
Research article

Eventual smoothness of generalized solutions to a singular chemotaxis system for urban crime in space dimension 2

Zixuan Qiu and Bin Li*

School of Science, Ningbo University of Technology, Ningbo 315211, China

* **Correspondence:** Email: blimath@163.com.

Abstract: This paper is concerned with a chemotaxis system in a two-dimensional setting as follows:

$$\begin{cases} u_t = \Delta u - \chi \nabla \cdot (u \nabla \ln v) - \kappa u v + r u - \mu u^2 + h_1, \\ v_t = \Delta v - v + u v + h_2, \end{cases} \quad (\star)$$

with the parameters $\chi, \kappa, \mu > 0$ and $r \in \mathbb{R}$, and with the given functions $h_1, h_2 \geq 0$. This model was originally introduced by Short *et al* for urban crime with the particular values $\chi = 2, r = 0$ and $\mu = 0$, and the logistic source term $ru - \mu u^2$ was incorporated into (\star) by Heihoff to describe the fierce competition among criminals. Heihoff also proved that the initial-boundary value problem of (\star) possesses a global generalized solution in the two-dimensional setting. The main purpose of this paper is to show that such a generalized solution becomes bounded and smooth at least eventually. In addition, the long-time asymptotic behavior of such a solution is discussed.

Keywords: chemotaxis system; generalized solution; eventual smoothness; asymptotic behavior

1. Introduction and main results

We study a class of logarithmic chemotaxis systems with the logistic source of the following form

$$\begin{cases} u_t = \Delta u - \chi \nabla \cdot (u \nabla \ln v) - \kappa u v + r u - \mu u^2 + h_1, \\ v_t = \Delta v - v + u v + h_2, \end{cases} \quad (1.1)$$

with the parameters $\chi, \kappa, \mu > 0$ and $r \in \mathbb{R}$. This model was proposed by Short *et al.* to describe the propagation of criminal activities with the particular values $\chi = 2, r = 0$ and $\mu = 0$ ([1, 2]), in which $u(x, t)$ denotes the density of criminals, $v(x, t)$ represents an abstract so-called attractiveness, the given function h_1 denotes the density of additional criminals and h_2 describes the source of attractiveness. The logistic source term, i.e., $ru - \mu u^2$, is a fairly standard addition to chemotaxis models. Here,

it was incorporated into the Short *et al.* model by Heihoff ([3]) to model the fierce competition among criminals for, e.g., good targets, which are limited resources. We refer to [4–10] for further developments of the Short *et al.* and to [11, 12] for a review.

Mathematical analysis on (1.1) is still at quite an early stage and there are only a few relative results. For instance, for the Short *et al.* model, i.e., $r = 0$ and $\mu = 0$, the local classical solution was obtained in [13], which is globally provided that either $n = 1$ ([14, 15]), or $n \geq 2$ and $\chi < \frac{2}{n}$ ([16, 17]), or the initial data and the given functions h_1 and h_2 are assumed to be small ([18, 19]). As to the radial renormalized solvability, the global existence was established provided that either $n = 2$ ([20]) or $n = 3$ and $\chi \in (0, \sqrt{3})$ ([21]); without requiring the symmetry hypothesis, the generalized solvability was obtained in [22] for any $\chi > 0$ and $n = 2$. In addition, when Δu in the first equation in (1.1) is replaced by $\nabla \cdot (\nabla u^m)$ with some $m > 0$, the globally weak solvability was obtained in the two-dimensional setting provided that either $m > \frac{3}{2}$ ([23]) or $m > 1$ and $\chi < \frac{\sqrt{3}}{2}$ ([24]). We would like to remark that a reduced crime model, i.e., $\tau u_t = \Delta u - \chi \nabla \cdot (u \nabla \ln v)$ and $v_t = \Delta v - v + uv$, admits an unbounded solution for appropriately large initial data, provided that $n \geq 3$, $\chi > 0$, and $\tau > 0$ is enough small ([25]). Finally, we mention there appear various studies on the variants of Short *et al.* model, see [26–29].

For the case of $r \in \mathbb{R}$ and $\mu > 0$, the corresponding initial-boundary value problem admits a generalized solution (in the sense of Definition 1.1 below) in the two-dimensional setting ([3]). To illustrate how critical the interaction between the term $-\mu u^2$ in the first equation and the growth term $+uv$ in the second equation is, the stronger logistic source, $-\mu u^{2+\alpha}$, with $\alpha > 0$ for $n = 2, 3$ ([3, 30]) or $\alpha > \frac{n}{4} - 1$ for $n \geq 4$ ([30]), was proved to be enough for the global existence of a classical solution. This also indicates that the regularity of the generalized solution structured in [3] is not enough to trigger a bootstrap argument to improve the regularity of such a solution, and thereby it is not known whether or not this generalized solution develops singularities. Therefore, motivated by [26, 31–34], the main purpose of this paper is to reveal that the global generalized solution established in [3] at least eventually becomes bounded and smooth, and approaches spatial equilibria in the large time limit.

Precisely, we will present the eventual smoothness of the global generalized solution of the initial-boundary value problem:

$$\begin{cases} u_t = \Delta u - \chi \nabla \cdot (u \nabla \ln v) - \kappa uv + ru - \mu u^2 + h_1, & x \in \Omega, t > 0, \\ v_t = \Delta v - v + uv + h_2, & x \in \Omega, t > 0, \\ \nabla u \cdot \nu = \nabla v \cdot \nu = 0, & x \in \partial\Omega, t > 0, \\ u(x, 0) = u_0(x), v(x, 0) = v_0(x), & x \in \Omega, \end{cases} \quad (1.2)$$

where ν denotes the exterior normal vector to the boundary $\partial\Omega$ and the initial data (u_0, v_0) fulfills that

$$\begin{cases} u_0 \in C^0(\overline{\Omega}) \text{ with } u_0 \geq 0 \text{ and } u_0 \not\equiv 0, \\ v_0 \in W^{1,\infty}(\overline{\Omega}) \text{ with } \inf_{x \in \Omega} v_0 > 0. \end{cases} \quad (1.3)$$

In order to specify the setup for our analysis, we assume throughout the sequel that

$$0 \leq h_i \in C^1(\overline{\Omega} \times [0, \infty)) \cap L^\infty(\Omega \times (0, \infty)), \quad i = 1, 2, \quad (1.4)$$

with the additional properties that

$$\inf_{t > 0} \int_{\Omega} h_2(x, t) dx > 0, \quad (1.5)$$

$$\int_0^\infty \int_\Omega h_1(\cdot, t) dx ds < \infty, \quad (1.6)$$

$$\int_0^\infty \int_\Omega |h_2(\cdot, t) - h_{2,\infty}(\cdot)|^2 dx ds < \infty \quad (1.7)$$

with some $h_{2,\infty} \in C^1(\bar{\Omega})$.

Now, we briefly review the concept of generalized solution used in [3] for the initial-boundary value problem (1.2) as follows:

Definition 1.1. A pair of nonnegative functions (u, v) is called a global generalized solution to the initial-boundary value problem (1.2) if for any $T > 0$,

1) it holds that for any $q < \infty$

$$\begin{cases} v \in L^\infty(0, T; L^q(\Omega)), \quad \ln v \in L^2(0, T; W^{1,2}(\Omega)), \\ u \in L^2(\Omega \times (0, T)) \cap L^\infty(0, T; L^1(\Omega)), \quad \ln(1+u) \in L^2(0, T; W^{1,2}(\Omega)), \\ uv \in L^1(\Omega \times (0, T)), \quad v^{-1} \in L^\infty(\Omega \times (0, T)); \end{cases} \quad (1.8)$$

2) it holds that

$$\int_\Omega u(\cdot, t) dx + \int_0^t \int_\Omega (\kappa uv + \mu u^2) dx ds \leq \int_\Omega u_0 dx + \int_0^t \int_\Omega (ru + h_1) dx ds, \quad a.e., \text{ in } [0, T]; \quad (1.9)$$

3) it holds that for $0 \leq \varphi(x, t) \in C_0^\infty(\bar{\Omega} \times [0, T))$ with $\nabla \varphi \cdot v|_{\partial\Omega \times (0, T)} = 0$

$$\begin{aligned} & - \int_0^T \int_\Omega \ln(u+1) \varphi_t dx dt - \int_\Omega \ln(u_0+1) \varphi(\cdot, 0) dx \\ & \geq \int_0^T \int_\Omega \ln(u+1) \Delta \varphi dx dt + \int_0^T \int_\Omega |\nabla \ln(u+1)|^2 \varphi dx dt \\ & \quad - \chi \int_0^T \int_\Omega \frac{u}{u+1} (\nabla \ln(u+1) \cdot \nabla \ln v) \varphi dx dt + \chi \int_0^T \int_\Omega \frac{u}{u+1} \nabla \ln v \cdot \nabla \varphi dx dt \\ & \quad - \int_0^T \int_\Omega \frac{\kappa uv}{u+1} \varphi dx dt + \int_0^T \int_\Omega \frac{ru}{u+1} \varphi dx dt - \int_0^T \int_\Omega \frac{\mu u^2}{u+1} \varphi dx dt + \int_0^T \int_\Omega h_1 \varphi dx dt; \end{aligned} \quad (1.10)$$

4) it holds that for all $\varphi \in L^\infty(0, T; L^q(\Omega)) \cap L^2(0, T; W^{1,2}(\Omega))$ with $\varphi_t \in L^2(\Omega \times (0, T))$, compact support in $\bar{\Omega} \times [0, T)$ and $q < \infty$

$$\begin{aligned} & \int_0^T \int_\Omega v \varphi_t dx dt + \int_\Omega v_0 \varphi(\cdot, 0) dx \\ & = \int_0^T \int_\Omega \nabla v \cdot \nabla \varphi dx dt + \int_0^T \int_\Omega v \varphi dx dt - \int_0^T \int_\Omega uv \varphi dx dt - \int_0^T \int_\Omega h_2 \varphi dx dt. \end{aligned} \quad (1.11)$$

With Definition 1.1 at hand, letting

$$\eta := \min \left\{ \inf_{x \in \Omega} v_0(x) e^{-1}, \frac{1}{4\pi} e^{-1 - \frac{(\text{diam } \Omega)^2}{2}} \left\{ \inf_{s > 0} \int_\Omega h_2(\cdot, s) dx \right\} \right\}, \quad (1.12)$$

our main results read as follows.

Theorem 1.1. Assume that (1.3)–(1.7) hold. Let $\kappa, \chi, \mu > 0$, $r \in \mathbb{R}$ and $\Omega \subset \mathbb{R}^2$ be a bounded convex domain with smooth boundary, and let (u, v) be a generalized solution of (1.2) in the sense of Definition 1.1. Under the additional assumption that $r < \kappa\eta$ with η determined by (1.12), there exists $t_0 > 0$, with the properties that $u(x, t) \geq 0$ and $v(x, t) > 0$ for any $x \in \overline{\Omega}$ and any $t \geq t_0$, and

$$u \in C^{2,1}(\overline{\Omega} \times [t_0, \infty)), \quad v \in C^{2,1}(\overline{\Omega} \times [t_0, \infty)), \quad (1.13)$$

and that (u, v) solves the initial-boundary value problem (1.2) classically in $\Omega \times (t_0, \infty)$. Moreover, (u, v) fulfills that

$$\|u(\cdot, t)\|_{L^\infty} + \|v(\cdot, t) - v_\infty(\cdot)\|_{L^\infty} \rightarrow 0, \quad \text{as } t \rightarrow \infty, \quad (1.14)$$

where v_∞ denotes the solution of the boundary value problem

$$\begin{cases} -\Delta v_\infty + v_\infty = h_{2,\infty}, & x \in \Omega, \\ \nabla v_\infty \cdot \nu = 0, & x \in \partial\Omega. \end{cases} \quad (1.15)$$

Technical strategy and structure of the article

The objective of this paper, motivated by [26, 31–34], is to present that the global generalized solution of the initial-boundary value problem (1.2) at least eventually becomes bounded and smooth, and approaches spatial equilibria in a large time limit. To this end, the key steps are to establish a series of uniform *a-priori* estimates, in which the starting point is to get the uniform-in- (ε, t) lower bound for v_ε , see Lemma 2.2. We would like to remark that, for the linear signal production mechanism the combinational functional of the form

$$\int_{\Omega} u_\varepsilon \ln u_\varepsilon + \frac{1}{2} |\nabla \widehat{v_\varepsilon}|^2 + \frac{1}{e} dx$$

where $\widehat{v_\varepsilon} := v_\varepsilon - v_\infty$ and v_∞ is a classical solution to the boundary value problem (1.15), is usually adopted to get the desired *a-priori* estimates (e.g., [35]). However, thanks to the presence of the nonlinear signal production mechanism, such functional is invalid for our case. Here, our novelty of the analysis consists of tracking the time evolution of the combinational functional of the form

$$\int_{\Omega} bu_\varepsilon + \frac{1}{2} u_\varepsilon^2 + \frac{1}{2} |\nabla \widehat{v_\varepsilon}|^2 dx, \quad t \geq T_0$$

with some waiting time T_0 and some $b > 0$, see Lemmas 3.4 and 3.5. From this, the key L^2 -bound of u_ε is obtained, and an application of the standard bootstrap techniques shows that the generalized solution established in [3] becomes bounded and smooth at least eventually.

The rest of this paper is arranged as follows. Some preliminaries are given in Section 2. *A-priori* estimates are established in Section 3. Section 4 is devoted to showing the eventual smoothness, and the last section presents the large-time behavior desired in Theorem 1.1.

2. Preliminaries

A generalized solution of the initial-boundary value problem (1.2) can be obtained by an approximation procedure ([3, 22]). Accordingly, we shall consider the following approximate problem

$$\begin{cases} u_{\varepsilon t} = \Delta u_{\varepsilon} - \chi \nabla \cdot (u_{\varepsilon} \nabla \ln v_{\varepsilon}) - \kappa u_{\varepsilon} v_{\varepsilon} + r u_{\varepsilon} - \mu u_{\varepsilon}^2 + h_1, & x \in \Omega, t > 0, \\ v_{\varepsilon t} = \Delta v_{\varepsilon} - v_{\varepsilon} + \frac{u_{\varepsilon} v_{\varepsilon}}{1 + \varepsilon u_{\varepsilon} v_{\varepsilon}} + h_2, & x \in \Omega, t > 0, \\ \frac{\partial u_{\varepsilon}}{\partial \nu} = \frac{\partial v_{\varepsilon}}{\partial \nu} = 0, & x \in \partial \Omega, t > 0, \\ u_{\varepsilon}(x, 0) = u_0(x), \quad v_{\varepsilon}(x, 0) = v_0(x), & x \in \Omega. \end{cases} \quad (2.1)$$

An application of the strategy invoking the contraction mapping principle and the well-known pointwise positivity property of the Neumann heat semigroup, as in [13, 16, 36, 37], ensures the global existence of the classical solution to the approximate problems (2.1).

Lemma 2.1. *Let the assumptions (1.3)–(1.4) hold. For each $\varepsilon \in (0, 1)$, there exists a unique pair $(u_{\varepsilon}, v_{\varepsilon})$ of positive functions, with the properties that for any $T > 0$ and $\iota > 2$*

$$\begin{cases} u_{\varepsilon} \in C^0(\bar{\Omega} \times [0, T]) \cap C^{2,1}(\bar{\Omega} \times (0, T]), \\ v_{\varepsilon} \in C^0(0, T; W^{1,\iota}(\bar{\Omega})) \cap C^{2,1}(\bar{\Omega} \times (0, T]), \end{cases}$$

such that $(u_{\varepsilon}, v_{\varepsilon})$ solves the approximate problem (2.1) classically in $\Omega \times [0, \infty)$.

Proof. By a slight adaptation of the proof of [3, Lemma 2.3] (see also [22]), we can easily get the desired results.

Note that thanks to the non-negativity of (u_{ε}, h_2) and the variation-of-constants formula for v_{ε} , namely,

$$v_{\varepsilon}(\cdot, t) = e^{t(\Delta-1)} v_0 + \int_0^t e^{(t-s)(\Delta-1)} \left(\frac{u_{\varepsilon} v_{\varepsilon}}{1 + \varepsilon u_{\varepsilon} v_{\varepsilon}} + h_2 \right) (\cdot, s) ds, \quad (2.2)$$

it is clear that

$$v_{\varepsilon}(\cdot, t) \geq e^{t(\Delta-1)} v_0 \geq e^{-t} \inf_{x \in \Omega} v_0(x), \quad t > 0, \quad (2.3)$$

which is adequate for establishing the global existence of generalized solutions, see [3]. However, to get eventual smoothness of generalized solutions, the uniform-in- t lower bound for v_{ε} will be necessary.

Lemma 2.2. *Let $\Omega \subset \mathbb{R}^2$ be a bounded convex domain with smooth boundary and (1.3)–(1.7) hold. Then we have*

$$v_{\varepsilon}(\cdot, t) \geq \eta, \quad t > 0, \quad (2.4)$$

where η is determined by (1.12).

Proof. Thanks to (2.3), we have

$$v_\varepsilon(\cdot, t) \geq e^{-1} \inf_{x \in \Omega} v_0(x) \quad \text{for all } t \leq 1. \quad (2.5)$$

For $t > 1$, due to the convexity of Ω , the well-known pointwise positivity property of the Neumann heat semigroup ensures that

$$e^{t\Delta} f \geq \frac{1}{4\pi t} e^{-\frac{(\text{diam } \Omega)^2}{4t}} \int_{\Omega} f dx, \quad t > 0,$$

where $f \in C^0(\overline{\Omega})$ (cf. [38, Lemma 2.3] and [39, Lemma 3.1]), which, combined with (2.2), (1.5) and the non-negativity of (u_ε, v_0) , implies that

$$\begin{aligned} v_\varepsilon(\cdot, t) &\geq \int_0^{t-\frac{1}{2}} e^{(t-s)(\Delta-1)} h_2(\cdot, s) ds \\ &\geq \int_0^{t-\frac{1}{2}} e^{-(t-s)} \frac{1}{4\pi(t-s)} e^{-\frac{(\text{diam } \Omega)^2}{4(t-s)}} \int_{\Omega} h_2(\cdot, s) dx ds \quad \text{for all } t > 1. \end{aligned}$$

It follows that for $t > 1$

$$\begin{aligned} v_\varepsilon(\cdot, t) &\geq \frac{1}{4\pi} \left\{ \inf_{s>0} \int_{\Omega} h_2(\cdot, s) dx \right\} \int_{\frac{1}{2}}^t e^{-s} s^{-1} e^{-\frac{(\text{diam } \Omega)^2}{4s}} ds \\ &\geq \frac{1}{4\pi} \left\{ \inf_{s>0} \int_{\Omega} h_2(\cdot, s) dx \right\} \int_{\frac{1}{2}}^1 e^{-s} s^{-1} e^{-\frac{(\text{diam } \Omega)^2}{4s}} ds. \end{aligned}$$

Based on this, we further get that

$$v_\varepsilon(\cdot, t) \geq \frac{1}{4\pi} \left\{ \inf_{s>0} \int_{\Omega} h_2(\cdot, s) dx \right\} \cdot e^{-1} e^{-\frac{(\text{diam } \Omega)^2}{2}}.$$

This, together with (2.5), entails the desired (2.4).

Next, we are concerned with the decay in a linear differential inequality, which is an extended version of [22, Lemma 2.5].

Lemma 2.3. *Let $\varepsilon \in (0, 1)$, $y_\varepsilon \in C^1([0, \infty))$ be non-negative functions satisfying*

$$y_\varepsilon(0) = m \quad (2.6)$$

with some positive constant m independent of ε . If there exist a positive constant k and a nonnegative function $g_\varepsilon(t) \in C([0, \infty)) \cap L^\infty([0, \infty))$ which satisfies

$$\lim_{t \rightarrow \infty} \int_t^{t+1} g_\varepsilon(s) ds = 0 \quad \text{uniformly in } \varepsilon, \quad (2.7)$$

$$\|g_\varepsilon\|_{L^\infty(0, \infty)} \leq \mu \quad \text{for some } \mu \text{ independent of } (\varepsilon, t), \quad (2.8)$$

such that for each $\varepsilon > 0$,

$$y'_\varepsilon(t) + ky_\varepsilon(t) \leq g_\varepsilon(t) \quad \text{for all } t > 0, \quad (2.9)$$

then

$$y_\varepsilon(t) \rightarrow 0 \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon. \quad (2.10)$$

At the end of this section, we recall the result on the solvability of the boundary value (1.15), which directly follows from [40].

Lemma 2.4. *For given $h_{2,\infty} \in C^1(\overline{\Omega})$, the problem (1.15) possesses a unique classical solution v_∞ fulfilling that $v_\infty \in C^{2+\theta}(\overline{\Omega})$ for some $\theta \in (0, 1)$.*

3. A-priori estimates

A straightforward consequence of Lemma 2.2 is the following L^1 -decay on the component u_ε .

Lemma 3.1. *Let all assumptions in Theorem 1.1 be fulfilled. Then there exists $C > 0$, independent of (ε, t) , such that*

$$\int_{\Omega} v_\varepsilon(\cdot, t) dx + \int_{\Omega} u_\varepsilon(\cdot, t) dx + \int_0^t \int_{\Omega} u_\varepsilon(\cdot, s) v_\varepsilon(\cdot, s) dx ds + \int_0^t \int_{\Omega} u_\varepsilon^2(\cdot, s) dx ds \leq C, \quad t > 0, \quad (3.1)$$

and that

$$\int_{\Omega} u_\varepsilon(\cdot, t) dx \rightarrow 0 \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon, \quad (3.2)$$

$$\int_t^{t+1} \int_{\Omega} u_\varepsilon(\cdot, s) v_\varepsilon(\cdot, s) dx ds + \int_t^{t+1} \int_{\Omega} u_\varepsilon^2(\cdot, s) dx ds \rightarrow 0 \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon. \quad (3.3)$$

Proof. Invoking (2.4) and taking $c_1 \in (0, \kappa)$, we obtain

$$\frac{d}{dt} \int_{\Omega} u_\varepsilon dx + (\kappa - c_1)\eta \int_{\Omega} u_\varepsilon dx + c_1 \int_{\Omega} u_\varepsilon v_\varepsilon dx + \mu \int_{\Omega} u_\varepsilon^2 dx \leq r \int_{\Omega} u_\varepsilon dx + \int_{\Omega} h_1 dx.$$

Under the assumption that $r < \kappa\eta$, we can further take c_1 sufficiently close to 0 such that

$$c_2 := (\kappa - c_1)\eta - r > 0,$$

and thereby get

$$\frac{d}{dt} \int_{\Omega} u_\varepsilon dx + c_2 \int_{\Omega} u_\varepsilon dx + c_1 \int_{\Omega} u_\varepsilon v_\varepsilon dx + \mu \int_{\Omega} u_\varepsilon^2 dx \leq \int_{\Omega} h_1 dx. \quad (3.4)$$

We now integrate the second equation in (2.1) over Ω to obtain

$$\frac{d}{dt} \int_{\Omega} v_\varepsilon dx + \int_{\Omega} v_\varepsilon dx = \int_{\Omega} u_\varepsilon v_\varepsilon dx + \int_{\Omega} h_2 dx,$$

which, together with (3.4), ensures

$$\frac{d}{dt} \left\{ \int_{\Omega} u_\varepsilon dx + c_1 \int_{\Omega} v_\varepsilon dx \right\} + c_2 \int_{\Omega} u_\varepsilon dx + c_1 \int_{\Omega} v_\varepsilon dx + \mu \int_{\Omega} u_\varepsilon^2 dx \leq \int_{\Omega} h_1 dx + \int_{\Omega} h_2 dx.$$

Setting $y(t) := \int_{\Omega} u_\varepsilon dx + c_1 \int_{\Omega} v_\varepsilon dx$ and $c_3 := \min\{c_2, 1\}$, it follows from (1.4) that

$$y'(t) + c_3 y(t) \leq c_4 := \|h_1\|_{L^\infty(\Omega \times (0, \infty))} |\Omega| + \|h_2\|_{L^\infty(\Omega \times (0, \infty))} |\Omega|.$$

A standard ODE technique shows that

$$\int_{\Omega} u_{\varepsilon} dx + c_1 \int_{\Omega} v_{\varepsilon} dx \leq c_5 := \max \left\{ \int_{\Omega} u_0 dx + c_1 \int_{\Omega} v_0 dx, \frac{c_4}{c_3} \right\}, \quad t > 0. \quad (3.5)$$

On the other hand, integrating (3.4) over $[0, t]$, for any $t > 0$ we infer that

$$\int_{\Omega} u_{\varepsilon} dx + c_2 \int_0^t \int_{\Omega} u_{\varepsilon} dx ds + c_1 \int_0^t \int_{\Omega} u_{\varepsilon} v_{\varepsilon} dx ds + \mu \int_0^t \int_{\Omega} u_{\varepsilon}^2 dx ds \leq \int_{\Omega} u_0 dx + \int_0^t \int_{\Omega} h_1 dx,$$

which, with the help of (1.6) and (3.5), ensures (3.1).

Moreover, thanks to (1.6) and (1.4), it follows that

$$\int_t^{t+1} \int_{\Omega} h_1 dx ds \rightarrow 0, \quad \text{as } t \rightarrow \infty,$$

which, together with Lemma 2.3 and (3.4), entails that the decay (3.2) holds as desired. Integrating (3.4) over $[t, t+1]$, for any $t > 0$ we have

$$\int_{\Omega} u_{\varepsilon}(\cdot, t+1) dx + c_1 \int_t^{t+1} \int_{\Omega} u_{\varepsilon} v_{\varepsilon} dx ds + \mu \int_t^{t+1} \int_{\Omega} u_{\varepsilon}^2 dx ds \leq \int_{\Omega} u_{\varepsilon}(\cdot, t) dx + \int_t^{t+1} \int_{\Omega} h_1 dx ds.$$

Recalling (1.6) and (3.2), we arrive at (3.3).

To proceed further, we track the time evolution of $\|v_{\varepsilon}(\cdot, t) - v_{\infty}(\cdot)\|_{L^2}$, where v_{∞} is classical solution of (1.15). For convenience, we set $\widehat{v}_{\varepsilon} := v_{\varepsilon} - v_{\infty}$. Thanks to (1.15) and (2.1), for $(u_{\varepsilon}, v_{\varepsilon})$ given in Lemma 2.2, the initial-boundary value problem

$$\begin{cases} \widehat{v}_{\varepsilon t} = \Delta \widehat{v}_{\varepsilon} - \widehat{v}_{\varepsilon} + \frac{u_{\varepsilon} v_{\varepsilon}}{1 + \varepsilon u_{\varepsilon} v_{\varepsilon}} + h_2 - h_{2,\infty}, & x \in \Omega, \quad t > 0, \\ \nabla \widehat{v}_{\varepsilon} \cdot \nu = 0, & x \in \partial\Omega, \quad t > 0, \\ \widehat{v}_{\varepsilon}(x, 0) = v_0(x) - v_{\infty}(x), & x \in \Omega \end{cases} \quad (3.6)$$

admits a unique classical solution $\widehat{v}_{\varepsilon}$.

Lemma 3.2. *Let all assumptions in Theorem 1.1 be in force. Then there exists $C > 0$, independent of (ε, t) , such that*

$$\|\widehat{v}_{\varepsilon}(\cdot, t)\|_{L^2}^2 \leq C, \quad t > 0 \quad (3.7)$$

and

$$\int_0^t \int_{\Omega} |\nabla \widehat{v}_{\varepsilon}|^2 dx ds + \int_0^t \int_{\Omega} |\widehat{v}_{\varepsilon}|^2 dx ds \leq C, \quad t > 0. \quad (3.8)$$

Proof. Testing the first equation of (3.6) with $\widehat{v}_{\varepsilon}$, yields

$$\frac{1}{2} \frac{d}{dt} \int_{\Omega} |\widehat{v}_{\varepsilon}|^2 dx \leq - \int_{\Omega} |\nabla \widehat{v}_{\varepsilon}|^2 dx - \int_{\Omega} |\widehat{v}_{\varepsilon}|^2 dx + \int_{\Omega} \frac{\widehat{v}_{\varepsilon} u_{\varepsilon} v_{\varepsilon}}{1 + \varepsilon u_{\varepsilon} v_{\varepsilon}} dx + \int_{\Omega} (h_2 - h_{2,\infty}) \widehat{v}_{\varepsilon} dx, \quad t > 0.$$

Using Hölder's inequality and recalling the definition of \widehat{v}_ε , we have

$$\begin{aligned} \int_{\Omega} \frac{\widehat{v}_\varepsilon u_\varepsilon v_\varepsilon}{1 + \varepsilon u_\varepsilon v_\varepsilon} dx &= \int_{\Omega} \frac{\widehat{v}_\varepsilon^2 u_\varepsilon}{1 + \varepsilon u_\varepsilon v_\varepsilon} dx + \int_{\Omega} \frac{v_\infty u_\varepsilon \widehat{v}_\varepsilon}{1 + \varepsilon u_\varepsilon v_\varepsilon} dx \\ &\leq \|u_\varepsilon\|_{L^2} \|\widehat{v}_\varepsilon\|_{L^4}^2 + \|v_\infty\|_{L^\infty} \|u_\varepsilon\|_{L^2} \|\widehat{v}_\varepsilon\|_{L^2}. \end{aligned}$$

An application of the Gagliardo-Nirenberg inequality and Young's inequality implies that

$$\begin{aligned} \|u_\varepsilon\|_{L^2} \|\widehat{v}_\varepsilon\|_{L^4}^2 &\leq c_1 \|u_\varepsilon\|_{L^2} (\|\widehat{v}_\varepsilon\|_{L^2} \|\nabla \widehat{v}_\varepsilon\|_{L^2} + \|\widehat{v}_\varepsilon\|_{L^2}^2) \\ &\leq \frac{1}{4} \|\nabla \widehat{v}_\varepsilon\|_{L^2}^2 + c_2 \|u_\varepsilon\|_{L^2}^2 \|\widehat{v}_\varepsilon\|_{L^2}^2 + \frac{1}{4} \|\widehat{v}_\varepsilon\|_{L^2}^2. \end{aligned} \quad (3.9)$$

In addition, we have

$$\begin{aligned} \int_{\Omega} (h_2 - h_{2,\infty}) \widehat{v}_\varepsilon dx &\leq \frac{1}{4} \|\widehat{v}_\varepsilon\|_{L^2}^2 + \int_{\Omega} |h_2 - h_{2,\infty}|^2 dx, \\ \|v_\infty\|_{L^\infty} \|u_\varepsilon\|_{L^2} \|\widehat{v}_\varepsilon\|_{L^2} &\leq \frac{1}{4} \|\widehat{v}_\varepsilon\|_{L^2}^2 + \|v_\infty\|_{L^\infty}^2 \|u_\varepsilon\|_{L^2}^2. \end{aligned}$$

Collecting these, we arrive at

$$\begin{aligned} &\frac{1}{2} \frac{d}{dt} \int_{\Omega} |\widehat{v}_\varepsilon|^2 dx + \frac{3}{4} \int_{\Omega} |\nabla \widehat{v}_\varepsilon|^2 dx + \frac{1}{4} \int_{\Omega} |\widehat{v}_\varepsilon|^2 dx \\ &\leq c_2 \|u_\varepsilon\|_{L^2}^2 \|\widehat{v}_\varepsilon\|_{L^2}^2 + \|v_\infty\|_{L^\infty}^2 \|u_\varepsilon\|_{L^2}^2 + \int_{\Omega} |h_2 - h_{2,\infty}|^2 dx, \quad t > 0. \end{aligned} \quad (3.10)$$

Setting $y(t) = \|\widehat{v}_\varepsilon(\cdot, t)\|_{L^2}^2$ and $a(t) = \|u_\varepsilon(\cdot, t)\|_{L^2}^2$, it follows that

$$y'(t) + \frac{1}{2} y(t) \leq 2c_2 a(t) y(t) + b(t), \quad b(t) := 2\|v_\infty\|_{L^\infty}^2 \|u_\varepsilon\|_{L^2}^2 + 2 \int_{\Omega} |h_2 - h_{2,\infty}|^2 dx.$$

A standard ODE technique shows

$$y(t) \leq y(0) e^{2c_2 \int_0^t a(s) ds - \frac{1}{2}t} + e^{2c_2 \int_0^t a(s) ds - \frac{1}{2}t} \int_0^t b(s) e^{-2c_2 \int_0^s a(\tau) d\tau + \frac{1}{2}s} ds.$$

Note that, thanks to (3.1), there exists $c_3 > 0$, independent of (ε, t) , such that $\int_0^t a(s) ds \leq c_3$. Hence, we arrive at

$$y(t) \leq c_3 y(0) e^{-\frac{1}{2}t} + c_3 e^{-\frac{1}{2}t} \int_0^t b(s) e^{\frac{1}{2}s} ds.$$

Using (1.7) and (3.1) again, there exists $c_4 > 0$, independent of (ε, t) , such that

$$c_3 e^{-\frac{1}{2}t} \int_0^t b(s) e^{\frac{1}{2}s} ds \leq c_3 \int_0^t b(s) ds \leq c_4, \quad t > 0.$$

Hence, there exists $C > 0$, independent of (ε, t) , such that (3.7) holds. Moreover, thanks to (3.10) we can find $c_5 > 0$, independent of (ε, t) , such that

$$\frac{1}{2} \frac{d}{dt} \int_{\Omega} |\widehat{v}_\varepsilon|^2 dx + \frac{3}{4} \int_{\Omega} |\nabla \widehat{v}_\varepsilon|^2 dx + \frac{1}{4} \int_{\Omega} |\widehat{v}_\varepsilon|^2 dx \leq c_5 \|u_\varepsilon\|_{L^2}^2 + \int_{\Omega} |h_2 - h_{2,\infty}|^2 dx, \quad t > 0. \quad (3.11)$$

We now integrate this equation over $[0, t]$ to get

$$\begin{aligned} & \frac{1}{2} \int_{\Omega} |\widehat{v}_\varepsilon|^2 dx + \frac{3}{4} \int_0^t \int_{\Omega} |\nabla \widehat{v}_\varepsilon|^2 dx ds + \frac{1}{4} \int_0^t \int_{\Omega} |\widehat{v}_\varepsilon|^2 dx ds \\ & \leq \frac{1}{2} \|v_0 - v_\infty\|_{L^2}^2 + c_5 \int_0^t \|u_\varepsilon\|_{L^2}^2 ds + \int_0^t \int_{\Omega} |h_2 - h_{2,\infty}|^2 dx ds, \end{aligned}$$

which, combined with (3.1) and (1.7), gives us the desired (3.8).

We would like to remark that although we have obtained (3.11) and can infer from (3.3) and (1.7) that for any $\varepsilon \in (0, 1)$

$$\int_t^{t+1} \|u_\varepsilon\|_{L^2}^2 ds + \int_t^{t+1} \int_{\Omega} |h_2 - h_{2,\infty}|^2 dx ds \rightarrow 0, \quad \text{as } t \rightarrow \infty, \quad (3.12)$$

we cannot directly get the desired decay on $\|\widehat{v}_\varepsilon(\cdot, t)\|_{L^2}$ by Lemma 2.3 due to the absence of the bound of $\|u_\varepsilon\|_{L^\infty(t, t+1; L^2)}$. Here, compared with (3.2), we need a new method to get decay on \widehat{v}_ε .

Lemma 3.3. *Let all assumptions in Theorem 1.1 be in force. Then*

$$\int_{\Omega} |\widehat{v}_\varepsilon|^2(\cdot, t) dx \rightarrow 0 \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon, \quad (3.13)$$

$$\int_t^{t+1} \int_{\Omega} |\nabla \widehat{v}_\varepsilon|^2 dx ds \rightarrow 0 \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon. \quad (3.14)$$

Proof. In fact, integrating (3.11) over $[t, t+1]$ yields that

$$\begin{aligned} & \frac{1}{2} \int_{\Omega} |\widehat{v}_\varepsilon|^2(\cdot, t+1) dx - \frac{1}{2} \int_{\Omega} |\widehat{v}_\varepsilon|^2(\cdot, t) dx + \frac{3}{4} \int_t^{t+1} \int_{\Omega} |\nabla \widehat{v}_\varepsilon|^2 dx ds + \frac{1}{4} \int_t^{t+1} \int_{\Omega} |\widehat{v}_\varepsilon|^2 dx ds \\ & \leq c_5 \int_t^{t+1} \|u_\varepsilon\|_{L^2}^2 ds + \int_t^{t+1} \int_{\Omega} |h_2 - h_{2,\infty}|^2 dx ds. \end{aligned} \quad (3.15)$$

By setting $z(t) := \frac{1}{2} \int_t^{t+1} \int_{\Omega} |\widehat{v}_\varepsilon|^2 dx ds$, we have

$$z'(t) + \frac{1}{2} z(t) \leq c_5 \int_t^{t+1} \|u_\varepsilon\|_{L^2}^2 ds + \int_t^{t+1} \int_{\Omega} |h_2 - h_{2,\infty}|^2 dx ds.$$

We now infer from (1.4), (1.7) and (3.1) that there exists $C > 0$, independent of (ε, t) , such that

$$g_\varepsilon : (t) = \int_t^{t+1} \|u_\varepsilon\|_{L^2}^2 ds + \int_t^{t+1} \int_{\Omega} |h_2 - h_{2,\infty}|^2 dx ds \leq C, \quad t > 0,$$

which, combined with Lemma 2.3, ensures that

$$z(t) := \frac{1}{2} \int_t^{t+1} \int_{\Omega} |\widehat{v}_\varepsilon|^2 dx ds \rightarrow 0 \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon. \quad (3.16)$$

On the other hand, letting $y(t) := \int_{\Omega} \left\{ (1 + \mu^{-1} \|v_{\infty}\|_{L^{\infty}}^2) u_{\varepsilon}(\cdot, t) + \frac{1}{2} |\widehat{v}_{\varepsilon}|^2(\cdot, t) \right\} dx$ we can infer from (3.4) and (3.10) that there exist c_i , $i = 1, 2, 3$, independent of (ε, t) , such that for any $t > 0$

$$y'(t) + c_1 y(t) + \frac{3}{4} \int_{\Omega} |\nabla \widehat{v}_{\varepsilon}|^2 dx + \left(\mu - c_2 \|\widehat{v}_{\varepsilon}\|_{L^2}^2 \right) \int_{\Omega} u_{\varepsilon}^2 dx \leq c_3 \int_{\Omega} h_1 + |h_2 - h_{2,\infty}|^2 dx. \quad (3.17)$$

From (3.16), (3.2) and the assumptions (1.6) and (1.7), there must exist T_* large enough, independent of ε , such that

$$\begin{aligned} \frac{1}{2} \int_{T_*}^{T_*+1} \|\widehat{v}_{\varepsilon}(\cdot, t)\|_{L^2}^2 dt + c_3 \int_{T_*}^{\infty} \int_{\Omega} h_1 + |h_2 - h_{2,\infty}|^2 dx ds &\leq \frac{\mu}{16c_2}, \\ (1 + \mu^{-1} \|v_{\infty}\|_{L^{\infty}}^2) \int_{\Omega} u_{\varepsilon}(\cdot, t) dx &\leq \frac{\mu}{16c_2}, \quad t \geq T_*, \end{aligned}$$

by which the mean value theorem implies there exists $\hat{t}_0 \in (T_*, T_* + 1)$, depending on ε , such that

$$(1 + \mu^{-1} \|v_{\infty}\|_{L^{\infty}}^2) \int_{\Omega} u_{\varepsilon}(\cdot, \hat{t}_0) dx + \frac{1}{2} \|\widehat{v}_{\varepsilon}(\cdot, \hat{t}_0)\|_{L^2}^2 + c_3 \int_{\hat{t}_0}^{\infty} \int_{\Omega} h_1 + |h_2 - h_{2,\infty}|^2 dx ds \leq \frac{\mu}{8c_2}. \quad (3.18)$$

Invoking these, we can claim that

$$\|\widehat{v}_{\varepsilon}(\cdot, t)\|_{L^2}^2 \leq \frac{\mu}{2c_2}, \quad t \geq \hat{t}_0. \quad (3.19)$$

In fact, the continuity of $\|\widehat{v}_{\varepsilon}(\cdot, t)\|_{L^2}^2$, combined with (3.18), ensures that

$$\tilde{T} := \sup \left\{ t \left| \sup_{\hat{t}_0 \leq s \leq t} \|\widehat{v}_{\varepsilon}(\cdot, s)\|_{L^2}^2 \leq \frac{\mu}{2c_2} \right. \right\} > \hat{t}_0, \quad (3.20)$$

and so we only need to show that $\tilde{T} = \infty$. If on the contrary, there must hold

$$\sup_{\hat{t}_0 \leq s \leq \tilde{T}} \|\widehat{v}_{\varepsilon}(\cdot, s)\|_{L^2}^2 = \frac{\mu}{2c_2}. \quad (3.21)$$

However, it follows from (3.17) and (3.20) that for $t \in [\hat{t}_0, \tilde{T}]$

$$y'(t) + c_1 y(t) + \frac{3}{4} \int_{\Omega} |\nabla \widehat{v}_{\varepsilon}|^2 dx + \frac{1}{2} \mu \int_{\Omega} u_{\varepsilon}^2 dx \leq c_3 \int_{\Omega} h_1 + |h_2 - h_{2,\infty}|^2 dx.$$

By employing the standard ODE techniques, we arrive at

$$\begin{aligned} y(t) &\leq e^{-c_1(t-\hat{t}_0)} y(\hat{t}_0) + c_3 e^{-c_1 t} \int_{\hat{t}_0}^t e^{c_1 s} \int_{\Omega} h_1 + |h_2 - h_{2,\infty}|^2 dx ds \\ &\leq y(\hat{t}_0) + c_3 \int_{\hat{t}_0}^t \int_{\Omega} h_1 + |h_2 - h_{2,\infty}|^2 dx ds, \end{aligned}$$

which, with the help of (3.18), ensures

$$y(t) \leq \frac{\mu}{8c_2}, \quad t \in [\hat{t}_0, \tilde{T}].$$

Recalling the definition of $y(t)$, we have

$$\|\widehat{v}_\varepsilon(\cdot, t)\|_{L^2}^2 \leq \frac{\mu}{4c_2}, \quad t \in [\hat{t}_0, \tilde{T}],$$

which contradicts (3.21). Thus we have that $\tilde{T} = \infty$, and prove (3.19) as desired.

Thanks to the validity of (3.19), it follows from (3.17) that

$$y'(t) + c_1 y(t) + \frac{3}{4} \int_{\Omega} |\nabla \widehat{v}_\varepsilon|^2 dx + \frac{\mu}{2} \int_{\Omega} u_\varepsilon^2 dx \leq c_3 \int_{\Omega} h_1 + |h_2 - h_{2,\infty}|^2 dx, \quad t \geq \hat{t}_0. \quad (3.22)$$

Based on the assumptions (1.4), (1.6), (1.7) and Lemma 2.3, (3.22) ensures

$$y(t) \rightarrow 0 \quad \text{as} \quad t \rightarrow \infty \quad \text{uniformly in} \quad \varepsilon, \quad (3.23)$$

which is enough for (3.13) by recalling the definition of $y(t)$.

To get (3.14), integrating (3.22) over $[t, t+1]$, yields

$$y(t+1) + \frac{3}{4} \int_t^{t+1} \int_{\Omega} |\nabla \widehat{v}_\varepsilon|^2 dx ds + \frac{\mu}{2} \int_t^{t+1} \int_{\Omega} u_\varepsilon^2 dx ds \leq y(t) + c_3 \int_t^{t+1} \int_{\Omega} h_1 + |h_2 - h_{2,\infty}|^2 dx ds,$$

which, combined with (3.23), (1.6) and (1.7) again, entails that (3.14) holds as desired.

In the sequel, we will use (3.2), (3.3) and (3.14) to obtain the uniform in ε bound for the entropy functional, denoted by

$$\mathcal{E}_\varepsilon(t) := \frac{1}{2} \int_{\Omega} u_\varepsilon^2 + |\nabla \widehat{v}_\varepsilon|^2 dx, \quad t > 0. \quad (3.24)$$

To achieve it, we first manage to achieve the following estimate.

Lemma 3.4. *Let all assumptions in Theorem 1.1 hold. Then there exist $a_1, a_2, a_3 > 0$, such that for any $\varepsilon \in (0, 1)$,*

$$\begin{aligned} \mathcal{E}'(t) &+ \frac{1}{2} \int_{\Omega} |\nabla u_\varepsilon|^2 dx + \frac{\kappa\eta - r}{2} \int_{\Omega} u_\varepsilon^2 dx + \mu \int_{\Omega} u_\varepsilon^3 dx \\ &+ \left(\frac{1}{2} - a_1 \|u_\varepsilon\|_{L^2}^2 \left(\|\nabla \widehat{v}_\varepsilon\|_{L^2}^2 + 1 \right) \right) \int_{\Omega} |\Delta \widehat{v}_\varepsilon|^2 dx + \left(1 - a_2 \|u_\varepsilon\|_{L^2}^2 \right) \int_{\Omega} |\nabla \widehat{v}_\varepsilon|^2 dx \\ &\leq a_3 \left\{ \|h_1\|_{L^1} + \|u_\varepsilon\|_{L^2}^2 + \|h_2 - h_{2,\infty}\|_{L^2}^2 \right\}, \quad t > 0, \end{aligned} \quad (3.25)$$

where η is given by (2.4).

Proof. Invoking integration by parts, we have

$$\begin{aligned} \frac{1}{2} \frac{d}{dt} \int_{\Omega} u_\varepsilon^2 dx &= \int_{\Omega} u_\varepsilon \left(\Delta u_\varepsilon - \chi \nabla \cdot (u_\varepsilon \nabla \ln v_\varepsilon) - \kappa u_\varepsilon v_\varepsilon + r u_\varepsilon - \mu u_\varepsilon^2 + h_1 \right) dx \\ &= - \int_{\Omega} |\nabla u_\varepsilon|^2 dx + \chi \int_{\Omega} \nabla u_\varepsilon \cdot (u_\varepsilon \nabla \ln v_\varepsilon) dx - \kappa \int_{\Omega} u_\varepsilon^2 v_\varepsilon dx \\ &\quad + r \int_{\Omega} u_\varepsilon^2 dx - \mu \int_{\Omega} u_\varepsilon^3 dx + \int_{\Omega} h_1 u_\varepsilon dx \end{aligned}$$

$$=:P_1 + P_2 + P_3 + P_4 + P_5 + P_6.$$

Since $r < \kappa\eta$ (η given in (2.4)), it follows that $c_1 := \kappa\eta - r > 0$, and thereby implies from (2.4) that

$$\begin{aligned} P_3 + P_4 &\leq -\kappa\eta \int_{\Omega} u_{\varepsilon}^2 dx + r \int_{\Omega} u_{\varepsilon}^2 dx \\ &= -c_1 \int_{\Omega} u_{\varepsilon}^2 dx. \end{aligned}$$

And using Young's inequality yields

$$P_6 \leq \frac{c_1}{2} \int_{\Omega} u_{\varepsilon}^2 dx + c_2 \int_{\Omega} h_1^2 dx.$$

For P_2 , Hölder's inequality and (2.4) imply

$$P_2 \leq \chi\eta^{-1} \|\nabla u_{\varepsilon}\|_{L^2} \|u_{\varepsilon} \nabla v_{\varepsilon}\|_{L^2} \leq \chi\eta^{-1} \|\nabla u_{\varepsilon}\|_{L^2} \|u_{\varepsilon}\|_{L^4} \|\nabla v_{\varepsilon}\|_{L^4},$$

which, together with Young's inequality, entails

$$P_2 \leq \frac{1}{4} \|\nabla u_{\varepsilon}\|_{L^2}^2 + c_3 \|u_{\varepsilon}\|_{L^4}^2 \|\nabla v_{\varepsilon}\|_{L^4}^2.$$

Recalling the Gagliardo-Nirenberg inequality

$$\|f\|_{L^4}^2 \leq c_4 \left(\|f\|_{L^2} \|\nabla f\|_{L^2} + \|f\|_{L^2}^2 \right),$$

we get

$$\|u_{\varepsilon}\|_{L^4}^2 \leq c_5 \left(\|u_{\varepsilon}\|_{L^2} \|\nabla u_{\varepsilon}\|_{L^2} + \|u_{\varepsilon}\|_{L^2}^2 \right),$$

and infer from the elliptic estimates that

$$\|\nabla v_{\varepsilon}\|_{L^4}^2 \leq c_6 \|\nabla v_{\varepsilon}\|_{L^2} \|\nabla v_{\varepsilon}\|_{H^1} \leq c_7 \|\nabla v_{\varepsilon}\|_{L^2} \|\Delta v_{\varepsilon}\|_{L^2}.$$

In view of these, we arrive at

$$\begin{aligned} \|u_{\varepsilon}\|_{L^4}^2 \|\nabla v_{\varepsilon}\|_{L^4}^2 &\leq c_8 \left(\|u_{\varepsilon}\|_{L^2} \|\nabla u_{\varepsilon}\|_{L^2} + \|u_{\varepsilon}\|_{L^2}^2 \right) \|\nabla v_{\varepsilon}\|_{L^2} \|\Delta v_{\varepsilon}\|_{L^2} \\ &\leq \frac{1}{4} \|\nabla u_{\varepsilon}\|_{L^2}^2 + c_8^2 \|u_{\varepsilon}\|_{L^2}^2 \|\nabla v_{\varepsilon}\|_{L^2}^2 \|\Delta v_{\varepsilon}\|_{L^2}^2 + c_8 \|u_{\varepsilon}\|_{L^2}^2 \|\nabla v_{\varepsilon}\|_{L^2} \|\Delta v_{\varepsilon}\|_{L^2}. \end{aligned}$$

Collecting these and using Young's inequality, we have

$$\begin{aligned} &\frac{1}{2} \frac{d}{dt} \int_{\Omega} u_{\varepsilon}^2 dx + \frac{1}{2} \int_{\Omega} |\nabla u_{\varepsilon}|^2 dx + \frac{c_1}{2} \int_{\Omega} u_{\varepsilon}^2 dx + \mu \int_{\Omega} u_{\varepsilon}^3 dx \\ &\leq c_2 \int_{\Omega} h_1^2 dx + c_8^2 \|u_{\varepsilon}\|_{L^2}^2 \|\nabla v_{\varepsilon}\|_{L^2}^2 \|\Delta v_{\varepsilon}\|_{L^2}^2 + c_8 \|u_{\varepsilon}\|_{L^2}^2 \|\nabla v_{\varepsilon}\|_{L^2} \|\Delta v_{\varepsilon}\|_{L^2} \\ &\leq c_2 \int_{\Omega} h_1^2 dx + 2c_8^2 \|u_{\varepsilon}\|_{L^2}^2 \|\nabla v_{\varepsilon}\|_{L^2}^2 \|\Delta v_{\varepsilon}\|_{L^2}^2 + c_9 \|u_{\varepsilon}\|_{L^2}^2. \end{aligned}$$

Recalling $\widehat{v}_\varepsilon := v_\varepsilon - v_\infty$ and invoking Lemma 2.4, it follows that

$$\begin{aligned} \|\nabla v_\varepsilon\|_{L^2}^2 \|\Delta v_\varepsilon\|_{L^2}^2 &\leq 4 \left(\|\nabla \widehat{v}_\varepsilon\|_{L^2}^2 + \|\nabla v_\infty\|_{L^2}^2 \right) \left(\|\Delta \widehat{v}_\varepsilon\|_{L^2}^2 + \|\Delta v_\infty\|_{L^2}^2 \right) \\ &\leq c_{10} \left(\|\nabla \widehat{v}_\varepsilon\|_{L^2}^2 \|\Delta \widehat{v}_\varepsilon\|_{L^2}^2 + \|\nabla \widehat{v}_\varepsilon\|_{L^2}^2 + \|\Delta \widehat{v}_\varepsilon\|_{L^2}^2 + 1 \right). \end{aligned}$$

This leads to

$$\begin{aligned} &\frac{1}{2} \frac{d}{dt} \int_\Omega u_\varepsilon^2 dx + \frac{1}{2} \int_\Omega |\nabla u_\varepsilon|^2 dx + \frac{c_1}{2} \int_\Omega u_\varepsilon^2 dx + \mu \int_\Omega u_\varepsilon^3 dx \\ &\leq c_2 \int_\Omega h_1^2 dx + c_{11} \|u_\varepsilon\|_{L^2}^2 \left(\|\nabla \widehat{v}_\varepsilon\|_{L^2}^2 + 1 \right) \|\Delta \widehat{v}_\varepsilon\|_{L^2}^2 + c_{12} \|u_\varepsilon\|_{L^2}^2 \|\nabla \widehat{v}_\varepsilon\|_{L^2}^2 + c_{13} \|u_\varepsilon\|_{L^2}^2. \end{aligned} \quad (3.26)$$

On the other hand, we can test the first equation in (3.6) with $-\Delta \widehat{v}_\varepsilon$ to get

$$\begin{aligned} &\frac{1}{2} \frac{d}{dt} \int_\Omega |\nabla \widehat{v}_\varepsilon|^2 dx + \int_\Omega |\Delta \widehat{v}_\varepsilon|^2 dx + \int_\Omega |\nabla \widehat{v}_\varepsilon|^2 dx \\ &= \int_\Omega \frac{u_\varepsilon v_\varepsilon}{1 + \varepsilon u_\varepsilon v_\varepsilon} (-\Delta \widehat{v}_\varepsilon) dx + \int_\Omega (h_2 - h_{2,\infty}) (-\Delta \widehat{v}_\varepsilon) dx, \end{aligned}$$

which, with the help of Young's inequality, shows

$$\frac{1}{2} \frac{d}{dt} \int_\Omega |\nabla \widehat{v}_\varepsilon|^2 dx + \frac{1}{2} \int_\Omega |\Delta \widehat{v}_\varepsilon|^2 dx + \int_\Omega |\nabla \widehat{v}_\varepsilon|^2 dx \leq \int_\Omega u_\varepsilon^2 v_\varepsilon^2 dx + \int_\Omega |h_2 - h_{2,\infty}|^2 dx.$$

Hölder's inequality, combined with the Gagliardo-Nirenberg inequality and the elliptic estimates, entails

$$\begin{aligned} \int_\Omega u_\varepsilon^2 v_\varepsilon^2 dx &\leq \|u_\varepsilon\|_{L^2}^2 \|v_\varepsilon\|_{L^\infty}^2 \\ &\leq c_{14} \|u_\varepsilon\|_{L^2}^2 \left(\|v_\varepsilon\|_{L^2} \|\Delta v_\varepsilon\|_{L^2} + \|v_\varepsilon\|_{L^2}^2 \right), \end{aligned}$$

which, based on (3.7), Lemma 2.4 and the fact that $\widehat{v}_\varepsilon := v_\varepsilon - v_\infty$, leads to

$$\begin{aligned} \int_\Omega u_\varepsilon^2 v_\varepsilon^2 dx &\leq c_{14} \|u_\varepsilon\|_{L^2}^2 \left((\|\widehat{v}_\varepsilon\|_{L^2} + \|v_\infty\|_{L^2}) (\|\Delta \widehat{v}_\varepsilon\|_{L^2} + \|\Delta v_\infty\|_{L^2}) + (\|\widehat{v}_\varepsilon\|_{L^2} + \|v_\infty\|_{L^2})^2 \right) \\ &\leq c_{15} \|u_\varepsilon\|_{L^2}^2 (\|\Delta \widehat{v}_\varepsilon\|_{L^2} + 1). \end{aligned}$$

In the light of Young's inequality, it follows that

$$\int_\Omega u_\varepsilon^2 v_\varepsilon^2 dx \leq c_{16} \|u_\varepsilon\|_{L^2}^2 \left(\|\Delta \widehat{v}_\varepsilon\|_{L^2}^2 + 1 \right).$$

Hence, we arrive at

$$\frac{1}{2} \frac{d}{dt} \int_\Omega |\nabla \widehat{v}_\varepsilon|^2 dx + \frac{1}{2} \int_\Omega |\Delta \widehat{v}_\varepsilon|^2 dx + \int_\Omega |\nabla \widehat{v}_\varepsilon|^2 dx \leq c_{16} \|u_\varepsilon\|_{L^2}^2 \left(\|\Delta \widehat{v}_\varepsilon\|_{L^2}^2 + 1 \right) + \int_\Omega |h_2 - h_{2,\infty}|^2 dx,$$

which, together with (3.26), ensures that

$$\mathcal{E}'(t) + \frac{1}{2} \int_\Omega |\nabla u_\varepsilon|^2 dx + \frac{c_1}{2} \int_\Omega u_\varepsilon^2 dx + \mu \int_\Omega u_\varepsilon^3 dx + \frac{1}{2} \int_\Omega |\Delta \widehat{v}_\varepsilon|^2 dx + \int_\Omega |\nabla \widehat{v}_\varepsilon|^2 dx$$

$$\begin{aligned} &\leq c_2 \int_{\Omega} h_1^2 dx + c_{11} \|u_{\varepsilon}\|_{L^2}^2 \left(\|\nabla \widehat{v}_{\varepsilon}\|_{L^2}^2 + 1 \right) \|\Delta \widehat{v}_{\varepsilon}\|_{L^2}^2 + c_{12} \|u_{\varepsilon}\|_{L^2}^2 \|\nabla \widehat{v}_{\varepsilon}\|_{L^2}^2 + c_{13} \|u_{\varepsilon}\|_{L^2}^2 \\ &\quad + c_{16} \|u_{\varepsilon}\|_{L^2}^2 \left(\|\Delta \widehat{v}_{\varepsilon}\|_{L^2}^2 + 1 \right) + \int_{\Omega} |h_2 - h_{2,\infty}|^2 dx. \end{aligned}$$

Note that due to (1.4), we have

$$\int_{\Omega} h_1^2 dx \leq \|h_1\|_{L^{\infty}(\Omega \times (0, \infty))}^2 |\Omega|.$$

Hence, collecting these and recalling the definition of c_1 , we can get the validity of (3.25).

The uniform convergence properties previously established in Lemmas 3.1 and 3.3, combined with a continuation argument, are enough to show that there exists T_0 large enough such that the variable coefficient in (3.25) maintains nonnegativity whenever $t \geq T_0$, which shall eventually lead to the following crucial estimates.

Lemma 3.5. *There exist T_0 large enough and $a_4 > 0$, independent of ε , such that for any $\varepsilon \in (0, 1)$*

$$\int_{\Omega} u_{\varepsilon}^2(\cdot, t) dx + \int_{\Omega} |\nabla \widehat{v}_{\varepsilon}|^2(\cdot, t) dx \leq a_4, \quad t \geq T_0, \quad (3.27)$$

$$\int_s^t \int_{\Omega} |\nabla u_{\varepsilon}|^2 dx d\tau + \int_s^t \int_{\Omega} |\Delta \widehat{v}_{\varepsilon}|^2 dx d\tau \leq a_4, \quad t \geq s \geq T_0. \quad (3.28)$$

Proof. Combining with (3.4) and (3.25), and setting $y(t) := \frac{a_3}{\mu} \int_{\Omega} u_{\varepsilon} dx + \mathcal{E}_{\varepsilon}(t)$, there exist $c_1 > 0$ and $c_2 > 0$, independent of (ε, t) , such that

$$\begin{aligned} &y'(t) + c_1 y(t) + \left(\frac{1}{2} - a_1 \|u_{\varepsilon}\|_{L^2}^2 \left(\|\nabla \widehat{v}_{\varepsilon}\|_{L^2}^2 + 1 \right) \right) \int_{\Omega} |\Delta \widehat{v}_{\varepsilon}|^2 dx \\ &\quad + \frac{1}{2} \int_{\Omega} |\nabla u_{\varepsilon}|^2 dx + \left(\frac{3}{4} - a_2 \|u_{\varepsilon}\|_{L^2}^2 \right) \int_{\Omega} |\nabla \widehat{v}_{\varepsilon}|^2 dx \\ &\leq c_2 \left\{ \|h_1\|_{L^1} + \|h_2 - h_{2,\infty}\|_{L^2}^2 \right\}, \quad t > 0, \end{aligned} \quad (3.29)$$

where a_1, a_2 and a_3 are given in (3.25).

According to the uniform convergence stated in (3.2), (3.3) and (3.14), and the assumptions (1.6) and (1.7), there must exist T_* large enough, independent of ε , such that

$$\frac{a_3}{\mu} \int_{\Omega} u_{\varepsilon}(\cdot, t) dx \leq \frac{A}{2}, \quad t \geq T_*,$$

and

$$\frac{1}{2} \int_{T_*}^{T_*+1} \|u_{\varepsilon}(\cdot, t)\|_{L^2}^2 dt + \frac{1}{2} \int_{T_*}^{T_*+1} \|\nabla \widehat{v}_{\varepsilon}(\cdot, t)\|_{L^2}^2 dt + c_2 \int_{T_*}^{\infty} \left(\|h_1\|_{L^1} + \|h_2 - h_{2,\infty}\|_{L^2}^2 \right) ds \leq \frac{A}{2},$$

where $A := \min \left\{ \frac{1}{8a_2}, \frac{1}{8} \sqrt{\frac{1}{a_1} + 1} - \frac{1}{8} \right\}$. By using mean value theorem we can find $\hat{t}_0 \in (T_*, T_* + 1)$, depending on ε , such that

$$y(\hat{t}_0) + c_2 \int_{\hat{t}_0}^{\infty} \left(\|h_1\|_{L^1} + \|h_2 - h_{2,\infty}\|_{L^2}^2 \right) ds \leq A, \quad (3.30)$$

which, together with the definition of $y(\hat{t}_0)$, further implies that

$$a_2 \|u_\varepsilon(\cdot, \hat{t}_0)\|_{L^2}^2 \leq 2a_2 A, \quad (3.31)$$

and

$$\|\nabla \widehat{v}_\varepsilon(\cdot, \hat{t}_0)\|_{L^2}^2 \leq 2A. \quad (3.32)$$

We now claim that

$$a_2 \|u_\varepsilon(\cdot, t)\|_{L^2}^2 \leq 4a_2 A, \quad t \geq \hat{t}_0, \quad (3.33)$$

$$\|\nabla \widehat{v}_\varepsilon(\cdot, t)\|_{L^2}^2 \leq 4A, \quad t \geq \hat{t}_0, \quad (3.34)$$

and thereby assert

$$a_1 \|u_\varepsilon(\cdot, t)\|_{L^2}^2 \left(\|\nabla \widehat{v}_\varepsilon(\cdot, t)\|_{L^2}^2 + 1 \right) \leq 4a_1 A(4A + 1), \quad t \geq \hat{t}_0. \quad (3.35)$$

Indeed, the continuities of $\|\nabla \widehat{v}_\varepsilon(\cdot, t)\|_{L^2}^2$ and $a_2 \|u_\varepsilon(\cdot, t)\|_{L^2}^2$, invoking (3.31) and (3.32), show that

$$\widetilde{T} := \sup \left\{ t \left| \sup_{\hat{t}_0 \leq s \leq t} a_2 \|u_\varepsilon(\cdot, t)\|_{L^2}^2 \leq 4a_2 A, \quad \sup_{\hat{t}_0 \leq s \leq t} \|\nabla \widehat{v}_\varepsilon(\cdot, t)\|_{L^2}^2 \leq 4A, \right. \right\} > \hat{t}_0, \quad (3.36)$$

and so we only need to show that $\widetilde{T} = \infty$. If on the contrary, at least one of the following statements must hold

$$\sup_{\hat{t}_0 \leq s \leq \widetilde{T}} a_2 \|u_\varepsilon(\cdot, t)\|_{L^2}^2 = 4a_2 A, \quad (3.37)$$

$$\sup_{\hat{t}_0 \leq s \leq \widetilde{T}} \|\nabla \widehat{v}_\varepsilon(\cdot, t)\|_{L^2}^2 = 4A, \quad (3.38)$$

which, together with the definition of A , further leads to

$$a_1 \|u_\varepsilon(\cdot, t)\|_{L^2}^2 \left(\|\nabla \widehat{v}_\varepsilon(\cdot, t)\|_{L^2}^2 + 1 \right) \leq 4a_1 A(4A + 1) \leq \frac{1}{4}, \quad t \in [\hat{t}_0, \widetilde{T}], \quad (3.39)$$

$$\frac{3}{4} - a_2 \|u_\varepsilon(\cdot, t)\|_{L^2}^2 \geq \frac{3}{4} - 4a_2 A \geq \frac{1}{4}, \quad t \in [\hat{t}_0, \widetilde{T}]. \quad (3.40)$$

However, it follows from (3.29), (3.39) and (3.40) that

$$y'(t) + c_1 y(t) + \frac{1}{2} \int_{\Omega} |\nabla u_\varepsilon|^2 dx + \frac{1}{4} \int_{\Omega} |\Delta \widehat{v}_\varepsilon|^2 dx \leq c_2 \left\{ \|h_1\|_{L^1} + \|h_2 - h_{2,\infty}\|_{L^2}^2 \right\}, \quad t \in [\hat{t}_0, \widetilde{T}].$$

This, by means of the standard ODE techniques, results in that for any $t \in [\hat{t}_0, \widetilde{T}]$

$$\begin{aligned} y(t) &\leq e^{-c_1(t-\hat{t}_0)} y(\hat{t}_0) + e^{-c_1 t} \int_{\hat{t}_0}^t e^{c_1 s} c_2 \left\{ \|h_1\|_{L^1} + \|h_2 - h_{2,\infty}\|_{L^2}^2 \right\} ds \\ &\leq y(\hat{t}_0) + c_2 \int_{\hat{t}_0}^{\infty} \left\{ \|h_1\|_{L^1} + \|h_2 - h_{2,\infty}\|_{L^2}^2 \right\} ds, \end{aligned}$$

which, combined with (3.30) and the definition of $y(t)$, implies

$$y(t) \leq A, \quad t \in [\hat{t}_0, \tilde{T}].$$

Hence, recalling the definitions of $y(t)$ and A again, we must have

$$a_2 \|u_\varepsilon(\cdot, t)\|_{L^2}^2 \leq 2a_2 A \quad \text{and} \quad \|\nabla \widehat{v}_\varepsilon(\cdot, t)\|_{L^2}^2 \leq 2A, \quad t \in [\hat{t}_0, \tilde{T}],$$

which contradicts (3.37) and (3.38). Thus we have that $\tilde{T} = \infty$, and prove (3.33)–(3.35) as desired.

Based on the definition of A and the validity of (3.33)–(3.35), we see from (3.29) that

$$y'(t) + c_1 y(t) + \frac{1}{2} \int_{\Omega} |\nabla u_\varepsilon|^2 dx + \frac{1}{4} \int_{\Omega} |\Delta \widehat{v}_\varepsilon|^2 dx \leq c_2 \left\{ \|h_1\|_{L^1} + \|h_2 - h_{2,\infty}\|_{L^2}^2 \right\}, \quad t \geq \hat{t}_0. \quad (3.41)$$

Hence, using the standard ODE techniques again, yields that for any $t \geq \hat{t}_0$

$$y(t) \leq y(\hat{t}_0) + c_2 \int_{\hat{t}_0}^t \left\{ \|h_1\|_{L^1} + \|h_2 - h_{2,\infty}\|_{L^2}^2 \right\} ds,$$

which, together with (3.30), ensures

$$y(t) \leq c_3, \quad t \geq \hat{t}_0. \quad (3.42)$$

This evidently entails (3.27).

Moreover, integrating (3.41) over $[s, t]$ with $\hat{t}_0 \leq s \leq t$ and using (1.6) and (1.7) again, we subsequently arrive at

$$y(t) + \frac{1}{2} \int_s^t \int_{\Omega} |\nabla u_\varepsilon|^2 dx d\tau + \frac{1}{4} \int_s^t \int_{\Omega} |\Delta \widehat{v}_\varepsilon|^2 dx d\tau \leq y(s) + c_4.$$

Based on (3.42), we get that $\mathcal{E}_\varepsilon(s) \leq c_3$ due to $s \geq \hat{t}_0$, and thereby obtain (3.28) as desired.

4. Eventual smoothness

In view of Lemma 3.5 and the boundedness criterion obtained in [41, 42] via the Moser iteration and the semigroup theory, we can get the eventual bound of the generalized solution.

Lemma 4.1. *Let T_0 be given in Lemma 3.5. Then there exists $a_5 > 0$, with the property that for any $q > 2$*

$$\|\nabla \widehat{v}_\varepsilon(\cdot, t)\|_{L^q} \leq a_5, \quad t \geq T_0 + 1. \quad (4.1)$$

Proof. By means of (3.6) and the properties of the Neumann heat semigroup (cf. [43, Lemma 1.3] and [44, Lemma 2.1]), for all $t > T_0$ and $q > 2$ we have

$$\begin{aligned} \|\nabla \widehat{v}_\varepsilon(\cdot, t)\|_{L^q} &\leq \|\nabla e^{(t-T_0)(\Delta-1)} \widehat{v}_\varepsilon(\cdot, T_0)\|_{L^q} + \int_{T_0}^t \left\| \nabla e^{(t-s)(\Delta-1)} \left(\frac{u_\varepsilon v_\varepsilon}{1 + \varepsilon u_\varepsilon v_\varepsilon} + h_2 - h_{2,\infty} \right) \right\|_{L^q} ds \\ &\leq c_1 \left(1 + (t - T_0)^{-(\frac{1}{2} - \frac{1}{q})} \right) \|\nabla \widehat{v}_\varepsilon(\cdot, T_0)\|_{L^2} \end{aligned}$$

$$+ c_1 \int_{T_0}^t \left(1 + (t-s)^{-\frac{1}{2} - (\frac{1}{2} - \frac{1}{q})}\right) e^{-(t-s)} (\|u_\varepsilon v_\varepsilon\|_{L^2} + \|h_2 - h_{2,\infty}\|_{L^2}) ds,$$

which, combined with (1.4) and (3.27), reduces to

$$\|\nabla \widehat{v}_\varepsilon(\cdot, t)\|_{L^q} \leq c_2 + c_2(t - T_0)^{-(\frac{1}{2} - \frac{1}{q})} + c_2 \int_{T_0}^t \left(1 + (t-s)^{-\frac{1}{2} - (\frac{1}{2} - \frac{1}{q})}\right) e^{-(t-s)} \|u_\varepsilon v_\varepsilon\|_{L^2} ds.$$

An application of Hölder's inequality, invoking (3.27) and Lemma 2.4, yields that for any $t \geq T_0$

$$\|u_\varepsilon v_\varepsilon\|_{L^2} \leq \|u_\varepsilon\|_{L^2} \|v_\varepsilon\|_{L^\infty} \leq c_3 (\|\widehat{v}_\varepsilon\|_{L^\infty} + 1),$$

which, with the help of the Gagliardo-Nirenberg inequality, entails

$$\|u_\varepsilon v_\varepsilon\|_{L^2} \leq c_4 \left(\|\widehat{v}_\varepsilon\|_{L^2}^{1-\vartheta} \|\nabla \widehat{v}_\varepsilon\|_{L^q}^\vartheta + \|\widehat{v}_\varepsilon\|_{L^2} + 1 \right),$$

where $\vartheta := \frac{q}{2(q-1)}$. By employing (3.7), we arrive at

$$\|u_\varepsilon v_\varepsilon\|_{L^2} \leq c_5 \left(\|\nabla \widehat{v}_\varepsilon\|_{L^q}^\vartheta + 1 \right).$$

Collecting these, it follows that for any $t > T_0$

$$\|\nabla \widehat{v}_\varepsilon(\cdot, t)\|_{L^q} \leq c_6 + c_2(t - T_0)^{-(\frac{1}{2} - \frac{1}{q})} + c_6 \int_{T_0}^t \left(1 + (t-s)^{-\frac{1}{2} - (\frac{1}{2} - \frac{1}{q})}\right) e^{-(t-s)} \|\nabla \widehat{v}_\varepsilon\|_{L^q}^\vartheta ds.$$

Letting $K(T) := \sup_{t \in (T_0, T)} \|\nabla \widehat{v}_\varepsilon(\cdot, t)\|_{L^q}$ for any $T \in (T_0, \infty)$, we get

$$K(T) \leq c_6 + c_2(t - T_0)^{-(\frac{1}{2} - \frac{1}{q})} + c_7 K^\vartheta(T),$$

which, by using Young's inequality, ensures

$$K(T) \leq c_8 + c_2(t - T_0)^{-(\frac{1}{2} - \frac{1}{q})}, \quad t > T_0.$$

Hence, for any $t \geq T_0 + 1$, we arrive at (4.1).

Based on (4.1), we can obtain the time-independent bound for u_ε in $L^\infty(\Omega)$.

Lemma 4.2. *Let T_0 be given in Lemma 3.5. Then there exists $a_6 > 0$, such that*

$$\|u_\varepsilon(\cdot, t)\|_{L^\infty} \leq a_6, \quad t \geq T_0 + 2. \quad (4.2)$$

Proof. From the constant variation formula associated with the first equation in (2.1), we get that for any $t > t_1 := T_0 + 1$

$$\begin{aligned} 0 \leq u_\varepsilon(x, t) &= e^{(\Delta-1)(t-t_1)} u_\varepsilon(x, t_1) \\ &\quad + \int_{t_1}^t e^{(\Delta-1)(t-s)} \left(-\chi \nabla \cdot (u_\varepsilon \nabla \ln v_\varepsilon) - \kappa u_\varepsilon v_\varepsilon + r u_\varepsilon - \mu u_\varepsilon^2 + h_1 + u_\varepsilon \right) ds \\ &\leq e^{(\Delta-1)(t-t_1)} u_\varepsilon(x, t_1) + \int_{t_1}^t e^{(\Delta-1)(t-s)} (-\chi \nabla \cdot (u_\varepsilon \nabla \ln v_\varepsilon) + r u_\varepsilon + h_1 + u_\varepsilon) ds, \end{aligned}$$

which, with the help of the properties of Neumann heat semigroup (cf. [43, Lemma 1.3] and [44, Lemma 2.1]), we can pick $c_1 > 0$ such that

$$\begin{aligned} \|u_\varepsilon(\cdot, t)\|_{L^\infty} &\leq c_1 \left(1 + (t - t_1)^{-\frac{1}{2}}\right) \|u_\varepsilon(\cdot, t_1)\|_{L^2} + c_1 \int_{t_1}^t \left(1 + (t - s)^{-\frac{1}{2}}\right) e^{-(t-s)} \|u_\varepsilon + h_1\|_{L^2} ds \\ &\quad + c_1 \int_{t_1}^t \left(1 + (t - s)^{-\frac{1}{2} - \frac{1}{3}}\right) e^{-(t-s)} \|u_\varepsilon \nabla \ln v_\varepsilon\|_{L^3} ds. \end{aligned}$$

Hence, (3.27) and (1.4) show that

$$\|u_\varepsilon(\cdot, t)\|_{L^\infty} \leq c_2 + c_2(t - t_1)^{-\frac{1}{2}} + c_1 \int_{t_1}^t \left(1 + (t - s)^{-\frac{1}{2} - \frac{1}{3}}\right) e^{-(t-s)} \|u_\varepsilon \nabla \ln v_\varepsilon\|_{L^3} ds.$$

On the basis of Hölder's inequality and (2.4), it follows that

$$\|u_\varepsilon \nabla \ln v_\varepsilon\|_{L^3} \leq \|u_\varepsilon\|_{L^4} \|\nabla v_\varepsilon\|_{L^{12}} \|v_\varepsilon^{-1}\|_{L^\infty} \leq \eta^{-1} \|u_\varepsilon\|_{L^4} \|\nabla v_\varepsilon\|_{L^{12}},$$

which, together with (4.1) and the fact that $\widehat{v_\varepsilon} = v_\varepsilon - v_\infty$, entails

$$\|u_\varepsilon \nabla \ln v_\varepsilon\|_{L^3} \leq c_3 \|u_\varepsilon\|_{L^4}, \quad t \geq T_0 + 1.$$

Based on this, the interpolation inequality and (3.27) indicate that

$$\|u_\varepsilon \nabla \ln v_\varepsilon\|_{L^3} \leq c_3 \|u_\varepsilon\|_{L^2}^{\frac{1}{2}} \|u_\varepsilon\|_{L^\infty}^{\frac{1}{2}} \leq c_4 \|u_\varepsilon\|_{L^\infty}^{\frac{1}{2}}, \quad t \geq T_0 + 1.$$

Collecting these, we arrive at

$$\|u_\varepsilon(\cdot, t)\|_{L^\infty} \leq c_2 + c_2(t - t_1)^{-\frac{1}{2}} + c_5 \int_{t_1}^t \left(1 + (t - s)^{-\frac{1}{2} - \frac{1}{3}}\right) e^{-(t-s)} \|u_\varepsilon\|_{L^\infty}^{\frac{1}{2}} ds.$$

Setting $K(T) := \sup_{t \in (t_1, T)} \|u_\varepsilon(\cdot, t)\|_{L^\infty}$ for any $T \in (t_1, \infty)$, we have

$$K(T) \leq c_2 + c_2(t - t_1)^{-\frac{1}{2}} + c_6 K^{\frac{1}{2}}(T).$$

Using Young's inequality yields

$$K(T) \leq c_7 + c_2(t - t_1)^{-\frac{1}{2}}, \quad t > t_1,$$

which must lead to

$$K(T) \leq c_8, \quad t \geq t_1 + 1.$$

This implies (4.2) directly.

A straightforward consequence of Lemmas 4.1 and 4.2, invoking the parabolic Schauder estimates [45], can be stated as follows.

Lemma 4.3. *There exists $a_7 > 0$, independent of ε and t , with the property that for some $\alpha \in (0, 1)$*

$$\|u_\varepsilon(\cdot, s)\|_{C^{2+\alpha, 1+\frac{\alpha}{2}}(\Omega \times [t, t+1])} + \|v_\varepsilon(\cdot, s)\|_{C^{2+\alpha, 1+\frac{\alpha}{2}}(\Omega \times [t, t+1])} \leq a_7, \quad t > T_0 + 2, \quad (4.3)$$

where T_0 is given in Lemma 3.5.

Proof. Based on Lemmas 4.1 and 4.2 and the Schauder estimates ([45]), a straightforward reasoning involving standard bootstrap techniques ensures that (4.5) holds as desired by recalling Lemma 2.4 and $\widehat{v}_\varepsilon = v_\varepsilon - v_\infty$.

Lemma 4.3, combined with the Arzelà-Ascoli theorem, is enough to prove that the generalized solution (u, v) established in [3] admits the desired regularity in Theorem 1.1.

Lemma 4.4. *Let (u, v) be a generalized solution stated in Definition 1.1, and T_0 be given in Lemma 3.5. Then there exists $a_8 > 0$ with the property that for any $q > 2$*

$$\|u(\cdot, t)\|_{L^\infty} + \|v(\cdot, t)\|_{W^{1,q}} + \|v^{-1}(\cdot, t)\|_{L^\infty} \leq a_8, \quad t \geq T_0 + 2, \quad (4.4)$$

$$\|u(\cdot, s)\|_{C^{2,1}(\Omega \times [t, t+1])} + \|v(\cdot, s)\|_{C^{2,1}(\Omega \times [t, t+1])} \leq a_8, \quad t > T_0 + 2. \quad (4.5)$$

Moreover, $u \geq 0$, $v > 0$ and (u, v) solves the initial-boundary value problem (1.2) classically in $\Omega \times (T_0 + 2, \infty)$.

Proof. Invoking Lemma 4.3, [3, Lemma 4.2] and the Arzelà-Ascoli theorem, there exists a subsequence of $\{\varepsilon_j\}_{j=1}^\infty$ (still expressed as $\{\varepsilon_j\}_{j=1}^\infty$) such that for any $t > T_0 + 2$, as $\varepsilon = \varepsilon_j \rightarrow 0$,

$$\begin{aligned} u_\varepsilon &\rightarrow u \quad \text{in} \quad C^{2,1}(\Omega \times [t, t+1]), \\ v_\varepsilon &\rightarrow v \quad \text{in} \quad C^{2,1}(\Omega \times [t, t+1]). \end{aligned}$$

This ensures (4.5), and thereby (4.4) holds as desired by using Sobolev's inequality, (4.1), (2.4) and (4.2) again. Moreover, along the lines demonstrated in [46, Lemma 2.1], we can see that if $u \geq 0$ and $v > 0$ satisfying (4.5) and such that (u, v) is a generalized solution of (1.3) in the sense of Definition 1.1, then (u, v) also solves (1.3) in the classical sense in $\Omega \times (T_0 + 2, \infty)$.

5. Asymptotic behavior

Asymptotic behavior of the generalized solution featured in Theorem 1.1 is now almost immediate.

Lemma 5.1. *Let all assumptions in Theorem 1.1 be fulfilled. Then*

$$\|u_\varepsilon(\cdot, t)\|_{L^\infty} + \|v_\varepsilon(\cdot, t) - v_\infty(\cdot)\|_{L^\infty} \rightarrow 0, \quad \text{as } t \rightarrow \infty, \quad (5.1)$$

where v_∞ denotes the solution of the boundary value problem (1.15).

Proof. It directly follows from (3.13) that

$$\int_\Omega |\widehat{v}_\varepsilon|^2(\cdot, t) dx \rightarrow 0 \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon. \quad (5.2)$$

Using Sobolev's inequality and (4.1) again, for some $r > 2$ there exist $c_2 > 0$ and $c_3 > 0$ such that

$$\begin{aligned} \|\widehat{v}_\varepsilon(\cdot, t)\|_{L^\infty} &\leq c_2 \|\widehat{v}_\varepsilon(\cdot, t)\|_{L^2}^{\frac{r-2}{2(r-1)}} \|\widehat{v}_\varepsilon(\cdot, t)\|_{W^{1,r}}^{\frac{r}{2(r-1)}} \\ &\leq c_3 \|\widehat{v}_\varepsilon(\cdot, t)\|_{L^2}^{\frac{r-2}{2(r-1)}}, \quad t \geq T_0 + 2, \end{aligned}$$

which, in conjunction with (5.2), entails

$$\|\widehat{v}_\varepsilon(\cdot, t)\|_{L^\infty} \rightarrow 0, \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon. \quad (5.3)$$

To get the decay on $\|u_\varepsilon\|_{L^\infty}$, we further develop the method used in [47]. According to the variation-of-constants formula for u_ε , for $t_0 := T_0 + 2$ the known estimates for the Neumann heat semigroup ensure that for any $t > t_0$

$$\begin{aligned} \|u_\varepsilon(\cdot, t)\|_{L^\infty} &\leq \|e^{(\Delta-1)(t-t_0)}u_\varepsilon(\cdot, t_0)\|_{L^\infty} + \chi \int_{t_0}^t \|e^{(\Delta-1)(t-s)}\nabla \cdot (u_\varepsilon \nabla \ln v_\varepsilon)\|_{L^\infty} ds \\ &\quad + \int_{t_0}^t \|e^{(\Delta-1)(t-s)}(ru_\varepsilon + h_1 + u_\varepsilon)\|_{L^\infty} ds \\ &\leq c_4(1 + (t - t_0)^{-\frac{1}{3}})e^{-\delta(t-t_0)}\|u_\varepsilon(\cdot, t_0)\|_{L^3} \\ &\quad + c_4 \int_{t_0}^t (1 + (t - s)^{-(\frac{1}{3} + \frac{1}{2})})e^{-\delta(t-s)}\|u_\varepsilon \nabla \ln v_\varepsilon\|_{L^3} ds \\ &\quad + c_4 \int_{t_0}^t (1 + (t - s)^{-\frac{1}{3}})e^{-\delta(t-s)}\|ru_\varepsilon + h_1 + u_\varepsilon\|_{L^3} ds \\ &=: V_1 + V_2 + V_3, \end{aligned}$$

with some $c_4 > 0$ and $\delta > 0$. As a consequence of (4.4), we can find $c_5 > 0$, independent of ε , such that

$$\begin{aligned} V_1 &\leq c_5(1 + (t - t_0)^{-\frac{1}{3}})e^{-\delta(t-t_0)} \\ &\leq 2c_5e^{t_0}e^{-t}, \quad t \geq t_0 + 1, \end{aligned}$$

which clearly implies that for fixed t_0

$$V_1 \rightarrow 0, \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon. \quad (5.4)$$

For V_2 , Hölder's inequality, combined with (2.4), (4.4) and Lemma 2.4, entails

$$\begin{aligned} \|u_\varepsilon \nabla \ln v_\varepsilon\|_{L^3} &\leq \|v_\varepsilon^{-1}\|_{L^\infty} \|u_\varepsilon\|_{L^6} \|\nabla v_\varepsilon\|_{L^6} \\ &\leq \|v_\varepsilon^{-1}\|_{L^\infty} \|u_\varepsilon\|_{L^6} (\|\widehat{v}_\varepsilon\|_{L^6} + \|\nabla v_\infty\|_{L^6}) \\ &\leq c_6 \|u_\varepsilon\|_{L^6}, \quad t \geq t_0. \end{aligned}$$

By further assuming that $t > 2t_0$ and letting

$$\begin{aligned} V_{21} &= c_4 c_6 \int_{t_0}^{\frac{t}{2}} (1 + (t - s)^{-\frac{5}{6}})e^{-\delta(t-s)} \|u_\varepsilon\|_{L^6} ds, \\ V_{22} &= c_4 c_6 \int_{\frac{t}{2}}^t (1 + (t - s)^{-\frac{5}{6}})e^{-\delta(t-s)} \|u_\varepsilon\|_{L^6} ds, \end{aligned}$$

it follows that

$$V_2 \leq V_{21} + V_{22}, \quad t > 2t_0.$$

For V_{21} , using (4.4) again we have

$$\begin{aligned} V_{21} &= c_4 c_6 \int_{\frac{t}{2}}^{(t-t_0)} (1 + s^{-\frac{5}{6}}) e^{-\delta s} \|u_\varepsilon\|_{L^6} ds \\ &\leq c_7 \int_{\frac{t}{2}}^t (1 + s^{-\frac{5}{6}}) e^{-\delta s} ds. \end{aligned}$$

Due to the fact that

$$\int_0^\infty (1 + s^{-\frac{5}{6}}) e^{-\delta s} ds \leq c_8,$$

we infer that

$$V_{21} \rightarrow 0, \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon. \quad (5.5)$$

For V_{22} , an application of the interpolation inequality and (4.4) yields that

$$\|u_\varepsilon(\cdot, t)\|_{L^6} \leq \|u_\varepsilon(\cdot, t)\|_{L^1}^{\frac{1}{6}} \|u_\varepsilon(\cdot, t)\|_{L^\infty}^{\frac{5}{6}} \leq c_9 \|u_\varepsilon(\cdot, t)\|_{L^1}^{\frac{1}{6}}, \quad t > 2t_0.$$

Invoking this, we arrive at

$$\begin{aligned} V_{22} &\leq c_{10} \sup_{s > \frac{t}{2}} \|u_\varepsilon(\cdot, s)\|_{L^1}^{\frac{1}{6}} \int_{\frac{t}{2}}^t (1 + (t-s)^{-\frac{5}{6}}) e^{-\delta(t-s)} ds \\ &\leq c_{11} \sup_{s > \frac{t}{2}} \|u_\varepsilon(\cdot, s)\|_{L^1}^{\frac{1}{6}}, \quad t > 2t_0, \end{aligned}$$

which, combined with (3.2), entails

$$V_{22} \rightarrow 0, \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon.$$

This, together with (5.5), implies

$$V_2 \rightarrow 0, \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon. \quad (5.6)$$

Similarity, we set

$$\begin{aligned} V_{31} &= c_4 \int_{t_0}^{\frac{t}{2}} (1 + (t-s)^{-\frac{1}{3}}) e^{-\delta(t-s)} \|(r+1)u_\varepsilon + h_1\|_{L^3} ds, \\ V_{32} &= c_4 \int_{\frac{t}{2}}^t (1 + (t-s)^{-\frac{1}{3}}) e^{-\delta(t-s)} \|(r+1)u_\varepsilon + h_1\|_{L^3} ds, \end{aligned}$$

and thereby get

$$V_3 \leq V_{31} + V_{32}, \quad t > 2t_0.$$

Similar to (5.5), we can infer from (4.4), (1.4) and Hölder's inequality that

$$V_{31} \leq c_{12} \int_{\frac{t}{2}}^t (1 + s^{-\frac{1}{3}}) e^{-\delta s} ds, \quad t > 2t_0,$$

and hence

$$V_{31} \rightarrow 0, \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon. \quad (5.7)$$

Similar to the estimate for V_{22} , it follows from the interpolation inequality and (4.4) that

$$c_4 \int_{\frac{t}{2}}^t (1 + (t-s)^{-\frac{1}{3}}) e^{-\delta(t-s)} \|(r+1)u_\varepsilon\|_{L^3} ds \leq c_{13} \sup_{s > \frac{t}{2}} \|u_\varepsilon(\cdot, s)\|_{L^1}^{\frac{1}{3}}, \quad t > 2t_0,$$

which, combined with (3.2), entails

$$c_4 \int_{\frac{t}{2}}^t (1 + (t-s)^{-\frac{1}{3}}) e^{-\delta(t-s)} \|(r+1)u_\varepsilon\|_{L^3} ds \rightarrow 0, \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon.$$

On the other hand, the interpolation inequality and (1.4) imply

$$\|h_1\|_{L^3} \leq \|h_1\|_{L^1}^{\frac{1}{3}} \|h_1\|_{L^\infty}^{\frac{2}{3}} \leq c_{14} \|h_1\|_{L^1}^{\frac{1}{3}}.$$

This, with the help of Hölder's inequality, ensures

$$\begin{aligned} & c_4 \int_{\frac{t}{2}}^t (1 + (t-s)^{-\frac{1}{3}}) e^{-\delta(t-s)} \|h_1(\cdot, s)\|_{L^3} ds \\ & \leq c_{15} \left\{ \int_{\frac{t}{2}}^t (1 + (t-s)^{-\frac{1}{2}}) e^{-\frac{3}{2}\delta(t-s)} ds \right\}^{\frac{2}{3}} \left\{ \int_{\frac{t}{2}}^t \|h_1(\cdot, s)\|_{L^3}^3 ds \right\}^{\frac{1}{3}} \\ & \leq c_{16} \left\{ \int_{\frac{t}{2}}^t \|h_1(\cdot, s)\|_{L^1} ds \right\}^{\frac{1}{3}}, \quad t > 2t_0, \end{aligned}$$

which, together with (1.6), leads to

$$c_4 \int_{\frac{t}{2}}^t (1 + (t-s)^{-\frac{1}{3}}) e^{-\delta(t-s)} \|h_1(\cdot, s)\|_{L^3} ds \rightarrow 0, \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon.$$

Hence, we arrive at

$$V_{32} \rightarrow 0, \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon,$$

which, in conjunction with (5.7), gives us

$$V_3 \rightarrow 0, \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon.$$

This, further combined with (5.4) and (5.6), asserts

$$\|u_\varepsilon(\cdot, t)\|_{L^\infty} \rightarrow 0, \quad \text{as } t \rightarrow \infty \quad \text{uniformly in } \varepsilon,$$

which implies that (5.1) holds as desired by recalling (5.3) and the definition of \widehat{v}_ε .

Our main result on eventual smoothness and stabilization in Theorem 1.1 is in fact a by-product of our previous analysis.

Proof of Theorem 1.1. The eventual smoothness in Theorem 1.1 has been verified evidently in Lemma 4.4. For the stabilization, it readily follows from Lemma 5.1, Lemma 4.3, [3, Lemma 4.2] and the Arzelà-Ascoli theorem that (1.14) holds.

Acknowledgements

The authors are very grateful to the referees for their detailed comments and valuable suggestions, which greatly improved the manuscript. The research of BL is supported by the Natural Science Foundation of Ningbo Municipality (No. 2022J147).

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. M. Short, M. Drsogna, V. Pasour, G. Tita, P. Brantingham, A. Bertozzi, et al., A statistical model of criminal behavior, *Math. Models Methods Appl. Sci.*, **18** (2008), 1249–1267. <https://doi.org/10.1142/S0218202508003029>
2. M. Short, A. Bertozzi, P. Brantingham, G. Tita, Dissipation and displacement of hotspots in reaction-diffusion model of crime, *Proc. Natl. Acad. Sci. USA*, **107** (2010), 3961–3965. <https://doi.org/10.1073/pnas.0910921107>
3. F. Heihoff, Generalized solutions for a system of partial differential equations arising from urban crime modeling with a logistic source term, *Z. Für Angew. Math. Phys.*, **71** (2020), 80. <https://doi.org/10.1007/s00033-020-01304-w>
4. N. Bellomo, F. Colasuonno, D. Knopoff, J. Soler, From a systems theory of sociology to modeling the onset and evolution of criminality, *Networks Heterog. Media*, **10** (2015), 421–441. <https://doi.org/10.3934/nhm.2015.10.421>
5. H. Berestycki, J. Nadal, Self-organised critical hot spots of criminal activity, *Eur. J. Appl. Math.*, **21** (2010), 371–399. <https://doi.org/10.1017/S0956792510000185>
6. Y. Gu, Q. Wang, G. Yi, Stationary patterns and their selection mechanism of urban crime models with heterogeneous near-repeat victimization effect, *Eur. J. Appl. Math.*, **28** (2017), 141–178. <https://doi.org/10.1017/S0956792516000206>
7. A. Pitcher, Adding police to a mathematical model of burglary, *Eur. J. Appl. Math.*, **21** (2010), 401–419. <https://doi.org/10.1017/S0956792510000112>
8. M. Short, G. Mohler, P. Brantingham, G. Tita, Gang rivalry dynamics via coupled point process networks, *Discrete Contin. Dyn. Syst. Ser. B*, **19** (2014), 1459–1477. <https://doi.org/10.3934/dcdsb.2014.19.1459>
9. W. Tse, M. Ward, Asynchronous instabilities of crime hotspots for a 1-D reaction-diffusion model of urban crime with focused police patrol, *SIAM J. Appl. Dyn. Syst.*, **17** (2018), 2018–2075. <https://doi.org/10.1137/17M1162585>
10. J. Zipkin, M. Short, A. Bertozzi, Cops on the dots in a mathematical model of urban crime and police response, *Discrete Contin. Dyn. Syst. Ser. B*, **19** (2014), 1479–1506. <https://doi.org/10.3934/dcdsb.2014.19.1479>

11. N. Bellomo, N. Outada, J. Soler, Y. Tao, M. Winkler, Chemotaxis and cross-diffusion models in complex environments: Models and analytic problems toward a multiscale vision, *Math. Models Methods Appl. Sci.*, **32** (2022), 713–792. <https://doi.org/10.1142/S0218202522500166>
12. M. D’Orsogna, M. Perc, Statistical physics of crime: a review, *Phys. Life Rev.*, **12** (2015), 1–21. <https://doi.org/10.1016/j.plrev.2014.11.001>
13. N. Rodríguez, A. Bertozzi, Local existence and uniqueness of solutions to a PDE model for criminal behavior, *Math. Models Methods Appl. Sci.*, **20** (2010), 1425–1457. <https://doi.org/10.1142/S0218202510004696>
14. N. Rodríguez, M. Winkler, On the global existence and qualitative behavior of one-dimensional solutions to a model for urban crime, *Eur. J. Appl. Math.*, **33** (2022), 919–959. <https://doi.org/10.1017/S0956792521000279>
15. Q. Wang, D. Wang, Y. Feng, Global well-posedness and uniform boundedness of urban crime models: One-dimensional case, *J. Differ. Equations*, **269** (2020), 6216–6235. <https://doi.org/10.1016/j.jde.2020.04.035>
16. M. Freitag, Global solutions to a higher-dimensional system related to crime modeling, *Math. Meth. Appl. Sci.*, **41** (2018), 6326–6335. <https://doi.org/10.1002/mma.5141>
17. J. Shen, B. Li, Mathematical analysis of a continuous version of statistical models for criminal behavior, *Math. Meth. Appl. Sci.*, **43** (2020), 409–426. <https://doi.org/10.1002/mma.5898>
18. J. Ahn, K. Kang, J. Lee, Global well-posedness of logarithmic Keller-Segel type systems, *J. Differ. Equations*, **287** (2021), 185–211. <https://doi.org/10.1016/j.jde.2021.03.053>
19. Y. Tao, M. Winkler, Global smooth solutions in a two-dimensional cross-diffusion system modeling propagation of urban crime, *Commun. Math. Sci.*, **19** (2021), 829–849. <https://doi.org/10.4310/CMS.2021.v19.n3.a12>
20. M. Winkler, Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation, *Ann. Inst. Henri Poincaré, Anal. Non Linéaire*, **36** (2019), 1747–1790. <https://doi.org/10.1016/j.anihpc.2019.02.004>
21. Y. Jiang, L. Yang, Global solvability and stabilization in a three-dimensional cross-diffusion system modeling urban crime propagation, *Acta Appl. Math.*, **178** (2022), 11. <https://doi.org/10.1007/s10440-022-00484-z>
22. B. Li, L. Xie, Generalized solution to a 2D parabolic-parabolic chemotaxis system for urban crime: Global existence and large time behavior, submitted for publication, 2022.
23. N. Rodríguez, M. Winkler, Relaxation by nonlinear diffusion enhancement in a two-dimensional cross-diffusion model for urban crime propagation, *Math. Models Methods Appl. Sci.*, **30** (2020), 2105–2137. <https://doi.org/10.1142/S0218202520500396>
24. L. Yang, X. Yang, Global existence in a two-dimensional nonlinear diffusion model for urban crime propagation, *Nonlinear Anal.*, **224** (2022), 113086. <https://doi.org/10.1016/j.na.2022.113086>
25. M. Fuest, F. Heihoff, Unboundedness phenomenon in a reduced model of urban crime, preprint, arXiv:2109.01016.

26. B. Li, L. Xie, Global large-data generalized solutions to a two-dimensional chemotaxis system stemming from crime modelling, *Discrete Contin. Dyn. Syst. Ser. B*, 2022. <https://doi.org/10.3934/dcdsb.2022167>

27. B. Li, Z. Wang, L. Xie, Regularization effect of the mixed-type damping in a higher-dimensional logarithmic Keller-Segel system related to crime modeling, *Math. Biosci. Eng.*, **24** (2023), 4532–4559. <https://doi.org/10.3934/mbe.2023210>

28. R. Manásevich, Q. Phan, P. Souplet, Global existence of solutions for a chemotaxis-type system arising in crime modelling, *Eur. J. Appl. Math.*, **24** (2013), 273–296. <https://doi.org/10.1017/S095679251200040X>

29. N. Rodríguez, On the global well-posedness theory for a class of PDE models for criminal activity, *Phys. D Nonlinear Phenom.*, **260** (2013), 191–200. <https://doi.org/10.1016/j.physd.2012.08.003>

30. D. Wang, Y. Feng, Global well-posedness and uniform boundedness of a higher dimensional crime model with a logistic source term, *Math. Meth. Appl. Sci.*, **45** (2022), 4727–4740. <https://doi.org/10.1002/mma.8066>

31. T. Black, Eventual smoothness of generalized solutions to a singular chemotaxis-Stokes system in 2D, *J. Differ. Equations*, **265** (2018), 2296–2339. <https://doi.org/10.1016/j.jde.2018.04.035>

32. T. Black, C. Wu, Prescribed signal concentration on the boundary: eventual smoothness in a chemotaxis-Navier-Stokes system with logistic proliferation, *Calc. Var.*, **61** (2022), 96. <https://doi.org/10.1007/s00526-022-02201-y>

33. M. Ding, J. Lankeit, Generalized solutions to a chemotaxis-Navier-Stokes system with arbitrary superlinear degradation, *SIAM J. Math. Anal.*, **54** (2022), 1022–1052. <https://doi.org/10.1137/21M140907X>

34. Y. Tao, M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, *J. Differ. Equations*, **252** (2012), 2520–2543. <https://doi.org/10.1016/j.jde.2011.07.010>

35. B. Li, L. Xie, Generalized solution and eventual smoothness in a logarithmic Keller-Segel system for criminal activities, *Math. Models Methods Appl. Sci.*, 2023. <https://doi.org/10.1142/S0218202523500306>

36. M. Aida, K. Osaka, T. Tsujikawa, M. Mimura, Chemotaxis and growth system with singular sensitivity function, *Nonlinear Anal. Real World Appl.*, **6** (2005), 323–336. <https://doi.org/10.1016/j.nonrwa.2004.08.011>

37. M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, *Math. Methods Appl. Sci.*, **34** (2011), 176–190. <https://doi.org/10.1002/mma.1346>

38. T. Xiang, Finite time blow-up in the higher dimensional parabolic-elliptic-ODE minimal chemotaxis-haptotaxis system, *J. Differ. Equations*, **336** (2022), 44–72. <https://doi.org/10.1016/j.jde.2022.07.015>

39. T. Hillen, K. Painter, M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, *Math. Models Methods Appl. Sci.*, **23** (2013), 165–198. <https://doi.org/10.1142/S0218202512500480>

40. O. Ladyzhenskaya, N. Ural'tseva, *Linear and Quasilinear Elliptic Equations*, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968.

41. N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, *Math. Models Methods Appl. Sci.*, **25** (2015), 1663–1763. <https://doi.org/10.1142/S021820251550044X>

42. T. Xiang, Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/with-out growth source, *J. Differ. Equations*, **258** (2015), 4275–4323. <https://doi.org/10.1016/j.jde.2015.01.032>

43. M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, *J. Differ. Equations*, **248** (2010), 2889–2905. <https://doi.org/10.1016/j.jde.2010.02.008>

44. X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, *Discrete Contin. Dyn. Syst.*, **35** (2015), 1891–1904. <https://doi.org/10.3934/dcds.2015.35.1891>

45. O. Ladyzhenskaya, V. Solonnikov, N. Ural'tseva, *Linear and Quasilinear Equations of Parabolic Type*, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, American Mathematical Society, Providence, R.I., 1968.

46. M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, *SIAM J. Math. Anal.*, **47** (2015), 3092–3115. <https://doi.org/10.1137/140979708>

47. K. Fujie, A. Ito, M. Winkler, T. Yokota, Stabilization in a chemotaxis model for tumor invasion, *Discrete Contin. Dyn. Syst.*, **36** (2016), 151–169. <https://doi.org/10.3934/dcds.2016.36.151>

AIMS Press

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>)