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Abstract: This paper is concerned with a chemotaxis system in a two-dimensional setting as follows:
{u, :Au—XV-(uVlnv)—Kuv+ru—yu2+h1, )

vi=Av—v+uv+h,,

with the parameters y,k,u > 0 and r € R, and with the given functions h;,h, > 0. This model
was originally introduced by Short et al for urban crime with the particular values y = 2,7 = 0 and
u = 0, and the logistic source term ru — uu® was incorporated into (%) by Heihoff to describe the
fierce competition among criminals. Heihoff also proved that the initial-boundary value problem of
(%) possesses a global generalized solution in the two-dimensional setting. The main purpose of this
paper is to show that such a generalized solution becomes bounded and smooth at least eventually. In

addition, the long-time asymptotic behavior of such a solution is discussed.
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1. Introduction and main results

We study a class of logarithmic chemotaxis systems with the logistic source of the following form

(1.1)

ut:Au—/\/V~(uVlnv)—Kuv+ru—,uu2+h1,
v =Av—v+uv+ hy,

with the parameters y, «,u > 0 and r € R. This model was proposed by Short et al. to describe the
propagation of criminal activities with the particular values y = 2,7 = 0 and u = 0 ( [1,2]), in which
u(x, t) denotes the density of criminals, v(x, f) represents an abstract so-called attractiveness, the given
function A, denotes the density of additional criminals and 4, describes the source of attractiveness.
The logistic source term, i.e., ru — uu?, is a fairly standard addition to chemotaxis models. Here,


http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023163

3219

it was incorporated into the Short et al. model by Heihoft ( [3]) to model the fierce competition
among criminals for, e.g., good targets, which are limited resources. We refer to [4-10] for further
developments of the Short et al. and to [11, 12] for a review.

Mathematical analysis on (1.1) is still at quite an early stage and there are only a few relative results.
For instance, for the Short ef al. model, i.e., r = 0 and u = 0, the local classical solution was obtained
in [13], which is globally provided that either n = 1 ( [14,15]), or n > 2 and y < % ([16,17)]), or
the initial data and the given functions /; and h, are assumed to be small ( [18, 19]). As to the radial
renormalized solvability, the global existence was established provided that eithern = 2 ([20]) orn = 3
and y € (0, V3) ( [21]); without requiring the symmetry hypothesis, the generalized solvability was
obtained in [22] for any y > 0 and n = 2. In addition, when Au in the first equation in (1.1) is replaced
by V - (Vu™) with some m > 0, the globally weak solvability was obtained in the two-dimensional
setting provided that either m > % ([23])) orm > 1 and y < %g ( [24]). We would like to remark that a
reduced crime model, i.e., Tu, = Au—xV-(uVInv) and v, = Av —v + uv, admits an unbounded solution
for appropriately large initial data, provided that n > 3, y > 0, and T > 0 is enough small ( [25]).
Finally, we mention there appear various studies on the variants of Short et al. model, see [26—29].

For the case of r € R and u > 0, the corresponding initial-boundary value problem admits a
generalized solution (in the sense of Definition 1.1 below) in the two-dimensional setting ( [3]). To
illustrate how critical the interaction between the term —uu? in the first equation and the growth term
+uv in the second equation is, the stronger logistic source, —uu**®, with @ > 0 for n = 2,3 ( [3,30]) or
a > % — 1 forn > 4 ([30]), was proved to be enough for the global existence of a classical solution.
This also indicates that the regularity of the generalized solution structured in [3] is not enough to
trigger a bootstrap argument to improve the regularity of such a solution, and thereby it is not known
whether or not this generalized solution develops singularities. Therefore, motivated by [26,31-34],
the main purpose of this paper is to reveal that the global generalized solution established in [3] at least
eventually becomes bounded and smooth, and approaches spatial equilibria in the large time limit.

Precisely, we will present the eventual smoothness of the global generalized solution of the initial-

boundary value problem:

u,:Au—)(V-(uVInv)—Kuv+ru—yu2+h1, xeQ, t>0,

vi=Av—v+uv+h,, xeQ, t>0, (12)
Vu-v=Vv.-v=0, xe€eodQ, t>0, ’
u(x, 0) = up(x), v(x,0) = vo(x), x€Q,

where v denotes the exterior normal vector to the boundary dQ and the initial data (u, vo) fulfills that

up € C°(Q) with up >0 and ug %0,
vo € WH(Q) with inf v, > 0. (1.3)
x€Q
In order to specify the setup for our analysis, we assume throughout the sequel that
0<h € C(QX[0,00) N L(Q X (0,00)), i=1,2, (1.4)
with the additional properties that
inffhz(x, Ndx > 0, (1.5)
>0 Jq
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foofhl(-,t)dxds < o0, (1.6)
0o Ja

foo f Iha(:5 1) = Iy oo () Pdxdss < oo (1.7)
0o Jo

with some /., € C'(Q).
Now, we briefly review the concept of generalized solution used in [3] for the initial-boundary value
problem (1.2) as follows:

Definition 1.1. A pair of nonnegative functions (u,v) is called a global generalized solution to the
initial-boundary value problem (1.2) if for any T > 0,
1) it holds that for any q < oo

veL®0,T;LYQ)), Inve L*0,T; WHQ)),
ueL2(Qx(0,T)NL0,T; L' (Q)), In(l +u) e L0, T; W-(Q)), (1.8)
wv e L' Q% (0,T)), v'eL®Qx(0,7T)):

2) it holds that

! !
fu(-,t)dx+f f(Kuv+uu2)dxds§fuodx+f f(ru+h1)dxds, ae., in[0,T]; (1.9
Q 0 Ja Q 0 Ja
3) it holds that for 0 < @(x, 1) € CX(Q x [0, T)) with V¢ - Vlsaxor) = 0
T
—f fln(u+ 1), dxdt — fln(uo + 1) (-, 0)dx
0
T
Zf fln(u+1)Ag0dxdt+f flVln(u+1)| pdxdt
—)(f f—(VIn(u+1) Vlnv)godxdt+)(f fu Vinv - Vodxdt
Q
—f f add godxdt+f f f fhlgodxdt (1.10)
0 olu + 1 0

4) it holds that for all ¢ € L™ (0,T; LY(Q)) N L*(0, T WI’Z(Q)) with ¢, € L*(Q X (0,T)), compact
support in Qx[0,T) and g <o

T
f fvgo,dxdt+fvoga(~,0)dx
0 Jao Q
T T T T
=f va-Vgodxdt+f fvgodxdt—f fuvgodxdt—f fhz(pa’xa’t. (1.11)
0 Ja 0o Jo 0 Ja 0 Ja

With Definition 1.1 at hand, letting

1 iam Q)2
ni= min{infvo(x)e-l,—e-l-‘d > {inf f ha(, s)dx}}, (1.12)
x€Q 47 s>0 Q

our main results read as follows.
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Theorem 1.1. Assume that (1.3)—(1.7) hold. Let k,x,;t > 0, r € R and Q C R? be a bounded convex
domain with smooth boundary, and let (u,v) be a generalized solution of (1.2) in the sense of Definition
1.1. Under the additional assumption that r < kn with n determined by (1.12), there exists ty > 0, with
the properties that u(x,t) > 0 and v(x,t) > 0 for any x € Q and any t > ty, and

u e C*(Q X [fy, ), veC> QX [, )), (1.13)

and that (u,v) solves the initial-boundary value problem (1.2) classically in Q X (ty, 00). Moreover,
(u, v) fulfills that

e, Ol + 1V, 1) = Vool — 0, as 1 — oo, (1.14)

where v, denotes the solution of the boundary value problem

(1.15)

AN + Vo = hpeo, XEQ,
We - v =0, x € 0Q.

Technical strategy and structure of the article

The objective of this paper, motivated by [26, 31-34], is to present that the global generalized
solution of the initial-boundary value problem (1.2) at least eventually becomes bounded and smooth,
and approaches spatial equilibria in a large time limit. To this end, the key steps are to establish a series
of uniform a-priori estimates, in which the starting point is to get the uniform-in-(g, t) lower bound for
Ve, see Lemma 2.2. We would like to remark that, for the linear signal production mechanism the
combinational functional of the form

1oy 1
f s Inu, + S|VU1P + ~dx
Q 2 e

where v, := v, — v, and v, is a classical solution to the boundary value problem (1.15), is usually
adopted to get the desired a-priori estimates (e.g., [35]). However, thanks to the presence of the
nonlinear signal production mechanism, such functional is invalid for our case. Here, our novelty of
the analysis consists of tracking the time evolution of the combinational functional of the form

fbus + %ug + %lV\ledx, 1> Ty
Q
with some waiting time T, and some b > 0, see Lemmas 3.4 and 3.5. From this, the key L>-bound
of u, is obtained, and an application of the standard bootstrap techniques shows that the generalized
solution established in [3] becomes bounded and smooth at least eventually.

The rest of this paper is arranged as follows. Some preliminaries are given in Section 2. A-priori
estimates are established in Section 3. Section 4 is devoted to showing the eventual smoothness, and
the last section presents the large-time behavior desired in Theorem 1.1.
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2. Preliminaries

A generalized solution of the initial-boundary value problem (1.2) can be obtained by an approxi-
mation procedure ( [3,22]). Accordingly, we shall consider the following approximate problem

Ug = Aug — xV - (u,Vinv,) — kugv, + rug —,uug +h, xef, >0,
vg,:Avg—v8+&+h2, xeQ, >0,
1+ eu,v,
ou ov @D
8:_8:0’ EaQ,t>0,
ov ov o
ug(x,0) = up(x), ve(x,0) = vo(x), x € Q.

An application of the strategy invoking the contraction mapping principle and the well-known point-
wise positivity property of the Neumann heat semigroup, as in [13, 16, 36, 37], ensures the global
existence of the classical solution to the approximate problems (2.1).

Lemma 2.1. Let the assumptions (1.3)—(1.4) hold. For each € € (0, 1), there exists a unique pair
(us, ve) of positive functions, with the properties that for any T > 0 and ¢ > 2

u, € CO(Q % [0,T7) N C*(Q x (0, T7),
v, € C°0, T; W(Q)) N C*'(Q x (0, T1),
such that (ug, v,) solves the approximate problem (2.1) classically in Q X [0, 00).

Proof. By a slight adaptation of the proof of [3, Lemma 2.3] (see also [22]), we can easily get the
desired results.

Note that thanks to the non-negativity of (u., ;) and the variation-of-constants formula for v,,
namely,

!
u.v,
ve(-, 1) = @ Dyg + f ARG (—6 E ¢+ hz) (-, 8)ds, (2.2)
0 1+ eu.v,
it is clear that
Ve(-, 1) > @ Dyg > ¢! in£ vo(x), >0, (2.3)
X€E

which is adequate for establishing the global existence of generalized solutions, see [3]. However, to
get eventual smoothness of generalized solutions, the uniform-in-# lower bound for v, will be necessary.

Lemma 2.2. Let Q C R? be a bounded convex domain with smooth boundary and (1.3)—(1.7) hold.
Then we have

ve(, 1) 21, >0, (2.4)
where 1 is determined by (1.12).
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Proof. Thanks to (2.3), we have
ve(-, 1) > 7! ingvo(x) for all 7 < 1. (2.5)
XE.

For t > 1, due to the convexity of €, the well-known pointwise positivity property of the Neumann
heat semigroup ensures that

1 (diam Q)2
erf>—e @ fdx, t>0,
At Q

where f € Co(ﬁ) (cf. [38, Lemma 2.3] and [39, Lemma 3.1]), which, combined with (2.2), (1.5) and
the non-negativity of (u., vy), implies that

=3
Ve(s, 1) > f A D (., $)ds
0

1
1 _ (diamQ)?

-3
> R P fh -, 8)dxds forall > 1.
fo At — 5) a 2(8)

It follows that for r > 1
1 . d s —1 _ (diam©)?
ve(-, 1) >—inf | ho(-, s)dx e’s e & ds
47‘[ s>0 Q %

1 . ! g ] _iam)?
>—inf | ho(-, s)dx e’s e % ds.
4 | s>0 0 !

Based on this, we further get that

1 . _] _iam®)?
ve(, 1) 2—inf | hy(-,8)dxp-e e 2 .
47t | s>0 Q

This, together with (2.5), entails the desired (2.4).

Next, we are concerned with the decay in a linear differential inequality, which is an extended
version of [22, Lemma 2.5].

Lemma 2.3. Let ¢ € (0, 1), y, € C'([0, o)) be non-negative functions satisfying
ye(0) =m (2.6)

with some positive constant m independent of €. If there exist a positive constant k and a nonnegative
Sfunction g.(t) € C([0, 0)) N L*([0, 00)) which satisfies

141

lim g:(s)ds =0 uniformlyin &, 2.7)
t—00 ¢
llg:llz0.c) < 1 for some u independent of (g, 1), (2.8)
such that for each & > 0,
Vo) + ky:(t) < g.(t) forall t>0, (2.9)
then
ve(t) > 0 as t— oo uniformlyin e. (2.10)
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At the end of this section, we recall the result on the solvability of the boundary value (1.15), which
directly follows from [40].

Lemma 2.4. For given hy. € C Y(Q), the problem (1.15) possesses a unique classical solution ve,
fulfilling that v, € C**%(Q) for some 6 € (0, 1).

3. A-priori estimates

A straightforward consequence of Lemma 2.2 is the following L'-decay on the component u,.

Lemma 3.1. Let all assumptions in Theorem 1.1 be fulfilled. Then there exists C > 0, independent of
(g,1), such that

fvg(-,t)a’x+fu8(-,t)dx+f fug(-, s)vs(-,s)dxds+f fui(-,s)dxdsSC, t>0, (3.1
o) o) 0 Jo 0 Ja

and that

f u(-,)dx - 0 as t — oo uniformly in &, 3.2)
Q

1+1 1+1
f fu€(~, S)Ve(-, s)dxds + f fu§(~, s)dxds — 0 as t — co uniformly in &. 3.3)
t Q t Q

Proof. Invoking (2.4) and taking ¢, € (0, k), we obtain

d
—fugdx+(/<—cl)nfugdx+clfu8vgdx+,ufuidx§rfugdx+fhldx.
dt Jo Q Q Q Q Q

Under the assumption that r < ki, we can further take c; sufficiently close to 0 such that

ci=(k—-c)n—-r>0,

d
—fusdx+czfu€dx+clfusvgdx+,ufu§dxsfhldx. (3.4)
dt Jg Q Q Q Q

We now integrate the second equation in (2.1) over € to obtain

d
—fvgdx+fvgdx:fugvgdx+fh2dx,
dt Jg Q Q Q

which, together with (3.4), ensures

d
—{fugdx+clfvgdx}+czfu8dx+clfv8dx+,ufuidxsfhldx+fh2dx.
dt (Ja Q Q Q Q Q Q

Setting y(t) := fQ udx + c; fg vedx and c3 := min{c,, 1}, it follows from (1.4) that

and thereby get

V' (@) + c3y(t) < ca = |17l Lo @x(0.000) R + 1211 2 @x(0.00) |-
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A standard ODE technique shows that

fugdx+cl fvgdxs Cs = max{f updx + ¢y fvodx C—4}, t>0. 3.5
Q Q Q Q C3

On the other hand, integrating (3.4) over [0, t], for any # > 0 we infer that

! ! ! !
fugdx+czf fugdxds+clf fugvgdxds+uf fuidxdssfuodx+f fhldx,
Q 0 Ja 0 Ja 0 Ja Q 0 Ja

which, with the help of (1.6) and (3.5), ensures (3.1).
Moreover, thanks to (1.6) and (1.4), it follows that

t+1
f fhldxds — 0, ast— oo,
t Q

which, together with Lemma 2.3 and (3.4), entails that the decay (3.2) holds as desired. Integrating
(3.4) over [t,t + 1], for any ¢ > O we have

+1 +1 i+1
fug(-,t+1)dx+c1f fugvgdxds+,uf fuidxdssfug(-,t)dx+f fhldxds.
Q t Q t Q Q t Q

Recalling (1.6) and (3.2), we arrive at (3.3).

To proceed further, we track the time evolution of ||v.(, 1) — v (+)|lz2, Where v, is classical solution
of (1.15). For convenience, we set v, := v, — V. Thanks to (1.15) and (2.1), for (u,,v,) given in
Lemma 2.2, the initial-boundary value problem

UgVe

Vst:AVa_vs+—+h2—h2,oo, xeQ, t>0,

1+ eugv,
Vv v =0, xeoQ, t>0, (3.6)
Ve(x,0) = vo(X) = Veo(), xeQ

admits a unique classical solution v,.

Lemma 3.2. Let all assumptions in Theorem 1.1 be in force. Then there exists C > 0, independent of
(e,1), such that

V-G, 0l7, <C, >0 (3.7)

! !
f f |Vval2dxds + f f [v.lPdxds < C, t>0. (3.8)
0 Q 0 Q

Proof. Testing the first equation of (3.6) with v, yields

f v Pdx < — f Viedx — f voPdx + f VellsVe f (hy — hy o )Vedx, > 0.
2dt ol +euv, Q ’

Electronic Research Archive Volume 31, Issue 6, 3218-3244.
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Using Holder’s inequality and recalling the definition of v,, we have
— —~2 —
VellgV Ve u VoollgV
f&dx:dex_kf#dx
ol +euv, ol +euy, ol +euv,
— 2 —
Sleeellr2llVellza + lveollzelleeellr2lIVell 2
An application of the Gagliardo-Nirenberg inequality and Young’s inequality implies that
=12 — — =12
letall2lVellys <cilluall2(Vvell2IVvellze + [1velly»)
1 o2 2 =2 L Lz
<7 IVVellz + colluel [ Well + Z1Vell-- (3.9)

In addition, we have
—~ | 2
(hy = hpeo)Vedx < levglle + | lha = hoooldx,
Q Q

— | 2 2 2
IVeollz lltellz2lVellzz < —lVellyz + Iveollze lleeell;-
4 L L

Collecting these, we arrive at

1d _ 3 _ 1

—— f [valPdx + = f IVva|Pdx + — f [valdx

2dt Jg 4 Jq 4 Jq

<eallusl 2 Va7 + Iveoll7e sl + f |hy — hyool?dx, t> 0. (3.10)
Q

Setting y(t) = [[vs(, DII7, and a(r) = [lu,(-, D)II7,, it follows that

1
Y@+ Y1) < 202a(0)y(0) + b(1),  b(1) := 2veoll7esllueell?, + 2f |hy = hy ool dx.
Q

A standard ODE technique shows

4 )
y(t) Sy(o)eZszo a(s)ds—%t + eZcsz a(s)ds—;tf b(s)e—Zczfo a(T)dT+%st.
0

Note that, thanks to (3.1), there exists c¢; > 0, independent of (&, ¢), such that fot a(s)ds < c;. Hence,
we arrive at

!
Y1) < c3p(0)e ¥ + cze” f b(s)e?*ds.
0

Using (1.7) and (3.1) again, there exists ¢4, > 0, independent of (&, ), such that

t t
C3€_;tf b(s)eésds < C3f b(s)ds <cs, t>0.
0 0

Hence, there exists C > 0, independent of (&, 7), such that (3.7) holds. Moreover, thanks to (3.10) we
can find ¢5 > 0, independent of (g, 1), such that

ld (- 3 _ 1 [
—— f Valdx + = f IVValPdx + — f ValPdx <cslluelly, + f lhy = hylPdx, t>0.  (3.11)
2dt Jgo 4 Jo 4 Jo a ’
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We now integrate this equation over [0, 7] to get

f [valdx + = f f Vv |Pdxds + — f f [valPdxds
SEHVO_Voo”i2+C5 f luelly>ds + f f \hy — ha.oo*dxds,
0 0 Q

which, combined with (3.1) and (1.7), gives us the desired (3.8).

We would like to remark that although we have obtained (3.11) and can infer from (3.3) and (1.7)
that for any € € (0, 1)

t+1 t+1
f lluell7ods + f f |hy — hy oo*dxds — 0, as t — oo, (3.12)
t t Q

we cannot directly get the desired decay on ||v.(, )||;> by Lemma 2.3 due to the absence of the bound
of |||l r+1.22)- Here, compared with (3.2), we need a new method to get decay on V..

Lemma 3.3. Let all assumptions in Theorem 1.1 be in force. Then
f Vo’ dx = 0 as t— co uniformlyin &, (3.13)
Q
t+1
f f IVv.l’dxds - 0 as t— oo uniformly in &. (3.14)
t Q

Proof. In fact, integrating (3.11) over [z, ¢ + 1] yields that

1+1 1 f+1
flvgl( t+1)dx——f|v8|( Ndx + = f fw@zdxd”—f f@ﬁdxds
Q 4 t Q
t+1
<cs f it Pads + f f s — o fPdxds. 3.15)
t

By setting z(1) := 3 j;m fQ [v.|>dxds, we have

1 r+1 r+1
z’(t)+§z(t)§c5 f lluell7ods + f f \hy — o ol *dxdss.
t t Q

We now infer from (1.4), (1.7) and (3.1) that there exists C > 0, independent of (&, 7), such that

1+1 f+1
0o (1) = f i Pads + f f s — o oPdxds <C, 10,
t t Q

which, combined with Lemma 2.3, ensures that

r+1
A0 =3 f f Vol’dxds — 0 as t— co uniformlyin &. (3.16)
t Q

Electronic Research Archive Volume 31, Issue 6, 3218-3244.
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On the other hand, letting y(¢) := fg {(1 + 7 Vool 7t 1) + 31V517C, t)} dx we can infer from (3.4)
and (3.10) that there exist ¢;, i = 1,2, 3, independent of (&, t), such that for any r > 0

, 3 ( o _
Y0+ ey + f ViaPdx + (1 = callFIR, ) f
Q

Q

udx <c; f hy + |y — hy ool dx. (3.17)
Q

From (3.16), (3.2) and the assumptions (1.6) and (1.7), there must exist 7, large enough, independent
of &, such that

1 fT*+1 _ ) U
L i o + e f f By + 1y — by Pdxds < -
2 T+ L T+ JQ 1602

- )z
(1 + 7" Vel f u(\Ddx < < 1> T,
Q

(6]

by which the mean value theorem implies there exists 7, € (T, T, + 1), depending on &, such that

N 1. . «
(1 + 7 wl2) f s i) + ST IR + e f f b+ s — hyoPduds < 2. (318)
Q 2 h Ja 8cy

Invoking these, we can claim that

u

Ve DIP, £ =—,  t> 1. 3.19
veC, DIl % 0 (3.19)
In fact, the continuity of ||v.(-, t)||iz, combined with (3.18), ensures that
T ._ - 2 H A
T :=supt|sup [[ve(, DI}, < 5— ¢ > lo, (3.20)
fo<s<t 2C2

and so we only need to show that T = . If on the contrary, there must hold

sup [T, I = = (3.21)

fo<s<T 2C2

However, it follows from (3.17) and (3.20) that for ¢ € [, T]

3 _ 1
V() + c1y(t) + = f IVilPdx + = f uldx <c; f hy + |hy — o of*dx.
4 Q 2 Q Q

By employing the standard ODE techniques, we arrive at

!
¥(1) <e”Ty(H) + e f e’ f hi + |hy — hy o[ dxds
f Q

o
!
S)’(fo) +C3 f fhl + |hy — hz,wlzdxds,
fo JQ
which, with the help of (3.18), ensures

(1) < t€[h, T

i
8C2 ’
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Recalling the definition of y(7), we have
— 2 /l A
s 1 < — tE€|[ty,T],
Ve, DIl 1 [70, 7]

which contradicts (3.21). Thus we have that T = oo, and prove (3.19) as desired.
Thanks to the validity of (3.19), it follows from (3.17) that

3 - R
V() +cy(t) + = f ViiPdx + & f uldx <c; f hy + |hy — hooolPdx,  t> .
4 Ja 2 Ja Q
Based on the assumptions (1.4), (1.6), (1.7) and Lemma 2.3, (3.22) ensures
y(t) -0 as t— oo uniformlyin g,

which is enough for (3.13) by recalling the definition of y(¢).
To get (3.14), integrating (3.22) over [t, ¢ + 1], yields

(3.22)

(3.23)

3 1+1 u t+1 1+1
yt+1)+ = f f \VialPdxds + = f f utdxds <y(t) + c; f f hy + |hy — hyo|*dxds,
4 t Q 2 t Q t Q

which, combined with (3.23), (1.6) and (1.7) again, entails that (3.14) holds as desired.

In the sequel, we will use (3.2), (3.3) and (3.14) to obtain the uniform in £ bound for the entropy

functional, denoted by
1 -
Es(t) == = f Ut +|VglPdx, t>0.
2 Ja

To achieve it, we first manage to achieve the following estimate.

(3.24)

Lemma 3.4. Let all assumptions in Theorem 1.1 hold. Then there exist a, a,,as > 0, such that for any

ee(0,1),
1 —
EWM) + = f VuPdx + - f W2dx + f Wdx
2 Q 2 Q Q
! 2 (Ivval2, + 1 AvyPdx + (1 2 Vial*d
+(5 — il (197205 +1) 1Az x+ (1= agllusl}, ) (VP
<as {lly + sl + o = hoill2a}, 2> 0,
where n is given by (2.4).

Proof. Invoking integration by parts, we have

2dtf de fug Aug — V- u,Vinv,) — kugve + ru, — pu; +h)dx

fquglzdx +)(‘[Vu‘9 (uVinv,)dx — Kfu vedx
Q
+rf 2a’x ,uf 3dx+fh1ugdx

(3.25)

Electronic Research Archive Volume 31, Issue 6, 3218-3244.



3230

=P, + P+ P3 + P, + P5 + Ps.

Since r < ki (n given in (2.4)), it follows that ¢; := kp — r > 0, and thereby implies from (2.4) that

P3+P4S—anu§dx+rfuﬁdx
Q Q

= —¢| f uldx.
Q
And using Young’s inequality yields

P < ﬂfvuia’x+cz‘[hfdx.
2 Jao Q

For P,, Holder’s inequality and (2.4) imply
Py < xn 1IVugllo s Vvelle < xm™ ' IVuellz el Vvl o,

which, together with Young’s inequality, entails

1 2 2 2
Pa < 21Vl + eslluella[IVVellys.

Recalling the Gagliardo-Nirenberg inequality
2 2
WA < ca(llANIV Al + NAI7- )
L L
we get
2 < v, 2
ellj4 = & & ellg2)»
lleeallys < s ([luall2llVuellzz + lluell;
and infer from the elliptic estimates that
2
IVVelljs < collVvell2llVvellar < callVvellpllAvell 2.
In view of these, we arrive at
2 2 2
llutellfal[Vvellza <cs (IlugIILZIIVuglle + ||u£||L2) IVell2llAvell 2
1 2 2110112 2 2 2
<7 IVusllis + cylluali NIV Vel 1AVl + cslluel [V vallallAvellr.

Collecting these and using Young’s inequality, we have

1d 1
~— uidx+—fIVuglzdx+ﬂfuﬁdx+,ufugdx

2 2 2 2 2 2
<e f hidx + cgllugll IVl AVl + cslluall IV vell2lJAvellr
Q

2 2 2 2 2 2
<cy | hydx + 2cgllugll Vel 1AVl + collusll7.

(e}
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Recalling v, := v, — v, and invoking Lemma 2.4, it follows that
Vv lAvZ: <4 (VTR + 19velZ) (IATIR, + 1Avel2.)

=112 =12 =12 =12
<c1o (VT IATR + IV, + AV +1).
This leads to

1d

Ed_fg; 2a’)c+ fquslzdx+%f§;u§dx+,uLu2dx
h
Q

=12 =12 2 1o
dx + e llugly, (IIvalle + 1) AV, + coallusl NIV, + cislluell; (3.26)

2

On the other hand, we can test the first equation in (3.6) with —Av, to get

1d _ _ _
—— f IV, |Pdx + f |AV|Pdx + f Vv, dx

Q

ol +euv,

which, with the help of Young’s inequality, shows

1d _ 1 _ _
—— f IVval*dx + = f |AV,Pdx + f |V, [*dx < f uividx + f |hy — ool dx.
Zdt le) 2 Q Q Q Q

Holder’s inequality, combined with the Gagliardo-Nirenberg inequality and the elliptic estimates, en-
tails

2
f v2dix <lugl B lIvel
Q

2 2
<cralluel B (IVell2llAvellz + Ivel2,).

which, based on (3.7), Lemma 2.4 and the fact that v, := v, — v, leads to

fu vidx <cigllull? ((||V8||L2 +Veollz2) (AVEll2 + [[AVellz2) + (Vellzz + [Veoll2) )
Q
2 —_
<cislluclly, (1AVEll2 + 1)

In the light of Young’s inequality, it follows that

2.2 2 vl
f v <ciolli ] (IATIE, +1).
Q

Hence, we arrive at

1d - 1 - — —
~= f ViePdx + f AV Pdx + f VisPdx <ciglludll? (IATIG, + 1) + f Iy = oo dx,
2dt Q 2 Q ) Q ’

which, together with (3.26), ensures that

1 1 _
M)+~ f IV Pdx + = f W2dx + f Wdx + = f AT Pdx + f VL Rdx
2 Q 2 Q Q 2
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2 2 =2 =12 2 =2 2
<c, f midx + cqy |2, (IVIE: + D) IATIR, + collualZ VTR, + crllul,
Q
2 (NAVAIR, + 1 hy — hyoo|*d
+ crslluellz (IAVEll + 1)+ | 1y — hyeol dx.
Q

Note that due to (1.4), we have
f hidx < |1h]1Ze 0,00 |-
Q
Hence, collecting these and recalling the definition of ¢;, we can get the validity of (3.25).

The uniform convergence properties previously established in Lemmas 3.1 and 3.3, combined with
a continuation argument, are enough to show that there exists 7, large enough such that the variable
coeflicient in (3.25) maintains nonnegativity whenever ¢ > T, which shall eventually lead to the fol-
lowing crucial estimates.

Lemma 3.5. There exist T large enough and a, > 0, independent of €, such that for any € € (0, 1)

f WA (-, dx + f Vi,
Q Q

! t
f f |Vu|>dxdr + f f AV Pdxdr < aq, 1> 5> T (3.28)
K Q K Q

Proof. Combining with (3.4) and (3.25), and setting y(¢) := ‘L—3 o uzdx + &.(1), there exist ¢; > 0 and
¢, > 0, independent of (&, t), such that

‘(ondx<as, 12T, (3.27)

1 — —
y’(r>+c1y(r)+(§—alnugniz (||Vvs||iz+1)) f AV, Pdx
Q

1 3 -
+—f|Vug|2dX+ = — allully, fIvalzdx
2 Ja 4 Q

<es {Ills + by = haillz.}, >0, (3.29)

where a;, a, and a; are given in (3.25).
According to the uniform convergence stated in (3.2), (3.3) and (3.14), and the assumptions (1.6)
and (1.7), there must exist 7, large enough, independent of &, such that

A
@fug(-,t)dxs—, t>T,,
H Ja 2

and

1 T.+1 1 T.+1 00 A
5 f it DIt + 5 f VT, DI dt + 2 f (Wales + W2 = ool ) ds < 5.
Tx* T T.

8a,°8 \ a

depending on &, such that

where A := min{ L1 Jil +1- %} By using mean value theorem we can find 7y € (T, T, + 1),

V(i) + ¢ f (Wl + bz = hol2:)ds < A, (3.30)

To
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which, together with the definition of y(#)), further implies that

allus(-, fp)lI7, < 2a2A, (3.31)
and
IVVL(, )II7, < 2A. (3.32)
We now claim that
allu, DI < daA, 1> h, (3.33)
IVVaC, DI, < 44, 1>, (3.34)
and thereby assert
arllus GO (V0. DIE + 1) < daiAGA + 1), 1> . (3.35)
Indeed, the continuities of ||[Vv.(-, t)lli2 and a,||u,(-, t)IIiQ, invoking (3.31) and (3.32), show that
T := sup {t sup azllug(-,t)lli2 <4aA, sup ||V\7;(-,t)||i2 <4A, } > fo, (3.36)
fo<s<t fo<s<t

and so we only need to show that T = co. If on the contrary, at least one of the following statements
must hold

sup allus(, DI}, = 4arA, (3.37)
fo<s<T
sup [IVVa(, 0)lI7, = 44, (3.38)
fo<s<T

which, together with the definition of A, further leads to

— 1 —

arllns Ol (IV72G I + 1) < daA@A+ D < 2, re [ T, (3.39)
3 3 1 n =

S - @l (ol > T —4wA = 5, relh Tl (3.40)

However, it follows from (3.29), (3.39) and (3.40) that
/ 1 2 1 =12 2 A
YO + ey +5 | Vuldx+ < | 1AVPdx <cr {ill + Wby = holPa) 1€ o, T1.
2 Ja 4 Ja
This, by means of the standard ODE techniques, results in that for any ¢ € [4, T]

!
¥(0) <€y (@) + 7 f e e {llnlls + s = haols) ds

Ty

<y(fo) + 2 f (Wllor =+ 1lhs = ool ) ds.

1o
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which, combined with (3.30) and the definition of y(¢) , implies
yi) <A, teli,Tl.
Hence, recalling the definitions of y(#) and A again, we must have
wllus(, I < 2aA  and  (IViC, 0I5, < 24, 1€ [h, T,

which contradicts (3.37) and (3.38). Thus we have that T = oo, and prove (3.33)—(3.35) as desired.
Based on the definition of A and the validity of (3.33)—(3.35), we see from (3.29) that

1 1 - N
¥ (0 +ery(®) + 5 f VuoPdx + f AT Pdx <co (lills + W = bl 126 (3.41)
Q Q

Hence, using the standard ODE techniques again, yields that for any ¢ > #,

t
¥(0) <y(d) + 2 f {(Willes + V2 = o2, dis,

1o

which, together with (3.30), ensures
y(1) <c3, =1, (3.42)

This evidently entails (3.27).
Moreover, integrating (3.41) over [s, 7] with 7y < s < t and using (1.6) and (1.7) again, we subse-

quently arrive at
1 (" 1 ("
y(t)+—f fquslzdxd‘r+—f flA\ledxd‘r <y(s) + c3.
2 s Q 4 s Q

Based on (3.42), we get that E,(s) < ¢3 due to s > 7, and thereby obtain (3.28) as desired.
4. Eventual smoothness

In view of Lemma 3.5 and the boundedness criterion obtained in [41, 42] via the Moser iteration
and the semigroup theory, we can get the eventual bound of the generalized solution.

Lemma 4.1. Let T,y be given in Lemma 3.5. Then there exists as > 0, with the property that for any
q>2

IVVe(, Dlle < as, =Ty + 1. 4.1

Proof. By means of (3.6) and the properties of the Neumann heat semigroup (cf. [43, Lemma 1.3]
and [44, Lemma 2.1]), for all t > T,y and g > 2 we have

ds

L1

!
—_— _T A_] —_—
V92, Dl <||Vel=T0X )vs(-,To)llerf

To

<y (1+ (1 = To) 2 72) V(. To)lle

1+ su.v,

Ugv.
Vel=4-D (— f - hz,m)
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!
1_(1_1 —(f—
+ f (1 + (t - S)_2 (2 q))e (=) (”usvslle + ”hZ - h2,oo||L2) ds,
Ty

which, combined with (1.4) and (3.27), reduces to
!

— —(L_1 _1_(1_1 —(f—
IV, Dlle <2+ ealt = To) @72 + ¢ f (1+ - 972770) e vl ods.

To
An application of Holder’s inequality, invoking (3.27) and Lemma 2.4, yields that for any 7 > T
luevelle < llugllz2llvells < c3 (Ivelles + 1),
which, with the help of the Gagliardo-Nirenberg inequality, entails
lutgvellz < ca (1Tl IV TR, + 1212 + 1),

where ¥ := ﬁ. By employing (3.7), we arrive at

=1
luevellzz < s (VTG + 1).

Collecting these, it follows that for any ¢ > T,

!
— _(l_1 LD (e
V0a(-, Dl <ce + et — To) ™ q)+c6 1+ (=52 ) e V|2, ds.
L

To
Letting K(T') := sup,.r, 1) [IVVa(:, Dllzs for any T € (T, 00), we get
K(T) <cg + ot — To) 370 + c;K*(T),
which, by using Young’s inequality, ensures
K(T) <cs + cx(t = Tp) @70, 1> T,
Hence, for any r > Ty + 1, we arrive at (4.1).

Based on (4.1), we can obtain the time-independent bound for u, in L= ().

Lemma 4.2. Let T be given in Lemma 3.5. Then there exists ag > 0, such that
oo (-, Dl < ag, 2 To+ 2. 4.2)

Proof. From the constant variation formula associated with the first equation in (2.1), we get that for
anyt >t =T+ 1

0 < u(x, 1) = Dy (x, 1))

!
+ f A Di=9) (—XV UV INVy) = KitgVe + ritg — pu’ + hy + Ma) ds

151

!
<e®DEy (3 41) + f AV (V- (uV Invg) + rug + hy + u,) ds,

14
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which, with the help of the properties of Neumann heat semigroup (cf. [43, Lemma 1.3] and [44,
Lemma 2.1]), we can pick ¢; > 0 such that

!
o Dl < e (14t = 1)72) g )2 + €4 f (14— 972) e llu, + hll2ds

n

!
+(qkf‘(1+—U-—Syé_é)e4pﬂmu8VlnvAh§d&

1

Hence, (3.27) and (1.4) show that

!
1 1_1
(Dl < €2+ 2t =1)72 + ¢4 f (1+@=977) e N5 Invellads.

141

On the basis of Holder’s inequality and (2.4), it follows that
sV Invells < llullalIVvsllpelvy s < 07 HullsVvsllpe,
which, together with (4.1) and the fact that v, = v, — v, entails
lu.VInvels < csllugllps, 2 To+ 1.
Based on this, the interpolation inequality and (3.27) indicate that
eV Invles < eslluglfliaslie < calluelifes 12 To + 1.
Collecting these, we arrive at

!
_1 N R 1
lits, Dl < €2+ 2t = 1) 77 +cs f (1+ = 97775) e ull;ods.

n

Setting K(T') := sup,e(,, 7 llus(:, Dl for any T' € (¢;, c0), we have
K(T) < ¢y + cy(t — 11) 72 + ceK3(T).
Using Young’s inequality yields
KT)<ci+exlt—1)7, t>t,
which must lead to
K(T)<cg, t>t+1.
This implies (4.2) directly.

A straightforward consequence of Lemmas 4.1 and 4.2, invoking the parabolic Schauder estimates
[45], can be stated as follows.

Lemma 4.3. There exists a; > 0, independent of € and t, with the property that for some a € (0, 1)

[lue(-, S)”CZ+{1,I+%(Q><[[J+1]) + ||[v.(-, S)||C2+”*H%(Q><[t,t+1]) <a;, t>Ty+2, 4.3)

where T is given in Lemma 3.5.
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Proof. Based on Lemmas 4.1 and 4.2 and the Schauder estimates ( [45]), a straightforward reasoning
involving standard bootstrap techniques ensures that (4.5) holds as desired by recalling Lemma 2.4 and
Ve = Ve — Voo

Lemma 4.3, combined with the Arzela-Ascoli theorem, is enough to prove that the generalized
solution (u, v) established in [3] admits the desired regularity in Theorem 1.1.

Lemma 4.4. Let (u,v) be a generalized solution stated in Definition 1.1, and T be given in Lemma
3.5. Then there exists ag > 0 with the property that for any q > 2

-1
(-, Dllz + [V, Dllwra + IV Co DM~ < ag, 2T+ 2, 4.4)
(-, Hlle2r et + IVES Ollezr@xpreey < ag, > To + 2. 4.5)

Moreover, u > 0, v > 0 and (u,v) solves the initial-boundary value problem (1.2) classically in Q X
(Ty + 2, ).

Proof. Invoking Lemma 4.3, [3, Lemma 4.2] and the Arzela-Ascoli theorem, there exists a subsequence

of {sj}‘/’.il (still expressed as {sj};‘;l) such that forany t > Tp + 2,as e = g; = 0,

u. »u in C*NQx[tt+1],
ve »v in C*NQx[tt+1].

This ensures (4.5), and thereby (4.4) holds as desired by using Sobolev’s inequality, (4.1), (2.4) and
(4.2) again. Moreover, along the lines demonstrated in [46, Lemma 2.1], we can see that if > 0 and
v > 0 satisfying (4.5) and such that (&, v) is a generalized solution of (1.3) in the sense of Definition
1.1, then (u, v) also solves (1.3) in the classical sense in Q X (T + 2, o).

5. Asymptotic behavior

Asymptotic behavior of the generalized solution featured in Theorem 1.1 is now almost immediate.

Lemma 5.1. Let all assumptions in Theorem 1.1 be fulfilled. Then
lueC, Dlles + Vel 1) = Vel — 0, as 1 — oo, (.1

where v, denotes the solution of the boundary value problem (1.15).

Proof. It directly follows from (3.13) that
f Vol’(,6)dx = 0 as t — co uniformly in &. (5.2)
Q

Using Sobolev’s inequality and (4.1) again, for some r > 2 there exist ¢, > 0 and c3 > 0 such that

r=2 I
1VeC, Dl <callvaC, Ol 5 1VeC, DI,
r=2

S03”‘/)\.&‘('9 t)“z(zr_l)’ > TO + 25
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which, in conjunction with (5.2), entails
Va(, Dllz> = 0, as r— oo uniformly in &. (5.3)

To get the decay on ||ug||.~, we further develop the method used in [47]. According to the variation-
of-constants formula for u,, for 7y := T, + 2 the known estimates for the Neumann heat semigroup
ensure that for any ¢ > £,

t
A-1)(t— A-1)(t—
g Dllze < 1@, 1)l + x f le 4"V - VI, ds
1o

!
+ f e ruy + by + )| ds
1o
1y 51—
< eq(1+ (8 = 10)3)e T lus(, 1)l

!
1,1 .
+cy f (1+(t—5)5%2)e®9u, Vinvg|s ds
0]

!
1
ey f (1+(t—5)3)e ) |[rug + hy + ugll;> ds
4]
=: V1 + V2 + V3,

with some ¢, > 0 and 6 > 0. As a consequence of (4.4), we can find ¢s > 0, independent of &, such
that

1
Vi <es(1+ (t = tg)73)e 00
<2csee”, >ty + 1,

which clearly implies that for fixed 7y
Vi—=0, as t— oo uniformly in e&. 5.4
For V,, Holder’s inequality, combined with (2.4), (4.4) and Lemma 2.4, entails

eV I vellzs <NVl lleellzs IV vells
-1
<l Hlzsluellzs (IVVellzs + 1V veollrs)

<csllugllzs, 1= to.

By further assuming that r > 2¢, and letting

t
2 5
Vs = cace f (1 + (= ) o ds,
to
! 5
Var = eace f (1+ (= )9 o ds,
t
2

it follows that
Vo < Vo1 + Voo,  t> 21,

Electronic Research Archive Volume 31, Issue 6, 3218-3244.



3239

For V,;, using (4.4) again we have

(1—10)
5
Vo = c4c6f (1 + 578)e™ ||ugllze ds

t
2

t
< C7f (1+ s_%)e_‘”ds.

2
Due to the fact that

f (1+ s_%)e_5sds < cg,
0

we infer that
Vo1 >0, as t— oo uniformly in &.

For V,,, an application of the interpolation inequality and (4.4) yields that

1 3 1
lus(, Ollzs < N, DI N, Dl < collus(, DIl > 2.

Invoking this, we arrive at

1

f
V2o <cig sup [lue(, )17, f (1+(t — s)8)e9ds
5

L
S>2

1
<cuisup llugC, I, 1> 2o,

>4
which, combined with (3.2), entails
Vyy — 0, as t— oo uniformly in e.
This, together with (5.5), implies
V, -0, as t— oo uniformly in e.

Similarity, we set

% .
Vi = c4f (1+(t = 5y 5)e D (r + D + Il ds,

fo

t
Vi = ¢4 f (14— $) ) |(r + D + hull s ds,
%

and thereby get
Vi3 < Vi1 + V3o, > 21.

Similar to (5.5), we can infer from (4.4), (1.4) and Holder’s inequality that

!
1 .
Vi < clzf (1 +s73)e™%ds, t> 21,
t

2

(5.5)

(5.6)
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and hence
V31 =0, as t— oo uniformly in e. 5.7

Similar to the estimate for V5,, it follows from the interpolation inequality and (4.4) that

! 1
o [ =57 D 10+ Dl ds e suplC ol 1> 20
3

L
5> 3

which, combined with (3.2), entails

t
c4f (1+@- s)_%)e_‘s(’_” l(r + Dugll;sds — 0, as t — oo uniformly in &.

2

On the other hand, the interpolation inequality and (1.4) imply
1 2 1
Illzs < Il il e < crallill,.

This, with the help of Holder’s inequality, ensures

!
e f (14 (= 5 He ™y, )l ds
%

2
! 3 !
scls{ f (1+<t—s>-%)e-36<'-~‘)ds} { f ||h1(-,s>||;ds}
; ;

1

t 3
Scle{f 1721(, S)IludS} ., 1> 21,
%

which, together with (1.6), leads to

1

3

!
4 f (1+(t—5) eIy, $)llsds > 0, as t — oo uniformly in .
%

Hence, we arrive at
Vi =0, as t— oo uniformly in ¢,
which, in conjunction with (5.7), gives us
V3 >0, as t— oo uniformly in e&.
This, further combined with (5.4) and (5.6), asserts
llus(-, D)||z= — 0, as t — co uniformly in &,
which implies that (5.1) holds as desired by recalling (5.3) and the definition of v,.

Our main result on eventual smoothness and stabilization in Theorem 1.1 is in fact a by-product of
our previous analysis.

Proof of Theorem 1.1. The eventual smoothness in Theorem 1.1 has been verified evidently in Lemma
4.4. For the stabilization, it readily follows from Lemma 5.1, Lemma 4.3, [3, Lemma 4.2] and the
Arzela-Ascoli theorem that (1.14) holds.
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