∫
τ0

Ω(σ)dσ
)(

1 − ψ(τ0, τ)
)
− 1

q−1 (5.8)

for all τ ∈ [τ0, α].
From (5.7), we have

ξ(τ) = ξ(τ0) +

τ∫
τ0

fκ(σ, ξ(σ)) dσ +

τ∫
τ0

g(σ, ξ(σ), µ) dσ. (5.9)

Let z(t) = d[ξ(τ), θ0]. Then z(τ0) = d[ξ0, θ0], and

d[ξ(τ), θ0] ≤ d[ξ0, θ0]

+ d
[( τ∫

τ0

fκ(σ, ξ(σ)) dσ +

τ∫
τ0

g(σ, ξ(σ), µ) dσ
)
, θ0

]

≤ d[ξ0, θ0] +

τ∫
τ0

d
[
fκ(σ, ξ(σ)), θ0

]
dσ +

τ∫
τ0

d
[
g(σ, ξ(σ), µ), θ0

]
dσ.

(5.10)

In view of Hypotheses 1 and 2, the inequality (5.10) yields

d[ξ(τ), θ0] ≤ d[ξ0, θ0]

+

τ∫
τ0

(Ω(σ)d[ξ(σ), θ0] + o(σ)dq[ξ(σ), θ0]) dσ

or

z(τ) ≤ z(τ0) +

τ∫
τ0

(
Ω(σ) + o(σ)zq−1(σ)

)
z(σ)dσ, τ ∈ [τ0, α]. (5.11)

Applying the estimation technique from [39] to inequality (5.11), we obtain the estimate

zq−1(τ) ≤

zq−1(τ0) exp

(q − 1)
τ∫

τ0

Ω(σ)dσ


1 − ψ(τ0, τ)

, τ ∈ [τ0, α]. (5.12)

From (5.12) we obtain (5.8).
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If the Hypotheses 1 and 2 are satisfied and 0 < q < 1, then by applying Theorem 2.2 from [40] to
the inequality (5.11), we get the estimate (5.8) in the form

d[ξ(τ), θ0] ≤ d[ξ0, θ0] exp
(
1 − ψ(τ0, τ)

) 1
q−1

(5.13)

for all τ ∈ [τ0, α].

6. Concluding remarks

In this paper we investigate some fundamental properties of fuzzy differential equations using a
new approach. We introduce a regularization scheme for systems of fuzzy differential equations with
uncertain parameters. Existence and uniqueness criteria for the regularized equations are established.
Estimates about the distance between solutions of the regularized equations are also proposed. The pro-
posed technique and the new results will allow us to consider the qualitative properties of the solutions
such as stability, boundedness, periodicity, etc. The introduced approach can also be extended to study
delayed systems and impulsive control systems via modifications of the Lyapunov theory [41–44]. The
advantages of the proposed regularization procedure can be implemented in various fuzzy models such
as fuzzy neural networks with uncertain parameters, fuzzy models in biology with uncertain parame-
ters, fuzzy models in economics with uncertain parameters, and much more. Numerical applications
of our finding in a way that is similar to [45] are also interesting and challenging further directions of
research.
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