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Abstract: Based on the binary product described by any Latin square, the Hadamard quasigroup
product is introduced in this paper as a natural generalization of the classical Hadamard product of
matrices. The successive iteration of this new product is endowed with a cyclic behaviour that enables
one to define a pair of new isomorphism invariants of Latin squares. Of particular interest is the set of
Latin squares for which this iteration preserves the Latin square property, which requires the existence
of successive localized Latin transversals within the Latin square under consideration. In order to
enumerate and classify, up to isomorphism, these Latin squares, we propose a computational algebraic
geometry approach based on the computation of reduced Gröbner bases. To illustrate this point, we
obtain the classification of the sought Latin squares, for order up to six, by using the open computer
algebra system for polynomial computations Singular.
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1. Introduction

From now on, let A(n) denote the set of n × n arrays in which each cell contains a symbol in
the set [n] ∪ {·}, where [n] := {1, . . . , n}. The set of entries of any array A ∈ A(n) is the set
Ent(A) := {(i, j, A[i, j]) : i, j ∈ [n]}, where A[i, j] denotes the symbol appearing in the cell (i, j) in
A. Cells containing the symbol {·} are termed empty. The number of non-empty cells in the array A
constitutes its weight |A|. Further, a transversal in the array A is any set of n cells containing exactly
one cell per row and one cell per column. It is said to be a Latin transversal if all the n cells are
non-empty and no two cells contain the same symbol.

An array A ∈ A(n) is a partial Latin square if each symbol in [n] appears, at most, once per row,
and, at most, once per column. If |A| = n2, then it is a Latin square. That is, an n × n array such that
each symbol in [n] appears precisely once per row, and precisely once per column. This condition is
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usually known as the Latin square property. Every Latin square constitutes the multiplication table of
a quasigroup ([n], ∗) of the same order. That is, the set [n] is endowed with a binary operation ∗, so
that both equations i ∗ x = j and y ∗ i = j have unique solutions x, y ∈ [n], for all i, j ∈ [n].

From now on, let PL(n) and L(n) respectively denote the subset of partial Latin squares and that of
Latin squares in the setA(n). A partial Latin square P ∈ PL(n) is completable to a partial Latin square
Q ∈ PL(n) if Ent(P) ∩ [n]3 ⊆ Ent(Q). By abuse of notation, we denote this fact by P ⊆ Q. Further, let
S n be the symmetric group on the set [n]. Two (partial) Latin squares P, P′ ∈ PL(n) are isomorphic
if there exists a permutation π ∈ S n such that P′[π(i), π( j)] = π(P[i, j]), for all i, j ∈ [n] such that
P[i, j] ∈ [n]. In such a case, the permutation π is an isomorphism from P to P′. To be isomorphic is
an equivalence relation among (partial) Latin squares. Currently, the number of isomorphism classes
is only known for Latin squares of order up to eleven [1–3] and for partial Latin squares of order up to
six [4]. Recently, the number of isomorphism classes has also been established [5,6] for some families
of Latin squares of order up to 15. In order to deal with higher orders, new isomorphism invariants of
(partial) Latin squares are being described in the recent literature [6–10]. This paper delves into this
topic by focusing on the description and subsequent computational analysis of some new invariants
resulting from a generalization of the Hadamard product of matrices.

Recall here that the Hadamard product of two m × n matrices A and B, with entries in a field K, is
the m × n matrix A ⊙ B = (A[i, j] · B[i, j]), where · refers to the multiplication in K. Our approach is
based on a similar element-wise product on the setA(n) by means of the binary product described by a
Latin square L ∈ L(n). It is formally introduced in Section 4 as the Hadamard L-product. The discrete
structure of L endows the successive iteration of this product with a cyclic behaviour. Of particular
interest is the characterization, construction and classification of those Latin squares for which this
iteration always preserves the Latin square property. We prove that this condition requires the existence
of successive localized Latin transversals within the Latin square under consideration. They can be
identified with the algebraic set of a zero-dimensional radical ideal in a multivariate polynomial ring,
which can explicitly be determined in turn from the computation of the reduced Gröbner basis of this
ideal. In this paper, we compute this basis by using the open computer algebra system for polynomial
computations Singular [11].

The paper is organized as follows. Section 2 deals with some preliminary concepts and results on
partial Latin squares and computational algebraic geometry that are used throughout the paper. Then,
in Section 3, we define three distinct zero-dimensional radical ideals in multivariate polynomial rings,
whose algebraic sets can respectively be identified with: (a) the set of Latin squares to which a given
partial Latin squares is completable; (b) a partial Latin square that results after filling the cells of a
transversal with empty cells in a given partial Latin square; and (c) the set of isomorphisms between
two given Latin squares. In Section 4, we describe the Hadamard quasigroup product and a pair of
associated isomorphism invariants of Latin squares. Then, we characterize those Latin squares for
which the successive iteration of the Hadamard quasigroup product is also a Latin square. In order
to determine explicitly the set of these Latin squares, we describe an algorithm that is based on the
computation of reduced Gröbner bases of the above ideals. Then, this algorithm is implemented in
Singular to obtain the classification, up to isomorphism, of these Latin squares, for order up to six.
Finally, since this work has a high dependence on notation, a Glossary of Symbols is shown at the end
of the paper.
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2. Preliminaries

In this section, we describe some basic concepts and results on partial Latin squares and compu-
tational algebraic geometry that are used throughout the paper. See [12, 13] for more details on both
topics.

2.1. Partial Latin squares

A partial Latin square P ∈ PL(n) is symmetric if P[i, j] = P[ j, i], for all i, j ∈ [n]. It is idempotent if
P[i, i] = i, for all i ∈ [n]. To be symmetric or idempotent are isomorphism invariants of Latin squares.
Further, letDPL(n) denote the subset of partial Latin squares in PL(n) whose main diagonal is a Latin
transversal. For each partial Latin square P ∈ DPL(n), let πP ∈ S n be defined so that πP(i) := P[i, i].
It is well-defined, because all the elements of the main diagonal of P are pairwise distinct. Lemma 1
shows that the cycle structure of this permutation is an isomorphism invariant of partial Latin squares in
DPL(n). Recall here that the cycle structure of a permutation π ∈ S n is the expression zπ := ndn . . . 1d1 ,
where, for each l ∈ [n], we denote by dl the number of cycles of length l in the unique decomposition
of the permutation π into disjoint cycles. Thus, for instance, the cycle structure of the permutation
π = (123)(456)(78)(9) ∈ S 9 is zπ1 = 3221. Particularly, if two permutations π1 and π2 in S n are
conjugate (that is, if there exists a third permutation π3 ∈ S n such that π1 = π3π2π

−1
3 ), then zπ1 = zπ2 .

Lemma 1. If P and P′ are two partial Latin squares inDPL(n) such that zπP , zπP′ , then P and P′ are
not isomorphic. If |P| = |P′| = n, then the converse also holds.

Proof. In order to prove the first statement, let us suppose the existence of an isomorphism π ∈ S n from
P to P′. Then, πP′(i) = P′[i, i] = π(P[π−1(i), π−1(i)]) = ππPπ

−1(i), for all i ∈ [n]. That is, πP′ = ππPπ
−1.

Thus, πP and πP′ are conjugate and hence, they have the same cycle structure. It contradicts the fact
that zπP , zπP′ .

Concerning the second statement, if zπP = zπP′ , then there exists a permutation π ∈ S n such that
πP′ = ππPπ

−1. In particular, for each positive integer i ∈ [n], we have that

P′[π(i), π(i)] = πP′(π(i)) = ππPπ
−1(π(i)) = ππP(i) = π(P[i, i]).

Hence, π is an isomorphism from P to P′, because, since |P| = |P′| = n, the only non-empty cells of
both partial Latin squares P and P′ are those of their respective main diagonal.

2.2. Computational algebraic geometry

LetQ[X] be a multivariate polynomial ring over the fieldQ of rational numbers, on a set of variables
X = {x1, . . . , xn}. A subset I ⊆ Q[X] is an ideal if 0 ∈ I; p + q ∈ I, for all p, q ∈ I; and pq ∈ I, for
all (p, q) ∈ I × Q[X]. It is radical if every polynomial p ∈ Q[X] belongs to I, whenever there exists a
positive integer m such that pm ∈ I. The ideal generated by a subset {p1, . . . , pm} ⊂ Q[X] is the set

⟨ p1, . . . , pm ⟩ :=

 m∑
i=1

qi pi : qi ∈ Q[X], for all i ≤ m

 .
The algebraic set of an ideal I in Q[X] is the set of common zeros of all its polynomials. That is, the

set {a ∈ Qn : p(a) = 0, for all p ∈ I}. If its Krull dimension is zero, then the ideal I is zero-dimensional.
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The degree inverse lexicographical order ≺degrevlex on Q[X] is a monomial term ordering such that,
for each pair of monomials xa = xa1

1 . . . x
an
n and xb = xb1

1 . . . x
bn
n in Q[X], we have that xa ≺degrevlex xb if

and only if one of the following two conditions hold.

•
∑n

i=1 ai <
∑n

i=1 bi; or

•
∑n

i=1 ai =
∑n

i=1 bi, and there is a positive integer m ≤ n such that ai = bi, whenever m < i ≤ n, and
am > bm.

Let I be an ideal in Q[X]. The largest monomial of a polynomial f ∈ I, with respect to ≺degrevlex,
is its leading monomial. The ideal generated by all the leading monomials in I is the initial ideal
I≺degrevlex . A Gröbner basis of the ideal I, with respect to ≺degrevlex, is any generating set of I whose
leading monomials generate the initial ideal I≺degrevlex . This basis is reduced if all its polynomials are
monic, and no monomial in a generator belongs to the span of the leading monomials of the remaining
generators. The reduced Gröbner basis of an ideal is unique. Its computation is extremely sensitive to
the number of variables, and also to the length and degree of generators [14]. Thus, for instance, the
complexity to compute the reduced Gröbner basis of a zero-dimensional radical ideal over the field of
rational numbers is dO(n), where d is the maximal degree of the generators of the ideal, and n is the
number of variables [15].

Throughout this paper, we compute reduced Gröbner bases of zero-dimensional radical ideals over
the field of rational numbers, with respect to ≺degrevlex. The complexity of this computation is, therefore,
established by the last statement of the previous paragraph. For all practical purposes, we have used
the open computer algebra system for polynomial computations Singular [11], which is particularly
specialized in computing Gröbner bases. The library HQP.lib in Singular containing all the procedures
described in this paper is available as suplementary material to the paper.

3. Using Gröbner bases to construct Latin squares

Gröbner bases can be used to construct the set of Latin squares in L(n) to which a given partial
Latin square P ∈ PL(n) is completable [16, 17]. To this end, let Q[XP] be the multivariate polynomial
ring over the field of rational numbers, with XP := {xi j : i, j ∈ [n] such that P[i, j] < [n]}. Then, the
sought set can be identified with the algebraic set of the ideal

IP :=
〈

Fn(xi j), Gn(xi j, xi′ j), Gn(xi j, xi j′ ), Gn(xi j, P[i′′, j]), Gn(xi j, P[i, j′′]) :



i, i′, i′′, j, j′, j′′ ∈ [n],

i , i′ and j , j′,

{P[i, j], P[i′, j], P[i, j′]} ∩ [n] = ∅,

{P[i′′, j], P[i, j′′]} ⊂ [n].

〉

in the multivariate polynomial ring Q[XP], where

Fn(x) :=
n∏

m=1

(x − m) and Gn(x, y) :=
Fn(x) − Fn(y)

x − y
.

If a polynomial Fn(xi j) lies in IP, then xi j only can take values in [n]. Hence, this ideal is zero-
dimensional. Moreover, Seidenberg’s Lemma (see Proposition 3.7.15 in [13]) implies that this ideal is
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radical, because, for each variable x ∈ XP, the polynomial Fn(x) ∈ I∩Q[x] satisfies gcd(Fn(x), F′n(x)) =
1. As a consequence, since the maximal degree of the generators of this ideal is n, and the set XP

contains n2−|P| variables, the complexity to compute the reduced Gröbner basis of this ideal is nO(n2−|P|).
Furthermore, each zero of this ideal is uniquely related to an array L ∈ A(n) such that

L[i, j] =

P[i, j], if P[i, j] ∈ [n],
li j, otherwise.

where li j is the coordinate of the zero under consideration that corresponds to the variable xi j. Notice
here that each polynomial associated to the function Gn in the ideal implies that two symbols appearing
either in the same row or in the same column of the array are different. Hence, L ∈ L(n).

We have implemented this procedure in our library HQP.lib in Singular by means of the function
LS. It receives the partial Latin square P ∈ PL(n) as input. (Empty cells are introduced as zeros.) After
computing the reduced Gröbner basis of the corresponding ideal, the output is the required set of Latin
squares.

Example 2. Let us consider the partial Latin square

P ≡

2 · · ·

· 1 · ·

· · 4 ·

· · · 3

∈ DPL(4).

The reduced Gröbner basis of the ideal IP, with respect to ≺degrevlex, is the set{
x2

43 − 3x43 + 2, x12 + x43 − 5, x13 + 2x43 − 5, x14 − 3x43 + 2, x21 − x43 − 2, x23 − x43 − 1
}
∪

∪ {x24 + 2x43 − 6, x31 − 2x43 + 1, x32 + x43 − 4, x34 + x43 − 3, x41 + 3x43 − 7, x42 − 2x43} .

This basis and its zeros (already expressed as Latin squares) are computed in Singular as follows.
> LIB "HQP.lib";

> intmat P[4][4]=2,0,0,0,0,1,0,0,0,0,4,0,0,0,0,3;

> LS(P);

[1]:

2,4,3,1,

3,1,2,4,

1,3,4,2,

4,2,1,3

[2]:

2,3,1,4,

4,1,3,2,

3,2,4,1,

1,4,2,3

In a similar way, it is possible to construct partial Latin squares satisfying certain conditions. Thus,
for example, Section 4 requires to deal with the following question.

Question 3. Given a partial Latin square P ∈ PL(n) with a transversal T having, at least, one empty
cell, determine the set

PLT (P) :=

Q ∈ PL(n) :

Ent(Q) \ {(i, j,Q[i, j]) : (i, j) ∈ T } = Ent(P) \ {(i, j, P[i, j]) : (i, j) ∈ T },

T is a Latin transversal in Q.

 .
Electronic Research Archive Volume 31, Issue 6, 3245–3263.



3250

That is, we want to determine the set of partial Latin squares Q ∈ PL(n) that result after filling the
cells of a transversal T , which has at least one empty cell, in a partial Latin square P ∈ PL(n). In order
to solve this question, let XT := {xi j : (i, j) ∈ T such that P[i, j] < [n]}. Then, the set PLT (P) can be
identified with the algebraic set of the ideal

IP,T :=
〈
Fn

(
xi j

)
,Gn

(
xi j, xkl

)
,Gn

(
xi j, P

[
i′, j′
])
,Gn

(
xi j, P

[
i, j′′
])
,Gn

(
xi j, P

[
i′′, j
])

:



{xi j, xkl} ⊆ XT , (i, j) , (k, l),

P[i′, j′] ∈ [n], (i′, j′) ∈ T,

P[i′′, j] ∈ [n], i , i′′,

P[i, j′′] ∈ [n], j , j′′.

〉

in the multivariate polynomial ring Q[XT ]. Similarly to the reasoning that has been carried out for the
ideal IP, it can be deduced that the ideal IP,T is zero-dimensional and radical, and that the complexity
to compute its reduced Gröbner basis is nO(n−|T |). We have implemented in our library HQP.lib in
Singular the function PLT to solve Question 3. This function receives two arrays as inputs: the partial
Latin square P ∈ PL(n) and an n × 2 array whose rows indicate the cells of the transversal T . (Again,
empty cells in P are indicated by zeros.)

Example 4. Let us consider the partial Latin square P ∈ DPL(4) in Example 2 and its transversal of
empty cells T = {(1, 2), (2, 1), (3, 4), (4, 3)}. The reduced Gröbner basis of the ideal IP,T , with respect
to ≺degrevlex, is the set{

x2
21 − 7x21 + 12, x2

43 − 3x43 + 2, x12 + x21 − 7, x34 + x43 − 3
}
.

This basis and its zeros (already expressed as partial Latin squares) are computed in Singular as
follows.

> LIB "HQP.lib";

> intmat P[4][4]=2,0,0,0,0,1,0,0,0,0,4,0,0,0,0,3;

> intmat T[4][2]=1,2,2,1,3,4,4,3;

> PLT(P,T);

[1]:

2,4,0,0,

3,1,0,0,

0,0,4,2,

0,0,1,3

[2]:

2,3,0,0,

4,1,0,0,

0,0,4,2,

0,0,1,3

[3]:

2,4,0,0,

3,1,0,0,

0,0,4,1,

0,0,2,3

[4]:

2,3,0,0,

4,1,0,0,

0,0,4,1,

0,0,2,3

Finally, Gröbner bases can also be used to determine whether two Latin squares are isomorphic or
not. To this end, let Xn := {x1, . . . , xn}. Then, the set of isomorphisms between two Latin squares L and
L′ in L(n) can be identified with the algebraic set of the ideal

IL,L′ :=
〈

Fn (xi) ,Gn (xi, xi′) ,Gn(xi, k) ·Gn(x j, l) ·
(
xL[i, j] − L′[k, l]

)
: i, i′, j, k ∈ [n], i , i′

〉
in the multivariate polynomial ring Q[Xn]. To see it, let (a1, . . . , an) be a zero of its algebraic set,where
ai is assigned to xi, for all i ∈ [n]. The set of polynomials {Fn(xi), Gn(xi, xi′) : i ∈ [n]} in the ideal
implies that this zero is uniquely associated to a permutation π ∈ S n such that π(i) = ai, for all i ∈ [n].
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The remaining generators of the ideal make that π(L[i, j]) = L′[π(i), π( j)], for all i, j ∈ [n]. That is, the
permutation π is indeed an isomorphism from L to L′.

Similarly to the reasoning carried out for the ideal IP, it can be observed that the ideal IL,L′ is zero-
dimensional and radical, and that the complexity to compute its reduced Gröbner basis is nO(n). We
have implemented this procedure in our library HQP.lib in Singular by means of the function Isom. It
receives the Latin squares L and L′ as input. After computing the reduced Gröbner basis of the ideal
IL,L′ , the output is the set of isomorphisms from L to L′.

Example 5. In this example, we are interested in knowing whether the two Latin squares that we have
obtained in Example 2 are isomorphic or not. The reduced Gröbner basis of the ideal IL,L′ , with respect
to ≺degrevlex, is the set

{x1 + x2 + x3 + x4 − 10, x2 + x4 − 5, 2x3x4 − 5x3 − 5x4 + 11} ∪

∪
{
x2

3 + 8x2x4 + 9x2
4 − 10x2 − 5x3 − 55x4 + 60, 2x3

4 + x3x4 − 15x2
4 − x3 + 30x4 − 17

}
.

This basis and its zeros are computed in Singular as follows.
> LIB "HQP.lib";

> intmat L1[4][4]=2,4,3,1,3,1,2,4,1,3,4,2,4,2,1,3;

> intmat L2[4][4]=2,3,1,4,4,1,3,2,3,2,4,1,1,4,2,3;

> isom(L1,L2);

[1]:

3,4,2,1

[2]:

4,3,1,2

[3]:

1,2,4,3

[4]:

2,1,3,4

Thus, the required set of isomorphisms is the set {(1324), (1423), (34), (12)} ⊂ S 4. Notice that it
does not constitute a subgroup of S 4.

4. The Hadamard quasigroup product

In this section, we generalize the classical Hadamard product for the set A(n). To this end, let
L ∈ L(n) ⊂ A(n) be a Latin square of order n describing the multiplication table of a quasigroup
([n], ∗). Then, for each pair of arrays A, B ∈ A(n), we define the Hadamard L-product A ⊙L B ∈ A(n)
so that, for each pair of positive integers i, j ∈ [n], we have that

(A ⊙L B) [i, j] :=

·, if {A[i, j], B[i, j]} ∩ {·} , ∅,
L
[
A[i, j], B[i, j]

]
= A[i, j] ∗ B[i, j], otherwise.

(4.1)

More generally, we use the term Hadamard quasigroup product to denote any Hadamard L-product,
where L ∈ L(n). We have implemented this product in our library HQP.lib in Singular by means of
the function HadProd.
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Example 6. Let us consider the following Latin squares in L(3).

L1 ≡

1 2 3
3 1 2
2 3 1

L2 ≡

1 3 2
3 2 1
2 1 3

L3 ≡

1 2 3
2 3 1
3 1 2

The Hadamard quasigroup product L1 ⊙L2 L3 is computed in Singular as follows.

> LIB "HQP.lib";

> intmat L1[3][3]=1,2,3,3,1,2,2,3,1;

> intmat L2[3][3]=1,3,2,3,2,1,2,1,3;

> intmat L3[3][3]=1,2,3,2,3,1,3,1,2;

> HadProd(L1,L3,L2);

1,2,3,

1,2,3,

1,2,3

If A = B = L in (4.1), then we also define the products

⊙k
ℓL := L ⊙L

(
⊙k−1
ℓ L
)

and ⊙k
ρ L :=

(
⊙k−1
ρ L
)
⊙L L,

where ⊙1
ℓL := ⊙1

ρL := L and ⊙2
ℓL := ⊙2

ρL := L2 := L ⊙L L. The next lemma shows how these products
are related under matrix transposition. (From here on, At denotes the transpose of an array A ∈ A(n).)

Lemma 7. If L ∈ L(n), then ⊙k
ℓL

t =
(
⊙k
ρL
)t

, for every positive integer k.

Proof. We prove this lemma by mathematical induction. For k = 1, the result is immediate. Now, if
the result holds for some positive integer k, then(

⊙k+1
ℓ Lt
)

[i, j] = Lt ⊙Lt

(
⊙k
ℓL

t
)

[i, j] =

=

(
Lt ⊙Lt

(
⊙k
ρL
)t)

[i, j] =

= Lt
[
Lt[i, j],

((
⊙k
ρL
)t)

[i, j]
]
=

= L
[(
⊙k
ρL
)

[ j, i], L[ j, i]
]
=

=
(
⊙k
ρL ⊙L L

)
[ j, i] =

=
(
⊙k+1
ρ L
)

[ j, i],

for all i, j ∈ [n]. As a consequence, ⊙k+1
ℓ Lt =

(
⊙k+1
ρ L
)t

.

The discrete structure of the Latin square L under consideration endows the product described in
(4.1) with a cyclic behaviour. More specifically, one can ensure the existence of a pair of positive
integers k1, k2 ≥ 2 such that ⊙k1

ℓ L = ⊙k2
ρ L = L. Let ℓ(L) and ρ(L) denote, respectively, the minimum

positive integers k1 and k2 satisfying this condition. In particular, Lemma 7 implies that ℓ(L) = ρ(Lt).
Moreover, ℓ(L) and ρ(L) are isomorphism invariants of Latin squares. In order to prove it, a technical
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lemma is required. In its statement, and from now on, if A ∈ A(n) and π ∈ S n, then Aπ denotes the
array inA(n) such that, for each pair of positive integers i, j ∈ [n],

Aπ[i, j] :=

π
(
A
[
π−1(i), π−1( j)

])
, if A

[
π−1(i), π−1( j)

]
∈ [n],

·, otherwise.

Lemma 8. If L and Lπ are two isomorphic Latin squares in L(n) by means of an isomorphism π ∈ S n,
then
(
⊙k
αL
)π
= ⊙k

αL
π, for α ∈ {ℓ, ρ} and every positive integer k.

Proof. From Lemma 7, it is enough to prove the case α = ρ. We prove this case by mathematical
induction. For k = 1, the result is immediate. Now, if the result holds for some positive integer k, then(

⊙k+1
ρ L
)π

[i, j] =
((
⊙k
ρL
)
⊙L L
)π

[i, j] =

= π
(((
⊙k
ρL
)
⊙L L
) [
π−1(i), π−1( j)

])
=

= π
(
L
[(
⊙k
ρL
) [
π−1(i), π−1( j)

]
, L
[
π−1(i), π−1( j)

]])
=

= π
(
L
[
π−1
((
⊙k
ρL
)π

[i, j]
)
, π−1 (Lπ[i, j])

])
=

= Lπ
[(
⊙k
ρL
)π

[i, j], Lπ[i, j]
]
=

= Lπ
[(
⊙k
ρL
π
)

[i, j], Lπ[i, j]
]
=

=
(
⊙k+1
ρ Lπ

)
[i, j],

for all i, j ∈ [n]. As a consequence,
(
⊙k+1
ρ L
)π
= ⊙k+1

ρ Lπ.

Proposition 9. Let L and Lπ be two isomorphic Latin squares in L(n) by means of an isomorphism
π ∈ S n. Then, ℓ(L) = ℓ(Lπ) and ρ(L) = ρ(Lπ).

Proof. From Lemma 7, it is enough to prove that ρ(L) = ρ(Lπ). To this end, Lemma 8 implies that

Lπ[i, j] = π
(
L
[
π−1(i), π−1( j)

])
= π
((
⊙ρ(L)
ρ L
) [
π−1(i), π−1( j)

])
=
(
⊙ρ(L)
ρ Lπ

)
[i, j],

for all i, j ∈ [n]. Hence, ρ(Lπ) ≤ ρ(L). In a similar way, we can prove that ρ(L) ≤ ρ(Lπ) by making use
of the isomorphism π−1 ∈ S n from Lπ to L. As a consequence, ρ(L) = ρ(Lπ).

We have implemented in our library HQP.lib in Singular the computation of the isomorphism
invariant ρ by means of the function rho.

Example 10. Let us consider the Latin squares L1, L2 and L3 described in Example 6. The isomorphism
invariants ρ(L1) = 3 and ℓ(L1) = 4 are, respectively, computed in Singular as follows.

> LIB "HQP.lib";

> intmat L[3][3]=1,2,3,3,1,2,2,3,1;

> rho(L);

3

> rho(transpose(L));

4
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In a similar way, it is obtained that ρ(L2) = ℓ(L2) = 2 and ρ(L3) = ℓ(L3) = 3. Hence, Lemma 8
implies that the Latin squares L1, L2 and L3 are pairwise non-isomorphic. Furthermore, we have made
use of the function HadProd in Singular to compute the following Hadamard quasigroup products.

L1 = ⊙
4
ℓL1 = ⊙

3
ρL1 = (L1 ⊙L3 L2) ⊙L3 L3 = L1 ⊙L3 (L2 ⊙L3 L3)

L2 = L2
2 = L2

3 = L2 ⊙L1 L3 L3 = ⊙
3
ℓL3 = ⊙

3
ρL3 = L3 ⊙L1 L2

L2
1 = L2 ⊙L2 L3 = L3 ⊙L2 L2 = L3 ⊙L3 L2 = L2 ⊙L3 L3 ≡

1 1 1
1 1 1
1 1 1

⊙3
ℓ L1 ≡

1 3 2
2 1 3
3 2 1

L1 ⊙L1 L3 = L2 ⊙L2 L1 = L1 ⊙L2 L2 ≡

1 1 1
3 3 3
2 2 2

L2 ⊙L1 L1 = L3 ⊙L3 L1 = L1 ⊙L3 L3 ≡

1 3 2
1 3 2
1 3 2

L1 ⊙L1 L2 = L1 ⊙L2 L3 = L3 ⊙L2 L1 ≡

1 2 3
1 2 3
1 2 3

L3 ⊙L1 L1 = L1 ⊙L3 L2 = L2 ⊙L3 L1 ≡

1 1 1
2 2 2
3 3 3

The Hadamard quasigroup products obtained in Example 10 also illustrate the following result,
which holds readily from (4.1).

Lemma 11. Let L ∈ L(n). Then, the following results hold.

1). If L[i1, j1] = L[i2, j2], for some i1, i2, j1, j2 ∈ [n], then
(
⊙k
αL
)

[i1, j1] =
(
⊙k
αL
)

[i2, j2], for all
α ∈ {ℓ, ρ} and every positive integer k ≥ 2.

2). If L is idempotent, then A ⊙L A = A, for all A ∈ A(n). In particular, L2 = L.
3). If L is symmetric, then the Hadamard L-product is commutative. In particular, ⊙k

ℓL = ⊙
k
ρL is also

symmetric, for all k > 2.
4). If L is the multiplication table of a group, then the Hadamard L-product is associative. As a

consequence, ⊙k
ℓL = ⊙

k
ρL, for all k > 2.

Example 10 also shows that the Hadamard quasigroup product does not preserve the Latin square
property in general. The following result establishes a necessary and sufficient condition for ensuring
that a Hadamard quasigroup product of two Latin squares is a Latin square.

Lemma 12. Let L, L′ and L′′ be three Latin squares in L(n). Then, L′ ⊙L L′′ ∈ L(n) if
and only if, for each positive integer i ∈ [n], both sets of cells {(L′[i, j], L′′[i, j]) : j ∈ [n]} and
{(L′[ j, i], L′′[ j, i]) : j ∈ [n]} are Latin transversals in L.
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Proof. Since L′ and L′′ are Latin squares, each set of cells in the statement contains exactly one entry
per row and one entry per column in L. Moreover, these cells contain exactly one entry of each symbol,
because, from the Latin square property and Definition (4.1), we have that L′ ⊙L L′′ ∈ L(n) if and only,
for each positive integer i ≤ n, {L[L′[i, j], L′′[i, j]] : j ∈ [n]} = {L[L′[ j, i], L′′[ j, i]] : j ∈ [n]} = [n].

Example 13. Under the assumptions of Example 6, we have seen in Example 10 that L2
2 = L2 ∈ L(3).

Concerning this Hadamard quasigroup product, every set of cells described in Lemma 12 corresponds
to the Latin transversal {(1, 1), (2, 2), (3, 3)} in L2. We also have seen that L2 ⊙L1 L3 = L2 ∈ L(3).
Concerning this Hadamard quasigroup product, every set of cells described in Lemma 12 corresponds
to the Latin transversal {(1, 1), (2, 3), (3, 2)} in L1.

From here on, let DL(n) denote the set of Latin squares in L(n) whose main diagonal is a Latin
transversal. The first case described in Example 13 illustrates the following result, which holds readily
from the Latin square property and Lemma 12.

Proposition 14. A Latin square L ∈ L(n) satisfies that L2 ∈ L(n) if and only if L ∈ DL(n).

In what follows, we are interested in determining those Latin squares L ∈ L(n) for which the
successive iterations of Hadamard L-products ⊙k

ρL, with k ≥ 2, are also Latin squares. That is, we are
interested in the set

HLρ(n) :=
{
L ∈ L(n) : ⊙k

ρ L ∈ L(n), whenever 2 ≤ k ≤ ρ(L)
}
.

Notice that every idempotent Latin square L ∈ L(n) belongs to this set, because of the third state-
ment in Lemma 11. So, our study focuses on determining those non-idempotent Latin squares in
HLρ(n). In any case, the following result characterizes all the Latin squares in this set.

Proposition 15. A Latin square L ∈ L(n) belongs to HLρ(n) if and only if the set{((
⊙k−1
ρ L
)

[i, i], L[i, i]
)

: i ∈ [n]
}

is a Latin transversal in L, whenever 2 ≤ k ≤ ρ(L).

Proof. From Proposition 14, we must have L ∈ DL(n). Thus, each pair (i, j) ∈ [n] × [n] is uniquely
associated to a positive integer i j ∈ [n] such that L[i, j] = L[i j, i j]. Then, the first statement in Lemma
11 implies that

(
⊙k
ρL
)

[i, j] =
(
⊙k
ρL
)

[i j, i j], for all k ≤ ρ(L). The result holds because Lemma 12 implies

that ⊙k
ρL ∈ L(n) if and only if the set

{((
⊙k−1
ρ L
)

[i, i], L[i, i]
)

: i ∈ [n]
}

is a Latin transversal in L.

Whenever it is possible, Proposition 15 enables us to construct Latin squares in the set HLρ(n) to
which a given partial Latin square P ∈ DPL(n), with |P| = n, is completable. That is, a partial Latin
square whose only non-empty cells form the Latin transversal of its main diagonal. In this regard, for
each partial Latin square P ∈ DPL(n), with |P| = n, we define the set

HLρ(P) :=
{
L ∈ HLρ(n) : P ⊆ L

}
. (4.2)

Algorithm 1 shows how computational algebraic geometry can be used to ensure the existence of
the Latin transversals described in Proposition 15, and hence, to construct the previous set. In the
algorithm, we make use of both functions LS and PLT, which we have defined in Subsection 2.1. We
have implemented this algorithm in our library HQP.lib in Singular by means of the function HL.
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Algorithm 1 Construction of the setHLρ(P).

1: procedure HL(P) ▷ Input: P ∈ DPL(n), with |P| = n.
2: L := Empty list
3: L′ := Empty list
4: T := The n × 2 zero array
5: for i← 1, n do
6: T [i, 1] := P2[i, i]
7: T [i, 2] := P[i, i]
8: end for
9: for Q ∈ PLT(P,T ) do

10: L← L ∪ {(Q,T )}
11: end for
12: while L , ∅ do
13: for (Q,T ) ∈ L do
14: L := L \ {(Q,T )}
15: for i← 1, n do
16: T [i, 1] := Q[T [i, 1], P[i, i]]
17: end for
18: if T does not have empty cells then
19: if T is a Latin transversal in Q then
20: L′ ← L′ ∪ {Q}
21: end if
22: else
23: for Q′ ∈ PLT(Q,T ) do
24: L← L ∪ {(Q′,T )}
25: end for
26: end if
27: end for
28: end while
29: for Q ∈ L′ do
30: L← L ∪ LS(Q)
31: end for
32: return L
33: end procedure

Electronic Research Archive Volume 31, Issue 6, 3245–3263.



3257

Example 16. Let us consider the partial Latin square P ∈ DPL(4) in Example 2. The set HLρ(P)
can be computed in Singular as follows.

> LIB "HQP.lib";

> intmat P[4][4]=2,0,0,0,0,1,0,0,0,0,4,0,0,0,0,3;

> HL(P);

[1]:

2,4,3,1,

3,1,2,4,

1,3,4,2,

4,2,1,3

[2]:

2,3,1,4,

4,1,3,2,

3,2,4,1,

1,4,2,3

That is, HLρ(P) is formed by the two Latin squares to which P is completable (see Example 2),
which we denote, respectively, by L1 and L2. Particularly, the following Hadamard quasigroup product
holds.

L2
1 ≡

1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

⊙3
ρ L1 ≡

4 2 1 3
1 3 4 2
3 1 2 4
2 4 3 1

⊙4
ρ L1 = L1

L2
2 ≡

1 4 2 3
3 2 4 1
4 1 3 2
2 3 1 4

⊙3
ρ L2 ≡

3 2 4 1
1 4 2 3
2 3 1 4
4 1 3 2

⊙4
ρ L2 = L2

Hence, ρ(L1) = ρ(L2) = 4. The equality of both values is also established because of the fact that
L1 and L2 are indeed isomorphic, as we have already observed in Example 5.

The following result shows that the set described in (4.2) only depends on the cycle structure of the
permutation πP associated to the main diagonal of the partial Latin square under consideration, which
was introduced in Subsection 2.1.

Proposition 17. Let P and P′ be two partial Latin squares in DPL(n), with |P| = |P′| = n, such that
zπP = zπP′ . Then, there is a one-to-one correspondence between the setsHLρ(P) andHLρ(P′).

Proof. Lemma 1 implies the existence of an isomorphism π ∈ S n from P to P′. Thus, since iso-
morphisms preserve the Latin square property, Lemma 8 implies that L ∈ HLρ(P) if and only if
Lπ ∈ HLρ(P′).

Let CS(n) := {zπ : π ∈ S n}. In order to determine the set HLρ(n), Lemma 1 enables us to focus
on computing the set HLρ(P) for a representative partial Latin square P ∈ DLP(n), with |P| = n
and zπP = z, for each cycle structure z ∈ CS(n) \ {1n}. (Notice here that the trivial cycle structure 1n is
associated to the set of idempotent Latin squares, which all belong to the setHLρ(n).) As an illustrative
example, we have performed this computation for the case n ≤ 6, for which the complete classification
of partial Latin squares up to isomorphism is known. We indicate here those cycle structures, together
with a representative permutation, for which the resulting set of Latin squares is not empty. We have
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made use of the function Isom in Singular to classify these Latin squares up to isomorphism. A
representative Latin square of each isomorphism class is indicated below each cycle structure under
consideration.

• 3 ∈ CS(3)⇝ (123) ∈ S 3
2 1 3
1 3 2
3 2 1

(ρ, ℓ) = (3, 3)

• 31 ∈ CS(4)⇝ (123)(4) ∈ S 4
2 4 3 1
1 3 4 2
4 2 1 3
3 1 2 4
(ρ, ℓ) = (3, 4)

• 22 ∈ CS(4)⇝ (12)(34) ∈ S 4
2 3 1 4
4 1 3 2
3 2 4 1
1 4 2 3
(ρ, ℓ) = (4, 4)

• 5 ∈ CS(5)⇝ (12345) ∈ S 5

2 4 1 3 5
1 3 5 2 4
5 2 4 1 3
4 1 3 5 2
3 5 2 4 1

(ρ, ℓ) = (3, 5)

2 1 5 4 3
4 3 2 1 5
1 5 4 3 2
3 2 1 5 4
5 4 3 2 1

(ρ, ℓ) = (5, 3)

2 5 3 1 4
5 3 1 4 2
3 1 4 2 5
1 4 2 5 3
4 2 5 3 1

(ρ, ℓ) = (5, 5)

• 41 ∈ CS(5)⇝ (1234)(5) ∈ S 5

2 1 5 4 3
1 3 2 5 4
5 2 4 3 1
4 5 3 1 2
3 4 1 2 5

(ρ, ℓ) = (3, 3)

2 5 1 4 3
1 3 5 2 4
3 2 4 5 1
5 4 3 1 2
4 1 2 3 5

(ρ, ℓ) = (3, 5)

• 221 ∈ CS(5)⇝ (12)(34)(5) ∈ S 5
2 4 3 5 1
3 1 5 4 2
1 5 4 2 3
5 2 1 3 4
4 3 2 1 5

(ρ, ℓ) = (4, 5)

• 6 ∈ CS(6)⇝ (123456) ∈ S 6
2 5 1 3 4 6
1 3 5 6 2 4
6 2 4 1 3 5
4 6 3 5 1 2
5 1 2 4 6 3
3 4 6 2 5 1

(ρ, ℓ) = (3, 16)
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• 51 ∈ CS(6)⇝ (12345)(6) ∈ S 6

2 6 1 3 5 4
1 3 6 2 4 5
5 2 4 6 3 1
4 1 3 5 6 2
6 5 2 4 1 3
3 4 5 1 2 6

(ρ, ℓ) = (3, 6)

2 4 1 6 5 3
1 3 5 2 6 4
6 2 4 1 3 5
4 6 3 5 2 1
3 5 6 4 1 2
5 1 2 3 4 6

(ρ, ℓ) = (3, 6)

2 4 6 3 5 1
1 3 5 6 4 2
5 2 4 1 6 3
6 1 3 5 2 4
3 6 2 4 1 5
4 5 1 2 3 6

(ρ, ℓ) = (3, 6)

2 4 6 1 5 3
1 3 2 6 4 5
5 2 4 3 6 1
6 1 3 5 2 4
3 6 5 4 1 2
4 5 1 2 3 6

(ρ, ℓ) = (3, 31)

2 4 6 3 5 1
1 3 2 6 4 5
5 2 4 1 6 3
6 1 3 5 2 4
3 6 5 4 1 2
4 5 1 2 3 6

(ρ, ℓ) = (3, 31)

2 4 6 1 5 3
1 3 5 2 6 4
5 2 4 6 3 1
6 1 3 5 4 2
3 6 2 4 1 5
4 5 1 3 2 6

(ρ, ℓ) = (3, 31)

2 6 5 4 3 1
4 3 6 1 5 2
1 5 4 6 2 3
3 2 1 5 6 4
6 4 3 2 1 5
5 1 2 3 4 6

(ρ, ℓ) = (5, 4)

2 5 3 6 4 1
5 3 1 4 6 2
6 1 4 2 5 3
1 6 2 5 3 4
4 2 6 3 1 5
3 4 5 1 2 6

(ρ, ℓ) = (5, 6)

• 412 ∈ CS(6)⇝ (1234)(5)(6) ∈ S 6

2 5 6 4 3 1
1 3 2 6 4 5
6 2 4 5 1 3
5 4 3 1 6 2
3 6 1 2 5 4
4 1 5 3 2 6

(ρ, ℓ) = (3, 11)

2 6 1 4 3 5
1 3 5 6 2 4
3 2 4 5 6 1
6 5 3 1 4 2
4 1 6 2 5 3
5 4 2 3 1 6

(ρ, ℓ) = (3, 16)

2 5 6 4 1 3
1 3 2 6 4 5
6 2 4 5 3 1
5 4 3 1 6 2
3 6 1 2 5 4
4 1 5 3 2 6

(ρ, ℓ) = (3, 31)

2 1 6 4 3 5
1 3 5 6 2 4
3 2 4 5 6 1
6 5 3 1 4 2
4 6 1 2 5 3
5 4 2 3 1 6

(ρ, ℓ) = (3, 31)

2 1 6 4 3 5
1 3 5 6 4 2
3 2 4 5 6 1
6 5 3 1 2 4
4 6 1 2 5 3
5 4 2 3 1 6

(ρ, ℓ) = (3, 31)

2 1 6 4 3 5
1 3 5 6 2 4
5 2 4 3 6 1
6 5 3 1 4 2
4 6 1 2 5 3
3 4 2 5 1 6

(ρ, ℓ) = (3, 31)

2 6 1 4 3 5
1 3 5 6 2 4
6 2 4 5 1 3
4 5 3 1 6 2
3 4 6 2 5 1
5 1 2 3 4 6

(ρ, ℓ) = (3, 31)

2 6 5 4 3 1
1 3 6 5 2 4
3 2 4 6 1 5
4 5 3 1 6 2
6 4 1 2 5 3
5 1 2 3 4 6

(ρ, ℓ) = (3, 31)

2 5 6 4 3 1
1 3 5 6 2 4
6 2 4 3 1 5
5 4 3 1 6 2
4 6 1 2 5 3
3 1 2 5 4 6

(ρ, ℓ) = (3, 31)

• 32 ∈ CS(6)⇝ (123)(456) ∈ S 6

2 1 5 3 4 6
4 3 2 6 5 1
3 6 1 4 2 5
6 4 3 5 1 2
5 2 4 1 6 3
1 5 6 2 3 4

(ρ, ℓ) = (5, 11)

2 4 5 3 1 6
4 3 2 6 5 1
3 6 1 4 2 5
6 1 3 5 4 2
5 2 4 1 6 3
1 5 6 2 3 4

(ρ, ℓ) = (5, 11)

• 313 ∈ CS(6)⇝ (123)(4)(5)(6) ∈ S 6

2 5 3 6 1 4
1 3 6 5 4 2
4 2 1 3 6 5
3 6 5 4 2 1
6 4 2 1 5 3
5 1 4 2 3 6

(ρ, ℓ) = (3, 4)

2 6 3 5 1 4
1 3 5 6 4 2
4 2 1 3 6 5
3 5 6 4 2 1
6 4 2 1 5 3
5 1 4 2 3 6

(ρ, ℓ) = (3, 4)

2 5 3 6 4 1
1 3 6 5 2 4
4 2 1 3 6 5
3 6 5 4 1 2
6 4 2 1 5 3
5 1 4 2 3 6

(ρ, ℓ) = (3, 16)

2 6 3 5 4 1
1 3 5 6 2 4
4 2 1 3 6 5
3 5 6 4 1 2
6 4 2 1 5 3
5 1 4 2 3 6

(ρ, ℓ) = (3, 16)
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• 23 ∈ CS(6)⇝ (12)(34)(56) ∈ S 6

2 4 1 5 3 6
5 1 3 6 2 4
3 6 4 2 5 1
1 5 6 3 4 2
4 2 5 1 6 3
6 3 2 4 1 5

(ρ, ℓ) = (5, 16)

2 4 5 1 3 6
5 1 3 6 4 2
3 6 4 2 5 1
1 5 6 3 2 4
4 2 1 5 6 3
6 3 2 4 1 5

(ρ, ℓ) = (5, 16)

5. Conclusions and further work

In this paper, we have introduced the concept of Hadamard quasigroup product as a natural general-
ization of the classical Hadamard product of matrices. Arising from the binary operation of any given
quasigroup, it constitutes an element-wise product among partial arrays. After establishing the fun-
damentals of this new product, and describing a pair of new isomorphism invariants of Latin squares
associated to it, our study has focused on determining those conditions under which the Latin square
property is preserved by the successive iteration of a Hadamard quasigroup product. This property is
readily preserved, for instance, for every idempotent quasigroup, because their own Hadamard quasi-
group products coincide with themselves. In a more general way, the preservation of the Latin square
property requires the existence of localized Latin transversals within the multiplication table of the
quasigroup under consideration. That is, within a given Latin square. To determine constructively
these Latin transversals, the sought quasigroups, and the classification of the latter up to isomorphism,
we have performed the computation of reduced Gröbner bases of certain zero-dimensional radical ide-
als in multivariate polynomial rings. Table 1 shows the main procedures that we have implemented to
this end, together with the complexity that is required to compute each of the corresponding reduced
Gröbner basis.

Table 1. Main procedures implemented in Singular to compute our reduced Gröbner bases.

Procedure Output Complexity

isom(L1, L2)
The set of isomorphisms between two Latin
squares L1, L2 ∈ L(n).

nO(n)

LS(P)
The set of Latin squares L ∈ L(n) to which
a partial Latin square P ∈ PL(n) is completable.

nO(n2−|P|)

PLT(P,T )
The set of partial Latin squares that result after
filling the cells of a transversal T , with at least
one empty cell, in a partial Latin square P ∈ PL(n).

nO(n−|T |)

These procedures have been implemented into the open computer algebra system for polynomial
computations Singular. We have performed them for all n ∈ {3, 4, 5, 6}. The computation of Gröbner
bases for higher orders is computationally feasible, but the number of cases of study increases con-
siderably. As it can be deduced from Table 1, the computational bottleneck will appear in Line 28
in Algorithm 1, only for those cases requiring the completion of partial Latin squares with too many
empty cells. This is not necessarily a disadvantage, because any such a partial Latin square will pos-
sibly give rise to the formal description of a particular family of sought quasigroups. This is the case,
for instance, of the partial Latin square P ∈ DPL(n), with |P| = 2n, such that
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P[i, j] =


1, if i = j = n,

i − 1, if 1 < i = j + 1 ≤ n,

i + 1, if 1 ≤ i = j < n,

n, if (i, j) = (1, n).

Every Latin square L ∈ L(n) to which the partial Latin square P is completable belongs to the set
HLρ(n). It is the case, for example, of the Latin square

L ≡

2 1 5 7 3 4 6 8
1 3 7 6 8 2 4 5
8 2 4 3 7 1 5 6
6 7 3 5 1 8 2 4
7 8 2 4 6 5 1 3
4 6 8 1 5 7 3 2
3 5 1 2 4 6 8 7
5 4 6 8 2 3 7 1

∈ DPL(8),

for which ρ(L) = 3 and

L2 ≡

3 2 6 8 4 5 7 1
2 4 8 7 1 3 5 6
1 3 5 4 8 2 6 7
7 8 4 6 2 1 3 5
8 1 3 5 7 6 2 4
5 7 1 2 6 8 4 3
4 6 2 3 5 7 1 8
6 5 7 1 3 4 8 2

∈ DPL(8).

A more comprehensive study concerning the characterization of this kind of families of quasigroups
is established as further work. In addition, the cycle structure of the permutation πP that is uniquely
associated to the main diagonal of each Latin square P ∈ DPL(n) has turned out to play a fundamental
role to reduce the number of cases of study. In this regard, our computations for all n ∈ {3, 4, 5, 6} have
shown the existence of cycle structures that are not related to any Latin square in the set HLρ(n). A
much more comprehensive study of this cycle structure is, therefore, necessary.

It could also be interesting to carry out similar studies concerning the preservation by Hadamard
quasigroup products of other algebraic properties such as commutativity, associativity or the existence
of unit element, amongst others. The preservation of certain algebraic identities, such as Moufang
or Belousov identities, is also established as further work. Finally, the element-wise product here
proposed can naturally be generalized from the multiplication table of a quasigroup to that of a magma.
That is, a finite set endowed with a binary operation with no particular restrictions. The study of
conditions under which the successive iteration of this Hadamard magma product preserves certain
algebraic properties would also constitute interesting open questions to deal with.
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2. A. Hulpke, P. Kaski, P. R. J. Östergård, The number of Latin squares of order 11, Math. Comput.,
80 (2011), 1197–1219. https://doi.org/10.1090/S0025-5718-2010-02420-2

3. B. D. McKay, A. Meynert, W. Myrvold, Small Latin squares, quasigroups, and loops, J. Comb.
Des., 15 (2007), 98–119. https://doi.org/10.1002/jcd.20105

4. R. M. Falcón, R. J. Stones, Enumerating partial Latin rectangles, Electron. J. Comb. 27 (2020),
P2.47. https://doi.org/10.37236/9093

5. B. D. McKay, I. M. Wanless, Enumeration of Latin squares with conjugate symmetry, J. Comb.
Des., 30 (2022), 105–130. https://doi.org/10.1002/jcd.21814
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Not only a divertimento, in CASC 2006: Computer Algebra in Scientific Computing, (2006), 155–
165. https://doi.org/10.1007/11870814 13

17. R. M. Falcón, J. Martı́n-Morales, Gröbner bases and the number of Latin squares
related to autotopisms of order ≤ 7, J. Symb. Comput., 42 (2007), 1142–1154.
https://doi.org/10.1016/j.jsc.2007.07.004

Glossary of Symbols

|A| The weight of an array A ∈ A(n).
A(n) The set of n × n arrays with entries in the set [n].
CS(n) The set of cycle structures of permutation in S n.
DL(n) The set of Latin squares in L(n), whose main diagonal is a Latin transversal.
DPL(n) The set of partial Latin squares in PL(n), whose main diagonal is a Latin transversal.
HLρ(n) The set of Latin squares L ∈ DPL(n) ∩ L(n) such that ⊙k

ρL ∈ L(n), for all k ≥ 2.
HLρ(P) The set of Latin squares L ∈ HLρ(n) such that P ⊆ L, where P ∈ PL(n).
L(n) The set of Latin squares with entries in the set [n].
[n] The set {1, . . . , n}.
PL(n) The set of partial Latin squares of order n with entries in the set [n].
PLT (P) The set of partial Latin squares Q ∈ PL(n) that result after filling the cells of a

transversal T , with at least one empty cell, in a partial Latin square P ∈ PL(n).
S n The symmetric group on the set [n].
zπ The cycle structure of a permutation π ∈ S n.
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