
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 31(6): 3322–3342.
DOI: 10.3934/era.2023168
Received: 07 February 2023
Revised: 26 March 2023
Accepted: 03 April 2023
Published: 12 April 2023

Research article

A hybrid method for the interior inverse scattering problem

Yujie Wang, Enxi Zheng*and Wenyan Wang

School of Science, Dalian Maritime University, No. 1 of Linghai Road, Dalian 116026, Liaoning,
China

* Correspondence: Email: enxizheng2003@dlmu.edu.cn.

Abstract: In this paper, the interior inverse scattering problem of a cavity is considered. By use of
a general boundary condition, we can reconstruct the shape of the cavity without a priori information
of the boundary condition type. The method of fundamental solutions (MFS) with regularization is
formulated for solving the scattered field and its normal derivative on the cavity boundary. Newton’s
method is employed to reconstruct the cavity boundary by satisfying the general boundary condition.
This hybrid method copes with the ill-posedness of the inverse problem in the MFS step and deals with
the nonlinearity in the Newton’s step. Some computational examples are presented to demonstrate the
effectiveness of our method.
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1. Introduction

Inverse scattering problems play an important role in many areas, such as radar detection, medical
imaging and non-destructive testing [1]. The classic inverse scattering problem is usually viewed as
an exterior problem. For example, the bounded obstacle is illuminated by an incident plane wave,
and the shape of the obstacle can be reconstructed via the measured far-field data [1–3]. In recent
decades, interior inverse scattering problems have also attracted the attention of many researchers due
to their applications in industry. In such interior problems, the scatterer is always described as a closed
cavity. The sources and receivers are placed inside the cavity to test its structural integrity based on
the scattered waves received [4]. In our paper, we define the cavity by a bounded, simply connected
domain D ⊂ R2 with a Lipschitz boundary ∂D. The point sources and the receivers are placed on a
closed curve C inside the cavity D (see Figure 1). We try to reconstruct the cavity boundary ∂D from
the scattered waves measured on C via a hybrid method without knowing the boundary condition.
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figure1.1Figure 1. Interior scattering problem of a cavity.

In comparison with the exterior scattering problem, the interior scattering problem is more com-
plicated due to the repeated reflections of the trapped scattered waves in the cavity. Some numerical
methods have been studied for interior inverse scattering problems. In [5], Qin and Colton proved
the uniqueness of this interior problem with the Dirichlet boundary condition and proposed a mod-
ification of the linear sampling method to reconstruct the shape of the cavity. They also developed
this method for the case of the impedance boundary condition [6]. In [7], the authors used the linear
sampling method to solve the interior inverse electromagnetic scattering problem, and, recently, this
method has been extended to the inhomogeneous case [8]. Many other numerical methods are also
available for interior inverse scattering problems, such as the integral equation method [9], decomposi-
tion method [10], regularized Newton’s iterative method [11], factorization method [12, 13], Bayesian
method [14], reciprocity gap method [15], direct imaging method [16] and so on. The interior inverse
scattering problem for a two-layered cavity was considered in [17], and the authors used the Bayesian
method to reconstruct the interface. Interior inverse scattering problems with different physical back-
grounds have also been studied. For example, in [18], the shape of an elastic cavity was reconstructed,
and, in [19, 20], a partially coated cavity with mixed boundary conditions was studied. Recently,
machine learning approaches for solving inverse scattering problems have become popular [21, 22].
In [23], the authors have also proposed a neural network method for inverse scattering problems of
impenetrable cavities.

As stated above, many numerical methods have been proposed for the interior inverse scattering
problem. Most of them, for example, the regularized Newton method and the decomposition method,
need to know the boundary condition as a priori information. However, in some practical applications,
the physical properties of the cavity are unknown. As a result, the type of boundary condition in
the mathematical model of the interior inverse scattering problem is unknown. Motivated by the idea
in [24], we introduce a general boundary condition in our model instead of the traditional Dirichlet
or impedance boundary condition. Then, we propose a hybrid method by coupling the method of
fundamental solutions (MFS) and the Newton’s iterative method. By use of the general boundary
condition introduced in [24], we can reconstruct the shape of a cavity without a priori knowledge
concerning the size and physical properties of the cavity. Similar to the hybrid methods used in [24–27],
we need to reconstruct the cavity boundary that satisfies the general boundary condition. This is a
nonlinear problem, and we cope with it via the Newton’s method. The general boundary condition
consists of the real parts and imaginary parts of the total field and its normal derivative. Therefore,
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in each iteration of the Newton’s method, we try to obtain the total field and its normal derivative on
the approximated cavity boundary from the scattered field measured on C by the MFS. Because the
resulting system of equations produced by the MFS is ill-posed, we adopt the regularization technique.
The advantage of the hybrid method is that it obtains a good compromise between numerical accuracy,
computational costs and the amount of required data (one incident wave is sufficient). In our hybrid
method, we use the regularized MFS instead of the integral equation method in the first step, which
makes the method simpler and easier to code.

The outline of this paper is as follows. In Section 2, we provide the formulation of the interior
inverse scattering problem and prove the uniqueness result. In Section 3, we present the hybrid method
and the general boundary condition used in our algorithm. In Section 4, some numerical examples are
presented to demonstrate the effectiveness of our method. In Section 5, we conclude the paper and
present some research directions for our future work.

2. Formulation of the problem

In this paper, we consider a transverse magnetic (TM) polarized time-harmonic electric dipole lo-
cated inside an infinite cylinder. Let the cross section of the cylinder D ⊂ R2 be a simply connected
domain with a Lipschitz boundary ∂D. The point sources and the observational points are all located on
curve C inside D (see Figure 1). Then, the scattered field us of the interior scattering problem satisfies
the following equation:

∆us + k2us = 0 in D, (2.1)

where k > 0 is the wave number. Suppose that ui is the incident field given by

ui(x) = Φ(x, d) =
i
4

H(1)
0 (k|x − d|).

Here, i =
√
−1, d is the location of the source point on C and Φ(x, d) is the fundamental solution of

the two-dimensional Helmholtz equation. The total field u = ui + us satisfies the following boundary
condition:

Bu = 0, on ∂D, (2.2)

where B is a linear operator defined by

B = I, for Dirichlet boundary condition, (2.3)

B =
∂

∂ν
, for Neumann boundary condition, (2.4)

B =
∂

∂ν
+ iλ(x)I, for impedance boundary condition. (2.5)

Here, λ(x) > 0 is a real-valued impedance function on ∂D and λ(x) ∈ C(∂D). ν is the unit outward
normal vector with respect to ∂D. Actually, the Neumann boundary condition (2.4) can be viewed as
the impedance boundary condition (2.5) with an impedance of λ = 0.

For the direct problem, we solve the scattered field us from Eq (2.1) and the boundary condition
(2.2). For the inverse problem, we reconstruct the geometry of the cavity D and the impedance function
λ(x) in the case with an impedance boundary condition from the measured scattered fields us. In this
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paper, we consider the interior inverse scattering problem without knowing the physical properties of
the cavity D. Because the boundary condition is related to the physical properties of D, it is usually
difficult to obtain the boundary condition as a priori information. Therefore, we try to reconstruct the
geometry of the interior cavity from the scattered field us on curve C without knowing whether the
boundary operator B is (2.3), (2.4) or (2.5). To this end, we introduce a general boundary condition
in the next section. Before we illustrate the hybrid method for solving the interior inverse scattering
problem, we focus on the uniqueness of our problem. Motivated by the uniqueness proofs of Theorem
2.1 in [19] and Theorem 2.2 in [28], we present the next theorem. Throughout the paper, we assume
that k2 is not a Dirichlet eigenvalue for −∆ in the interior of C.

Theorem 1. Assume that D1,D2 are two cavities with boundary conditions B1,B2, respectively, such
that the scattered fields coincide on C for all source points located on C and a fixed wave number.
Here, B1,B2 are assumed to be one of the boundary operators defined by (2.3), (2.4) or (2.5). Then,
D1 = D2 and B1 = B2.

Proof. The proof is divided into three steps.
In step 1, we prove the uniqueness of D, that is, D1 = D2. This part of the proof is similar to the

proof of Theorem 2.1 in [19].
In step 2, we prove the uniqueness of the boundary condition type. Let us

1(x, d) and us
2(x, d) be the

scattered fields of cavities D1 and D2 for one source point located at d ∈ C. From the assumption,
us

1 = us
2 for all x on C. Then, from the proof of Theorem 2.1 in [19], the total fields u1(x, d) =

ui + us
1 = ui + us

2 = u2(x, d) in D := D1 = D2, which is proven in step 1. For simplicity, we use
u instead of u1 and u2. If the boundary conditions of the two cavities are different, without loss of
generality, we can assume that the total field u = ui + us = 0 on ∂D1 and ∂u

∂ν
+ iλ(x)u = 0 on ∂D2. Since

D = D1 = D2, we have that ∂u
∂ν

= 0 on ∂D. Utilizing Holmgren’s theorem, we know that u(x) = 0 for
all x ∈ D\{d}, noticing that the total field u is analytic in D except at point d. Therefore, the scattered
field us

1(x, d) = −Φ(x, d) for x , d. This means that the scattered field blows up when x −→ d. This
is a contradiction. Thus, the types of boundary conditions are the same for D1 and D2.

In step 3, we prove the uniqueness of λ for the impedance boundary condition. From step 2, we
have that u1 = u2 in D. Then,

u1 = u2,
∂u1

∂ν
=
∂u2

∂ν
on ∂D.

We subtract the impedance boundary conditions

∂u1

∂ν
+ iλ1u1 = 0,

∂u2

∂ν
+ iλ2u2 = 0.

Then, we obtain
(λ1 − λ2)u = 0, on ∂D.

Assume λ1 , λ2 at a point x0 on ∂D; then, there exists a neighborhood of x0 such that λ1 , λ2 on
O(x0, ε) ∩ ∂D. This means that u = 0 on O(x0, ε) ∩ ∂D, and, from the impedance boundary condition,
∂u
∂ν

= 0. Similar to the proof in step 2, we obtain u = 0 for all x ∈ D\{d} by use of Holmgren’s theorem.
Therefore, we can obtain the contradiction in the same way as in step 2.

Remark 1. The above uniqueness result is obtained from the scattered fields on C for all source points
located on C. Actually, in the numerical experiments conducted in Section 4, we can reconstruct

Electronic Research Archive Volume 31, Issue 6, 3322–3342.



3326

the shape of the cavity with just one point source incidence. Notably, better reconstructions can be
obtained with more source points.

3. The hybrid method

In this section, we propose a general boundary condition and a hybrid method for addressing the
interior inverse scattering problem.

3.1. The general boundary condition

As stated above, there are three types of boundary conditions and the Neumann condition can be
viewed as the impedance condition with λ = 0. Now, we introduce the general boundary condition
from [24], which is defined as follows:

G(u) := R
(
∂u
∂ν

)
R(u) + I

(
∂u
∂ν

)
I(u) = 0, on ∂D, (3.1)

where R(u) represents the real part of u and I(u) represents the imaginary part of u. The relation-
ship between the above general boundary condition and the usual boundary conditions is stated in the
following theorem.

Theorem 2. Assume that D is a bounded cavity with a C2 continuous boundary ∂D, the function
u ∈ C2(D)∩C(D̄) and u , 0 everywhere on ∂D if u ≡ 0 is not true on ∂D. Then, u satisfies the general
boundary condition

G(u) = 0 on ∂D

if and only if u satisfies the Dirichlet boundary condition u = 0 or the impedance boundary condition
∂u/∂ν + iλu = 0 on ∂D.

Proof. The proof of this theorem is similar to the proof of Theorem 2.1 in [24]. Because this general
boundary condition is a key part of our hybrid method, we repeat the proof as follows.

First, we prove the sufficiency. If u = 0 on ∂D, then G(u) = 0 on ∂D. If ∂u/∂ν + iλu = 0 on ∂D, we
have (

R

(
∂u
∂ν

)
− λI(u)

)
+ i

(
I

(
∂u
∂ν

)
+ λR(u)

)
= 0, on ∂D.

Therefore,

R

(
∂u
∂ν

)
= λI(u), I

(
∂u
∂ν

)
= −λR(u) on ∂D.

Obviously, if λ = 0, ∂u/∂ν = 0 on ∂D. Thus, G(u) = 0. If λ , 0, multiply the above two equations,
and we obtain

−λR(u)R
(
∂u
∂ν

)
= λI(u)I

(
∂u
∂ν

)
on ∂D.

R

(
∂u
∂ν

)
R(u) + I

(
∂u
∂ν

)
I(u) = 0, on ∂D.

Therefore, we obtain the general boundary condition G(u) = 0 on ∂D for the impedance boundary
condition.
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Second, we prove the necessity. If G(u) = 0 on ∂D, we have that

uR
(
∂u
∂ν

)
− iI(u)

∂u
∂ν

=uR
(
∂u
∂ν

)
− iI(u)R

(
∂u
∂ν

)
+ I(u)I

(
∂u
∂ν

)
=R(u)R

(
∂u
∂ν

)
+ iI(u)R

(
∂u
∂ν

)
− iI(u)R

(
∂u
∂ν

)
+ I(u)I

(
∂u
∂ν

)
=R

(
∂u
∂ν

)
R(u) + I

(
∂u
∂ν

)
I(u)

=0.

(3.2)

Similarly, we obtain

uI
(
∂u
∂ν

)
− iR(u)

∂u
∂ν

= 0 on ∂D. (3.3)

Subtract (3.3)×R(u) from (3.2)×I(u)

u
(
R

(
∂u
∂ν

)
I(u) − I

(
∂u
∂ν

)
R(u)

)
− i((I(u))2 + (R(u))2)

∂u
∂ν

= 0.

From the above equation, we have that u = 0 or ∂u/∂ν + iλu = 0 on ∂D, where λ is defined with the
following form:

λ :=
R

(
∂u
∂ν

)
I(u) − I

(
∂u
∂ν

)
R(u)

(I(u))2 + (R(u))2 . (3.4)

3.2. Two steps of the hybrid method

Now, by using the above general boundary condition, we propose a hybrid method for the interior
inverse scattering problem. First, we give the parametric form of the cavity boundary ∂D:

z(t) = r(t)(cos t, sin t), t ∈ [0, 2π], (3.5)

where r(t) = a0 +
∑∞

j=1[a j cos( jt) + b j sin( jt)] > 0. In numerical experiments, we truncate r(t) by N1

terms.
Next, we illustrate the main idea of the hybrid method, which consists of two steps. In the first step,

we represent the total field trace u and its normal derivative ∂u
∂ν

on ∂D by the MFS. After choosing N
source points yi on a closed curve S containing the cavity D,

us(x) ≈
N∑

i=1

ciΦ(x, yi), x ∈ D.

In numerical experiments, the closed curve S is often chosen as (1 + η)z(t), where η > 0. From the
scattered fields us measured on curve C, the above undetermined coefficients ci, i = 1, · · · ,N are solved
by

N∑
i=1

ciΦ(x j, yi) ≈ us(x j), x j ∈ C, j = 1, · · · ,M.
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Since the above system of equations is ill-posed, we add regularization to it. Suppose that we have the
following least-squares functional:

Fα(c1, · · · , cN) =

M∑
j=1

∣∣∣∣∣∣∣
N∑

i=1

ciΦ(x j, yi) − us(x j)

∣∣∣∣∣∣∣
2

+ α

N∑
i=1

|ci|
2, (3.6)

where α is the regularization parameter, and we obtain the coefficients ci by minimizing the above
least-squares functional Fα(c1, · · · , cN). Then, we have

u(x) ≈
N∑

i=1

ciΦ(x, yi) + ui(x), x ∈ ∂D. (3.7)

∂u
∂ν

(x) ≈
N∑

i=1

ci
∂Φ(x, yi)

∂ν
+
∂ui

∂ν
(x), x ∈ ∂D. (3.8)

Because the fundamental solutions satisfy the Helmholtz equation (2.1), the total field u merely needs
to satisfy the general boundary condition G(u) = 0 on ∂D.

In the second step, we use the Newton’s method to find the boundary curve z(t) that satisfies G(u) =

0 on ∂D. Suppose that z(t) : R → R2 is a 2π periodic C2 continuous function. Given a C2 continuous
function u defined in the neighborhood of ∂D, we denote the general boundary operator

G̃(z) := G(u(z)),

that is,

G̃ : z 7→ R
(
∂u
∂ν
◦ z

)
R(u ◦ z) + I

(
∂u
∂ν
◦ z

)
I(u ◦ z). (3.9)

We use the Newton’s method to solve the boundary equation G̃(z) = 0, that is,

G̃(zn) + G̃′(zn)h = 0, zn+1 = zn + h.

Here, G̃′ is the Fréchet derivative of G̃, and zn(t) = rn(t)(cos t, sin t) is the approximation of the cavity
boundary in the nth iteration. The parametric form of rn(t) is as follows:

rn(t) = a0 +

N1∑
j=1

[a j cos( jt) + b j sin( jt)], (3.10)

where N1 is the truncation term and rn(t) > 0. To solve the Newton’s equation, the data u and ∂u
∂ν

on the
approximated cavity boundary can be obtained from the first step. For the new boundary curve zn+1,
the above two steps are repeated until n reaches the designated maximum number of iteration steps or
some stopping criteria are fulfilled.

Finally, we compute the Fréchet derivative G̃′(zn)h. For convenience, we define

G̃1 : z 7→ u ◦ z, G̃2 : z 7→
∂u
∂ν
◦ z.
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Thus,
G̃(z) = R(G̃2(z))R(G̃1(z)) + I(G̃2(z))I(G̃1(z)).

In the following, we use τ to denote the unit tangent vector to ∂D. Then, τ ◦ z = z′/|z′| and ν ◦ z =

z′⊥/|z′|. In the situation without misunderstanding, we still adopt the notations τ = τ ◦ z and ν = ν ◦ z.
In References [25, 27], the authors gave the Fréchet derivatives of G̃1 and G̃2, and in Reference [24],
the authors summarized the corresponding results in the following two theorems.

Theorem 3. The operators G̃1 and G̃2 from C2([0, 2π]) to C([0, 2π]) are both Fréchet differentiable,
and their derivatives are given by

G̃′1(z)h = (∇u ◦ z) · h, (3.11)

G̃′2(z)h = −
h′ · ν
|z′|

∂u
∂τ
◦ z + (h · τ)

[
∂2u
∂τ∂ν

◦ z − H
∂u
∂τ
◦ z

]
+ (h · ν)

∂2u
∂ν2 ◦ z, (3.12)

where H := −ν · z′′/|z′|2 stands for the curvature. Provided that the field u satisfies the Helmholtz
equation, the Fréchet derivative of G̃′2 is simplified as

G̃′2(z)h = − k2(h · ν)u ◦ z −
∂

∂τ

(
h · ν

(
∂u
∂τ
◦ z

))
+ H(h · ν)

∂u
∂ν
◦ z + (h · τ)

∂2u
∂τ∂ν

◦ z.
(3.13)

By use of the above theorem, we obtain the following theorem.

Theorem 4. G̃ : C2[0, 2π] 7→ C[0, 2π] is Fréchet differentiable, and its derivative is given by

G̃′(z)h =R(G̃1(z))(R(G̃2(z)))′h + R(G̃2(z))(R(G̃1(z)))′h
+ I(G̃1(z))(I(G̃2(z)))′h + I(G̃2(z))(I(G̃1(z)))′h,

(3.14)

where the Fréchet derivatives (R(G̃1(z)))′h and (I(G̃1(z)))′h can be achieved from (3.11) by taking the
real part or the imaginary part of u, and the Fréchet derivatives (R(G̃2(z)))′h and (I(G̃2(z)))′h can
be achieved from (3.12) by taking the real part or the imaginary part of u. If u satisfies the Helmholtz
equation, (R(G̃2(z)))′h and (I(G̃2(z)))′h can also be simplified by (3.13).

4. Numerical examples

In this section, we present three numerical examples corresponding to the three types of boundary
conditions. Throughout this section, we assume the incident wave ui = Φ(x, d) = i

4 H(1)
0 (k|x − d|),

k = 1, and d is the position of the source point. The number of scattered fields measured on a circle C
is M = 128. The number of source points is N = 128 on a closed curve S n with (1 + η)zn(t), where
η = 0.1. We use the integral equation method in [3, 9] to obtain the exact measured data us on C. To
test the stability of the hybrid method, we add some random noise to the exact scattered field us by

us,δ = us + δr1|us|eiπr2 ,

where r1 and r2 are two random numbers uniformly distributed in [−1, 1], and δ > 0 is the relative
noise level. In the following examples, we mainly consider δ = 1% and δ = 5%.
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In the computation, we recall the approximation of the cavity boundary zn(t) = rn(t)(cos t, sin t) in
the nth iteration and the parametric form of rn(t) is described in (3.10). For the boundary zn, we first
compute the coefficients c j by solving the least-squares problem (3.6), and then we obtain the total
field u and its derivative ∂u

∂ν
from (3.7) and (3.8), respectively.

In the second step of the hybrid method, the iteration step is defined as

h(t) =

a(h)
0 +

N1∑
j=1

[a(h)
j cos( jt) + b(h)

j sin( jt)]

 (cos t, sin t).

Choosing some discrete points ti, i = 1, · · · , 512 in [0, 2π], we obtain the discretization of the Newton’s
equation G̃(zn) + G̃′(zn)h = 0, where G̃(zn) is computed by (3.9) and G̃′(zn)h is computed by (3.14).
The following equation is also needed for the computation of (3.11):

∇u = ν
∂u
∂ν

+ τ
∂u
∂τ
, x ∈ ∂Dn.

We choose the stopping criterion as follows:

‖G̃(zn) − G̃(zn−1)‖ < 10−2.

Example 1. In this example, we consider an interior inverse scattering problem with the Dirichlet
boundary condition. We first consider a triangular cavity with the following parametric form:

z(t) = (1 + 0.2 cos 3t)(cos t, sin t), t ∈ [0, 2π] (4.1)

In the experiment, we choose d = (0.5, 0) as the source point, the radius rc of the measured curve C is
0.5 and the number of terms in the parametric form rn(t) is N1 = 3. We set the initial boundary as a
circle with a radius of 0.7. Therefore, the initial value of [a0, a1, a2, a3, b1, b2, b3] is [0.7, 0, 0, 0, 0, 0, 0].
The reconstruction of the cavity without noise is shown in Figure 2. The green line in Figure 2 is the
initial guess of the cavity boundary, the blue line is the exact cavity boundary and the red dotted line
is the reconstruction of the cavity boundary. From this figure, we can see that the reconstruction is
almost exact without noise, and the computational time is short (1.5 s on a laptop with an Intel Core i7
processor at 2.5 GHz and 12 GB of RAM).
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Figure 2. Reconstruction of a cavity without noise for the Dirichlet case.
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When the noise level is 1%, we choose the regularization parameter α = 10−3, and when the noise
level is 5%, we choose the regularization parameter α = 10−2. The reconstructions of the cavity with
different noise levels are presented in Figure 3. This experiment shows that the hybrid method is
effective for cases with different noise levels under the Dirichlet boundary condition.
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Figure 3. Reconstructions of the cavity with 1% noise (left) and 5% noise (right) for the
Dirichlet case, (rc = 0.5).

Now, we choose a different radius rc = 0.3 for the measured curve C and the source point at
d = (0.3, 0). The regularization parameter α = 10−3 when the noise level is 1%, and α = 8 × 10−3

when the noise level is 5%. The other parameters are the same as above. The reconstructions of the
cavity are shown in Figure 4. Compared with Figure 3 in the above experiment, we can see that the
reconstruction is affected by the distance between the measured curve and the cavity boundary. When
the distance is larger, the reconstruction is worse than that in Figure 3.
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Figure 4. Reconstructions of the cavity with 1% noise (left) and 5% noise (right) for the
Dirichlet case, (rc = 0.3).

In the experiments conducted throughout Section 4, we choose the number of source points N = 128
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and the regularization parameter α by trial and error. In the following experiment, we consider the
effects of different choices for these two parameters on the resulting numerical performance. First, we
define the relative error between the numerical solution rn(t) and the exact solution r(t) as follows:

‖r(t) − rn(t)‖2
‖r(t)‖2

.

From the expression of the triangular domain (4.1), r(t) = 1 + 0.2 cos 3t. Then, we present the relative
errors with different regularization parameters α in the left subfigure of Figure 5. The noise level is
1%, and the other parameters are the same as those used in the first experiment in Example 1. This
figure illustrates that the relative error declines with increasing α and then increases. The best interval
of α is approximately 9 × 10−5 to 5 × 10−3.
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Figure 5. Relative errors with increasing α (left) and relative errors with increasing N (right).

Second, we consider the relative errors with different values of N. In this experiment, the noise
level is 1%, the regularization parameter α = 10−3 and the other parameters are the same as those in
the first experiment in Example 1. From the right subfigure of Figure 5, the relative error also declines
as N increases and then increases. The best interval of N is about 100–225. This figure also shows
that the relative error does not decrease when N is sufficiently large. The effect of N on the numerical
performance is somewhat similar to that of the regularization parameter α.

Next, we consider a peanut cavity in the parametric form shown below:

z(t) = 2
√

cos2 t + 0.25 sin2 t(cos t, sin t), t ∈ [0, 2π]. (4.2)

The source point is at d = (0.8, 0), the radius of C is 0.8 and the number of terms in the parametric
form rn(t) is N1 = 5. The initial value is [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The reconstruction of the cavity
without noise is shown in Figure 6.
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Figure 6. Reconstruction of a cavity without noise for the Dirichlet case.

When the noise level is 1%, we choose the regularization parameter α = 5 × 10−3, and when the
noise level is 5%, we choose α = 10−2. The reconstructions of the cavity with different noise levels are
presented in Figure 7. From this experiment, we can see that the hybrid method is also effective for the
peanut cavity.
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Figure 7. Reconstructions of the cavity with 1% noise (left) and 5% noise (right) for the
Dirichlet case.

Example 2. In this example we consider the interior inverse scattering problem with the Neumann
boundary condition. First, we present the triangular case with the same parametric form of (4.1) in
Example 1. In the experiment, we choose the source point at d = (0.5, 0), the radius of C is 0.5 and the
number of terms in the parametric form rn(t) is N1 = 3. The initial boundary is a circle with a radius
of 0.7. Therefore, the initial value of [a0, a1, a2, a3, b1, b2, b3] is [0.7, 0, 0, 0, 0, 0, 0]. The reconstruction
of the cavity without noise is shown in Figure 8. From this figure, we can see that the reconstruction is
also effective with the Neumann boundary condition.
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Figure 8. Reconstruction of the cavity without noise for the Neumann case.

When the noise level is 1%, we choose the regularization parameter α = 5 × 10−3, and when the
noise level is 5%, we choose α = 4× 10−2. The reconstructions of the cavity with different noise levels
are presented in Figure 9. This experiment shows that the inversion effect with the Neumann boundary
condition is sensitive to the noise level. When the noise level is high, the reconstruction is not very
good.

-1 -0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 reconstruction

initial boundary

real boundary

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

reconstruction

initial boundary

real boundary

Figure 9. Reconstructions of the cavity with 1% noise (left) and 5% noise (right) for the
Neumann case, (rc = 0.5).

Now, we choose a different radius rc = 0.6 for the measured curve C and select the source point at
d = (0.6, 0). The regularization parameter α = 10−2 when the noise level is 1%, and α = 8×10−1 when
the noise level is 5%. The other parameters are the same as above. The reconstructions of the cavity
are shown in Figure 10. Compared with Figure 9 in the above experiment, we can see that, under the
Neumann boundary condition, the reconstruction is also affected by the distance between the measured
curve and the cavity boundary. When the distance is smaller, the reconstruction is better.
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Figure 10. Reconstructions of the cavity with 1% noise (left) and 5% noise (right) for the
Neumann case, (rc = 0.6).

Next, we consider a peanut cavity with the same parametric form (4.2) as that in Example 1. The
source point is at d = (0, 0.6), the radius of C is 0.6 and the number of terms in the parametric form rn(t)
is N1 = 5. The initial value is [1.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The reconstruction of the cavity without
noise is shown in Figure 11.
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Figure 11. Reconstruction of the cavity without noise for the Neumann case.

When the noise level is 1%, we choose the regularization parameter α = 10−3, and when the noise
level is 5%, we choose α = 2 × 10−2. The reconstructions of the cavity with different noise levels are
presented in Figure 12.

Example 3. In this example, we consider the interior inverse scattering problem with the impedance
boundary condition. We reconstruct the shape of the cavity and the impedance function λ simultane-
ously, where λ is approximated by (3.4). First, we present the triangular case with the same parametric
form of (4.1) as that in Example 1. In the experiment, we choose the source point at d = (0.7, 0), the
radius rc of the measured curve C is 0.7 and the number of terms in the parametric form rn(t) is N1 = 3.
The initial boundary is a circle with a radius of 1.5, that is, the initial value of [a0, a1, a2, a3, b1, b2, b3]
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Figure 12. Reconstructions of the cavity with 1% noise (left) and 5% noise (right) for the
Neumann case.

is [1.5, 0, 0, 0, 0, 0, 0]. The exact impedance function λ is given in the following form:

λ = 1 + sin3(t), t ∈ [0, 2π]. (4.3)

The reconstructions of the cavity boundary and the impedance function λ without noise are shown in
Figure 13. The green line in the left subfigure of Figure 13 is the initial guess of the cavity boundary,
the blue line is the exact cavity boundary and the red dotted line is the reconstruction of the cavity
boundary. The blue line in the right subfigure of Figure 13 is the exact impedance function, and the
red line is the reconstruction of the impedance function. Figure 13 shows that the hybrid method is
effective with the impedance boundary condition.
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Figure 13. Reconstructions of the cavity (left) and the impedance function (right), without
noise, (rc = 0.7).

When the noise level is 1%, we choose the regularization parameter α = 2 × 10−2, and when the
noise level is 5%, we choose α = 1 × 10−1. The reconstructions of the cavity and the impedance
function with 1% noise are presented in Figure 14, and the reconstructions obtained with 5% noise are
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presented in Figure 15. From Figures 14 and 15, the reconstruction of the impedance function λ is
obviously affected by the noise level.
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Figure 14. Reconstructions of the cavity (left) and the impedance function (right), with 1%
noise, (rc = 0.7).
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Figure 15. Reconstructions of the cavity (left) and the impedance function (right), with 5%
noise, (rc = 0.7).

In the next experiment, we choose the source point at d = (0.5, 0), and the radius rc of the measured
curve C is 0.5. The other parameters are the same as those in the above experiment. The regularization
parameter α = 3 × 10−3 with 1% noise and α = 10−1 with 5% noise. The reconstructions are presented
in Figures 16 and 17. Comparing Figures 14 and 15 with Figures 16 and 17, we can see that the
reconstruction is also affected by the distance between the measured curve and the cavity boundary.
This is consistent with the linear sampling method described in Reference [5] and the direct imaging
method utilized in [16] for the interior inverse scattering problem.

Finally, we consider another impedance function given by

λ = 1 − cos(t) + 0.5 ∗ sin(2t), t ∈ [0, 2π]. (4.4)
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Figure 16. Reconstructions of the cavity (left) and the impedance function (right), with 1%
noise, (rc = 0.5).
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Figure 17. Reconstructions of the cavity (left) and the impedance function (right), with 5%
noise, (rc = 0.5).

In this experiment, we choose the source point at d = (0.7, 0), rc = 0.7 and the number of terms in
the parametric form rn(t) is N1 = 3. The initial value is the same as above. The reconstructions of the
cavity boundary and the impedance function λ without noise are shown in Figure 18.

When the noise level is 1%, we choose the regularization parameter α = 2×10−2, and when the noise
level is 5%, we choose α = 10−1. The reconstructions of the cavity and the impedance function with
1% noise are presented in Figure 19, and the reconstructions obtained with 5% noise are presented
in Figure 20. From this experiment, we can see that the hybrid method is effective with different
impedance functions.
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Figure 18. Reconstructions of the cavity (left) and the impedance function (right), without
noise, (rc = 0.7).
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Figure 19. Reconstructions of the cavity (left) and the impedance function (right), with 1%
noise, (rc = 0.7).
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Figure 20. Reconstructions of the cavity (left) and the impedance function (right), with 5%
noise, (rc = 0.7).
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Finally, we provide some comments about the performance of the method with different initial
values. Like most Newton’s methods, our method only exhibits local convergence. When the initial
value is close to the exact boundary, the numerical solution converges to the exact solution quickly. We
can obtain the desired reconstruction after 15–30 iterations. However, if the initial guess is not close
to the exact boundary, the numerical solution does not converge or may converge to somewhere else.
Therefore, the reconstruction is far away from the exact boundary.

5. Conclusions

In this paper, we studied a hybrid method for the interior inverse scattering problem. The MFS
is employed instead of the integral equation method in the first step of the hybrid method. Through
the use of the general boundary condition, we can reconstruct the shape of a cavity without prior in-
formation about the boundary condition type. Numerical examples show that our method is effective.
However, when the noise level is high, the reconstructions are not very good for the impedance bound-
ary condition. In the future, we will try to improve the method or the general boundary condition to
obtain a better inversion effect. We will also consider this hybrid method for different inverse scattering
problems, e.g., inverse problems with periodic structures.
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