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Abstract: This paper is concerned with a chemotaxis system in a two-dimensional setting as follows:ut = ∆u − χ∇ · (u∇ ln v) − κuv + ru − µu2 + h1,

vt = ∆v − v + uv + h2,
(⋆)

with the parameters χ, κ, µ > 0 and r ∈ R, and with the given functions h1, h2 ≥ 0. This model
was originally introduced by Short et al for urban crime with the particular values χ = 2, r = 0 and
µ = 0, and the logistic source term ru − µu2 was incorporated into (⋆) by Heihoff to describe the
fierce competition among criminals. Heihoff also proved that the initial-boundary value problem of
(⋆) possesses a global generalized solution in the two-dimensional setting. The main purpose of this
paper is to show that such a generalized solution becomes bounded and smooth at least eventually. In
addition, the long-time asymptotic behavior of such a solution is discussed.
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1. Introduction and main results

We study a class of logarithmic chemotaxis systems with the logistic source of the following formut = ∆u − χ∇ · (u∇ ln v) − κuv + ru − µu2 + h1,

vt = ∆v − v + uv + h2,
(1.1)

with the parameters χ, κ, µ > 0 and r ∈ R. This model was proposed by Short et al. to describe the
propagation of criminal activities with the particular values χ = 2, r = 0 and µ = 0 ( [1, 2]), in which
u(x, t) denotes the density of criminals, v(x, t) represents an abstract so-called attractiveness, the given
function h1 denotes the density of additional criminals and h2 describes the source of attractiveness.
The logistic source term, i.e., ru − µu2, is a fairly standard addition to chemotaxis models. Here,
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it was incorporated into the Short et al. model by Heihoff ( [3]) to model the fierce competition
among criminals for, e.g., good targets, which are limited resources. We refer to [4–10] for further
developments of the Short et al. and to [11, 12] for a review.

Mathematical analysis on (1.1) is still at quite an early stage and there are only a few relative results.
For instance, for the Short et al. model, i.e., r = 0 and µ = 0, the local classical solution was obtained
in [13], which is globally provided that either n = 1 ( [14, 15]), or n ≥ 2 and χ < 2

n ( [16, 17]), or
the initial data and the given functions h1 and h2 are assumed to be small ( [18, 19]). As to the radial
renormalized solvability, the global existence was established provided that either n = 2 ( [20]) or n = 3
and χ ∈ (0,

√
3) ( [21]); without requiring the symmetry hypothesis, the generalized solvability was

obtained in [22] for any χ > 0 and n = 2. In addition, when ∆u in the first equation in (1.1) is replaced
by ∇ · (∇um) with some m > 0, the globally weak solvability was obtained in the two-dimensional
setting provided that either m > 3

2 ( [23]) or m > 1 and χ <
√

3
2 ( [24]). We would like to remark that a

reduced crime model, i.e., τut = ∆u−χ∇ · (u∇ ln v) and vt = ∆v− v+uv, admits an unbounded solution
for appropriately large initial data, provided that n ≥ 3, χ > 0, and τ > 0 is enough small ( [25]).
Finally, we mention there appear various studies on the variants of Short et al. model, see [26–29].

For the case of r ∈ R and µ > 0, the corresponding initial-boundary value problem admits a
generalized solution (in the sense of Definition 1.1 below) in the two-dimensional setting ( [3]). To
illustrate how critical the interaction between the term −µu2 in the first equation and the growth term
+uv in the second equation is, the stronger logistic source, −µu2+α, with α > 0 for n = 2, 3 ( [3, 30]) or
α > n

4 − 1 for n ≥ 4 ( [30]), was proved to be enough for the global existence of a classical solution.
This also indicates that the regularity of the generalized solution structured in [3] is not enough to
trigger a bootstrap argument to improve the regularity of such a solution, and thereby it is not known
whether or not this generalized solution develops singularities. Therefore, motivated by [26, 31–34],
the main purpose of this paper is to reveal that the global generalized solution established in [3] at least
eventually becomes bounded and smooth, and approaches spatial equilibria in the large time limit.

Precisely, we will present the eventual smoothness of the global generalized solution of the initial-
boundary value problem:

ut = ∆u − χ∇ · (u∇ ln v) − κuv + ru − µu2 + h1, x ∈ Ω, t > 0,
vt = ∆v − v + uv + h2, x ∈ Ω, t > 0,
∇u · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.2)

where ν denotes the exterior normal vector to the boundary ∂Ω and the initial data (u0, v0) fulfills that
u0 ∈ C0(Ω) with u0 ≥ 0 and u0 . 0,

v0 ∈ W1,∞(Ω) with inf
x∈Ω

v0 > 0.
(1.3)

In order to specify the setup for our analysis, we assume throughout the sequel that

0 ≤ hi ∈ C
1(Ω × [0,∞)) ∩ L∞(Ω × (0,∞)), i = 1, 2, (1.4)

with the additional properties that

inf
t>0

∫
Ω

h2(x, t)dx > 0, (1.5)
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0

∫
Ω

h1(·, t)dxds < ∞, (1.6)∫ ∞

0

∫
Ω

|h2(·, t) − h2,∞(·)|2dxds < ∞ (1.7)

with some h2,∞ ∈ C
1(Ω).

Now, we briefly review the concept of generalized solution used in [3] for the initial-boundary value
problem (1.2) as follows:

Definition 1.1. A pair of nonnegative functions (u, v) is called a global generalized solution to the
initial-boundary value problem (1.2) if for any T > 0,
1) it holds that for any q < ∞

v ∈ L∞(0,T ; Lq(Ω)), ln v ∈ L2(0,T ; W1,2(Ω)),
u ∈ L2(Ω × (0,T )) ∩ L∞(0,T ; L1(Ω)), ln(1 + u) ∈ L2(0,T ; W1,2(Ω)),
uv ∈ L1(Ω × (0,T )), v−1 ∈ L∞(Ω × (0,T ));

(1.8)

2) it holds that∫
Ω

u(·, t)dx +
∫ t

0

∫
Ω

(
κuv + µu2

)
dxds ≤

∫
Ω

u0dx +
∫ t

0

∫
Ω

(ru + h1) dxds, a.e., in [0,T ]; (1.9)

3) it holds that for 0 ≤ φ(x, t) ∈ C∞0 (Ω × [0,T )) with ∇φ · ν|∂Ω×(0,T ) = 0

−

∫ T

0

∫
Ω

ln(u + 1)φtdxdt −
∫
Ω

ln (u0 + 1)φ(·, 0)dx

≥

∫ T

0

∫
Ω

ln(u + 1)∆φdxdt +
∫ T

0

∫
Ω

|∇ ln(u + 1)|2φdxdt

− χ

∫ T

0

∫
Ω

u
u + 1

(∇ ln(u + 1) · ∇ ln v)φdxdt + χ
∫ T

0

∫
Ω

u
u + 1

∇ ln v · ∇φdxdt

−

∫ T

0

∫
Ω

κuv
u + 1

φdxdt +
∫ T

0

∫
Ω

ru
u + 1

φdxdt −
∫ T

0

∫
Ω

µu2

u + 1
φdxdt +

∫ T

0

∫
Ω

h1φdxdt; (1.10)

4) it holds that for all φ ∈ L∞ (0,T ; Lq(Ω)) ∩ L2
(
0,T ; W1,2(Ω)

)
with φt ∈ L2(Ω × (0,T )), compact

support in Ω × [0,T ) and q < ∞∫ T

0

∫
Ω

vφtdxdt +
∫
Ω

v0φ(·, 0)dx

=

∫ T

0

∫
Ω

∇v · ∇φdxdt +
∫ T

0

∫
Ω

vφdxdt −
∫ T

0

∫
Ω

uvφdxdt −
∫ T

0

∫
Ω

h2φdxdt. (1.11)

With Definition 1.1 at hand, letting

η := min
{

inf
x∈Ω

v0(x)e−1,
1

4π
e−1− (diamΩ)2

2

{
inf
s>0

∫
Ω

h2(·, s)dx
}}
, (1.12)

our main results read as follows.
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Theorem 1.1. Assume that (1.3)–(1.7) hold. Let κ, χ, µ > 0, r ∈ R and Ω ⊂ R2 be a bounded convex
domain with smooth boundary, and let (u, v) be a generalized solution of (1.2) in the sense of Definition
1.1. Under the additional assumption that r < κη with η determined by (1.12), there exists t0 > 0, with
the properties that u(x, t) ≥ 0 and v(x, t) > 0 for any x ∈ Ω and any t ≥ t0, and

u ∈ C2,1(Ω × [t0,∞)), v ∈ C2,1(Ω × [t0,∞)), (1.13)

and that (u, v) solves the initial-boundary value problem (1.2) classically in Ω × (t0,∞). Moreover,
(u, v) fulfills that

∥u(·, t)∥L∞ + ∥v(·, t) − v∞(·)∥L∞ → 0, as t → ∞, (1.14)

where v∞ denotes the solution of the boundary value problem − ∆v∞ + v∞ = h2,∞, x ∈ Ω,

∇v∞ · ν = 0, x ∈ ∂Ω.
(1.15)

Technical strategy and structure of the article
The objective of this paper, motivated by [26, 31–34], is to present that the global generalized

solution of the initial-boundary value problem (1.2) at least eventually becomes bounded and smooth,
and approaches spatial equilibria in a large time limit. To this end, the key steps are to establish a series
of uniform a-priori estimates, in which the starting point is to get the uniform-in-(ε, t) lower bound for
vε, see Lemma 2.2. We would like to remark that, for the linear signal production mechanism the
combinational functional of the form∫

Ω

uε ln uε +
1
2
|∇v̂ε|2 +

1
e

dx

where v̂ε := vε − v∞ and v∞ is a classical solution to the boundary value problem (1.15), is usually
adopted to get the desired a-priori estimates (e.g., [35]). However, thanks to the presence of the
nonlinear signal production mechanism, such functional is invalid for our case. Here, our novelty of
the analysis consists of tracking the time evolution of the combinational functional of the form∫

Ω

buε +
1
2

u2
ε +

1
2
|∇v̂ε|2dx, t ≥ T0

with some waiting time T0 and some b > 0, see Lemmas 3.4 and 3.5. From this, the key L2-bound
of uε is obtained, and an application of the standard bootstrap techniques shows that the generalized
solution established in [3] becomes bounded and smooth at least eventually.

The rest of this paper is arranged as follows. Some preliminaries are given in Section 2. A-priori
estimates are established in Section 3. Section 4 is devoted to showing the eventual smoothness, and
the last section presents the large-time behavior desired in Theorem 1.1.
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2. Preliminaries

A generalized solution of the initial-boundary value problem (1.2) can be obtained by an approxi-
mation procedure ( [3, 22]). Accordingly, we shall consider the following approximate problem

uεt = ∆uε − χ∇ · (uε∇ ln vε) − κuεvε + ruε − µu2
ε + h1, x ∈ Ω, t > 0,

vεt = ∆vε − vε +
uεvε

1 + εuεvε
+ h2, x ∈ Ω, t > 0,

∂uε
∂ν
=
∂vε
∂ν
= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω.

(2.1)

An application of the strategy invoking the contraction mapping principle and the well-known point-
wise positivity property of the Neumann heat semigroup, as in [13, 16, 36, 37], ensures the global
existence of the classical solution to the approximate problems (2.1).

Lemma 2.1. Let the assumptions (1.3)–(1.4) hold. For each ε ∈ (0, 1), there exists a unique pair
(uε, vε) of positive functions, with the properties that for any T > 0 and ι > 2uε ∈ C0(Ω × [0,T ]

)
∩ C2,1(Ω × (0,T ]

)
,

vε ∈ C0(0,T ; W1,ι(Ω)
)
∩ C2,1(Ω × (0,T ]

)
,

such that (uε, vε) solves the approximate problem (2.1) classically in Ω × [0,∞).

Proof. By a slight adaptation of the proof of [3, Lemma 2.3] (see also [22]), we can easily get the
desired results.

Note that thanks to the non-negativity of (uε, h2) and the variation-of-constants formula for vε,
namely,

vε(·, t) = et(∆−1)v0 +

∫ t

0
e(t−s)(∆−1)

(
uεvε

1 + εuεvε
+ h2

)
(·, s)ds, (2.2)

it is clear that
vε(·, t) ≥ et(∆−1)v0 ≥ e−t inf

x∈Ω
v0(x), t > 0, (2.3)

which is adequate for establishing the global existence of generalized solutions, see [3]. However, to
get eventual smoothness of generalized solutions, the uniform-in-t lower bound for vε will be necessary.

Lemma 2.2. Let Ω ⊂ R2 be a bounded convex domain with smooth boundary and (1.3)–(1.7) hold.
Then we have

vε(·, t) ≥ η, t > 0, (2.4)

where η is determined by (1.12).
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Proof. Thanks to (2.3), we have

vε(·, t) ≥ e−1 inf
x∈Ω

v0(x) for all t ≤ 1. (2.5)

For t > 1, due to the convexity of Ω, the well-known pointwise positivity property of the Neumann
heat semigroup ensures that

et∆ f ≥
1

4πt
e−

(diamΩ)2
4t

∫
Ω

f dx, t > 0,

where f ∈ C0(Ω) (cf. [38, Lemma 2.3] and [39, Lemma 3.1]), which, combined with (2.2), (1.5) and
the non-negativity of (uε, v0), implies that

vε(·, t) ≥
∫ t− 1

2

0
e(t−s)(∆−1)h2(·, s)ds

≥

∫ t− 1
2

0
e−(t−s) 1

4π(t − s)
e−

(diamΩ)2
4(t−s)

∫
Ω

h2(·, s)dxds for all t > 1.

It follows that for t > 1

vε(·, t) ≥
1

4π

{
inf
s>0

∫
Ω

h2(·, s)dx
}∫ t

1
2

e−ss−1e−
(diamΩ)2

4s ds

≥
1

4π

{
inf
s>0

∫
Ω

h2(·, s)dx
}∫ 1

1
2

e−ss−1e−
(diamΩ)2

4s ds.

Based on this, we further get that

vε(·, t) ≥
1

4π

{
inf
s>0

∫
Ω

h2(·, s)dx
}
· e−1e−

(diamΩ)2
2 .

This, together with (2.5), entails the desired (2.4).

Next, we are concerned with the decay in a linear differential inequality, which is an extended
version of [22, Lemma 2.5].

Lemma 2.3. Let ε ∈ (0, 1), yε ∈ C1([0,∞)) be non-negative functions satisfying

yε(0) = m (2.6)

with some positive constant m independent of ε. If there exist a positive constant k and a nonnegative
function gε(t) ∈ C([0,∞)) ∩ L∞([0,∞)) which satisfies

lim
t→∞

∫ t+1

t
gε(s)ds = 0 uniformly in ε, (2.7)

∥gε∥L∞(0,∞) ≤ µ for some µ independent of (ε, t), (2.8)

such that for each ε > 0,
y′ε(t) + kyε(t) ≤ gε(t) for all t > 0, (2.9)

then
yε(t)→ 0 as t → ∞ uniformly in ε. (2.10)
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At the end of this section, we recall the result on the solvability of the boundary value (1.15), which
directly follows from [40].

Lemma 2.4. For given h2,∞ ∈ C
1(Ω), the problem (1.15) possesses a unique classical solution v∞

fulfilling that v∞ ∈ C2+θ(Ω) for some θ ∈ (0, 1).

3. A-priori estimates

A straightforward consequence of Lemma 2.2 is the following L1-decay on the component uε.

Lemma 3.1. Let all assumptions in Theorem 1.1 be fulfilled. Then there exists C > 0, independent of
(ε, t), such that∫

Ω

vε(·, t)dx +
∫
Ω

uε(·, t)dx +
∫ t

0

∫
Ω

uε(·, s)vε(·, s)dxds +
∫ t

0

∫
Ω

u2
ε(·, s)dxds ≤ C, t > 0, (3.1)

and that∫
Ω

uε(·, t)dx→ 0 as t → ∞ uniformly in ε, (3.2)∫ t+1

t

∫
Ω

uε(·, s)vε(·, s)dxds +
∫ t+1

t

∫
Ω

u2
ε(·, s)dxds→ 0 as t → ∞ uniformly in ε. (3.3)

Proof. Invoking (2.4) and taking c1 ∈ (0, κ), we obtain

d
dt

∫
Ω

uεdx + (κ − c1)η
∫
Ω

uεdx + c1

∫
Ω

uεvεdx + µ
∫
Ω

u2
εdx ≤ r

∫
Ω

uεdx +
∫
Ω

h1dx.

Under the assumption that r < κη, we can further take c1 sufficiently close to 0 such that

c2 := (κ − c1)η − r > 0,

and thereby get

d
dt

∫
Ω

uεdx + c2

∫
Ω

uεdx + c1

∫
Ω

uεvεdx + µ
∫
Ω

u2
εdx ≤

∫
Ω

h1dx. (3.4)

We now integrate the second equation in (2.1) over Ω to obtain

d
dt

∫
Ω

vεdx +
∫
Ω

vεdx =
∫
Ω

uεvεdx +
∫
Ω

h2dx,

which, together with (3.4), ensures

d
dt

{∫
Ω

uεdx + c1

∫
Ω

vεdx
}
+ c2

∫
Ω

uεdx + c1

∫
Ω

vεdx + µ
∫
Ω

u2
εdx ≤

∫
Ω

h1dx +
∫
Ω

h2dx.

Setting y(t) :=
∫
Ω

uεdx + c1

∫
Ω

vεdx and c3 := min{c2, 1}, it follows from (1.4) that

y′(t) + c3y(t) ≤ c4 := ∥h1∥L∞(Ω×(0,∞))|Ω| + ∥h2∥L∞(Ω×(0,∞))|Ω|.
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A standard ODE technique shows that∫
Ω

uεdx + c1

∫
Ω

vεdx ≤ c5 := max
{∫
Ω

u0dx + c1

∫
Ω

v0dx,
c4

c3

}
, t > 0. (3.5)

On the other hand, integrating (3.4) over [0, t], for any t > 0 we infer that∫
Ω

uεdx + c2

∫ t

0

∫
Ω

uεdxds + c1

∫ t

0

∫
Ω

uεvεdxds + µ
∫ t

0

∫
Ω

u2
εdxds ≤

∫
Ω

u0dx +
∫ t

0

∫
Ω

h1dx,

which, with the help of (1.6) and (3.5), ensures (3.1).
Moreover, thanks to (1.6) and (1.4), it follows that∫ t+1

t

∫
Ω

h1dxds→ 0, as t → ∞,

which, together with Lemma 2.3 and (3.4), entails that the decay (3.2) holds as desired. Integrating
(3.4) over [t, t + 1], for any t > 0 we have∫

Ω

uε(·, t + 1)dx + c1

∫ t+1

t

∫
Ω

uεvεdxds + µ
∫ t+1

t

∫
Ω

u2
εdxds ≤

∫
Ω

uε(·, t)dx +
∫ t+1

t

∫
Ω

h1dxds.

Recalling (1.6) and (3.2), we arrive at (3.3).

To proceed further, we track the time evolution of ∥vε(·, t) − v∞(·)∥L2 , where v∞ is classical solution
of (1.15). For convenience, we set v̂ε := vε − v∞. Thanks to (1.15) and (2.1), for (uε, vε) given in
Lemma 2.2, the initial-boundary value problem

v̂εt = ∆̂vε − v̂ε +
uεvε

1 + εuεvε
+ h2 − h2,∞, x ∈ Ω, t > 0,

∇̂vε · ν = 0, x ∈ ∂Ω, t > 0,
v̂ε(x, 0) = v0(x) − v∞(x), x ∈ Ω

(3.6)

admits a unique classical solution v̂ε.

Lemma 3.2. Let all assumptions in Theorem 1.1 be in force. Then there exists C > 0, independent of
(ε, t), such that

∥v̂ε(·, t)∥2L2 ≤ C, t > 0 (3.7)

and ∫ t

0

∫
Ω

|∇v̂ε|2dxds +
∫ t

0

∫
Ω

|v̂ε|2dxds ≤ C, t > 0. (3.8)

Proof. Testing the first equation of (3.6) with v̂ε, yields

1
2

d
dt

∫
Ω

|v̂ε|2dx ≤ −
∫
Ω

|∇v̂ε|2dx −
∫
Ω

|v̂ε|2dx +
∫
Ω

v̂εuεvε
1 + εuεvε

dx +
∫
Ω

(h2 − h2,∞)v̂εdx, t > 0.
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Using Hölder’s inequality and recalling the definition of v̂ε, we have∫
Ω

v̂εuεvε
1 + εuεvε

dx =
∫
Ω

v̂ε
2uε

1 + εuεvε
dx +

∫
Ω

v∞uεv̂ε
1 + εuεvε

dx

≤∥uε∥L2∥v̂ε∥2L4 + ∥v∞∥L∞∥uε∥L2∥v̂ε∥L2 .

An application of the Gagliardo-Nirenberg inequality and Young’s inequality implies that

∥uε∥L2∥v̂ε∥2L4 ≤c1∥uε∥L2(∥v̂ε∥L2∥∇v̂ε∥L2 + ∥v̂ε∥2L2)

≤
1
4
∥∇v̂ε∥2L2 + c2∥uε∥2L2∥v̂ε∥2L2 +

1
4
∥v̂ε∥2L2 . (3.9)

In addition, we have ∫
Ω

(h2 − h2,∞)v̂εdx ≤
1
4
∥v̂ε∥2L2 +

∫
Ω

|h2 − h2,∞|
2dx,

∥v∞∥L∞∥uε∥L2∥v̂ε∥L2 ≤
1
4
∥v̂ε∥2L2 + ∥v∞∥2L∞∥uε∥

2
L2 .

Collecting these, we arrive at

1
2

d
dt

∫
Ω

|v̂ε|2dx +
3
4

∫
Ω

|∇v̂ε|2dx +
1
4

∫
Ω

|v̂ε|2dx

≤c2∥uε∥2L2∥v̂ε∥2L2 + ∥v∞∥2L∞∥uε∥
2
L2 +

∫
Ω

|h2 − h2,∞|
2dx, t > 0. (3.10)

Setting y(t) = ∥v̂ε(·, t)∥2L2 and a(t) = ∥uε(·, t)∥2L2 , it follows that

y′(t) +
1
2

y(t) ≤ 2c2a(t)y(t) + b(t), b(t) := 2∥v∞∥2L∞∥uε∥
2
L2 + 2

∫
Ω

|h2 − h2,∞|
2dx.

A standard ODE technique shows

y(t) ≤y(0)e2c2
∫ t

0 a(s)ds− 1
2 t + e2c2

∫ t
0 a(s)ds− 1

2 t
∫ t

0
b(s)e−2c2

∫ s
0 a(τ)dτ+ 1

2 sds.

Note that, thanks to (3.1), there exists c3 > 0, independent of (ε, t), such that
∫ t

0
a(s)ds ≤ c3. Hence,

we arrive at

y(t) ≤ c3y(0)e−
1
2 t + c3e−

1
2 t
∫ t

0
b(s)e

1
2 sds.

Using (1.7) and (3.1) again, there exists c4 > 0, independent of (ε, t), such that

c3e−
1
2 t
∫ t

0
b(s)e

1
2 sds ≤ c3

∫ t

0
b(s)ds ≤ c4, t > 0.

Hence, there exists C > 0, independent of (ε, t), such that (3.7) holds. Moreover, thanks to (3.10) we
can find c5 > 0, independent of (ε, t), such that

1
2

d
dt

∫
Ω

|v̂ε|2dx +
3
4

∫
Ω

|∇v̂ε|2dx +
1
4

∫
Ω

|v̂ε|2dx ≤c5∥uε∥2L2 +

∫
Ω

|h2 − h2,∞|
2dx, t > 0. (3.11)
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We now integrate this equation over [0, t] to get

1
2

∫
Ω

|v̂ε|2dx +
3
4

∫ t

0

∫
Ω

|∇v̂ε|2dxds +
1
4

∫ t

0

∫
Ω

|v̂ε|2dxds

≤
1
2
∥v0 − v∞∥2L2 + c5

∫ t

0
∥uε∥2L2ds +

∫ t

0

∫
Ω

|h2 − h2,∞|
2dxds,

which, combined with (3.1) and (1.7), gives us the desired (3.8).

We would like to remark that although we have obtained (3.11) and can infer from (3.3) and (1.7)
that for any ε ∈ (0, 1)∫ t+1

t
∥uε∥2L2ds +

∫ t+1

t

∫
Ω

|h2 − h2,∞|
2dxds→ 0, as t → ∞, (3.12)

we cannot directly get the desired decay on ∥v̂ε(·, t)∥L2 by Lemma 2.3 due to the absence of the bound
of ∥uε∥L∞(t,t+1;L2). Here, compared with (3.2), we need a new method to get decay on v̂ε.

Lemma 3.3. Let all assumptions in Theorem 1.1 be in force. Then∫
Ω

|v̂ε|2(·, t)dx→ 0 as t → ∞ uniformly in ε, (3.13)∫ t+1

t

∫
Ω

|∇v̂ε|2dxds→ 0 as t → ∞ uniformly in ε. (3.14)

Proof. In fact, integrating (3.11) over [t, t + 1] yields that

1
2

∫
Ω

|v̂ε|2(·, t + 1)dx −
1
2

∫
Ω

|v̂ε|2(·, t)dx +
3
4

∫ t+1

t

∫
Ω

|∇v̂ε|2dxds +
1
4

∫ t+1

t

∫
Ω

|v̂ε|2dxds

≤c5

∫ t+1

t
∥uε∥2L2ds +

∫ t+1

t

∫
Ω

|h2 − h2,∞|
2dxds. (3.15)

By setting z(t) := 1
2

∫ t+1

t

∫
Ω
|v̂ε|2dxds, we have

z′(t) +
1
2

z(t) ≤ c5

∫ t+1

t
∥uε∥2L2ds +

∫ t+1

t

∫
Ω

|h2 − h2,∞|
2dxds.

We now infer from (1.4), (1.7) and (3.1) that there exists C > 0, independent of (ε, t), such that

gε : (t) =
∫ t+1

t
∥uε∥2L2ds +

∫ t+1

t

∫
Ω

|h2 − h2,∞|
2dxds ≤ C, t > 0,

which, combined with Lemma 2.3, ensures that

z(t) :=
1
2

∫ t+1

t

∫
Ω

|v̂ε|2dxds→ 0 as t → ∞ uniformly in ε. (3.16)
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On the other hand, letting y(t) :=
∫
Ω

{
(1 + µ−1∥v∞∥2L∞)uε(·, t) + 1

2 |v̂ε|
2(·, t)

}
dx we can infer from (3.4)

and (3.10) that there exist ci, i = 1, 2, 3, independent of (ε, t), such that for any t > 0

y′(t) + c1y(t) +
3
4

∫
Ω

|∇v̂ε|2dx +
(
µ − c2∥v̂ε∥2L2

) ∫
Ω

u2
εdx ≤c3

∫
Ω

h1 + |h2 − h2,∞|
2dx. (3.17)

From (3.16), (3.2) and the assumptions (1.6) and (1.7), there must exist T∗ large enough, independent
of ε, such that

1
2

∫ T∗+1

T∗
∥v̂ε(·, t)∥2L2dt + c3

∫ ∞

T∗

∫
Ω

h1 + |h2 − h2,∞|
2dxds ≤

µ

16c2
,

(1 + µ−1∥v∞∥2L∞)
∫
Ω

uε(·, t)dx ≤
µ

16c2
, t ≥ T∗,

by which the mean value theorem implies there exists t̂0 ∈ (T∗,T∗ + 1), depending on ε, such that

(1 + µ−1∥v∞∥2L∞)
∫
Ω

uε(·, t̂0)dx +
1
2
∥v̂ε(·, t̂0)∥2L2 + c3

∫ ∞

t̂0

∫
Ω

h1 + |h2 − h2,∞|
2dxds ≤

µ

8c2
. (3.18)

Invoking these, we can claim that

∥v̂ε(·, t)∥2L2 ≤
µ

2c2
, t ≥ t̂0. (3.19)

In fact, the continuity of ∥v̂ε(·, t)∥2L2 , combined with (3.18), ensures that

T̃ := sup
t

∣∣∣∣∣∣ sup
t̂0≤s≤t
∥v̂ε(·, t)∥2L2 ≤

µ

2c2

 > t̂0, (3.20)

and so we only need to show that T̃ = ∞. If on the contrary, there must hold

sup
t̂0≤s≤T̃

∥v̂ε(·, t)∥2L2 =
µ

2c2
. (3.21)

However, it follows from (3.17) and (3.20) that for t ∈ [t̂0, T̃ ]

y′(t) + c1y(t) +
3
4

∫
Ω

|∇v̂ε|2dx +
1
2
µ

∫
Ω

u2
εdx ≤c3

∫
Ω

h1 + |h2 − h2,∞|
2dx.

By employing the standard ODE techniques, we arrive at

y(t) ≤e−c1(t−t̂0)y(t̂0) + c3e−c1t
∫ t

t̂0
ec1 s

∫
Ω

h1 + |h2 − h2,∞|
2dxds

≤y(t̂0) + c3

∫ t

t̂0

∫
Ω

h1 + |h2 − h2,∞|
2dxds,

which, with the help of (3.18), ensures

y(t) ≤
µ

8c2
, t ∈ [t̂0, T̃ ].
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Recalling the definition of y(t), we have

∥v̂ε(·, t)∥2L2 ≤
µ

4c2
, t ∈ [t̂0, T̃ ],

which contradicts (3.21). Thus we have that T̃ = ∞, and prove (3.19) as desired.
Thanks to the validity of (3.19), it follows from (3.17) that

y′(t) + c1y(t) +
3
4

∫
Ω

|∇v̂ε|2dx +
µ

2

∫
Ω

u2
εdx ≤c3

∫
Ω

h1 + |h2 − h2,∞|
2dx, t ≥ t̂0. (3.22)

Based on the assumptions (1.4), (1.6), (1.7) and Lemma 2.3, (3.22) ensures

y(t)→ 0 as t → ∞ uniformly in ε, (3.23)

which is enough for (3.13) by recalling the definition of y(t).
To get (3.14), integrating (3.22) over [t, t + 1], yields

y(t + 1) +
3
4

∫ t+1

t

∫
Ω

|∇v̂ε|2dxds +
µ

2

∫ t+1

t

∫
Ω

u2
εdxds ≤y(t) + c3

∫ t+1

t

∫
Ω

h1 + |h2 − h2,∞|
2dxds,

which, combined with (3.23), (1.6) and (1.7) again, entails that (3.14) holds as desired.

In the sequel, we will use (3.2), (3.3) and (3.14) to obtain the uniform in ε bound for the entropy
functional, denoted by

Eε(t) :=
1
2

∫
Ω

u2
ε + |∇v̂ε|2dx, t > 0. (3.24)

To achieve it, we first manage to achieve the following estimate.

Lemma 3.4. Let all assumptions in Theorem 1.1 hold. Then there exist a1, a2, a3 > 0, such that for any
ε ∈ (0, 1),

E′(t) +
1
2

∫
Ω

|∇uε|2dx +
κη − r

2

∫
Ω

u2
εdx + µ

∫
Ω

u3
εdx

+

(
1
2
− a1∥uε∥2L2

(
∥∇v̂ε∥2L2 + 1

)) ∫
Ω

|∆v̂ε|2dx +
(
1 − a2∥uε∥2L2

) ∫
Ω

|∇v̂ε|2dx

≤a3

{
∥h1∥L1 + ∥uε∥2L2 + ∥h2 − h2,∞∥

2
L2

}
, t > 0, (3.25)

where η is given by (2.4).

Proof. Invoking integration by parts, we have

1
2

d
dt

∫
Ω

u2
εdx =

∫
Ω

uε
(
∆uε − χ∇ · (uε∇ ln vε) − κuεvε + ruε − µu2

ε + h1

)
dx

= −

∫
Ω

|∇uε|2dx + χ
∫
Ω

∇uε · (uε∇ ln vε) dx − κ
∫
Ω

u2
εvεdx

+ r
∫
Ω

u2
εdx − µ

∫
Ω

u3
εdx +

∫
Ω

h1uεdx
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=:P1 + P2 + P3 + P4 + P5 + P6.

Since r < κη (η given in (2.4)), it follows that c1 := κη − r > 0, and thereby implies from (2.4) that

P3 + P4 ≤ −κη

∫
Ω

u2
εdx + r

∫
Ω

u2
εdx

= −c1

∫
Ω

u2
εdx.

And using Young’s inequality yields

P6 ≤
c1

2

∫
Ω

u2
εdx + c2

∫
Ω

h2
1dx.

For P2, Hölder’s inequality and (2.4) imply

P2 ≤ χη
−1∥∇uε∥L2∥uε∇vε∥L2 ≤ χη−1∥∇uε∥L2∥uε∥L4∥∇vε∥L4 ,

which, together with Young’s inequality, entails

P2 ≤
1
4
∥∇uε∥2L2 + c3∥uε∥2L4∥∇vε∥2L4 .

Recalling the Gagliardo-Nirenberg inequality

∥ f ∥2L4 ≤ c4

(
∥ f ∥L2∥∇ f ∥L2 + ∥ f ∥2L2

)
,

we get

∥uε∥2L4 ≤ c5

(
∥uε∥L2∥∇uε∥L2 + ∥uε∥2L2

)
,

and infer from the elliptic estimates that

∥∇vε∥2L4 ≤ c6∥∇vε∥L2∥∇vε∥H1 ≤ c7∥∇vε∥L2∥∆vε∥L2 .

In view of these, we arrive at

∥uε∥2L4∥∇vε∥2L4 ≤c8

(
∥uε∥L2∥∇uε∥L2 + ∥uε∥2L2

)
∥∇vε∥L2∥∆vε∥L2

≤
1
4
∥∇uε∥2L2 + c2

8∥uε∥
2
L2∥∇vε∥2L2∥∆vε∥2L2 + c8∥uε∥2L2∥∇vε∥L2∥∆vε∥L2 .

Collecting these and using Young’s inequality, we have

1
2

d
dt

∫
Ω

u2
εdx +

1
2

∫
Ω

|∇uε|2dx +
c1

2

∫
Ω

u2
εdx + µ

∫
Ω

u3
εdx

≤c2

∫
Ω

h2
1dx + c2

8∥uε∥
2
L2∥∇vε∥2L2∥∆vε∥2L2 + c8∥uε∥2L2∥∇vε∥L2∥∆vε∥L2

≤c2

∫
Ω

h2
1dx + 2c2

8∥uε∥
2
L2∥∇vε∥2L2∥∆vε∥2L2 + c9∥uε∥2L2 .
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Recalling v̂ε := vε − v∞ and invoking Lemma 2.4, it follows that

∥∇vε∥2L2∥∆vε∥2L2 ≤4
(
∥∇v̂ε∥2L2 + ∥∇v∞∥2L2

) (
∥∆v̂ε∥2L2 + ∥∆v∞∥2L2

)
≤c10

(
∥∇v̂ε∥2L2∥∆v̂ε∥2L2 + ∥∇v̂ε∥2L2 + ∥∆v̂ε∥2L2 + 1

)
.

This leads to

1
2

d
dt

∫
Ω

u2
εdx +

1
2

∫
Ω

|∇uε|2dx +
c1

2

∫
Ω

u2
εdx + µ

∫
Ω

u3
εdx

≤c2

∫
Ω

h2
1dx + c11∥uε∥2L2

(
∥∇v̂ε∥2L2 + 1

)
∥∆v̂ε∥2L2 + c12∥uε∥2L2∥∇v̂ε∥2L2 + c13∥uε∥2L2 . (3.26)

On the other hand, we can test the first equation in (3.6) with −∆v̂ε to get

1
2

d
dt

∫
Ω

|∇v̂ε|2dx +
∫
Ω

|∆v̂ε|2dx +
∫
Ω

|∇v̂ε|2dx

=

∫
Ω

uεvε
1 + εuεvε

(−∆v̂ε)dx +
∫
Ω

(h2 − h2,∞)(−∆v̂ε)dx,

which, with the help of Young’s inequality, shows

1
2

d
dt

∫
Ω

|∇v̂ε|2dx +
1
2

∫
Ω

|∆v̂ε|2dx +
∫
Ω

|∇v̂ε|2dx ≤
∫
Ω

u2
εv

2
εdx +

∫
Ω

|h2 − h2,∞|
2dx.

Hölder’s inequality, combined with the Gagliardo-Nirenberg inequality and the elliptic estimates, en-
tails ∫

Ω

u2
εv

2
εdx ≤∥uε∥2L2∥vε∥2L∞

≤c14∥uε∥2L2

(
∥vε∥L2∥∆vε∥L2 + ∥vε∥2L2

)
,

which, based on (3.7), Lemma 2.4 and the fact that v̂ε := vε − v∞, leads to∫
Ω

u2
εv

2
εdx ≤c14∥uε∥2L2

((
∥v̂ε∥L2 + ∥v∞∥L2

) (
∥∆v̂ε∥L2 + ∥∆v∞∥L2

)
+

(
∥v̂ε∥L2 + ∥v∞∥L2

)2
)

≤c15∥uε∥2L2

(
∥∆v̂ε∥L2 + 1

)
.

In the light of Young’s inequality, it follows that∫
Ω

u2
εv

2
εdx ≤c16∥uε∥2L2

(
∥∆v̂ε∥2L2 + 1

)
.

Hence, we arrive at

1
2

d
dt

∫
Ω

|∇v̂ε|2dx +
1
2

∫
Ω

|∆v̂ε|2dx +
∫
Ω

|∇v̂ε|2dx ≤c16∥uε∥2L2

(
∥∆v̂ε∥2L2 + 1

)
+

∫
Ω

|h2 − h2,∞|
2dx,

which, together with (3.26), ensures that

E′(t) +
1
2

∫
Ω

|∇uε|2dx +
c1

2

∫
Ω

u2
εdx + µ

∫
Ω

u3
εdx +

1
2

∫
Ω

|∆v̂ε|2dx +
∫
Ω

|∇v̂ε|2dx
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≤c2

∫
Ω

h2
1dx + c11∥uε∥2L2

(
∥∇v̂ε∥2L2 + 1

)
∥∆v̂ε∥2L2 + c12∥uε∥2L2∥∇v̂ε∥2L2 + c13∥uε∥2L2

+ c16∥uε∥2L2

(
∥∆v̂ε∥2L2 + 1

)
+

∫
Ω

|h2 − h2,∞|
2dx.

Note that due to (1.4), we have ∫
Ω

h2
1dx ≤ ∥h1∥

2
L∞(Ω×(0,∞))|Ω|.

Hence, collecting these and recalling the definition of c1, we can get the validity of (3.25).

The uniform convergence properties previously established in Lemmas 3.1 and 3.3, combined with
a continuation argument, are enough to show that there exists T0 large enough such that the variable
coefficient in (3.25) maintains nonnegativity whenever t ≥ T0, which shall eventually lead to the fol-
lowing crucial estimates.

Lemma 3.5. There exist T0 large enough and a4 > 0, independent of ε, such that for any ε ∈ (0, 1)∫
Ω

u2
ε(·, t)dx +

∫
Ω

∣∣∣∇v̂ε
∣∣∣2 (·, t)dx ≤ a4, t ≥ T0, (3.27)∫ t

s

∫
Ω

|∇uε|2dxdτ +
∫ t

s

∫
Ω

|∆v̂ε|2dxdτ ≤ a4, t ≥ s ≥ T0. (3.28)

Proof. Combining with (3.4) and (3.25), and setting y(t) := a3
µ

∫
Ω

uεdx + Eε(t), there exist c1 > 0 and
c2 > 0, independent of (ε, t), such that

y′(t) + c1y(t) +
(
1
2
− a1∥uε∥2L2

(
∥∇v̂ε∥2L2 + 1

)) ∫
Ω

|∆v̂ε|2dx

+
1
2

∫
Ω

|∇uε|2dx +
(
3
4
− a2∥uε∥2L2

) ∫
Ω

|∇v̂ε|2dx

≤c2

{
∥h1∥L1 + ∥h2 − h2,∞∥

2
L2

}
, t > 0, (3.29)

where a1, a2 and a3 are given in (3.25).
According to the uniform convergence stated in (3.2), (3.3) and (3.14), and the assumptions (1.6)

and (1.7), there must exist T∗ large enough, independent of ε, such that

a3

µ

∫
Ω

uε(·, t)dx ≤
A
2
, t ≥ T∗,

and

1
2

∫ T∗+1

T∗
∥uε(·, t)∥2L2dt +

1
2

∫ T∗+1

T∗
∥∇v̂ε(·, t)∥2L2dt + c2

∫ ∞

T∗

(
∥h1∥L1 + ∥h2 − h2,∞∥

2
L2

)
ds ≤

A
2
,

where A := min
{

1
8a2
, 1

8

√
1
a1
+ 1 − 1

8

}
. By using mean value theorem we can find t̂0 ∈ (T∗,T∗ + 1),

depending on ε, such that

y(t̂0) + c2

∫ ∞

t̂0

(
∥h1∥L1 + ∥h2 − h2,∞∥

2
L2

)
ds ≤ A, (3.30)
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which, together with the definition of y(t̂0), further implies that

a2∥uε(·, t̂0)∥2L2 ≤ 2a2A, (3.31)

and
∥∇v̂ε(·, t̂0)∥2L2 ≤ 2A. (3.32)

We now claim that

a2∥uε(·, t)∥2L2 ≤ 4a2A, t ≥ t̂0, (3.33)
∥∇v̂ε(·, t)∥2L2 ≤ 4A, t ≥ t̂0, (3.34)

and thereby assert

a1∥uε(·, t)∥2L2

(
∥∇v̂ε(·, t)∥2L2 + 1

)
≤ 4a1A(4A + 1), t ≥ t̂0. (3.35)

Indeed, the continuities of ∥∇v̂ε(·, t)∥2L2 and a2∥uε(·, t)∥2L2 , invoking (3.31) and (3.32), show that

T̃ := sup
t

∣∣∣∣∣∣ sup
t̂0≤s≤t

a2∥uε(·, t)∥2L2 ≤ 4a2A, sup
t̂0≤s≤t
∥∇v̂ε(·, t)∥2L2 ≤ 4A,

 > t̂0, (3.36)

and so we only need to show that T̃ = ∞. If on the contrary, at least one of the following statements
must hold

sup
t̂0≤s≤T̃

a2∥uε(·, t)∥2L2 = 4a2A, (3.37)

sup
t̂0≤s≤T̃

∥∇v̂ε(·, t)∥2L2 = 4A, (3.38)

which, together with the definition of A, further leads to

a1∥uε(·, t)∥2L2

(
∥∇v̂ε(·, t)∥2L2 + 1

)
≤ 4a1A(4A + 1) ≤

1
4
, t ∈ [t̂0, T̃ ], (3.39)

3
4
− a2∥uε(·, t)∥2L2 ≥

3
4
− 4a2A ≥

1
4
, t ∈ [t̂0, T̃ ]. (3.40)

However, it follows from (3.29), (3.39) and (3.40) that

y′(t) + c1y(t) +
1
2

∫
Ω

|∇uε|2dx +
1
4

∫
Ω

|∆v̂ε|2dx ≤c2

{
∥h1∥L1 + ∥h2 − h2,∞∥

2
L2

}
, t ∈ [t̂0, T̃ ].

This, by means of the standard ODE techniques, results in that for any t ∈ [t̂0, T̃ ]

y(t) ≤e−c1(t−t̂0)y(t̂0) + e−c1t
∫ t

t̂0
ec1 sc2

{
∥h1∥L1 + ∥h2 − h2,∞∥

2
L2

}
ds

≤y(t̂0) + c2

∫ ∞

t̂0

{
∥h1∥L1 + ∥h2 − h2,∞∥

2
L2

}
ds,
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which, combined with (3.30) and the definition of y(t) , implies

y(t) ≤ A, t ∈ [t̂0, T̃ ].

Hence, recalling the definitions of y(t) and A again, we must have

a2∥uε(·, t)∥2L2 ≤ 2a2A and ∥∇v̂ε(·, t)∥2L2 ≤ 2A, t ∈ [t̂0, T̃ ],

which contradicts (3.37) and (3.38). Thus we have that T̃ = ∞, and prove (3.33)–(3.35) as desired.
Based on the definition of A and the validity of (3.33)–(3.35), we see from (3.29) that

y′(t) + c1y(t) +
1
2

∫
Ω

|∇uε|2dx +
1
4

∫
Ω

|∆v̂ε|2dx ≤c2

{
∥h1∥L1 + ∥h2 − h2,∞∥

2
L2

}
, t ≥ t̂0. (3.41)

Hence, using the standard ODE techniques again, yields that for any t ≥ t̂0

y(t) ≤y(t̂0) + c2

∫ t

t̂0

{
∥h1∥L1 + ∥h2 − h2,∞∥

2
L2

}
ds,

which, together with (3.30), ensures

y(t) ≤c3, t ≥ t̂0. (3.42)

This evidently entails (3.27).
Moreover, integrating (3.41) over [s, t] with t̂0 ≤ s ≤ t and using (1.6) and (1.7) again, we subse-

quently arrive at

y(t) +
1
2

∫ t

s

∫
Ω

|∇uε|2dxdτ +
1
4

∫ t

s

∫
Ω

|∆v̂ε|2dxdτ ≤y(s) + c4.

Based on (3.42), we get that Eε(s) ≤ c3 due to s ≥ t̂0, and thereby obtain (3.28) as desired.

4. Eventual smoothness

In view of Lemma 3.5 and the boundedness criterion obtained in [41, 42] via the Moser iteration
and the semigroup theory, we can get the eventual bound of the generalized solution.

Lemma 4.1. Let T0 be given in Lemma 3.5. Then there exists a5 > 0, with the property that for any
q > 2

∥∇v̂ε(·, t)∥Lq ≤ a5, t ≥ T0 + 1. (4.1)

Proof. By means of (3.6) and the properties of the Neumann heat semigroup (cf. [43, Lemma 1.3]
and [44, Lemma 2.1]), for all t > T0 and q > 2 we have

∥∇v̂ε(·, t)∥Lq ≤∥∇e(t−T0)(∆−1)v̂ε(·,T0)∥Lq +

∫ t

T0

∥∥∥∥∥∥∇e(t−s)(∆−1)
(

uεvε
1 + εuεvε

+ h2 − h2,∞

)∥∥∥∥∥∥
Lq

ds

≤c1

(
1 + (t − T0)−( 1

2−
1
q )
)
∥∇v̂ε(·,T0)∥L2

Electronic Research Archive Volume 31, Issue 6, 3218–3244.



3235

+ c1

∫ t

T0

(
1 + (t − s)−

1
2−( 1

2−
1
q )
)

e−(t−s) (∥uεvε∥L2 + ∥h2 − h2,∞∥L2
)

ds,

which, combined with (1.4) and (3.27), reduces to

∥∇v̂ε(·, t)∥Lq ≤c2 + c2(t − T0)−( 1
2−

1
q ) + c2

∫ t

T0

(
1 + (t − s)−

1
2−( 1

2−
1
q )
)

e−(t−s)∥uεvε∥L2ds.

An application of Hölder’s inequality, invoking (3.27) and Lemma 2.4, yields that for any t ≥ T0

∥uεvε∥L2 ≤ ∥uε∥L2∥vε∥L∞ ≤ c3
(
∥v̂ε∥L∞ + 1

)
,

which, with the help of the Gagliardo-Nirenberg inequality, entails

∥uεvε∥L2 ≤ c4

(
∥v̂ε∥1−ϑL2 ∥∇v̂ε∥ϑLq + ∥v̂ε∥L2 + 1

)
,

where ϑ := q
2(q−1) . By employing (3.7), we arrive at

∥uεvε∥L2 ≤ c5

(
∥∇v̂ε∥ϑLq + 1

)
.

Collecting these, it follows that for any t > T0

∥∇v̂ε(·, t)∥Lq ≤c6 + c2(t − T0)−( 1
2−

1
q ) + c6

∫ t

T0

(
1 + (t − s)−

1
2−( 1

2−
1
q )
)

e−(t−s)∥∇v̂ε∥ϑLqds.

Letting K(T ) := supt∈(T0,T ) ∥∇v̂ε(·, t)∥Lq for any T ∈ (T0,∞), we get

K(T ) ≤c6 + c2(t − T0)−( 1
2−

1
q ) + c7Kϑ(T ),

which, by using Young’s inequality, ensures

K(T ) ≤c8 + c2(t − T0)−( 1
2−

1
q ), t > T0.

Hence, for any t ≥ T0 + 1, we arrive at (4.1).

Based on (4.1), we can obtain the time-independent bound for uε in L∞(Ω).

Lemma 4.2. Let T0 be given in Lemma 3.5. Then there exists a6 > 0, such that

∥uε(·, t)∥L∞ ≤ a6, t ≥ T0 + 2. (4.2)

Proof. From the constant variation formula associated with the first equation in (2.1), we get that for
any t > t1 := T0 + 1

0 ≤ uε(x, t) =e(∆−1)(t−t1)uε(x, t1)

+

∫ t

t1
e(∆−1)(t−s)

(
−χ∇ · (uε∇ ln vε) − κuεvε + ruε − µu2

ε + h1 + uε
)

ds

≤e(∆−1)(t−t1)uε(x, t1) +
∫ t

t1
e(∆−1)(t−s) (−χ∇ · (uε∇ ln vε) + ruε + h1 + uε) ds,
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which, with the help of the properties of Neumann heat semigroup (cf. [43, Lemma 1.3] and [44,
Lemma 2.1]), we can pick c1 > 0 such that

∥uε(·, t)∥L∞ ≤ c1

(
1 + (t − t1)−

1
2
)
∥uε(·, t1)∥L2 + c1

∫ t

t1

(
1 + (t − s)−

1
2
)

e−(t−s)∥uε + h1∥L2ds

+ c1

∫ t

t1

(
1 + (t − s)−

1
2−

1
3
)

e−(t−s)∥uε∇ ln vε∥L3ds.

Hence, (3.27) and (1.4) show that

∥uε(·, t)∥L∞ ≤ c2 + c2(t − t1)−
1
2 + c1

∫ t

t1

(
1 + (t − s)−

1
2−

1
3
)

e−(t−s)∥uε∇ ln vε∥L3ds.

On the basis of Hölder’s inequality and (2.4), it follows that

∥uε∇ ln vε∥L3 ≤ ∥uε∥L4∥∇vε∥L12∥v−1
ε ∥L∞ ≤ η

−1∥uε∥L4∥∇vε∥L12 ,

which, together with (4.1) and the fact that v̂ε = vε − v∞, entails

∥uε∇ ln vε∥L3 ≤ c3∥uε∥L4 , t ≥ T0 + 1.

Based on this, the interpolation inequality and (3.27) indicate that

∥uε∇ ln vε∥L3 ≤ c3∥uε∥
1
2
L2∥uε∥

1
2
L∞ ≤ c4∥uε∥

1
2
L∞ , t ≥ T0 + 1.

Collecting these, we arrive at

∥uε(·, t)∥L∞ ≤ c2 + c2(t − t1)−
1
2 + c5

∫ t

t1

(
1 + (t − s)−

1
2−

1
3
)

e−(t−s)∥uε∥
1
2
L∞ds.

Setting K(T ) := supt∈(t1,T ) ∥uε(·, t)∥L∞ for any T ∈ (t1,∞), we have

K(T ) ≤ c2 + c2(t − t1)−
1
2 + c6K

1
2 (T ).

Using Young’s inequality yields

K(T ) ≤ c7 + c2(t − t1)−
1
2 , t > t1,

which must lead to

K(T ) ≤ c8, t ≥ t1 + 1.

This implies (4.2) directly.

A straightforward consequence of Lemmas 4.1 and 4.2, invoking the parabolic Schauder estimates
[45], can be stated as follows.

Lemma 4.3. There exists a7 > 0, independent of ε and t, with the property that for some α ∈ (0, 1)

∥uε(·, s)∥
C

2+α,1+ α2 (Ω×[t,t+1]) + ∥vε(·, s)∥
C

2+α,1+ α2 (Ω×[t,t+1]) ≤ a7, t > T0 + 2, (4.3)

where T0 is given in Lemma 3.5.
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Proof. Based on Lemmas 4.1 and 4.2 and the Schauder estimates ( [45]), a straightforward reasoning
involving standard bootstrap techniques ensures that (4.5) holds as desired by recalling Lemma 2.4 and
v̂ε = vε − v∞.

Lemma 4.3, combined with the Arzelà-Ascoli theorem, is enough to prove that the generalized
solution (u, v) established in [3] admits the desired regularity in Theorem 1.1.

Lemma 4.4. Let (u, v) be a generalized solution stated in Definition 1.1, and T0 be given in Lemma
3.5. Then there exists a8 > 0 with the property that for any q > 2

∥u(·, t)∥L∞ + ∥v(·, t)∥W1,q + ∥v−1(·, t)∥L∞ ≤ a8, t ≥ T0 + 2, (4.4)
∥u(·, s)∥C2,1(Ω×[t,t+1]) + ∥v(·, s)∥C2,1(Ω×[t,t+1]) ≤ a8, t > T0 + 2. (4.5)

Moreover, u ≥ 0, v > 0 and (u, v) solves the initial-boundary value problem (1.2) classically in Ω ×
(T0 + 2,∞).

Proof. Invoking Lemma 4.3, [3, Lemma 4.2] and the Arzelà-Ascoli theorem, there exists a subsequence
of {ε j}

∞
j=1 (still expressed as {ε j}

∞
j=1) such that for any t > T0 + 2, as ε = ε j → 0,

uε → u in C2,1(Ω × [t, t + 1],
vε → v in C2,1(Ω × [t, t + 1].

This ensures (4.5), and thereby (4.4) holds as desired by using Sobolev’s inequality, (4.1), (2.4) and
(4.2) again. Moreover, along the lines demonstrated in [46, Lemma 2.1], we can see that if u ≥ 0 and
v > 0 satisfying (4.5) and such that (u, v) is a generalized solution of (1.3) in the sense of Definition
1.1, then (u, v) also solves (1.3) in the classical sense in Ω × (T0 + 2,∞).

5. Asymptotic behavior

Asymptotic behavior of the generalized solution featured in Theorem 1.1 is now almost immediate.

Lemma 5.1. Let all assumptions in Theorem 1.1 be fulfilled. Then

∥uε(·, t)∥L∞ + ∥vε(·, t) − v∞(·)∥L∞ → 0, as t → ∞, (5.1)

where v∞ denotes the solution of the boundary value problem (1.15).

Proof. It directly follows from (3.13) that∫
Ω

|v̂ε|2(·, t)dx→ 0 as t → ∞ uniformly in ε. (5.2)

Using Sobolev’s inequality and (4.1) again, for some r > 2 there exist c2 > 0 and c3 > 0 such that

∥v̂ε(·, t)∥L∞ ≤c2∥v̂ε(·, t)∥
r−2

2(r−1)

L2 ∥v̂ε(·, t)∥
r

2(r−1)

W1,r

≤c3∥v̂ε(·, t)∥
r−2

2(r−1)

L2 , t ≥ T0 + 2,
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which, in conjunction with (5.2), entails

∥v̂ε(·, t)∥L∞ → 0, as t → ∞ uniformly in ε. (5.3)

To get the decay on ∥uε∥L∞ , we further develop the method used in [47]. According to the variation-
of-constants formula for uε, for t0 := T0 + 2 the known estimates for the Neumann heat semigroup
ensure that for any t > t0

∥uε(·, t)∥L∞ ≤ ∥e(∆−1)(t−t0)uε(·, t0)∥L∞ + χ
∫ t

t0

∥∥∥e(∆−1)(t−s)∇ · (uε∇ ln vε)
∥∥∥

L∞
ds

+

∫ t

t0

∥∥∥e(∆−1)(t−s)(ruε + h1 + uε)
∥∥∥

L∞
ds

≤ c4
(
1 + (t − t0)−

1
3
)
e−δ(t−t0)∥uε(·, t0)∥L3

+ c4

∫ t

t0

(
1 + (t − s)−( 1

3+
1
2 ))e−δ(t−s) ∥uε∇ ln vε∥L3 ds

+ c4

∫ t

t0

(
1 + (t − s)−

1
3
)
e−δ(t−s) ∥ruε + h1 + uε∥L3 ds

=: V1 + V2 + V3,

with some c4 > 0 and δ > 0. As a consequence of (4.4), we can find c5 > 0, independent of ε, such
that

V1 ≤c5
(
1 + (t − t0)−

1
3
)
e−δ(t−t0)

≤2c5et0e−t, t ≥ t0 + 1,

which clearly implies that for fixed t0

V1 → 0, as t → ∞ uniformly in ε. (5.4)

For V2, Hölder’s inequality, combined with (2.4), (4.4) and Lemma 2.4, entails

∥uε∇ ln vε∥L3 ≤∥v−1
ε ∥L∞∥uε∥L6∥∇vε∥L6

≤∥v−1
ε ∥L∞∥uε∥L6

(
∥∇̂vε∥L6 + ∥∇v∞∥L6

)
≤c6∥uε∥L6 , t ≥ t0.

By further assuming that t > 2t0 and letting

V21 = c4c6

∫ t
2

t0

(
1 + (t − s)−

5
6
)
e−δ(t−s) ∥uε∥L6 ds,

V22 = c4c6

∫ t

t
2

(
1 + (t − s)−

5
6
)
e−δ(t−s) ∥uε∥L6 ds,

it follows that
V2 ≤ V21 + V22, t > 2t0.
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For V21, using (4.4) again we have

V21 = c4c6

∫ (t−t0)

t
2

(
1 + s−

5
6
)
e−δs ∥uε∥L6 ds

≤ c7

∫ t

t
2

(
1 + s−

5
6
)
e−δsds.

Due to the fact that ∫ ∞

0

(
1 + s−

5
6
)
e−δsds ≤ c8,

we infer that

V21 → 0, as t → ∞ uniformly in ε. (5.5)

For V22, an application of the interpolation inequality and (4.4) yields that

∥uε(·, t)∥L6 ≤ ∥uε(·, t)∥
1
6

L1∥uε(·, t)∥
5
6
L∞ ≤ c9∥uε(·, t)∥

1
6

L1 , t > 2t0.

Invoking this, we arrive at

V22 ≤c10 sup
s> t

2

∥uε(·, s)∥
1
6

L1

∫ t

t
2

(
1 + (t − s)−

5
6
)
e−δ(t−s)ds

≤c11 sup
s> t

2

∥uε(·, s)∥
1
6

L1 , t > 2t0,

which, combined with (3.2), entails

V22 → 0, as t → ∞ uniformly in ε.

This, together with (5.5), implies

V2 → 0, as t → ∞ uniformly in ε. (5.6)

Similarity, we set

V31 = c4

∫ t
2

t0

(
1 + (t − s)−

1
3
)
e−δ(t−s) ∥(r + 1)uε + h1∥L3 ds,

V32 = c4

∫ t

t
2

(
1 + (t − s)−

1
3
)
e−δ(t−s) ∥(r + 1)uε + h1∥L3 ds,

and thereby get

V3 ≤ V31 + V32, t > 2t0.

Similar to (5.5), we can infer from (4.4), (1.4) and Hölder’s inequality that

V31 ≤ c12

∫ t

t
2

(
1 + s−

1
3
)
e−δsds, t > 2t0,
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and hence

V31 → 0, as t → ∞ uniformly in ε. (5.7)

Similar to the estimate for V22, it follows from the interpolation inequality and (4.4) that

c4

∫ t

t
2

(
1 + (t − s)−

1
3
)
e−δ(t−s) ∥(r + 1)uε∥L3 ds ≤c13 sup

s> t
2

∥uε(·, s)∥
1
3

L1 , t > 2t0,

which, combined with (3.2), entails

c4

∫ t

t
2

(
1 + (t − s)−

1
3
)
e−δ(t−s) ∥(r + 1)uε∥L3 ds→ 0, as t → ∞ uniformly in ε.

On the other hand, the interpolation inequality and (1.4) imply

∥h1∥L3 ≤ ∥h1∥
1
3

L1∥h1∥
2
3
L∞ ≤ c14∥h1∥

1
3

L1 .

This, with the help of Hölder’s inequality, ensures

c4

∫ t

t
2

(
1 + (t − s)−

1
3
)
e−δ(t−s) ∥h1(·, s)∥L3 ds

≤c15


∫ t

t
2

(
1 + (t − s)−

1
2
)
e−

3
2 δ(t−s)ds


2
3

∫ t

t
2

∥h1(·, s)∥3L3 ds


1
3

≤c16


∫ t

t
2

∥h1(·, s)∥L1ds


1
3

, t > 2t0,

which, together with (1.6), leads to

c4

∫ t

t
2

(
1 + (t − s)−

1
3
)
e−δ(t−s) ∥h1(·, s)∥L3 ds→ 0, as t → ∞ uniformly in ε.

Hence, we arrive at

V32 → 0, as t → ∞ uniformly in ε,

which, in conjunction with (5.7), gives us

V3 → 0, as t → ∞ uniformly in ε.

This, further combined with (5.4) and (5.6), asserts

∥uε(·, t)∥L∞ → 0, as t → ∞ uniformly in ε,

which implies that (5.1) holds as desired by recalling (5.3) and the definition of v̂ε.

Our main result on eventual smoothness and stabilization in Theorem 1.1 is in fact a by-product of
our previous analysis.

Proof of Theorem 1.1. The eventual smoothness in Theorem 1.1 has been verified evidently in Lemma
4.4. For the stabilization, it readily follows from Lemma 5.1, Lemma 4.3, [3, Lemma 4.2] and the
Arzelà-Ascoli theorem that (1.14) holds.
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