
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 31(6): 3097–3122.
DOI: 10.3934/era.2023157
Received: 08 February 2023
Revised: 07 March 2023
Accepted: 08 March 2023
Published: 23 March 2023

Research article

Random periodic sequence of globally mean-square exponentially stable
discrete-time stochastic genetic regulatory networks with discrete spatial
diffusions

Bin Wang*

Department of Mathematics, Minzu Normal University of Xingyi, Xingyi 562400, Guizhou, China

* Correspondence: Email: xywangbin@yeah.net.

Abstract: This paper regards the dual effects of discrete-space and discrete-time in stochastic genetic
regulatory networks via exponential Euler difference and central finite difference. Firstly, the global
exponential stability of such discrete networks is investigated by using discrete constant variation for-
mulation. In particular, the optimal exponential convergence rate is explored by solving a nonlinear
optimization problem under nonlinear constraints, and an implementable computer algorithm for com-
puting the optimal exponential convergence rate is given. Secondly, random periodic sequence for such
discrete networks is investigated based on the theory of semi-flow and metric dynamical systems. The
researching findings show that the spatial diffusions with nonnegative intensive coefficients have no
influence on global mean square boundedness and stability, random periodicity of the networks. This
paper is pioneering in considering discrete spatial diffusions, which provides a research basis for future
research on genetic regulatory networks.
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1. Introduction

Genetic regulatory networks (GRNs) refer to the network containing complicated molecular inter-
actions involving messenger ribonucleic acid (mRNAs) and protein molecules that represent the con-
trol of gene performance within an organization. Since gene performance regulates cellular functions,
molecular/cellular biologists have to learn about and forecast the motions of GRNs. In addition, precise
forecasting of gene control procedures can accelerate biotechnology programs. Consequently, mathe-
matical modeling of GRNs and their behaviors are the major study trends in systems biology. Recently,
GRNs have been increasingly gained the awareness of researchers because of their easy-to-understand
features. These are highly useful and effective methods for describing complex and dynamical trans-
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actional relationships. Hence, GRNs are not only the foundation for the investigation of a variety of
processes in biological bodies, but also have promising potential applications to systematic biology.
Over the recent twenty years, a number of GRNs were already published in the literatures [1–8]. Re-
markably, global exponential stability and (almost) periodicity are important and essential dynamical
behaviours in GRNs, which have been extensively studied by numerous scholars (see [5, 7, 9–11]) in
recent twenty years. In particular, in the case of stochastic models, the concept of random periodicity
was introduced in lietrature [12] based on the theories of semi-flow and metric dynamical system, and
the existence of random periodicity to several continuous time stochastic models had been discussed
in literatures [12–15]. Yet, the problems of global mean-square exponential stability and random peri-
odicity of stochastic GRNs have not been deeply addressed.

Stochastic perturbations not only separate the models from deterministic cases, but also can bring
about substantial modifications in dynamic actions of GRNs, see reports [16, 17]. In general, the
behaviors of stochastic systems are highly reliant on time and spatial dependence. Consequently, re-
action diffusion is necessary to be taken into account and this induces the investigations of stochastic
reaction diffusion systems. Besides, in biologically based network systems, the concentration of con-
stituents is not uniform, resulting in diffusion of cytoplasm from higher to lower concentrations. As
it was indicated in report [18], the concentration of cellular modules in any region has usually been
related to spatial heterogeneity, i.e., mRNA and protein concentrations change according to time and
space. Consequently, it is significant to consider GRNs involving the effect of spatial diffusions and
more attentions (see [19–23]) had been paid to GRNs with spatial diffusions in recent years. Such
as, the authors in paper [19] considered the problem of the stability of GRNs involved with spatial
diffusions. With the help of the theory of stable differential equations, a novel generation requirement
was created to ensure global exponential stability of reaction diffusions GRNs. Sun et al. [20] dis-
cussed H∞ state estimation to GRNs with spatial diffusions and stochastic gain fluctuations, in which
the H∞ performance index is induced to evaluate the ability of the system to resist disturbances and
a fuzzy model-based approach is employed to evaluate the immunity of the system. Song et al. [21]
investigated delayed GRNs with spatial diffusions. By using Lyapunov functional, Wirtinger’s and
Halanay’s inequalities, etc, a novel standard to the networks is developed to guarantee that the estima-
tion error converges to zero. For more researches about GRNs with spatial diffusions, please refer to
literatures [22, 23].

For both computational simulation and analysis, engineers frequently discretize time continuous
models to evaluate their structural behaviors. The received and operated signals in digital networks are
predicated on discrete time rather than continuous time. Accordingly, discrete-time GRNs have been
discussed by numerous scholars, e.g., [24–27]. It is remarkable that 1) the difference methods used in
papers [24–27] were Euler difference; 2) the majority of reported findings on GRNs only concerned
time discrete GRNs [24–27], while the corresponding results about space discrete GRNs have not
been appreciated adequately in the existing researches, probably due to the partial invalidity of the
traditional methods in space-time continuous networks and the difficulty of computing the difference
of Lyapunov-Krasovskii functional in discrete space and time networks. These situations trigger this
discussion to discuss the space-time discrete GRNs by using exponential Euler difference for time
variable and central finite difference for space variable. Notably, the exponential Euler difference is a
more effective method than Euler difference (see references [28–33]).

Introduced by the above motivations, the main purpose of this article is to newly formulate a
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discrete-space and discrete-time stochastic GRNs by employing the methods of exponential Euler dif-
ference and finite difference. Subsequently, the constant variation formula, global existence, mean
square finiteness and boundedness to the discrete-space and discrete-time GRNs are addressed. Addi-
tionally, based on the discrete-space and discrete-time constant variation formula, global mean square
exponential stability and the optimal exponential convergence rate are discussed by solving nonlin-
ear constrained optimization problem. At last, random periodicity of discrete-space and discrete-time
stochastic GRNs is explored. In the following, the leading researching content and novelties are sum-
marized as follows. 1) Discrete-space and discrete-time stochastic GRNs are newly established to
expand the discrete-time GRNs [24–27]. 2) Global boundedness and exponential stability in mean
square sense are discussed based on discrete-space and discrete-time constant variation formula. 3)
The optimal exponential convergence rate can be gained by solving a constrained optimization prob-
lem. 4) Random periodicity of discrete-space and discrete-time stochastic GRNs is explored by the
theories of semi-flow and metric dynamical systems. 5) This discussion starts the studies of global
exponential stability and random periodicity of discrete-space and discrete-time stochastic GRNs.

Plan of this paper: In Section 2, discrete-time stochastic GRNs with discrete spatial diffusions are
formulated and some important lemmas are introduced. Section 3 discusses global existence, mean
square finiteness and boundedness to GRNs based on discrete constant variation formula. In Section 4,
global exponential stability is addressed and the optimal exponential convergence rate can be solved
by a constrained optimization problem. In addition, random periodicity of discrete space and time
stochastic GRNs is displayed in Section 5. A numerical example of realizing global exponential sta-
bility with optimal convergence rate and random periodicity for discrete stochastic GRNs is given in
Section 6. Section 7 states the conclusions and perspectives of this article.

Symbols: Rm denotes the space of m-dimensional real vectors; Z denotes the set of integers; Z0 =

{0, 1, 2, . . .}; N = Z0 \ {0}; IJ = I ∩ J, ∀I, J ⊆ R. Let

ξ1 = (1, 0, . . . , 0)T ∈ Rn, ξ2 = (0, 1, . . . , 0)T ∈ Rn, . . . ξn = (0, 0, . . . , 1)T ∈ Rn.

Define ∂℧ς := ℧̄ς\℧ς, where

℧̄ς =
{
ς = (ς1, . . . , ςn)T ∈ Rn : ςq = 0, 1, . . . ,Nq,Nq ∈ N, q = 1, 2, . . . , n

}
,

℧ς =
{
ς = (ς1, . . . , ςn)T ∈ Rn : ςq = 1, 2, . . . ,Nq − 1,Nq ∈ N, q = 1, 2, . . . , n

}
.

For any function u : ℧̄ς × Z→ Rm with u := u⟨ς⟩k = (u⟨ς⟩1,k, . . . , u
⟨ς⟩
m,k)

T , denote

∆u⟨·⟩k = u⟨·⟩k+1 − u⟨·⟩k , ∆
2
ℏq

u⟨ς⟩k =
u⟨ς+ξq⟩k − 2u⟨ς⟩k + u⟨ς−ξq⟩k

ℏ2 , ∆̃2
ℏq

u⟨ς⟩k =

(
∆2
ℏq
+

2
ℏ2

)
u⟨ς⟩k ,

where (ς, k) ∈ ℧̄ς × Z, ℏ > 0, q = 1, 2, . . . , n. Hereon, ∆ and ∆2
ℏ·

denote the first order difference and
second order central finite difference with respect to time and space variables (i.e., k and ς), respec-
tively.

2. Space-time discrete stochastic GRNs

This section firstly gives discrete-time stochastic GRNs with discrete spatial diffusions, which can
be regarded as a full dicretization scheme of continuous time stochastic GRNs with reaction diffusions.
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Next, based on the theory of difference equations, constant variation formula for such discrete networks
is addressed. In the end, some important inequalities such as Minkowski inequality in Lemma 2.2, etc.
are recalled.

This article considers the following discrete space and time stochastic GRNs in the shape of

m⟨ς⟩i,k+1 = e−ai,khm⟨ς⟩i,k +
1 − e−ai,kh

ai,k

[ n∑
q=1

µiq∆̃
2
ℏq

m⟨ς⟩i,k

+

m∑
j=1

bi j,k f j(p⟨ς⟩j,k ) +
m∑

j=1

γi j,kσ j(p⟨ς⟩j,k )w1 j,k + Ii,k

]
,

p⟨ς⟩i,k+1 = e−ci,khp⟨ς⟩i,k +
1 − e−ci,kh

ci,k

[ n∑
q=1

νiq∆̃
2
ℏq

p⟨ς⟩i,k

+

m∑
j=1

ϖi j,kη j(m⟨ς⟩j,k )w2 j,k + di,km⟨ς⟩i,k

]
, ∀(ς, k) ∈ ℧ς × Z,

(2.1)

where mi and pi represent the concentrations of the ith mRNA and ith protein, respectively, i =
1, 2, . . . ,m; ℏ and h of less than 1 denote the space and time steps’ length in order;

ai,· := a∗i,· + 2
n∑

q=1

µiq

ℏ2 , ci,· := c∗i,· + 2
n∑

q=1

νiq

ℏ2 ;

a∗i > 0 and c∗i > 0 are the decay rates of the ith mRNA and ith protein, respectively; di > 0 is the
translation rate; µiq and νiq stand for the transmission diffusion matrixes; Ii =

∑
j∈Ii

wi j, wi j ≥ 0 is
bounded and Ii is the set of all the j which is a repressor of gene i; B = (bi j) ∈ Rm×m with

bi j =


wi j if transcription factor j is an activator of gene i,
0 if there is no link from node j to i,
−wi j if transcription factor j is a repressor of gene i;

γi j and ϖi j denote noise intensities, i, j = 1, 2, . . . ,m; f j, σ j, η j take the Hill function, i.e.,

f j(x) =

(
x
α1 j

)H1 j

1 +
(

x
α1 j

)H1 j
, σ j(x) =

(
x
α2 j

)H2 j

1 +
(

x
α2 j

)H2 j
, η j(x) =

(
x
α3 j

)H3 j

1 +
(

x
α3 j

)H3 j
, ∀x ∈ R,

Hp j is the Hill coefficient and αp j is a positive constant, p = 1, 2, 3, j = 1, 2, . . . ,m;

w1 j,k =
1
h

[
B1 j(kh + h) − B1 j(kh)

]
, w2 j,k =

1
h

[
B2 j(kh + h) − B2 j(kh)

]
,

j = 1, 2, . . . ,m; B11, . . . ,B1m,B21, . . . ,B2m are scalar mutually independent two sides standard Brown
motions on complete probability space (Ω,F ,F·,P) with filtration

Fk = σ
{
(w11,s, . . . ,w1m,s,w21,s, . . . ,w2m,s) : s ∈ (−∞, k)Z

}
, ∀k ∈ Z.
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The Dirichlet boundary conditions of GRNs (2.1) are described as

m⟨ς⟩i,k

∣∣∣∣
ς∈∂℧ς

= 0 = p⟨ς⟩i,k

∣∣∣∣
ς∈∂℧ς
, ∀k ∈ Z.

Hereon, ℧ς can be regarded as discrete form of rectangle area ℧ in Rm, which is described by

℧ =
{
x = (x1, x2, . . . , xn)T ∈ Rn : 0 < xq < Lq := ℏNq,Nq ∈ N, q = 1, 2, . . . , n

}
.

Let m⟨ς⟩i,k = Mi(ςℏ, kh) and p⟨ς⟩i,k = Pi(ςℏ, kh) for (ς, k) ∈ ℧ς × Z, i = 1, 2, . . . ,m. Then GRNs (2.1) is
full discretization scheme to the following stochastic GRNs with reaction diffusions

∂

∂t
Mi(x, t) =

n∑
q=1

∂

∂xq

[
µiq
∂Mi(x, t)
∂xq

]
− a∗i (t)Mi(x, t)

+

m∑
j=1

bi j(t) f j(P j(x, t)) +
m∑

j=1

γi j(t)σ j(P j(x, t))
d
dt
B1 j(t) + Ii(t),

∂

∂t
Pi(x, t) =

n∑
q=1

∂

∂xq

[
νiq
∂Pi(x, t)
∂xq

]
− c∗i (t)Pi(x, t)

+di(t)Mi(x, t) +
m∑

j=1

ϖi j(t)η j(M j(x, t))
d
dt
B2 j(t), ∀(x, t) ∈ ℧ × R,

(2.2)

where x = (x1, . . . , xn)T ∈ ℧ ⊆ Rn refers to space variable, i = 1, 2, . . . ,m. Hereby, the discrete
techniques in GRNs (2.1) are exponential Euler difference (EED in short) for time variable and finite
difference method (FDM in short) for space variable. More information about EED and FDM, please
refer to papers [28–33] and [34–36], respectively.

According to the technique of FDM in papers [34–36], it follows from GRNs (2.1) that

∂

∂t
Mi(ςℏ, t) =

n∑
q=1

µiq∆̃
2
ℏq

Mi(ςℏ, t) −
[
a∗i (t) + 2

n∑
q=1

µiq

ℏ2

]
Mi(ςℏ, t)

+

m∑
j=1

bi j(t) f j(P j(ςℏ, t)) +
m∑

j=1

γi j(t)σ j(P j(ςℏ, t))
d
dt
B1 j(t) + Ii(t),

∂

∂t
Pi(ςℏ, t) =

n∑
q=1

νiq∆̃
2
ℏq

Pi(ςℏ, t) −
[
c∗i (t) + 2

n∑
q=1

νiq

ℏ2

]
Pi(ςℏ, t)

+di(t)Mi(ςℏ, t) +
m∑

j=1

ϖi j(t)η j(M j(ςℏ, t))
d
dt
B2 j(t), ∀(ς, t) ∈ ℧ς × R,

(2.3)

where
∆̃2
ℏq

Mi(ςℏ, ·) :=
1
ℏ2

[
Mi(ςℏ + ξqℏ, ·) + Mi(ςℏ − ξqℏ, ·)

]
and

∆̃2
ℏq

Pi(ςℏ, ·) :=
1
ℏ2

[
Pi(ςℏ + ξqℏ, ·) + Pi(ςℏ − ξqℏ, ·)

]
for q = 1, 2, . . . , n, i = 1, 2, . . . ,m.

Define m⟨ς⟩i,k = Mi(ςℏ, kh), p⟨ς⟩i,k = Pi(ςℏ, kh), ai,k := ai(kh), bi,k := bi(kh), ci,k := ci(kh), di,k := di(kh),
γi j,k := γi j(kh), ϖi j,k := ϖi j(kh) and Ii,k := Ii(kh) for (ς, k) ∈ ℧ς × Z, i, j = 1, 2, . . . ,m. By applying
EED in literatures [28–33] into (2.3), it yields GRNs (2.1).
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Remark 2.1. Recently, in literatures [28–33], EED has been widely employed to study discrete-time
systems arisen from many fields. Initially, the authors [29] discussed the long time behaviours of time
discrete neural networks by utilizing EED. Next, EED in papers [30–32] had been used to study the
time discrete stochastic models. In the wake of high level of attention on fractional calculus, papers
[28, 33] established the frame of EED to multi-delay Caputo-Fabrizio fractional-order differential
equations and BAM neural networks. From the viewpoints of both theories and numerical examples
in literatures [28–33], it is a powerful demonstration that EED is a more precise portrayal of time-
continuous systems than Euler difference. To date, nevertheless, the concerns of discrete-time GRNs
with discrete spatial diffusions have been addressed by very few scholars. Thus, GRNs (2.1) has a
excellent research value.

Remark 2.2. As is well-known, FDM is an important way to solve partial differential equations in
the area of numerical computations. Numerous literatures paid their attentions on the researches of
space discrete models arisen from many fields of science and engineering and these models were called
the lattice models (see [34–36]). Up to now, it exists several reports focusing on GRNs with reaction
diffusions [19–23]. To the present knowledge of the authors, there are almost no papers dealing with
the study of discrete space-time GRNs. As a result, the work at hand is expected to address such a void.

In line with the theory of difference equations, a discrete-space and discrete-time constant variation
formula to GRNs (2.1) will be established as follows.

Lemma 2.1. GRNs (2.1) can be given expression to

m⟨ς⟩i,k =

k−1∏
s=k0

e−ai,shm⟨ς⟩i,k0
+

k−1∑
v=k0

k−1∏
s=v+1

e−ai,sh(1 − e−ai,vh)
ai,v

×

[ n∑
q=1

µiq∆̃
2
ℏq

m⟨ς⟩i,v +

m∑
j=1

bi j,v f j(p⟨ς⟩j,v ) +
m∑

j=1

γi j,vσ j(p⟨ς⟩j,v )w1 j,v + Ii,v

]
,

p⟨ς⟩i,k =

k−1∏
s=k0

e−ci,shp⟨ς⟩i,k0
+

k−1∑
v=k0

k−1∏
s=v+1

e−ci,sh(1 − e−ci,vh)
ci,v

×

[ n∑
q=1

νiq∆̃
2
ℏq

p⟨ς⟩i,v + di,vm⟨ς⟩i,v +

m∑
j=1

ϖi j,vη j(m⟨ς⟩j,v )w2 j,v

]
,

(2.4)

where (ς, k) ∈ ℧ς × [k0,∞)Z with some initial point k0 ∈ Z, i = 1, 2, . . . ,m. Besides, it holds

m⟨ς⟩i,k

∣∣∣∣
ς∈∂℧ς

= 0 = p⟨ς⟩i,k

∣∣∣∣
ς∈∂℧ς
, ∀k ∈ [k0,∞)Z, i = 1, 2, . . . ,m.

Remark 2.3. Let µiq = νiq = 0 for i = 1, 2, . . . ,m, q = 1, 2, . . . , n, and get rid of the space variable in
GRNs (2.1), then Eq (2.4) is turned into

mi,k =

k−1∏
s=k0

e−ai,shmi,k0 +

k−1∑
v=k0

k−1∏
s=v+1

e−ai,sh(1 − e−ai,vh)
ai,v

[ m∑
j=1

bi j,v f j(p j,v) +
m∑

j=1

γi j,vσ j(p j,v)w1 j,v + Ii,v

]
,

pi,k =

k−1∏
s=k0

e−ci,shpi,k0 +

k−1∑
v=k0

k−1∏
s=v+1

e−ci,sh(1 − e−ci,vh)
ci,v

[
di,vmi,v +

m∑
j=1

ϖi j,vη j(m j,v)w2 j,v

]
, ∀k ∈ [k0,∞)Z,

(2.5)

for all i, j = 1, 2, . . . ,m. Based on Eq (2.5), we can study the existence of various solutions for discrete-
time GRNs, e.g., almost periodicity [10], almost automorphism [28], etc.
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Let L2(Ω,Rm) denote the family of all square integrable Rm-valued random variables with the norm

∥u∥2 = max
1≤i≤m

[
E
∣∣∣ui

∣∣∣2]1/2
, ∀u = (u1, . . . , um)T ∈ L2(Ω,Rm),

in which E denotes the expectation operator with respect to probability space (Ω,F ,P). Let B(℧̄ς ×
Z, L2(Ω,R2m)) denote the whole bounded mappings from ℧̄ς × Z to L2(Ω,R2m) and define

X =
{
u ∈ B(℧̄ς × Z, L2(Ω,R2m))

∣∣∣∣u⟨ς⟩k = 0,∀(ς, k) ∈ ∂℧ς × Z
}

endowed with the norm

∥u∥X = sup
(ς,k)∈℧ς×Z

∥∥∥u⟨ς⟩k

∥∥∥
2
= sup

(ς,k)∈℧ς×Z
max

1≤i≤2m

[
E
∣∣∣u⟨ς⟩i,k

∣∣∣2]1/2
, ∀u = (u1, . . . , u2m)T ∈ X.

Definition 2.1. A discrete-space and discrete-time stochastic process w = (m1, . . . ,mm,p1, . . . ,pm) ∈
X is said to be the solution of GRNs (2.1) on [k0,∞)Z if it is Fk-adaptive and meets constant variation
Eq (2.4), ∀k ∈ [k0,∞)Z.

Lemma 2.2. ( [37]) (Minkowski inequality) If X,Y ∈ L2(Ω,R), then(
E|X + Y |2

) 1
2
≤

(
E|X|2

) 1
2
+

(
E|Y |2

) 1
2
.

Lemma 2.3. E|w j,k|
2 =

1
h

for k ∈ Z, j = 1, 2, . . . , n.

Proof. By the definition of w j,k and Itô isometric property, it derives

E|w j,k|
2 =

1
h2 E

( ∫ kh+h

kh
dw j(s)

)2

=
1
h2 E

∫ kh+h

kh
ds =

1
h
, ∀k ∈ Z, j = 1, 2, . . . , n.

This completes the proof.

3. Global existence and mean square boundedness

This section mainly focuses on global existence, global finiteness and global mean square bounded-
ness to GRNs (2.1). In the first place, via the constant variation formula in Lemma 2.1 and the theory
of stochastic calculus, global existence and finiteness of the solutions to GRNs (2.1) have been studied.
Additionally, global mean square boundedness to GRNs (2.1) is addressed with the helps of constant
variation Eq (2.4) and Minkowski inequality in Lemma 2.2, etc.

Set
a∗i := inf

k∈Z
|a∗i,k|, a⋄ := min

1≤i≤m
inf
k∈Z

ai,k, ai := inf
k∈Z
|ai,k|, āi := sup

k∈Z
|ai,k|,

c∗i := inf
k∈Z
|c∗i,k|, c⋄ := min

1≤i≤m
inf
k∈Z

ci,k, ci := inf
k∈Z
|ci,k|, c̄i := sup

k∈Z
|ci,k|,

d̄i := sup
k∈Z
|di,k|, Īi := sup

k∈Z
|Ii,k|, b̄i j := sup

k∈Z
|bi j,k|,
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γ̄i j := sup
k∈Z
|γi j,k|, ϖ̄i j := sup

k∈Z
|ϖi j,k|,

where i, j = 1, 2, . . . ,m.
The initial values of GRNs (2.1) are described by

m⟨ς⟩i,k0
= δ⟨ς⟩i , p⟨ς⟩i,k0

= ρ⟨ς⟩i , ∀ς ∈ ℧̄ς, i = 1, 2, . . . ,m, (3.1)

where δ· and ρ· are Fk0-adaptive and Fk0+1-adaptive, respectively.
Assume that w = (m,p)T with m = (m1, . . . ,mm)T and p = (p1, . . . ,pm)T is a solution of GRNs

(2.1) with initial values as those in (3.1). Define δ = (δ1, . . . , δm)T and ρ = (ρ1, . . . , ρm)T .

Theorem 3.1. Suppose that ∥δ∥X < ∞, ∥ρ∥X < ∞ and the assumptions below hold.

(E1) ai,k, ci,k, µiq, νiq, bi j,k, di,k, γi j,k, ϖi j,k and Ii,k are bounded constants or sequences, k ∈ Z, q =
1, 2, . . . , n, i, j = 1, 2, . . . ,m. Further, min1≤i≤m{a, c} > 0.

(E2) max j=1,2,...,m{| f j(s)|, |σ j(s)|, |η j(s)|} ≤ ς1|s| + ς2, where ς1, ς2 are two positive constants.

Then GRNs (2.1) with initial values (3.1) possesses a solution w = (m,p) with m = (m1, . . . ,mm)T and
p = (p1, . . . ,pm)T on [k0,+∞)Z.

Proof. According to initial values in (3.1), it fulfills that

(a) (Existence) m⟨ς⟩k and p⟨ς⟩k exist for (ς, k) ∈ ℧̄ς × [k0, k0 + 1]Z.

(b) (Adaptability) m⟨ς⟩k and p⟨ς⟩k are Fk-adaptive for (ς, k) ∈ ℧̄ς × [k0, k0 + 1]Z.

(c) (Mean square finiteness)
∥∥∥m⟨ς⟩k

∥∥∥
2
< ∞ and

∥∥∥p⟨ς⟩k

∥∥∥
2
< ∞ for (ς, k) ∈ ℧̄ς × [k0, k0 + 1]Z.

Next, a method of mathematical induction will be employed to prove m⟨·⟩k and p⟨·⟩k satisfying (a)–(c)
for k ∈ [k0,K]Z, where K ≥ k0 + 2 is an arbitrary integer. Assume that m⟨·⟩k′ and p⟨·⟩k′ meet (a)–(c) for
k′ ∈ [k0 + 1,K]Z.

In accordance to constant variation Eq (2.4), m⟨ς⟩i,k′+1 and m⟨ς⟩i,k′+1 are Fk′+1-adaptive and exist for
ς ∈ ℧̄ς by the adaptability and existences of m⟨ς⟩i,s and p⟨ς⟩i,s in (ς, s) ∈ ℧̄ς × [k0, k′]Z, i = 1, 2, . . . ,m.
Further, by Minkowski inequality in Lemmas (2.2) and (2.3), it derives

∥∥∥m⟨ς⟩k′+1

∥∥∥
2
= max

1≤i≤m

[
E

∣∣∣m⟨ς⟩i,k′+1

∣∣∣2] 1
2

= max
1≤i≤m

{
E
∣∣∣∣∣ k′∏

s=k0

e−ai,shm⟨ς⟩i,k0
+

k′∑
v=k0

k′∏
s=v+1

e−ai,sh(1 − e−ai,vh)
ai,v

×

[ n∑
q=1

µiq∆̃
2
ℏq

m⟨ς⟩i,v +

m∑
j=1

bi j,v f j(p⟨ς⟩j,v ) +
m∑

j=1

γi j,vσ j(p⟨ς⟩j,v )w1 j,v + Ii,v

]∣∣∣∣∣2}
1
2

≤ max
1≤i≤m

eāih(k′−k0+1)∥δ∥X + max
1≤i≤m

1 − e−aih

ai(1 − eāih)

[ n∑
q=1

|µiq| max
(ς,s)∈℧̄ς×[k0,k′]Z

∥∥∥∆2
ℏq

m⟨ς⟩s

∥∥∥
2

+

m∑
j=1

b̄i jς1 max
(ς,s)∈℧̄ς×[k0,k′]Z

∥p⟨ς⟩s ∥2 + h−
1
2

m∑
j=1

γ̄i jς1 max
(ς,s)∈℧̄ς×[k0,k′]Z

∥p⟨ς⟩s ∥2
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+

m∑
j=1

b̄i jς2 + h−
1
2

m∑
j=1

γ̄i jς2 + Ī
]
, ∀ς ∈ ℧ς.

Similarly, it deduces

∥∥∥p⟨ς⟩k′+1

∥∥∥
2
= max

1≤i≤m

[
E

∣∣∣p⟨ς⟩i,k′+1

∣∣∣2] 1
2

= max
1≤i≤m

{
E
∣∣∣∣∣ k−1∏

s=k0

e−ci,shp⟨ς⟩i,k0
+

k−1∑
v=k0

k−1∏
s=v+1

e−ci,sh(1 − e−ci,vh)
ci,v

×

[ n∑
q=1

νiq∆̃
2
ℏq

p⟨ς⟩i,v + di,vm⟨ς⟩i,v +

m∑
j=1

ϖi j,vη j(m⟨ς⟩j,v )w2 j,v

]∣∣∣∣∣2}
1
2

≤ max
1≤i≤m

ec̄ih(k′−k0+1)∥ρ∥X + max
1≤i≤m

1 − e−cih

ci(1 − ec̄ih)

[ n∑
q=1

|νip| max
(ς,s)∈℧̄ς×[k0,k′]Z

∥∥∥∆2
ℏq

p⟨ς⟩s

∥∥∥
2

+d̄i max
(ς,s)∈℧̄ς×[k0,k′]Z

∥m⟨ς⟩s ∥2 + h−
1
2

m∑
j=1

ϖ̄i j max
(ς,s)∈℧̄ς×[k0,k′]Z

∥m⟨ς⟩s ∥2 + h−
1
2

m∑
j=1

ϖ̄i jς2

]
,

where ς ∈ ℧ς.
By the mean square finiteness of u⟨ς⟩·,s and p⟨ς⟩·,s in (ς, s) ∈ ℧̄ς × [k0, k′]Z, it concludes∥∥∥∆̃2

ℏq
m⟨ς⟩s

∥∥∥
2
< ∞,

∥∥∥m⟨ς⟩k′+1

∥∥∥
2
< ∞,

∥∥∥∆̃2
ℏq

p⟨ς⟩s

∥∥∥
2
< ∞,

∥∥∥p⟨ς⟩k′+1

∥∥∥
2
< ∞

for all (ς, s) ∈ ℧̄ς×[k0, k′]Z, q = 1, 2, . . . , n.Consequently, m⟨·⟩k′+1 and p⟨·⟩k′+1 satisfy mean square finiteness
in (c). By the arbitrariness of K, m⟨·⟩k and p⟨·⟩k meet (a)–(c) for k ∈ [k0,∞)Z, which induces global
existence of the solution of GRNs (2.1) with initial values (3.1). This completes the proof.

Theorem 3.1 only gives global finiteness in mean square sense, the application value is relatively
small. In the following, global boundedness in mean square sense of GRNs (2.1) with initial values
(3.1), which has great potential for application in practical processes, will be addressed on the basis of
constant variation Eq (2.4) and Minkowski inequality.

Theorem 3.2. Supposing that the following conditions are valid.

(G1) f j(0) = σ j(0) = η j(0) = 0 and it exists positive numbers L f
j , Lσj and Lηj such that

| f j(u) − f j(v)| ≤ L f
j |u − v|, |σ j(u) − σ j(v)| ≤ Lσj |u − v|, |η j(u) − η j(v)| ≤ Lηj |u − v|

for any u, v ∈ R, j = 1, 2, . . . ,m.

(G2) min{a⋄, c⋄} > 0 and

λ1 := max
1≤i≤m

{
1
ai

[ n∑
q=1

2|µiq|

ℏ2 +

m∑
j=1

b̄i jL
f
j + h−

1
2

m∑
j=1

γ̄i jLσj
]
,

1
ci

[ n∑
q=1

2|νiq|

ℏ2 + d̄i + h−
1
2

m∑
j=1

ϖ̄i jL
η
j

]}
< 1.
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Then the solution of GRNs (2.1) is global mean square boundedness, i.e.,

max
(ς,k)∈℧ς×[k0,∞)Z

{∥∥∥m⟨ς⟩k

∥∥∥
2
,
∥∥∥p⟨ς⟩k

∥∥∥
2
,
}
≤
λ0

1 − λ1
,

where λ0 := max
1≤i≤m

{
∥δ∥X +

1
ai

Īi, ∥ρ∥X

}
.

Proof. For any constant K ∈ [k0,∞)Z, define

MK := max
(ς,k)∈℧ς×[k0,K]Z

∥∥∥m⟨ς⟩k

∥∥∥
2
, PK := max

(ς,k)∈℧ς×[k0,K]Z

∥∥∥p⟨ς⟩k

∥∥∥
2
, ZK := max

(ς,k)∈℧ς×[k0,K]Z

∥∥∥z⟨ς⟩k

∥∥∥
2
.

In view of Theorem 3.1,MK , PK andZK are finite. With the helps of Eq (2.4), Minkowski inequality
in Lemmas (2.2) and (2.3), it computes

∥∥∥m⟨ς⟩k

∥∥∥
2
= max

1≤i≤m

[
E

∣∣∣m⟨ς⟩i,k

∣∣∣2] 1
2

= max
1≤i≤m

{
E
∣∣∣∣∣ k−1∏

s=k0

e−ai,shm⟨ς⟩i,k0
+

k−1∑
v=k0

k−1∏
s=v+1

e−ai,sh(1 − e−ai,vh)
ai,v

×

[ n∑
q=1

µiq∆̃
2
ℏq

m⟨ς⟩i,v +

m∑
j=1

bi j,v f j(p⟨ς⟩j,v ) +
m∑

j=1

γi j,vσ j(p⟨ς⟩j,v )w1 j,v + Ii,v

]∣∣∣∣∣2}
1
2

≤ ∥δ∥X + max
1≤i≤m

1 − e−aih

ai

k−1∑
v=k0

e−aih(k−v−1)
{

E
[ n∑

q=1

|µiq|
∣∣∣∆2
ℏq

m⟨ς⟩i,v

∣∣∣
+

m∑
j=1

b̄i jL
f
j

∣∣∣p⟨ς⟩j,v

∣∣∣ + m∑
j=1

γ̄i jLσj
∣∣∣p⟨ς⟩j,v

∣∣∣∣∣∣w1 j,v

∣∣∣ + Īi

]2} 1
2

≤ ∥δ∥X + max
1≤i≤m

1
ai

[ n∑
q=1

2|µiq|

ℏ2 MK +

m∑
j=1

b̄i jL
f
jPK + h−

1
2

m∑
j=1

γ̄i jLσjPK + Īi

]
≤ ∥δ∥X + max

1≤i≤m

1
ai

Īi + max
1≤i≤m

1
ai

[ n∑
q=1

2|µiq|

ℏ2 +

m∑
j=1

b̄i jL
f
j + h−

1
2

m∑
j=1

γ̄i jLσj
]
ZK

≤ λ0 + λ1ZK , ∀(ς, k) ∈ ℧ς × [k0,K]Z. (3.2)

Similarly,

∥∥∥p⟨ς⟩k

∥∥∥
2
= max

1≤i≤m

[
E

∣∣∣p⟨ς⟩i,k

∣∣∣2] 1
2

= max
1≤i≤m

{
E
∣∣∣∣∣ k−1∏

s=k0

e−ci,shp⟨ς⟩i,k0
+

k−1∑
v=k0

k−1∏
s=v+1

e−ci,sh(1 − e−ci,vh)
ci,v

×

[ n∑
q=1

νiq∆̃
2
ℏq

p⟨ς⟩i,v + di,vm⟨ς⟩i,v +

m∑
j=1

ϖi j,vη j(m⟨ς⟩j,v )w2 j,v

∣∣∣∣∣2}
1
2
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≤ ∥ρ∥X + max
1≤i≤m

1 − e−cih

ci

k−1∑
v=k0

e−cih(k−v−1)
{

E
[ n∑

q=1

|νiq|
∣∣∣∆2
ℏq

p⟨ς⟩i,v

∣∣∣
+d̄i

∣∣∣m⟨ς⟩j,v

∣∣∣ + m∑
j=1

ϖ̄i jL
η
j

∣∣∣m⟨ς⟩j,v

∣∣∣∣∣∣w2 j,v

∣∣∣]2} 1
2

≤ ∥ρ∥X + max
1≤i≤m

1
ci

[ n∑
q=1

2|νiq|

ℏ2 PK + d̄iMK + h−
1
2

m∑
j=1

ϖ̄i jL
η
jMK

]

≤ ∥ρ∥X + max
1≤i≤m

1
ci

[ n∑
q=1

2|νiq|

ℏ2 + d̄i + h−
1
2

m∑
j=1

ϖ̄i jL
η
j

]
ZK

≤ λ0 + λ1ZK , ∀(ς, k) ∈ ℧ς × [k0,K]Z. (3.3)

Combining (3.2) and (3.3), it follows from (G2) that

ZK ≤ λ0 + λ1ZK =⇒ ZK ≤
λ0

1 − λ1
,

which induces from the arbitrariness of K that

max
(ς,k)∈℧ς×[k0,∞)Z

∥∥∥m⟨ς⟩k

∥∥∥
2
≤
λ0

1 − λ1
, max

(ς,k)∈℧ς×[k0,∞)Z

∥∥∥p⟨ς⟩k

∥∥∥
2
≤
λ0

1 − λ1
.

This completes the proof.

Remark 3.1. The assumption min{a⋄, c⋄} > 0 in (G2), in which ai,· := a∗i,· + 2
∑n

q=1
µiq

ℏ2 and ci,· :=
c∗i,· + 2

∑n
q=1

νiq
ℏ2 for i = 1, 2, . . . ,m, implies that the sum of the diffusions’ intensities of the ith mRNA

or ith protein is greater than -1
2ℏ

2 times the decay rates of the ith mRNA or ith protein, respectively,
i = 1, 2, . . . ,m. Furthermore, if µi· and νi· are nonnegative constants, then λ1 < 1 in (G2) is equal to

a∗i >
m∑

j=1

b̄i jL
f
j + h−

1
2

m∑
j=1

γ̄i jLσj and c∗i > d̄i + h−
1
2

m∑
j=1

ϖ̄i jL
η
j , i = 1, 2, . . . ,m.

This indicates that the spatial diffusions with nonnegative intensive coefficients have no influence on
global mean square boundedness of GRNs (2.1).

Remark 3.2. To assure the validity of condition (G2), the following aspects should be paid attention
in the application.

(i) The coefficients of GRNs (2.1), except for ai,k and ci,k, should be better to choose lesser constants,
instead, ai,k and ci,k should be selected biggish positive constants for any i = 1, 2, . . . ,m, k ∈ Z.

(ii) Generally, small positive constants are selected for the time and space steps’ length h and ℏ.

(iii) The activation functions f j, σ j and η j of GRNs (2.1) are best to select some small enough positive
constants L f

j , Lσj and Lηj for any i = 1, 2, . . . ,m.

Remark 3.3. Remarkably, the assumptions f j(0) = σ j(0) = η j(0) = 0 in (G1) are not obligatory. We
can remove this assumption, but it will increase the computational difficulties of this discussion.
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Remark 3.4. If h, ℏ→ 0 in assumption (G2), then λ1 < 1 is hard to be valid. So it is a disadvantage of
the proposed method in this discussion. We hope it can be improved in the future works.

When γi j = ϖi j = 0 in GRNs (2.1) for i, j = 1, 2, . . . ,m, then it is turned into a determined networks
as noted below

m⟨ς⟩i,k+1 = e−ai,khm⟨ς⟩i,k +
1 − e−ai,kh

ai,k

[ n∑
q=1

µiq∆̃
2
ℏq

m⟨ς⟩i,k +

m∑
j=1

bi j,k f j(p⟨ς⟩j,k ) + Ii,k

]
,

p⟨ς⟩i,k+1 = e−ci,khp⟨ς⟩i,k +
1 − e−ci,kh

ci,k

[ n∑
q=1

νiq∆̃
2
ℏq

p⟨ς⟩i,k + di,km⟨ς⟩i,k

]
, ∀(ς, k) ∈ ℧ς × Z,

(3.4)

where i = 1, 2, . . . ,m.
Further, let µi· = νi· = 0 in GRNs (3.4), it is changed to the following discrete-time networks

m⟨ς⟩i,k+1 = e−ai,khm⟨ς⟩i,k +
1 − e−ai,kh

ai,k

[ m∑
j=1

bi j,k f j(p⟨ς⟩j,k ) + Ii,k

]
,

p⟨ς⟩i,k+1 = e−ci,khp⟨ς⟩i,k +
1 − e−ci,kh

ci,k
di,km⟨ς⟩i,k , ∀(ς, k) ∈ ℧ς × Z,

(3.5)

where i = 1, 2, . . . ,m.

Corollary 3.1. Supposing that (G1) and the following condition hold.

(G3) min{a⋄, c⋄} > 0 and

λ2 := max
1≤i≤m

{
1
ai

[ n∑
q=1

2|µiq|

ℏ2 +

m∑
j=1

b̄i jL
f
j

]
,

1
ci

[ n∑
q=1

2|νiq|

ℏ2 + d̄i

]}
< 1.

Then the solution of GRNs (3.4) is global mean square boundedness, i.e.,

max
(ς,k)∈℧ς×[k0,∞)Z

{∥∥∥m⟨ς⟩k

∥∥∥
2
,
∥∥∥p⟨ς⟩k

∥∥∥
2
,
}
≤
λ0

1 − λ2
.

Corollary 3.2. Supposing that (G1) and the following condition hold.

(G4) min{a⋄, c⋄} > 0 and λ3 := max
1≤i≤m

{
1
ai

[ m∑
j=1

b̄i jL
f
j

]
,

1
ci

d̄i

}
< 1.

Then the solution of GRNs (3.5) is global mean square boundedness, i.e.,

max
(ς,k)∈℧ς×[k0,∞)Z

{∥∥∥m⟨ς⟩k

∥∥∥
2
,
∥∥∥p⟨ς⟩k

∥∥∥
2
,
}
≤
λ0

1 − λ3
.

Remark 3.5. The existing literatures [24–27] had reported various dynamical explorations of
discrete-time GRNs (3.5). However, for discrete spatial diffusions networks (2.1), almost no paper
involves.
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4. Global exponential stability and optimal convergent rate

This section is chiefly concerned with global exponential stability in mean square sense to GRNs
(2.1) via the theory of stochastic calculus and some inequalities’ skills. Firstly, the definition of global
exponential stability in mean square sense with the exponential convergent rate to GRNs (2.1) is de-
scribed as a mathematical expression, which displays the asymptotic relationships of two arbitrary so-
lutions of GRNs (2.1) with different initial values. Subsequently, global exponential stability in mean
square sense to GRNs (2.1) is achieved and one optimization problem under nonlinear constraints is
created to gain the optimal convergent rate. At last, to acquire the optimal solution of convergent rate
in a feasible region, an enforceable algorithm is proposed to solve this regard.

Let (m,p)T and (m̃, p̃)T with m = (m1, . . . ,mm)T , m̃ = (m̃1, . . . , m̃m)T , p = (p1, . . . ,pm)T and
p̃ = (p̃1, . . . , p̃m)T be two arbitrary solutions of GRNs (2.1) with initial values

m⟨ς⟩k0
= δ⟨ς⟩ = (δ⟨ς⟩1 , . . . , δ

⟨ς⟩
m )T , m̃⟨ς⟩k0

= δ̃⟨ς⟩ = (δ̃⟨ς⟩1 , . . . , δ̃
⟨ς⟩
m )T ,

p⟨ς⟩k0
= ρ⟨ς⟩ = (ρ⟨ς⟩1 , . . . , ρ

⟨ς⟩
m )T , p̃⟨ς⟩k0

= ρ̃⟨ς⟩ = (ρ̃⟨ς⟩1 , . . . , ρ̃
⟨ς⟩
m )T ,

where δ̃⟨ς⟩ and ρ̃⟨ς⟩ are Fk0-adaptive and Fk0+1-adaptive, respectively; ς ∈ ℧ς.
Let e = (e1, . . . , em)T , ẽ = (ẽ1, . . . , ẽm)T , δ̂ = (δ̂1, . . . , δ̂m)T and ρ̂ = (ρ̂1, . . . , ρ̂m)T , where ei = mi−m̃i,

ẽi = pi − p̃i, δ̂i = δi − δ̃i and ρ̂i = ρi − ρ̃i, i = 1, 2, . . . ,m. From (2.4), it gets

e⟨ς⟩i,k =

k−1∏
s=k0

e−ai,shδ̂⟨ς⟩i +

k−1∑
v=k0

k−1∏
s=v+1

e−ai,sh(1 − e−ai,vh)
ai,v

×

[ n∑
q=1

µiq∆̃
2
ℏq

e⟨ς⟩i,v +

m∑
j=1

bi j,v f̃ j(ẽ⟨ς⟩j,v ) +
m∑

j=1

γi j,vσ̃ j(ẽ⟨ς⟩j,v )w1 j,v

]
,

ẽ⟨ς⟩i,k =

k−1∏
s=k0

e−ci,shρ̂⟨ς⟩i +

k−1∑
v=k0

k−1∏
s=v+1

e−ci,sh(1 − e−ci,vh)
ci,v

×

[ n∑
q=1

νiq∆̃
2
ℏq

ẽ⟨ς⟩i,v + di,ve⟨ς⟩i,v +

m∑
j=1

ϖi j,vη̃ j(e⟨ς⟩j,v )w2 j,v

]
,

(4.1)

where (ς, k) ∈ ℧ς × [k0,∞)Z with some initial point k0 ∈ Z,

f̃ j(ẽ⟨ς⟩j,k ) = f j(p⟨ς⟩j,k ) − f j(p̃⟨ς⟩j,k ), σ̃ j(ẽ⟨ς⟩j,k ) = σ j(p⟨ς⟩j,k ) − σ j(p̃⟨ς⟩j,k ), η̃ j(e⟨ς⟩j,k ) = η j(m⟨ς⟩j,k ) − η j(m̃⟨ς⟩j,k ),

i, j = 1, 2, . . . ,m. Besides, it holds e⟨ς⟩k

∣∣∣∣
ς∈∂℧ς

= 0 and ẽ⟨ς⟩k

∣∣∣∣
ς∈∂℧ς

= 0 for all k ∈ [k0,∞)Z.

Definition 4.1. GRNs (2.1) is said to be globally mean-square κ-exponential convergent if it exists
L > 0 and 0 < κ < 1 such that

max
ς∈℧ς

{∥∥∥e⟨ς⟩k

∥∥∥
2
,
∥∥∥ẽ⟨ς⟩k

∥∥∥
2

}
≤ L e−κ(k−k0)h max

ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
, ∀k ∈ [k0,∞)Z.

Hereon, κ is called the convergent rate of GRNs (2.1).
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Theorem 4.1. Let (G1)–(G2) hold. Then GRNs (2.1) is globally mean-square exponential convergent
with the best convergent rate κ with respect to a two-tuples (k0,L ), which can be addressed by solving
the following optimization problem under nonlinear constraints

min
(κ,L ′)T

(−κ) subject to


0 < L ′ < 1,

0 < κ ≤ min
1≤i≤m
{ai, ci},

(1 − e−min1≤i≤m{ai,ci}h)eκh

1 − e−(min1≤i≤m{ai,ci}−κ)h
λ1 < 1 −L ′,

(4.2)

where L ′ := 1
L

.

Proof. Owing to (G2), it has L > 1 and 0 < κ < min1≤i≤m{ai, ci} ensuring

υκ :=
(1 − e−min1≤i≤m{ai,ci}h)eκh

1 − e−(min1≤i≤m{ai,ci}−κ)h
λ1 < 1 −

1
L
. (4.3)

In the light of the error system (4.1), it yields

∣∣∣e⟨ς⟩i,k

∣∣∣ ≤ e−aih(k−k0)
∣∣∣δ̂⟨ς⟩i

∣∣∣ + 1 − e−aih

ai

k−1∑
v=k0

e−aih(k−v−1)

×

[ n∑
q=1

|µiq|
∣∣∣∆̃2
ℏq

e⟨ς⟩i,v

∣∣∣ + m∑
j=1

b̄i jL
f
j

∣∣∣ẽ⟨ς⟩j,v

∣∣∣ + m∑
j=1

γ̄i jLσj
∣∣∣ẽ⟨ς⟩j,v

∣∣∣∣∣∣w1 j,v

∣∣∣∣∣∣],
where (ς, k) ∈ ℧ς × [k0,∞)Z, i = 1, 2, . . . , n. By Minkowski, Cp inequalities and Lemma 2.3, one has

∥∥∥e⟨ς⟩k

∥∥∥
2
= max

1≤i≤m

{
E

∣∣∣e⟨ς⟩i,k

∣∣∣2 } 1
2

≤ max
1≤i≤m

e−aih(k−k0)
∥∥∥δ̂⟨ς⟩∥∥∥

2
+ max

1≤i≤m

1 − e−aih

ai

k−1∑
v=k0

e−aih(k−v−1)

×

[ n∑
q=1

2|µiq|

ℏ2

∥∥∥e⟨ς⟩v

∥∥∥
2
+

m∑
j=1

b̄i jL
f
j

∥∥∥ẽ⟨ς⟩v

∥∥∥
2
+ h−

1
2

m∑
j=1

γ̄i jLσj
∥∥∥ẽ⟨ς⟩v

∥∥∥
2

]
, (4.4)

where (ς, k) ∈ ℧ς × [k0,∞)Z, i = 1, 2, . . . , n.
Similarly,

∥∥∥ẽ⟨ς⟩k

∥∥∥
2
≤ max

1≤i≤m
e−cih(k−k0)

∥∥∥ρ̂⟨ς⟩∥∥∥
2
+ max

1≤i≤m

1 − e−cih

ci

k−1∑
v=k0

e−cih(k−v−1)

×

[ n∑
q=1

2|νiq|

ℏ2

∥∥∥ẽ⟨ς⟩v

∥∥∥
2
+ d̄i

∥∥∥e⟨ς⟩i,v

∥∥∥
2
+ h−

1
2

m∑
j=1

ϖ̄i jL
η
j

∥∥∥ẽ⟨ς⟩v

∥∥∥
2

]
, (4.5)

where (ς, k) ∈ ℧ς × [k0,∞)Z, i = 1, 2, . . . , n.
Subsequently, we will use the proof by contradiction. Supposing that

max
ς∈℧ς

{∥∥∥e⟨ς⟩k

∥∥∥
2
,
∥∥∥ẽ⟨ς⟩k

∥∥∥
2

}
≤ L e−κ(k−k0)h max

ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
, ∀k ∈ [k0,∞)Z. (4.6)

Electronic Research Archive Volume 31, Issue 6, 3097–3122.



3111

If not, it must exist k′ ∈ (k0,∞)Z ensuring that

max
ς∈℧ς

{∥∥∥e⟨ς⟩k

∥∥∥
2
,
∥∥∥ẽ⟨ς⟩k

∥∥∥
2

}
≤ L e−κ(k−k0)h max

ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
, ∀k ∈ [k0, k′ − 1]Z (4.7)

and

max
ς∈℧ς

{∥∥∥e⟨ς⟩k′

∥∥∥
2
,
∥∥∥ẽ⟨ς⟩k′

∥∥∥
2

}
> L e−κ(k

′−k0)h max
ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
. (4.8)

In line with (4.4), (4.7) and (4.3) in turn, it induces

max
ς∈℧ς

∥∥∥e⟨ς⟩k′

∥∥∥
2
≤ max

1≤i≤m
e−aih(k′−k0) max

ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
+ max

1≤i≤m

1 − e−aih

ai

k′−1∑
v=k0

e−aih(k′−v−1)

×

[ n∑
q=1

2|µiq|

ℏ2 +

m∑
j=1

b̄i jL
f
j + h−

1
2

m∑
j=1

γ̄i jLσj

]
L e−κ(v−k0)h max

ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
≤ max

1≤i≤m
e−aih(k′−k0) max

ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
+ max

1≤i≤m

1 − e−aih

ai

k′−1∑
v=k0

e−(ai−κ)(k
′−v−1)h

×

[ n∑
q=1

2|µiq|

ℏ2 +

m∑
j=1

b̄i jL
f
j + h−

1
2

m∑
j=1

γ̄i jLσj

]
eκhL e−κ(k

′−k0)h max
ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
≤ max

1≤i≤m
e−aih(k′−k0) max

ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
+ max

1≤i≤m

1 − e−aih

ai(1 − e−(ai−κ)h)

×

[ n∑
q=1

2|µiq|

ℏ2 +

m∑
j=1

b̄i jL
f
j + h−

1
2

m∑
j=1

γ̄i jLσj
]
eκhL e−κ(k

′−k0)h max
ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
=

{
1
L

max
1≤i≤m

e−(ai−κ)(k
′−k0)h + υκ

}
L e−κ(k

′−k0)h max
ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
≤ L e−κ(k

′−k0)h max
ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
. (4.9)

This induces a confliction with (4.8) and (4.6) is valid.
In the light of (4.5), (4.7) and (4.3) in turn, it results in

max
ς∈℧ς

∥∥∥ẽ⟨ς⟩k′

∥∥∥
2
≤ max

1≤i≤m
e−cih(k′−k0) max

ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
+ max

1≤i≤m

1 − e−cih

ci

k′−1∑
v=k0

e−cih(k′−v−1)

×

[ n∑
q=1

2|νiq|

ℏ2 + d̄i + h−
1
2

m∑
j=1

ϖ̄i jL
η
j

]
L e−κ(v−k0)h max

ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
≤ max

1≤i≤m
e−cih(k′−k0) max

ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
+ max

1≤i≤m

1 − e−cih

ci(1 − e−(ci−κ)h)

×

[ n∑
q=1

2|νiq|

ℏ2 + d̄i + h−
1
2

m∑
j=1

ϖ̄i jL
η
j

]
eκhL e−κ(k

′−k0)h max
ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
=

{
1
L

max
1≤i≤m

e−(ci−κ)(k
′−k0)h + υκ

}
L e−κ(k

′−k0)h max
ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
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≤ L e−κ(k
′−k0)h max

ς∈℧ς

{∥∥∥δ̂⟨ς⟩∥∥∥
2
,
∥∥∥ρ̂⟨ς⟩∥∥∥

2

}
. (4.10)

This induces a confliction with (4.8) and (4.6) is valid. As a consequence, GRNs (2.1) is globally
mean-square exponential convergent. The proof is finished.

In view of assumption (G2), the feasible region of optimization problem (4.2) is not empty. How-
ever, the optimal solution to optimization problem (4.2) may not exist. To ensure the existence of
optimal solution, we can simplify optimization problem (4.2) according to the following algorithm.

Algorithm 1 Optimal exponential convergent rate of GRNs (2.1)

1) Initial the coefficients of GRNs (2.1) and compute λ1.

2) Take the value of L ′ in interval (0, 1 − λ1).

3) Solve the following optimization problem under nonlinear constraints:

min
κ

(−κ) subject to


0 < κ ≤ min

1≤i≤m
{ai, ci},

(1 − e−min1≤i≤m{ai,ci}h)eκh

1 − e−(min1≤i≤m{ai,ci}−κ)h
λ1 < 1 −L ′.

Similar to the arguments as those in Corollaries 3.1 and 3.2, it directly obtains the following two
corollaries according to Theorem 4.1.

Corollary 4.1. Supposing that (G1) and (G3) hold. Then GRNs (3.4) is globally mean-square expo-
nential convergent with the best convergent rate κ with respect to a two-tuples (k0,L ), which can be
addressed by solving the following optimization problem under nonlinear constraints

min
(κ,L ′)T

(−κ) subject to


0 < L ′ < 1,

0 < κ ≤ min
1≤i≤m
{ai, ci},

(1 − e−min1≤i≤m{ai,ci}h)eκh

1 − e−(min1≤i≤m{ai,ci}−κ)h
λ2 < 1 −L ′.

Corollary 4.2. Supposing that (G1) and (G4) hold. Then GRNs (3.5) is globally mean-square expo-
nential convergent with the best convergent rate κ with respect to a two-tuples (k0,L ), which can be
addressed by solving the following optimization problem under nonlinear constraints

min
(κ,L ′)T

(−κ) subject to


0 < L ′ < 1,

0 < κ ≤ min
1≤i≤m
{ai, ci},

(1 − e−min1≤i≤m{ai,ci}h)eκh

1 − e−(min1≤i≤m{ai,ci}−κ)h
λ3 < 1 −L ′.

Remark 4.1. Under the assumptions in Theorem 4.1 and as analysed in Remark 3.1, the spatial
diffusions with nonnegative intensive coefficients have no influence on global exponential convergence
of GRNs (2.1) as well.
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Remark 4.2. Global exponential stability of GRNs is an important researching subject in the dis-
cussions of the past decades, because it not only depends on the scale of the initial values, but also
tends to the equilibrium state with a constant convergence rate, and literatures [5, 7, 9–11] had been
made extensive research on this subject. However, it exists few papers focusing on the optimal con-
vergence rate to global exponential stability of GRNs, and Theorem 4.1, Corollaries 4.1 and 4.2 in
this article accomplishes this work with respect to discrete space and time GRNs (2.1), (3.4) and (3.5),
respectively.

5. Random τ-periodic solution

Define ▲ := {(k, s) ∈ Z × Z, s ≤ k}, coordinate function Bp j,k(ω) := Bp j(kh, ω) = ωp j,k and ϑ :
Z ×Ω→ Ω ⊆ R2m by

ϑkω(s) =
(
ω11,k+s − ω11,k, . . . , ω1m,k+s − ω1m,k, ω21,k+s − ω21,k, . . . , ω2m,k+s − ω2m,k

)T
,

where ω = (ω11, . . . , ω1m, ω21, . . . , ω2m)T ∈ Ω, k, s ∈ Z, p = 1, 2, j = 1, 2, . . . ,m. In view of reference
[38], (Ω,F ,P, (ϑk)k∈Z) is a metric dynamical system. Considering a stochastic periodic semi-flow
X : ▲ ×Ω × R2m → R2m of period τ ∈ Z, which fulfils the semi-flow relationship

X(k, r, ω) = X(k, s, ω) ◦ X(s, r, ω)

and the periodic property

X(k + τ, s + τ, ω) = X(k, s, ϑτω), ∀r ≤ s ≤ k, r, s, k ∈ Z.

Definition 5.1. ( [12]) Random periodic path of period τ ∈ Z of the semi-flow X : ▲ ×Ω × R2m → R2m

is an F -measurable sequence Y : Z ×Ω→ Rn ensuring

X(k, s, ω)Y(s, ω) = Y(k, ω), Y(s + τ, ω) = Y(s, ϑτω), ∀(k, s) ∈ ▲, ω ∈ Ω, a.e.

In this section, we use w⟨·⟩· (k0, φ) = (m⟨·⟩· (k0, φ),p⟨·⟩· (k0, φ))T to denote the solution of GRNs (2.1)
with initial value φ = (δ, ρ)T starting from time k0, where δ and ρ are defined as that in Section 3.
Consequently, X⟨·⟩(k, s) : Ω × R2m → R2m defined by X⟨·⟩(k, s)φ = w⟨·⟩k (s, φ) becomes a semi-flow,
∀k ∈ [s,∞)Z, where s ∈ Z is the starting point here.

Theorem 5.1. Let assumptions (G1)–(G2) and the following condition hold.

(G5) ai,k, bi,k, ci,k, di,k, γi j,k, ϖi j,k and Ii,k are τ-periodic sequences with respect to (w.r.t.) time variable
k ∈ Z, i, j = 1, 2, . . . ,m.

Then a random τ-periodic process w⟨·⟩
∗,k =

(
m⟨·⟩
∗,k,p

⟨·⟩

∗,k

)T
∈ L2(Ω,R2m) (k ∈ N) solves GRNs (2.1).

Proof. According to Theorem 3.2, w⟨ι⟩· (k0, ·) : L2(Ω,R2m)→ L2(Ω,R2m). Let φ = (δ, ρ)T ∈ L2(Ω,R2m).
By the property of semi-flow, for any integers k, k′, k′′ ≥ 0,

w⟨·⟩k (−k′τ − k′′τ, φ) = w⟨·⟩k (−k′τ) ◦ w⟨·⟩
−k′τ(−k′τ − k′′τ, φ).
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In accordance with Theorem 4.1, for any ϵ > 0, it has k∗ > 0 such that∥∥∥w⟨·⟩k (−k′τ − k′′τ, φ) − w⟨·⟩k (−k′τ, φ)
∥∥∥

2
< ϵ, k′ > k∗, k′′ ∈ N, k ∈ Z.

So it exists k∗∗ > 0 such that for any k′, k′′′ ≥ k∗∗,∥∥∥w⟨·⟩k (−k′τ, φ) − w⟨·⟩k (−k′′′τ, φ)
∥∥∥

2
< ϵ,

i.e.,
{
w⟨·⟩k (−k′τ, φ) : k′ ∈ N

}
is a Cauchy sequence and

w⟨·⟩k (−k′τ, φ) −−→ w⟨·⟩
∗,k in L2(Ω,R2m) as k′ → ∞, k ∈ N.

Define a semi-flow X⟨·⟩(k, s, φ) := w⟨·⟩k (k, s, φ) for all s, k ∈ Z. It attains

X⟨·⟩(k, s) ◦ w⟨·⟩s (−k′τ, φ) −−→ X⟨·⟩(k, s) ◦ w⟨·⟩∗,s as k′ → ∞, where k ∈ N,

which is addressed by the continuity of w⟨·⟩k (s, ·) : L2(Ω,R2m)→ L2(Ω,R2m), ∀s, k ∈ Z. Besides,

X⟨·⟩(k, s) ◦ w⟨·⟩s (−k′τ, φ) = w⟨·⟩k (−k′τ, φ) −→ w⟨·⟩
∗,k in L2(Ω,Rm), as k′ → ∞, k ∈ N.

As a result,
X⟨·⟩(k, s) ◦ w⟨·⟩∗,s = w⟨·⟩

∗,k, P− a.s., k ∈ N.

Let φ̃ = (δ̃, ρ̃)T ∈ L2(Ω,R2m) be another initial values of GRNs (2.1). From Theorem 4.1, it has∥∥∥w⟨·⟩
∗,k − w⟨·⟩k (−k′τ, φ̃)

∥∥∥
2
≤

∥∥∥w⟨·⟩
∗,k − w⟨·⟩k (−k′τ, φ)

∥∥∥
2
+

∥∥∥w⟨·⟩k (−k′τ, φ) − w⟨·⟩k (−k′τ, φ̃)
∥∥∥

2

tends to 0 as k′ → ∞ for k ∈ N. So the convergence is not related to the initial value.
Finally, random τ-periodicity should be demonstrated. Based on Eq (2.4), it gains

m⟨ς⟩i,k+τ(−k′τ + τ, φ) = e−ai,s(k+k′τ)hδ⟨ς⟩i +

k−1∑
v=−k′τ

k−1∏
s=v+1

e−ai,sh(1 − e−ai,vh)
ai,v

×

[ n∑
q=1

µiq∆̃
2
ℏq

m⟨ς⟩i,v+τ(−k′τ + τ, φ) +
m∑

j=1

bi j,v f j(p⟨ς⟩j,v+τ(−k′τ + τ, φ))

+

m∑
j=1

γi j,vσ j(p⟨ς⟩j,v+τ(−k′τ + τ, φ))
1
h
∆w̃1 j,v + bi,vp⟨ς⟩i,v+τ(−k′τ + τ, ϕ) + Ii,v

]
and

p⟨ς⟩i,k+τ(−k′τ + τ, φ) = e−ci,s(k+k′τ)hρ⟨ι⟩i +

k−1∑
v=−k′τ

k−1∏
s=v+1

e−ci,sh(1 − e−ci,vh)
ci,v

×

[ n∑
q=1

νiq∆
2
ℏq

p⟨ς⟩i,v+τ(−k′τ + τ, φ) + di,vm⟨ς⟩i,v+τ(−k′τ + τ, φ)

+

m∑
j=1

ϖi j,vη j(m⟨ς⟩j,v+τ(−k′τ + τ, φ))
1
h
∆w̃2 j,v

]
, ∀k′ ∈ Z, ς ∈ ℧ς,
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where w̃k = (w̃1,k, w̃2,k)T = ϑτω(k) with w̃1,k = (w̃11,k, . . . , w̃1m,k)T and w̃2,k = (w̃21,k, . . . , w̃2m,k)T , k ∈ Z,
i = 1, 2, . . . ,m. In addition,

ϑτm⟨ς⟩i,k (−k′τ, ϕ) = e−ai,s(k+k′τ)hϑτδ
⟨ς⟩
i +

k−1∑
v=−k′τ

k−1∏
s=v+1

e−ai,sh(1 − e−ai,vh)
ai,v

×

[ n∑
q=1

µiq∆̃
2
ℏq
ϑτm⟨ς⟩i,v (−k′τ, φ) +

m∑
j=1

bi j,v f j(ϑτp⟨ς⟩j,v (−k′τ, φ))

+

m∑
j=1

γi j,vσ j(ϑτp⟨ς⟩j,v (−k′τ, φ))
1
h
∆w̃1 j,v + bi,vϑτp⟨ς⟩i,v (−k′τ, ϕ) + Ii,v

]
and

ϑτp⟨ς⟩i,k (−k′τ, ϕ) = e−ci,s(k+k′τ)hϑτρ
⟨ς⟩
i +

k−1∑
v=−k′τ

k−1∏
s=v+1

e−ci,sh(1 − e−ci,vh)
ci,v

[ n∑
q=1

νiq∆
2
ℏq
ϑτp⟨ς⟩i,v (−k′τ, φ)

+di,vϑτm⟨ς⟩i,v (−k′τ, φ) +
m∑

j=1

ϖi j,vη j(ϑτm⟨ς⟩j,v (−k′τ, φ))
1
h
∆w̃2 j,v

]
,

where k, k′ ∈ Z, ϑ ∈ ℧ς, i = 1, 2, . . . ,m.
By pathwise uniqueness of the solution to GRNs (2.1), it gets

w⟨·⟩k (−k′τ, φ(ϑτω)) (w.r.t. ϑτω) = ϑτw⟨·⟩k (−k′τ, φ(ω)) (w.r.t. ω)
= w⟨·⟩k+τ(−k′τ + τ, φ(ϑτω)) (w.r.t. ω), ∀k, k′ ∈ Z.

Consequently,

w⟨·⟩k+τ(−k′τ + τ, φ(ϑτω)) (w.r.t. ω)
L2

−−→ w⟨·⟩
∗,k+τ (w.r.t. ω),

w⟨·⟩k (−k′τ, φ(ϑτω)) (w.r.t. ϑτω)
L2

−−→ w⟨·⟩
∗,k (w.r.t. ϑτω),

as k′ → ∞, where k ∈ N. Thus, w⟨·⟩
∗,k+τ(ω) = w⟨·⟩

∗,k(ϑτω), P-a.s., ∀k ∈ N. This completes the proof.

In allusion to determined GRNs (3.4) and (3.5), we have the following results.

Corollary 5.1. Let assumptions (G1), (G3) and (G5) hold. Then GRNs (3.4) possesses a random τ-
periodic solution.

Corollary 5.2. Let assumptions (G1), (G4) and (G5) hold. Then GRNs (3.5) possesses a random τ-
periodic solution.

Remark 5.1. According to assumptions in Theorems 4.1 and 5.1, the rules concluded in Remark 3.1
are also applicative for global exponential stability and random periodicity of GRNs (2.1). In the case
of stochastic neural networks, periodic dynamics is an important behavior among various dynamical
performances. By employing semi-flow relationship of stochastic models, the existence of random
periodic solutions of some nonlinear stochastic systems had been studied in the published literatures
[12–15]. It should be noted that the research of random periodic solutions to stochastic GRNs, let
alone stochastic discrete-time GRNs with discrete spatial diffusions, has not been addressed to the
authors’ knowledge.
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6. Experimental illustrations

This section gives an experimental example to verify the feasibility of main results for discrete space
and time stochastic GRNs, which have been addressed in the former sections of this article.

Considering the following discrete-time stochastic GRNs with discrete spatial diffusions

(
m⟨ς⟩1,k+1

m⟨ς⟩2,k+1

)
=

(
e−9h 0

0 e−12h

) (
m⟨ς⟩1,k

m⟨ς⟩2,k

)
+

 1−e−9h

9 0
0 1−e−12h

12

 [0.12∆̃2
ℏ

(
m⟨ς⟩1,k

m⟨ς⟩2,k

)
−

(
1.5 0.5 sin(kπ + π5 )
0.8 0.2 cos(kπ + π5 )

) (
f1(p⟨ς⟩1,k)
f2(p⟨ς⟩2,k)

)
+

(
0.1 0
0.2 0.05

)
×

(
σ1(p⟨ς⟩1,k)w11,k

σ2(p⟨ς⟩2,k)w12,k

)
+

(
1.5 + 0.5 sin(kπ + π5 )
0.8 + 0.2 cos(kπ + π5 )

) ]
,

(
p⟨ς⟩1,k+1

p⟨ς⟩2,k+1

)
=

(
e−14h 0

0 e−10h

) (
p⟨ς⟩1,k

p⟨ς⟩2,k

)
+

 1−e−14h

14 0
0 1−e−10h

10

 [0.15∆̃2
ℏ

(
p⟨ς⟩1,k

p⟨ς⟩2,k

)
+

(
sin(kπ + π3 ) 0.1

0 cos(kπ + 2π
5 )

) (
η1(m⟨ς⟩1,k)w21,k

η2(m⟨ς⟩2,k)w22,k

)
+ 0.1

(
|m⟨ς⟩1,k |

|m⟨ς⟩2,k |

) ]
,

(6.1)

where (ς, k) ∈ (0, 10) × Z0,

m⟨ς⟩i,k

∣∣∣∣
ς=0
= m⟨ς⟩i,k

∣∣∣∣
ς=10
= 0, p⟨ς⟩i,k

∣∣∣∣
ς=0
= p⟨ς⟩i,k

∣∣∣∣
ς=10
= 0, ∀k ∈ Z0, i = 1, 2.

Taking h = 0.1 and ℏ = 0.5. Corresponding to GRNs (2.1),

a1,k = 9, a2,k = 12, c1,k = 14, c2,k = 10, µ11 = µ22 = 0.12, µ12 = µ21 = 0,

ν11 = ν22 = 0.15, ν12 = ν21 = 0, b11,k = 1.5, b22,k = 0.2 cos(kπ +
π

5
),

b12,k = 0.5 sin(kπ +
π

5
), b21,k = 0.8, γ11,k = 0.1, γ22,k = 0.05, γ21,k = 0.2,

ϖ11,k = sin(kπ +
π

3
), ϖ22,k = cos(kπ +

2π
5

), ϖ12,k = 0.1, γ12,k = ϖ21,k = 0,

I1,k = 15 + 0.5 sin(kπ +
π

5
), I2,k = 8 + 0.2 cos(kπ +

π

5
), d1,k = d2,k = 0.1,

fi(p⟨ς⟩i,k ) =

(p⟨ς⟩i,k

10

)2

1 +
(p⟨ς⟩i,k

10

)2
, σi(p⟨ς⟩i,k ) =

(p⟨ς⟩i,k

20

)2

1 +
(p⟨ς⟩i,k

20

)2
, ηi(m⟨ς⟩i,k ) =

(m⟨ς⟩i,k

15

)2

1 +
(m⟨ς⟩i,k

15

)2
, i = 1, 2,∀k ∈ Z0.

Obviously, L f
1 = L f

2 = 0.1, Lσ1 = Lσ2 = 0.05, Lη1 = Lη2 =
1

15 . With the help of MATLAB toolbox,
it gains λ1 = 0.2168 < 1 and all assumptions of Theorem 4.1 are satisfied. Thus, by Theorem 4.1,
GRNs (6.1) is globally mean-square exponential convergent. Additionally, taking L = 2, it computes
the optimal convergence rate κ = 7.0859 by solving the optimization problem under nonlinear con-
straints displayed in Algorithm 1. The trajectories of global exponential stability of GRNs (6.1) with
optimal convergence rate κ = 7.0859 in 3-dimensional and 2-dimensional spaces have been showed in
Figures 1–4. Besides, by Theorem 5.1, GRNs (6.1) possesses a random 2-periodic oscillation, which
is displayed in Figures 5 and 6.

Electronic Research Archive Volume 31, Issue 6, 3097–3122.



3117

Figure 1. Global exponential stability of m⟨ς⟩1,k and m⟨ς⟩2,k with optimal convergence rate κ =
7.0859.

Figure 2. Global exponential stability of p⟨ς⟩1,k and p⟨ς⟩2,k with optimal convergence rate κ =
7.0859.
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Figure 3. Global exponential stability of m⟨5⟩1,k and m⟨5⟩2,k with optimal convergence rate κ =
7.0859.

Remark 6.1. Literatures [24–27] only researched the time discrete GRNs, e.g., state estimation [25],
global exponential stability [26], bifurcations and chaos [27]. Compared with literatures [24–27],
this discussion has the following advantages: 1) discrete-time GRNs with discrete spatial diffusions
is considered; 2) random periodicity is studied. Thus, the current research expands the works in
literatures [24–27].
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Figure 4. Global exponential stability of p⟨5⟩1,k and p⟨5⟩2,k with optimal convergence rate κ =
7.0859.
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Figure 5. Random 2-periodic oscillation of m⟨3⟩.1,k and m⟨3⟩2,k.
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Figure 6. Random 2-periodic oscillation of p⟨3⟩1,k and p⟨3⟩2,k.

7. Conclusions and perspectives

A discrete-time and discrete-space stochastic genetic regulatory networks is proposed, which can
be regarded as a fully discretized configuration of stochastic genetic regulatory networks with reaction-
diffusions. Based on the constant variational formulation in discrete form of Lemma 2.1, global ex-
istence, mean-square boundedness, global exponential stability with optimal convergence speed, and
random periodic solutions of this discrete-time stochastic genetic regulatory networks are discussed.
In addition, several important inequalities at the end of Section 2 are essential for the discussion in this
paper, such as Minkowski inequality. It is worth noting that the work in this paper will open up the
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study of qualitative problems of discrete-time genetic regulatory networks and lay the theoretical and
practical foundation for future work in this field.

In the future, several open topics can be considered further as follows.

• Considerations of the effects of time delays [5].

• Considerations of Markovian jumps [22].

• Considerations of the issues of controls, e.g., synchronization [8], H∞ states’ estimations [25],
etc.

• Researches of almost periodic sequences [5] and almost automorphism [28], etc.

• Researches of fractional models [39, 40].

• Discussions of other stabilities, e.g., finite-time and fixed-time stability [41], etc.
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