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Abstract: The development of the Internet of things (IoT) and online platforms enables companies
and governments to collect data from a much broader spatial and temporal area in the logistics
industry. The huge amount of data provides new opportunities to handle uncertainty in optimization
problems within the logistics system. Accordingly, various prescriptive analytics frameworks have
been developed to predict different parts of uncertain optimization problems, including the uncertain
parameter, the combined coefficient consisting of the uncertain parameter, the objective function, and
the optimal solution. This tutorial serves as the pioneer to introduce existing literature on state-of-
the-art prescriptive analytics methods, such as the predict-then-optimize framework, the smart predict-
then-optimize framework, the weighted sample average approximation framework, the empirical risk
minimization framework, and the kernel optimization framework. Based on these frameworks, this
tutorial further proposes possible improvements and practical tips to be considered when we use these
methods. We hope that this tutorial will serve as a reference for future prescriptive analytics research
on the logistics system in the era of big data.
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1. Introduction

1.1. Background and motivating examples

Uncertainty is ubiquitous in logistics, such as uncertain travel time due to unexpected weather and
traffic conditions, the fluctuating prices of delivery services due to the varying supply-demand
relationship, and the random transportation demand due to the changes in economy and society [1].
Uncertainty is generally perceived as having negative effects on the logistics system, which increases
running cost, decreases resource usage, and reduces customer satisfaction [1]. Therefore, an
increasing number of logistics studies consider the uncertainty, aiming to mitigate the adverse effects
of uncertainty on operations. For uncertain optimization problems in the logistics industry, we notice
that the uncertainty can exist in different parts of the optimization problems. Some optimization
problems have uncertainty in their objective functions, such as the routing problem (see Example 1
where the travel time in each arc is uncertain), and the energy-cost aware scheduling problem (see
Example 2 where the energy price during each time period is uncertain). Other optimization problems
have uncertainty in their constraints, such as problems with constraints established to fulfill a given
level of service or uncertain demand (see Example 3 where the demand of each booking class is
uncertain). Furthermore, it is also possible that uncertainty exists in both objective functions and
constraints of optimization problems. To illustrate these observations, we show three examples in the
logistics system which have uncertainty in different parts of their optimization problems. The first two
examples have uncertainty in their objective functions, and the third example has uncertainty in its
constraints.

Example 1. Routing problem.

Assume that there is a transport network denoted by G = (N ,S), where N is the set of nodes
and S is the set of arcs. Each arc s ∈ S has an uncertain travel time, denoted by cs, and we define
c := (c1, ..., c|S|). The objective is to decide a path on which to drive from origin o ∈ N to destination
d ∈ N with the minimum travel time. Define x := (x1, ..., x|S|) as a binary decision vector, where xs

represents the decision variable that takes the value of one if arc s is traversed and zero otherwise. The
mathematical model is as follows:

min
x∈X

Zrouting(c, x) = min
x∈X

∑
s∈S

csxs, (1.1)

where X is a given set that describes the network constraints.

Example 2. Energy-cost aware scheduling problem.

Assume thatJ is the set of tasks, R is the set of available resources, and T is the set of time periods
in equal length. Each task j ∈ J is specified by its duration d j (an integer multiple of a time period),
earliest starting time at the beginning of period e j, latest ending time at the beginning of period l j, and
power usage p j. Denote u jr as the resource usage of task j for resource r, qr as the available capacity
of resource r, v jt as the binary variable that takes the value of 1, only if task j starts at the beginning
of time period t and zero otherwise. Furthermore, we require that each task is only scheduled once,
and the machine can be scheduled to finish more than one task simultaneously. Assuming that yt is the
uncertain energy price during time period t, the objective is to minimize the total energy cost. Thus, we
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define v as a |J| × |T | matrix with elements v jt, j ∈ J , t ∈ T and y := (y1, ..., y|T |). The mathematical
model is as follows:

min
v

Zener(y, v) = min
v

∑
j∈J

∑
t∈T

v jt(
∑

t≤t′<t+d j

p jyt′) (1.2)

subject to ∑
e j≤t≤l j−d j

v jt = 1 j ∈ J (1.3)

∑
j∈J

∑
max{0,t−d j}<t′≤t

u jrv jt′ ≤ qr r ∈ R, t ∈ T (1.4)

v jt ∈ {0, 1} j ∈ J , t ∈ T . (1.5)

Constraints (1.3) ensure that each task is scheduled only once from the earliest starting time to the
latest ending time. Constraints (1.4) meet the resource requirement of the machine.

Although these two examples both have uncertainty in their objective functions, a noticeable
difference between the formulation of objective functions in Examples 1 and 2 is that a coefficient p j

exists in objective function (1.2), in addition to decision variables and uncertain parameters. We
finally show another example with uncertainty in its constraints.

Example 3. Static network revenue management.

Denote K as the set of booking classes, gk as the decision variable representing the available
capacity that the freight company intends to reserve for bookings of class k over the finite planning
horizon, ck as the operating cost of reserving a booking of class k, fk as the revenue of completing a
booking of class k, hk as the amount of capacity used by a booking of class k, Q as the amount of
available capacity, Dk as the uncertain demand for bookings of class k, γk as the penalty cost if the
real demand of class k cannot be met because of the shortage in allocated capacity, and ξk as the
recourse variable that represents the shortage amount of capacity for bookings of class k. We define
g := (g1, ..., g|K|), D := (D1, ...,D|K|), and ξ := (ξ1, ..., ξ|K|). The objective is to determine the optimal
reserved capacities for bookings of different classes to maximize the expected profit, i.e., the
difference between expected revenue and the expected penalty cost, over the finite planning horizon.
The two-stage mathematical model is as follows:
[Stage 1]

max
g

Zstatic(g, D) = max
g

{
E[π(g, D)] −

∑
k∈K

ckgk

}
(1.6)

subject to ∑
k∈K

hkgk ≤ Q (1.7)

gk ≥ 0 k ∈ K . (1.8)

[Stage 2]
π(g, D) = max

ξ

∑
k∈K

[
min
(
gk,Dk

)
fk − γkξk

]
(1.9)
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subject to

gk + ξk ≥ Dk k ∈ K (1.10)

ξk ≥ 0 k ∈ K . (1.11)

Constraints (1.7) ensure that the accepted bookings do not exceed the available capacity. Constraints
(1.10) ensure that the sum of the capacity allocated to bookings and the unsatisfied demand should be
no smaller than the uncertain demand.

1.2. Literature review

To model and solve optimization problems with uncertainty, different frameworks have been
developed. Bertsimas and Koduri [2] divided these frameworks into two main categories, according to
whether they take data as a primitive or not. The first category contains relevant literature in stochastic
programming [3] and robust programming [4, 5] that does not take data as a primitive. These methods
generally preset distributions for uncertain parameters without using any real data. However, it is
unrealistic for decision-makers to know the ground-truth distributions of uncertain parameters.

Instead, because we are able to collect and store huge amounts of data, thanks to the development
of internet technologies, frameworks in the second category emerge, which contain relevant studies
taking data as a primitive to characterize uncertainty. These frameworks can further be classified into
two subcategories according to what kind of data they use, including historical data of uncertain
parameters themselves and other auxiliary data that can be used to predict uncertain parameters.
Frameworks in the first subcategory only use historical data to approximate the scenarios or
distributions of uncertain parameters, but do not consider other auxiliary data that might be useful to
predict the uncertain parameters, such as the sample average approximation (SAA) framework [6] and
the data-driven distributionally robust optimization framework [7, 8]. Frameworks in the second
subcategory apply various machine learning (ML) techniques to predict uncertain parameters by
leveraging, not only their historical data, but also other related auxiliary data. This paper focuses on
introducing the state-of-the-art frameworks in the second subcategory.

The advancement of business analytics techniques in the second subcategory is attributed to the
development of the Internet of things (IoT) and online platforms, enabling companies and
governments to collect data from a much broader spatial and temporal area [9]. For example,
on-demand ride-hailing companies, such as Uber and Lyft, have stored millions of records taken by
passengers around the globe since their establishment, which can help them develop smarter dispatch
and pricing algorithms to achieve a more cost-effective match between supply and demand in a
dynamic environment [9]. More specifically, according to the classification by He et al. [9], data for
logistics studies generally comes from the private sector, the public sector, and other sources. Private
sector data comes from private transportation and logistics service providers [10, 11], social media
and map service platforms [12, 13], and emerging micromobility service providers [14]. Public sector
data mainly comes from government agencies [15] and public transit system operators [16, 17]. Other
sources include nongovernmental organizations [18], field research [19, 20], and third-party
platforms. The most common type of data used in logistics studies include origin-destination demand
of passengers and customers [21–23], retailer sales data across different outlets [24, 25], and
real-world road network data [26–28].
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Figure 1 depicts the workflow of business analytics [9]. The workflow is motivated by the business
problem, which consists of the collection, preprocessing, and interpretation of the data, the selection
and refinement of predictive analytics methods, and the modeling for decision making in prescriptive
analytics. Common business analytics scenarios of applying big data techniques to the logistics
industry include, but are not limited to, driving and commuting [22, 29–31], freight transport [32–35],
last-mile delivery [23, 36–38], manufacturing [39], and public services (e.g., healthcare service
delivery, efficient distribution of food, water, and humanitarian aid, and military industrial
logistics) [19, 40, 41]. In the end, the business analytics is aimed at prescribing sound decisions; that
is, we generally focus on the paths called prescriptive analytics. In order to derive decisions from
data, there are two different paths for prescriptive analytics, namely indirect path and direct path.

Figure 1. A general workflow of business analytics [9].

The indirect path is to first derive estimations or predictions by predictive analytics, and
estimations and predictions are then served as inputs to the downstream decision process. The indirect
path involves data, prediction, and decision, and is generally termed predict-then-optimize (PO)
framework or estimate-then-optimize framework. Currently, many applications of smart technologies
and big data analytics methods have demonstrated potential promise in enhancing the efficiency and
effectiveness in various logistics operations and transportation systems [42]. During the estimation
and prediction stage, statistical analysis, such as Poisson process [43, 44], kernel density
models [45, 46], and continuous approximation [27, 47], is often used to characterize the demand
process of the logistics system. We have also witnessed an increased use of econometric and
statistical learning tools in logistics studies to explore the relationship between demand and various
covariates [17, 22]. Furthermore, a wide range of predictive models, ranging from classical statistical
methods (e.g., the popular autoregressive integrated moving average (ARIMA) [24]) to novel ML
methods (e.g., decision trees, support vector machines, random forests, and neural
networks) [15, 48, 49], have been used in logistics studies. Empirically, Gunasekaran et al. [50] have
analyzed how big data and predictive analytics assimilation affects supply chain and organizational
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performance. Their findings suggested that connectivity and information sharing under the mediation
effect of top management commitment are positively related to big data predictive analytics
acceptance. At last, during the optimization stage, the predicted values or distributions of the
unknown parameters will be plugged into the downstream optimization problems. Corresponding
literature has been thoroughly reviewed by Chung [42], Nguyen et al. [51], and Wang et al. [52].

Although the PO framework is easy to understand and implement, there is always a mismatch
between the objectives of the predictive model and the optimization model. Sometimes, a good
prediction may not lead to a good decision [2]. As an alternative to indirect path, direct path is a
recent trend in prescriptive analytics, which goes directly from data to decision and contains many
advanced frameworks, such as the smart predict-then-optimize (SPO) framework [53], the weighted
sample average approximation (w-SAA) framework [54, 55], the empirical risk minimization (ERM)
framework [55, 56], and the kernel optimization (KO) framework [2, 46, 54, 55]. These frameworks
are rarely reviewed and compared in the existing literature.

1.3. Summary

Whichever path these prescriptive analytics frameworks take, their ultimate goal is to prescribe
optimal decisions through predicting one of the three parts of the uncertain optimization problem by
ML methods, namely, the uncertain parameter, the objective function, or the optimal solution. Yan et
al. [57] further proposed that the combined coefficient consisting of uncertain parameters, such as the∑

t≤t′<t+d j
p jyt′ part in Example 2, can also be predicted. This kind of prediction is attributed to the

structural feature of the optimization problem, and can take any form, such as polynomial or
exponential expressions. Therefore, we summarize that there are four parts that can be predicted by
prescriptive analytics frameworks, including the uncertain parameter, the combined coefficient, the
objective function, and the optimal solution. Accordingly, regarding the three examples shown above,
the parts that can be predicted for each example are shown in Table 1.

Table 1. The parts that can be predicted for each example.

Example/Part to
be predicted

Uncertain parameter Combined
coefficient

Objective function Optimal solution

Example 1 Yes No Yes Yes
Example 2 Yes Yes Yes Yes
Example 3 Yes No Yes Yes

Remark 1. For Example 1, there are three parts that can be predicted, including the uncertain
parameter c, the objective function Zrouting(c, x), and the optimal solution x∗ = arg minxZrouting(c, x).
For Example 2, there are four parts that can be predicted, including the uncertain parameter yt, the
combined coefficient

∑
t≤t′<t+d j

p jyt′ , the objective function Zener(y, v), and the optimal solution
v∗ = arg minv Zener(y, v). For Example 3, there are three parts that can be predicted, including the
uncertain parameter Dk, the objective function Zstatic(g, D), and the optimal solution
g∗ = arg ming Zstatic(g, D). Therefore, the difference lies in that the coefficient prediction can only be
used in uncertain models with structure like Example 2. The common thing is that parameter
prediction, objective prediction, and optimizer prediction can all be applied to uncertain problems
regardless of where the uncertainty in the optimization model is.
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The huge amount of data acts as catalysts for the development of prescriptive analytics, giving
rise to various methods of predicting different parts of uncertain optimization problems. This tutorial
makes the following contributions: First, we classify the prediction targets in prescriptive analytics into
four categories, including the uncertain parameter, the combined coefficient, the objective function,
and the optimal solution. Second, regarding different prediction targets, we review the corresponding
state-of-the-art prescriptive analytics frameworks, which are rarely summarised and compared in the
existing literature. Third, regarding different prescriptive analytics frameworks, we further propose
possible improvements and practical tips to be considered when these frameworks are used in practice.
Accordingly, we use the three examples to show how these methods can be used in real applications
when and where appropriate.

2. Uncertain parameter and coefficient prediction methods

2.1. The PO frameworks

If we have access to auxiliary data related to the uncertain parameters in optimization problems,
the most common method for solving uncertain problems is to predict uncertain parameters using
ML models, which turns uncertain problems into easy-to-solve deterministic problems. If combined
coefficients exist in the model, i.e., the polynomial

∑
t≤t′<t+d j

p jyt′ in Example 2, we can also predict the
combined coefficients directly.

Take Example 1, for instance. Assume that we have collected the travel time on each arc of the past
n days, denoted by ci

s, i ∈ {1, ..., n}, s ∈ S, where we define ci := (ci
1, ..., c

i
|S|

), as well as the auxiliary
feature vector associated with the travel time, including features such as whether it is a working day,
rainfall, temperature, and wind, amongst others, denoted by ai ∈ A ⊂ Rda , i ∈ {1, ..., n}. Given the new
feature vector of today based on weather forecast, denoted by a0, our goal is to find a good path; that
is, a path with minimum travel time. If we randomly pick a day, the features (i.e., auxiliary data) and
travel times are random, denoted by (ã, c̃), and their joint distribution is denoted by D. Given the new
feature vector ã = a0, c̃ is still a random variable, whose distribution is drawn from D, denoted by Da0 .
Consequently, given the new feature vector a0, we should solve the following model for Example 1:

min
x∈X
E(ã,c̃)∼D[Zrouting(c̃, x)|ã = a0] = min

x∈X
Ec̃∼Da0 [Zrouting(c̃, x)]. (2.1)

Because the objective function is linear in the uncertain parameter of Example 1, we can further
obtain that

min
x∈X
Ec̃∼Da0 [Zrouting(c̃, x)] = min

x∈X
Zrouting(Ec̃∼Da0 [c̃], x). (2.2)

In order to solve min
x∈X

Zrouting(Ec̃∼Da0 [c̃], x) with the conditional expectation Ec̃∼Da0 [c̃], the PO framework

is a typical method, which firstly predicts the uncertain parameter c̃ given the new observation a0 by
developing an ML model F∗ based on the dataset {(ai, ci)}ni=1, and then plugs the prediction ĉ = F∗(a0)
into the optimization problem to derive decisions. Considering that the cost is a continuous prediction
target, we can use mean squared error (MSE) loss to train F∗, which is expressed as follows:

LMS E =
1
n

n∑
i=1

∥∥∥ci − F∗(ai)
∥∥∥2

2
. (2.3)
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Assuming that we have infinitely many data, under mild conditions, we can obtain the best estimate

ĉ = F∗(a0) = E(c̃|ã = a0) = Ec̃∼Da0 [c̃]. (2.4)

The conditional expectation Ec̃∼Da0 [c̃] is approximated by the estimated ĉ, and the optimization
problem of Example 1 is successfully solved by using the conditional mean ĉ.

2.1.1. The w-SAA method

A general assumption underlying the PO framework is that the objective function is linear in the
uncertain parameter. However, if the objective function (1.1) is not linear in the uncertain parameter,
the PO framework is not able to solve the original problem. For example, considering that a student
is going to take an exam that starts in 60 minutes, meaning that a route is good only when its overall
travel time is less or equal than 60 minutes, the original problem (1.1) should be

min
x∈X
Ec̃∼Da0 I(

∑
s∈S

c̃sxs > 60), (2.5)

where I(·) is an indicator function which takes the value of one if the condition is true and zero
otherwise, and the objective is to minimize the probability that the chosen route is not good given the
new observation a0. In this case, the objective function is not linear in the uncertain parameter, so
min
x∈X
Ec̃∼Da0 I(

∑
s∈S

c̃sxs > 60) , min
x∈X
I(
∑
s∈S
Ec̃∼Da0 [c̃s]xs > 60). To be more specific, assume that there are

two paths A and B. Path A’s travel time is 60 minutes, and path B’s travel time is 59 minutes with
50% chance or 61 minutes with 50% chance. If a student goes to take an exam that starts in one hour,
these two paths are very different. If we solve min

x∈X
Ec̃∼Da0 I(

∑
s∈S

c̃sxs > 60), the optimal solution should

select path A only. However, if we solve min
x∈X
I(
∑
s∈S
Ec̃∼Da0 [c̃s]xs > 60), the optimal solution would be

both path A and path B. Therefore, the PO framework cannot solve the original problem when the
original objective function is not linear in the uncertain parameter. In order to remedy this issue, we
can take the following methods: the w-SAA method and the quantile-regression based method.

Instead of predicting certain values of uncertain parameters, Bertsimas and Kallus [54] proposed a
w-SAA framework to predict the conditional distribution of the uncertain parameter, given the new
observation. Under this framework, take objective function (2.5) as an example, given a new
observation a0, the conditional distribution of c̃ is approximated empirically as w(ai, a0), i ∈ {1, .., n},
where w(ai, a0) measures the similarity between the historical example ai and the new observation a0,
where its format depends on the ML model we use. If we use a k-nearest neighbor (kNN) model,
w(ai, a0) = 1/k if ai is a kNN of a0 and zero otherwise, and w(ai, a0) can be seen as an approximation
of the conditional distribution of c̃ given a = a0, namely, Da0; that is, the approximate distribution of
c̃ has n scenarios c1, c2, ..., cn with probabilities w(a1, a0),w(a2, a0), ...,w(an, a0) (and it is possible
that some probabilities w(ai, a0) are 0, meaning that the approximate distribution of c̃ has less than n
scenarios). After obtaining the conditional marginal distribution Da0 , the approximation of objective
function (2.5) is as follows:

min
x∈X

n∑
i=1

w(ai, a0)I(cix > 60). (2.6)
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2.1.2. The quantile-regression based global method

If we aim to predict the conditional distribution of an uncertain parameter, the w-SAA method is a
local ML method, which predicts the conditional distribution by measuring closeness to existing
data [2, 58]. This method in some sense throws away some data that is not close to the observation,
and so it needs a lot of data to work well [2]. As an alternative, Wang and Yan [59] proposed a
quantile-regression based global method to take all data into account when estimating a
single-dimensional parameter. Because the quantile-regression based global method is stemmed from
the traditional regression model, for a particular arc s ∈ S in Example 1, if we first assume using the
linear regression model Fs(a) = w⊤s a as the predictive model, where ws is a da × 1 vector (recall that
da is the dimension of the feature vector), we have

w∗s ∈ arg min
ws

1
n

n∑
i=1

(w⊤s ai − ci
s)

2 (2.7)

and F∗s(a) = w∗s
⊤a. Next, given the new observation a0, we can obtain ĉs = F∗s(a0) = w∗s

⊤a0 and ĉ :=
(ĉ1, ..., ĉ|S|). However, by minimizing the sum of squared errors using the traditional regression model,
we are estimating the conditional mean Ec̃∼Da0 [c̃] instead of the conditional distribution c̃ ∼ Da0 , which
may not work well when the objective function is not linear in the uncertain parameters. Alternatively,
we can introduce a parameter α ∈ [0, 1] and obtain wα∗s by solving

min
wαs

1
n

n∑
i=1

[
(1 − α) max

(
(wαs )⊤ai − ci

s, 0
)
+ αmax

(
ci

s − (wαs )⊤ai, 0
)]
. (2.8)

By minimizing the above weighted sum of over- and under-estimation errors, we are estimating the
100αth percentile of the uncertain parameter. For Example 1, we can estimate the 5th, 15th, ..., 95th
percentile of c̃s. The distribution of c̃s|a0 is thus approximately Pr

(
c̃s = (wα∗s )⊤a0) = 1

10 ,
α = 0.05, 0.15, ..., 0.95. Next, there are two cases to consider to solve objective function (2.5) after
c̃s|a0 is obtained under each percentile. First, if we assume that the travel times of different arcs are
highly correlated, we should solve

min
x∈X

1
10

∑
α=0.05,0.15,...,0.95

[
I
(
(a0)⊤wα∗x

)
> 60
]
, (2.9)

where wα∗:= (wα∗1 , ...,w
α∗
|S|

)⊤ is a da×|S|matrix. Otherwise, if we assume that the travel times of different
arcs follow independent distributions, we need to define w∗sample := (wα′∗1 , ...,w

α′∗
|S|

)⊤ as a da × |S| matrix,
where α′ is randomly sampled from {0.05, 0.15, ..., 0.95} for each arc. Considering that there are
|S| arcs and each arc has 10 percentile values, there would be 10|S| possible combinations for w∗sample.
Because it is time-consuming to find all possible combinations in a large network, we resample λ times
from all combinations and denote each combination as wϵ∗sample. We should then solve

min
x∈X

1
λ

λ∑
ϵ=1

[
I
(
(a0)⊤wϵ∗samplex

)
> 60
]

(2.10)

to prescribe final decisions.
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2.2. The SPO frameworks

For the frameworks mentioned above, the loss function used to train the ML models generally
only focuses on minimizing the prediction error, such as the MSE loss function (2.3), which does not
consider the impact of the predictions on the downstream optimization problems, leading to suboptimal
solutions. Therefore, a more natural and appropriate method is to plug the optimization problem into
the training process of the ML models, which is generally termed SPO framework. The commonly used
loss function, designed for measuring decision error, under this framework for parameter prediction of
Example 1, namely SPO loss, is expressed as follows:

LS PO =
1
n

n∑
i=1

[
Zrouting

(
ci, x∗(ĉi)

)
− Zrouting

(
ci, x∗(ci)

)]
, (2.11)

where x∗(ĉi) = arg min
x∈X

Zrouting(ĉi, x) and x∗(ci) = arg min
x∈X

Zrouting(ci, x).

In order to synthesize predictive and prescriptive techniques to create ML systems that learn to
make decisions based on empirical data, the resulting composite models often employ constrained
optimization as a neural network layer, and are trained in an end-to-end method. Therefore, most
SPO-related studies use feed-forward neural networks (NNs) with deep learning architectures
composed of a sequence of layers [60]. However, training ML models using SPO loss might be
computationally difficult because of the nonconvex and discontinuous characteristics of the SPO loss
function for combinatorial optimization problems. This is because the discrete and discontinuous
solution space prevents the learning problem from easily differentiating the decision loss over the
predicted values. Consequently, it is infeasible to pass back the gradients to inform the predictive
model regarding how it should adjust its weights to improve the decision quality of the prescribed
solutions [61]. To overcome this problem, Wilder et al. [62] added a quadratic regularization term to
the objective function of the relaxed form of the combinatorial problem, but this method can only be
applied to combinatorial problems with a totally unimodular matrix. Ferber et al. [61] strengthened
this method by employing a cutting-plane solution approach, which tightened the continuous
relaxation by adding constraints removing fractional solutions. Furthermore, instead of computing the
real decision loss by directly solving the combinatorial problem during the training process, some
studies have designed a class of surrogate loss functions based on a sub-gradient, such as Elmachtoub
and Grigas [53] and Mandi et al. [63]. For these discussed approaches, a common issue is that these
methods all need to repeatedly solve the (possibly relaxed) optimization problem, bringing a huge
burden on the computational efficiency. In contrast, Mulamba et al. [64] used a noise contrastive
approach by viewing sub-optimal solutions as noise examples and caching them, which replaced
optimization calls with a look-up table in the solution cache, so as to improve the training efficiency.

Furthermore, some studies begin to train decision trees to obtain personalized decision from a
finite set of possible options instead of focusing only on the prediction error. Kallus [65] trained trees
with a loss function, maximizing the effectiveness of the predictions rather than minimizing the
prediction errors. Bertsimas et al. [66] studied a similar treatment recommendation problem, but
adopted a weighted loss function to combine prediction and decision error. Elmachtoub et al. [67]
considered a more general class of decision-making problems that could involve a large number of
decisions represented by a general feasible region. To train decision trees under SPO loss, they
proposed a tractable methodology called SPOTs. They claimed that SPOTs could benefit from the
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interpretability of decision trees, allowing for an interpretable segmentation of a set of contextual
features with different optimal solutions to the optimization problem of interest. In a recent study,
Kallus and Mao [68] also studied how to fit the node splitting policies in contextual stochastic
optimization problems to directly minimize the optimization costs.

No matter what method we use, i.e., the PO frameworks and the SPO frameworks, or local ML
methods and global ML methods, our goal is to predict a perfect value or a perfect distribution of the
uncertain parameter to help us prescribe an optimal solution that is near to the full-information perfect
solution. Recalling that we can also predict the combined coefficient in the objective function, these
frameworks can be further applied to the combined coefficient prediction. The only difference between
the prediction of a parameter and the prediction of a combined coefficient is that the output value of the
ML model for the combined coefficient prediction should be computed beforehand, according to the
structure of the expression. Take Example 2, for instance, where the prediction target is changed from
the unit energy price during time period t, yt, to the total energy cost of task j starting from time period
t,
∑

t≤t′<t+d j
p jyt′ . Because there are J tasks, and considering that each task has its own earliest starting

time e j, latest ending time l j, and working duration d j, we thus need to train
∑

j∈J (d j−e j−l j) ML models
(since we assume for each task and for each feasible starting time period, there is a corresponding
predictor) or a multi-output regression model if we are going to predict

∑
t≤t′<t+d j

p jyt′ . This indicates
that the combined coefficient prediction may lead to more computational burdens.

In summary, parameter and coefficient prediction methods are the most popular in prescriptive
analytics. Among different prescriptive analytics frameworks, the predict-then-optimize framework is
easy to implement, whereas we can use various ML models to predict the conditional mean of
uncertain parameters or coefficients in linear objective functions, or adopt the local w-SAA method or
global quantile-regression model to predict the conditional distribution of uncertain parameters or
coefficients in non-linear objective functions. However, because those frameworks mentioned above
neglect the impact of predictions on downstream decisions, the SPO frameworks are thus proposed,
whose tractability and scalability are two major obstacles to be solved for non-convex and
discontinuous combinatorial problems.

3. Objective function prediction methods

As mentioned above, when we predict the uncertain parameter, we can use the PO or SPO
frameworks to predict a conditional expectation if the objective function is linear in the uncertain
parameter, or we can use the w-SAA framework or the quantile-regression based global method to
predict a conditional distribution of the uncertain parameter if the objective function is non-linear in
the uncertain parameter. Furthermore, it is worth noting that the w-SAA and the quantile-regression
based global method can also be seen as methods to approximate the objective function although they
do not take the perspective as predicting the objective [54]. The objective prediction is a recent trend
in prescriptive analytics [54], which generally takes local learning methods. However, because local
learning methods predict by measuring the closeness to existing data, whereas global learning
methods predict by choosing a functional form of the prediction that minimizes some loss functions
on existing data, the latter methods perform better with less data, extrapolate better to outliers, and
perform better in higher dimensions [2]. Bertsimas and Koduri [2], thus, proposed a global ML
method to predict the objective function, which has never been done before in the literature. This
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section focuses on their method of objective function prediction, and proposes a more general method
based on their method.

3.1. The kernelized method

Recall that we can use the linear regression to predict the conditional expectation of c̃, and A is the
matrix with rows ai for Example 1. Assume that A⊤A is invertible, the optimal solution of optimization
problem (2.7) takes the following form:

w∗s = (A⊤A)−1 A⊤cs, (3.1)

where cs := (c1
s , ..., c

n
s) is the vector of historical target values. Therefore, given the new observation

a0, the prediction of cs (note that cs is not an element in cs) for arc s ∈ S is

E[cs|a = a0] ≈ w∗s
⊤a0 = (cs)⊤A(A⊤A)−1a0. (3.2)

Alternatively, if we aim not to predict cs, but the objective function Zrouting(c, x) =
∑
s∈S

csxs by

finding some functions w(x) such that E[Zrouting(c, x)|a] ≈ w(x)⊤a, we should compute

min
w(x)

1
n

n∑
i=1

(
Zrouting(ci, x) − w(x)⊤ai)2. (3.3)

The optimal solution of optimization problem (3.3) would be

w∗(x) = (A⊤A)−1 A⊤Zrouting(C, x), (3.4)

and the approximation of E[Zrouting(c, x)|a = a0] would be

E[Zrouting(c, x)|a = a0] ≈ w∗(x)⊤a0 = Zrouting(C, x)⊤A(A⊤A)−1a0, (3.5)

where C is a matrix with rows ci, and Zrouting(C, x) is the vector
(
Zrouting(c1, x), ...,Zrouting(cn, x)

)
.

Following the method of using regression to predict the objective function and to generalize the
approach to non-linear predictions, Bertsimas and Koduri [2] further used kernel tricks to predict the
objective function. For Example 1, they denote the approximate objective function by h(ai, x) ∈ H ,
where H is the Hilbert space defined by a positive-definite kernel function K(ai, a j) (see Definition 1
in Bertsimas and Koduri [2]), and the function (3.3) should be computed as:

min
h(·,x)∈H

1
n

n∑
i=1

(
Zrouting(ci, x) − h(ai, x)

)2
+ σ

n∑
i=1

(
h(ai, x)

)2
, (3.6)

which is computationally tractable, thanks to the representer theorem (see Proposition 1 in Bertsimas

and Koduri [2]); here σ
n∑

i=1

(
h(ai, x)

)2 denotes the regularization term used to prevent overfitting.

According to the representer theorem, the optimal solution of optimization problem (3.6) must take
the form

h(ai, x) =
n∑

j=1

µ j(x)K(a j, ai), (3.7)
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where µ j(x) ∈ R is a function with respect to the decision vector x, and K(ai, a j) is the kernel function.
Plugging (3.7) into (3.6) and following the same procedures as using regression to predict the objective
function, and given the new observation a0, the objective function of Example 1 Zrouting(c, x) can be
approximated by

[Zrouting(c, x)|a = a0] ≈ h(a0, x) = K(A, a0)⊤(K̂ + αnI)−1Zrouting(C, x), (3.8)

where K(A, a0) is the vector
(
K(a1, a0), ...,K(an, a0)

)
, K̂ is the n × n kernel matrix with components

K̂i j = K(ai, a j), and I is the n × n identity matrix. After we obtain the predicted objective function, as
shown in (3.8) given a new observation a0, we then minimize it following constraints x ∈ X to obtain
decisions.

3.2. The global objective function prediction method using a general function form

Because the kernel function K(ai, a j) only considers the auxiliary features a, we propose a more
general case, which assumes that the predicted objective function for Example 1, denoted by g(a, x),
maintains the original structure, and is as follows:

g(a, x) =
n∑

l=1

θl(a)Zrouting(cl, x), (3.9)

where θl(a) ∈ R. Under this prediction, the decision loss function over the solution space should be

n∑
i=1

∫ [
g(ai, x) − Zrouting(ci, x)

]
dx, (3.10)

whose minimization is computationally intractable because we do not know the ground-truth
distributions of x. Practically, we only have empirical data points and their optimal solutions are
x∗ j = arg min

x∈X
Zrouting(c j, x), j = 1, ..., n. Then, loss function (3.10) can be empirically approximated

as:

Lob j =

n∑
i=1

n∑
j=1

(
g(ai, x∗ j) − Zrouting(ci, x∗ j)

)
=

n∑
i=1

n∑
j=1

( n∑
l=1

θl(ai)Zrouting(cl, x∗ j) − Zrouting(ci, x∗ j)
)
.

(3.11)

Furthermore, we should add a regularization term to prevent overfitting:

Lob j =

n∑
i=1

n∑
j=1

( n∑
l=1

θl(ai)Zrouting(cl, x∗ j) − Zrouting(ci, x∗ j)
)

+ σ

n∑
i=1

n∑
l=1

(
θl(ai)

)2
.

(3.12)

Then, our goal is to determine θ∗l (a) (l = 1, ..., n) by solving min
θ

Lob j. Though θl(a) can take any

form, for simplicity, we assume that θl(a) = θ⊤l a, where θ is a vector with the same dimension of a.
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Now, the minimization of loss function (3.12) is a regression problem, where there are n × n records,
indexed by {(1, 1), ..., (i, j), ..., (n, n)}. For record (i, j), the target is denoted by Zrouting(ci, x∗ j), and it has
n × da features (recall that a has da features), indexed by {(1, 1), ..., (l, d′), ..., (n, da)}, where the value
of feature (l, d

′

) is denoted by ai
d′ × Zrouting(cl, x∗ j). Therefore, we can use Ridge regression, whose

regularization term is also in quadratic form, to minimize loss function (3.12).
In summary, regarding the methods for predicting the objective function, Bertsimas and Koduri [2]

proposed the first global method that predicts the objective function in a functional form using kernel
tricks. Considering that the kernel method does not maintain the original structure of the objective
function, we propose a more general method, which deserves investigation and comparison in future
studies.

4. Optimal solution prediction methods

4.1. The ERM method

For prescriptive analytics frameworks, in addition to predicting the uncertain parameter, the
combined coefficient, and the objective function, a more direct way is to predict the optimal solution,
as our ultimate goal is to prescribe a solution that is near the perfect solution under the condition that
the uncertain information is known. Ban and Rudin [56] proposed two ERM algorithms to predict the
optimal solution. For example, the ERM approach to solving Example 1 with auxiliary data is as
follows:

min
x(·)∈L,{x:A→R|S|}

R̂
(
x(a); (ai, ci)n

i=1
)
= min

x(·)∈L
x(a)∈X

1
n

n∑
i=1

Zrouting
(
ci, x(ai)

)
, (4.1)

where the decision now is a function x(·) that maps the feature spaceA to reals, R̂ is called the empirical
risk of function x(·) with respect to the dataset

{
(ai, ci)

}n
i=1, and we need to specify the function class

L and enforce x(a) ∈ X to ensure that each training data record meets the network constraints. We
note that it is possible that, for a given new observation a0, the prescribed decision may not follow
the network constraints, namely x(a0) < X; therefore, we can set the prescribed decision as the nearest
neighbour of x(a0) in X, where we may need to solve a programming model min

x′∈X
∥ϵ∥, where x′ =

x(a0) + ϵ, and ϵ ∈ R|S| is the decision variable. Consider that we apply linear decision rules to predict
the optimal solution of the form

L = {x : A → R|S| : x(a) = Xa}, (4.2)

where X is a |S| × da matrix with rows xs = (xs
1, .., x

s
da

), s = 1, ..., |S|. By using this linear form, the
ERM problem (4.1) is as follows:

min
x(a)=Xa

R̂
(
x(a); (ai, ci)n

i=1
)
= min

Xa∈X

1
n

n∑
i=1

Zrouting
(
ci, Xai). (4.3)

To prevent overfitting, we can add a regularization term to (4.3) as follows:

min
Xa∈X

[1
n

n∑
i=1

Zrouting
(
ci, Xai) + σ da∑

j=1

∑
s∈S

(
xs

j
)2]
. (4.4)
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Therefore, when we use the linear form to estimate the optimal solution, the learning task is to find the
best xs

j, s = 1, ..., |S|, j = 1, ..., da, by solving (4.4). After we obtain X∗, given a new observation a0,
the prescribed decision is thus X∗a0.

4.2. The kernelized method

Furthermore, following the general formulation of the ERM approach, some studies have used
kernel tricks to estimate the function that prescribes the optimal solution. Ban and Rudin [56] proposed
an approach to predict the optimal solution by using the kernel optimization method, but it can only
be applied to the newsvendor problem. Notz and Pibernik [55] proposed a kernelized ERM approach
for the flexible capacity management problem, and proved its performance guarantees. Bertsimas and
Koduri [2] proposed a general method to use kernel functions to predict the optimal solution. Taking
Example 1, for instance, when using kernel tricks to predict the optimal solution, we restrict each
xs(a) ∈ x(a), s ∈ S, in optimization problem (4.1) to be in a reproducing kernel Hilbert space H ,
which is associated with a kernel K. Then, the empirical regularized kernelized version of (4.1) is as
follows:

min
x1(·),...,x|S|(·)∈H
x1(a),...,x|S|(a)∈X

[1
n

n∑
i=1

Zrouting
(
ci; x1(ai), ..., x|S|(ai)

)
+ σ
∑
s∈S

n∑
i=1

(
xs(ai)

)2]
. (4.5)

According to the conclusion of Bertsimas and Koduri [2], the optimal solution to the optimization
problem (4.5) takes the form

xs(a) =
n∑

i=1

µs
i K(ai, a), s ∈ S, (4.6)

where µ is the solution to

min
µ1 ,...,µ|S|∈Rn

K̂µ1 ,...,K̂µ|S|∈X

[1
n

n∑
i=1

Zrouting

(
ci; (K̂µ1)i, ..., (K̂µ|S|)i

)
+ σ
∑
s∈S

(µs)⊤K̂µs
]
, (4.7)

where µs = (µs
1, ..., µ

s
n), and K̂ is the n × n kernel matrix with components K̂i j = K(ai, a j). Now,

after specifying kernel functions, the decision variables of (4.7) are all µs
i s. After we obtain µs∗

i , i ∈
{1, ..., n}, s ∈ S, given a new observation a0, the prescribed decision for arc s ∈ S is calculated as
xs(a0) =

∑n
i=1 µ

s∗
i K(ai, a0).

In summary, ERM models and kernelized methods are all possible approaches to optimal solution
prediction, whose performance guarantees have been shown in existing literature, such as Ban and
Rudin [55], Bertsimas and Kallus [54], and Bertsimas and Koduri [2]. For all these methods, we
need to note that the prescribed solution may violate the problem constraints, so post adjustments of
prescribed solutions may be needed.

5. Conclusions and future research directions

This study summarizes existing literature on prescriptive analytics methods in the logistics system.
We first point out that four parts in the optimization problems can be predicted, namely, the uncertain
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parameter, the combined coefficient, the objective function, and the optimal solution. The predictions
of the uncertain parameter and the combined coefficient are the most common topics in existing
literature on prescriptive analytics in the logistics system, which takes the indirect path from data to
decision via prediction. Among these methods for parameter and coefficient prediction, the PO
framework is the easiest to implement, whereas the SPO framework focuses more on the decision
quality, but may be computationally intractable. It is worth noting that, if the objective function is not
linear in the uncertain parameter, the w-SAA method is an alternative to predict the conditional
distribution by using local learning methods, and the quantile-regression based method is another
alternative that takes global data into account. Furthermore, the prediction of objective function and
optimal solution takes the direct path, which goes from data to decision by choosing a functional form
of the prediction that minimizes some loss functions on existing data. The methods for predicting the
objective function and the optimal solutions are rooted in ERM algorithms, where the most
commonly used functional form is the kernel function for its good applicability in handling
nonlinearities. Uncertainties are ubiquitous in logistics problems, where these prescriptive analytics
frameworks may work well in providing sound decisions. For different uncertain optimization
problems, we do not know the best method; instead, this paper discusses a few existing alternatives,
and proposes possible improvements, which constitute an arsenal of prescriptive analytics frameworks
to be considered when and where appropriate.

Apart from improvements regarding different prescriptive analytics frameworks, we further
propose the following future research directions. First, as stated in this tutorial, integrating learning
and optimization in prescriptive analytics for logistics needs tailored learning algorithms that consider
the structural characteristics of downstream optimization problems. In order to achieve optimal
prescriptive targets, we may need to propose new methodologies and tools for both ML and
optimization parts. Second, starting from proposing new methodologies of prescriptive analytics
frameworks, we wish to validate their values by applying them to real industrial problems. In this
way, when and how prescriptive analytics can improve decision-making can be empirically
investigated. At last, the development of prescriptive analytics frameworks can also stimulate the
collection of data in the industry. Investigating what kind of data we need, and examining the
influence of data quality, can further promote better decision-making.
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