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Abstract: Graph neural networks (GNNs) is applied successfully in many graph tasks, but there still
exists a limitation that many of GNNs model do not consider uncertainty quantification of its output
predictions. For uncertainty quantification, there are mainly two types of methods which are frequentist
and Bayesian. But both methods need to sampling to gradually approximate the real distribution,
in contrast, evidential deep learning formulates learning as an evidence acquisition process, which
could get uncertainty quantification by placing evidential priors over the original Gaussian likelihood
function and training the NN to infer the hyperparameters of the evidential distribution without
sampling. So evidential deep learning (EDL) has its own advantage in measuring uncertainty. We
apply it with diffusion convolutional recurrent neural network (DCRNN), and do the experiment in
spatiotemporal forecasting task in a real-world traffic dataset. And we choose mean interval scores
(MIS), a good metric for uncertainty quantification. We summarized the advantages of each method.

Keywords: uncertainty quantification; evidential deep learning; graph neural network;
spatiotemporal forecasting; regression task

1. Introduction

In recent years, GNNs have facilitated excellent performance in many graph analysis tasks, such
as graph node classification and link prediction, by extracting advanced features of nodes from their
topological neighborhood [1–3]. Although graph neural networks has achieved some success in its
tasks on graph, it still has two major limitations: 1) some graph structures have the phenomena of over-
smoothing and over-fitting, GNN cannot get very high-level features of the graph [4]; 2) currently,
majority of GNNs implementations do not provide uncertainty quantification of their output predictions
[5].
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For uncertainty quantification, methods are statistically divided into two types: frequentist methods
and Bayesian methods. The biggest difference between them is whether to allow the use of a prior
probability distribution. For freuqentist methods, although it is computationally cheaper for a single
confidence interval, re-training for different intervals is required. For Bayesian methods, there are
several limitations which including the intractability of directly inferring the posterior distribution of
the weights by given data, the computational expense of sampling during inference and how to choose
a rensonable prior.

On the contrary, EDL formulates learning as an evidence acquisition process [6, 7]. For EDL, it
can learn a higer-order evidential distribution in every training examples. EDL samples from this
distribution yields instances of lower-order likelihood function which the data was drawn. It is different
from Bayesian, because it doesn’t need to place prior on network weights. Evidential methods place
priors directly over the likelihood function. By training a neural network to output the hyparparameters
of the higher-order evidential distribution, we can learn the grounded representation of uncertainty
without the need for sampling.

Since Bayesian and frequentist methods already have achieved good performance on the tasks of
uncertainty quantification in graph neural network, we try to apply EDL to graph neural network to
provide the uncertainty quantification of its output predictions. For graph-based data, we use the
DCRNN [8] as deep learning model. DCRNN is a holistic method which is trained by maximizing
the likelihood of generating the target future time series by backpropagation through time. DCRNN
has the ability to capture spatiotemporal dependencies among time series and can be applied to various
spatiotemporal forecasting problems. We experiment our method, EDL with DCRNN in a real-world
spatiotemporal forecasting task and used MIS as the metric to make the uncertainty quantification.

Our contributions include:

• We apply EDL to graph neural network, and use DCRNN as deep learning model, using it to
learning uncertainty quantification (UQ) in the graph neural network task.
• We choose MIS [9] as a metric of uncertainty measurement, and compare it with baselines

mentioned in [10]which includes boostrap, quantile regression and MIS regression.
• We do the experiment in METR-LA dataset [11] and Covid-19 incident dataset [12]. Then we

analyze the advantages of each method.

2. Materials and method

2.1. Related work

Spatiotemporal forecasting is one of the important tasks in graph neural network. Considering
spatiotemporal correlation for a given time series information will significantly improve the
prediction performance. There are already many works on graph, which can be mainly divided into
two types, applying to grid data and graph data. For spatiotemporal prediction on graph, graph
convolutional neural networks (GCNs) [13] were first introduced, which connected the spectral graph
theory and deep neural networks, then ChebNet [14] was proposed which improves GCN with fast
localized convolutions filters and later combined with recurrent neural networks (RNN) [15] for
spatialtemporal forecasting. However the following methods all require the graph to be undirected to
calculate meaningful. Then diffusion-convolutional neural network (DCNN) [16] which defines
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convolution as a diffusion process across each node in a graph-structured input makes some
transformations to vertex domain. GraphCNN [17] generalize convolution to graph by convolving
every node with its p nearest neighbors. On the basis of the previous two models, DCRNN [8] keeps
temporal dynamics into consideration, which models the sensor network as a weighted directed graph,
and defines the proposed convolution using bidirectional graph random walk, as well as introducing
scheduled sampling to bridge with long-term temporal dependency.

Uncertainty quantification has a long history [18–20] and and there are also many works have done
that training the neural networks to model probability distribution [21–24]. Now, there are mainly
two types of uncertainty quantification, Bayesians and frequentists. The Bayesians assume that the
data is obey a prior distribution, which uses sampling to approximate real distribution [18]. Relevant
methods including: MC dropout [25], SG MCMC [26, 27] etc. But frequentists doesn’t think there is
a prior distribution. It approximate real distribution only by sampling. Relevant methods including:
Bootstrap [28], MIS regression [10], quantile regression [29] etc.

2.2. Preliminaries

2.2.1. Problem definition

The task of spatiotemporal forecasting on graph is to predict the feature information of specific steps
from the historical time series of nodes on a given graph and the spatial correlation between them. For
directed graph G, the vertex set and edge set of the graph are needed to represent the base structure,
the number of nodes is set as N. And the spatial correlation between nodes is essential, a weighted
adjacency matrix W ∈ RN×N is used to denote this. Denote the feature information of graph G at t time
steps as X ∈ RN×D, where D is defined as the feature number of each node. Through the spatiotemporal
correlation matrix W and the time series X, we construct a function F to achieve the spatiotemporal
forecasting of feature information of the graph in the future T time steps:[

X(1), · · · , X(t); W
] F(·)
−→

[
X(t+1), · · · , X(t+T )

]
(2.1)

Compared with the traditional time series prediction and spatial interpolation, the spatiotemporal
forecasting models spatial and temporal dependencies in two dimensions and makes prediction, deep
neural network usually constructs CNN to simulate the spatial correlation for the standard grid data and
RNN to simulate the time correlation. While for map data, graph convolution clearly adapt better to
graph structures. To achieve more accurate prediction, the performance of DCRNN is very impressive.

DCRNN defines graph convolution in the following form:

X:,d ⋆ G fθ =
K−1∑
k=0

(
θk,1

(
D−1

O W
)k
+ θk,2

(
D−1

I W⊤
)k
)

X:,d (2.2)

where d ∈ {1, · · · ,D} denote the features of the node, θ ∈ RK×2 denote the parameters for the filter, and
DO, DI denote the out degree and in degree matrices respectively. Graph convolution realizes spatial
dependency, while temporal dependency is usually realized by RNNs [30]. In particular, DCRNN [8]
makes the transformation of GRU [30] to complete this task, which called DCGRU [8]:

r(t) = σ
(
Θr ⋆G

[
X(t),H(t−1)

]
+ br

)
(2.3)
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u(t) = σ
(
Θu ⋆ G

[
X(t),H(t−1)

]
+ bu

)
(2.4)

C(t) = tanh
(
ΘC ⋆ G

[
X(t),

(
r(t) ⊙ H(t−1)

)]
+ bc

)
(2.5)

H(t) = u(t) ⊙ H(t−1) +
(
1 − u(t)

)
⊙C(t) (2.6)

where ⋆G denotes the graph convolution, H(t), X(t)represent the output and input at time t, Θr, Θu,
ΘCmean the parameters for the corresponding filters. Evidently, DCGRU can be trained as well as
GRU using backpropagation through time.

2.2.2. Evaluation metrics

In the previous section, we described the network architecture and implementation methods for
spatio-temporal graph prediction. In this section, we discuss the measurement of accuracy and
uncertainty. In point estimation, the accuracy of the model’s prediction is the most important
criterion, and mean absolute error (MAE), root mean square error (RMSE) are used in our
experiment. However, when considering probabilistic prediction, since machine learning model only
generates the optimal solution according to its training data, such inference will produce uncertainty
of data and model parameters, which will bring unknown risks to major decisions of the algorithm.
Therefore, the uncertainty quantification methods include frequentist methods and Bayesian methods
are necessary. And for different uncertainty qualification methods, MIS [10] is seemed as the brilliant
metric for evaluation.

MIS is defined to evaluate the merits of the prediction interval, α denotes confidence level, Z are
real-valued random variables, the U and L are the upper and lower boundary of confidence interval,
respectively, the score function contains three penalty terms, the first penalty term is the gap between
the two bounds, the second is the situation that predicted values higher than upper bound, the third is
predictions under the confidence lower bound, these three are mainly estimations of uncertainty. For
large samples, MIS is defined by expectations:

MIS∞(U, L;α) = (U − L) +
2
α

(E[Z − U | Z > U] + E[L − Z | Z < L]) (2.7)

2.3. Evidential deep learning

2.3.1. Evidential regression network

Evidential regression network [31] considers the target value y which is a sample drawn from a
normal distribution, but does not know the parameters of the normal distribution µ, σ. These two
parameters are drawn from a high order evidential distribution, that is normal-inverse-gamma (NIG)
distribution, which is the conjugate prior to the normal distribution:

γ ∼ N
(
µ, σ2

)
, µ ∼ N

(
γ,
σ2

ν

)
, σ2 ∼ Gamma−1(α, β) (2.8)

The NIG distribution can be parameterized by m = γ, ν, α, β, where γ ∈ R, ν > 0, α > 1, β > 0. And
Gamma−1 is the inverse-gamma distribution.
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Through these four parameters, we can get

E[µ] = γ︸    ︷︷    ︸
prediction

, E
[
σ2

]
=
β

α − 1︸             ︷︷             ︸
aleatoric

, Var[µ] =
β

v(α − 1)︸                 ︷︷                 ︸
epistemic

. (2.9)

2.3.2. Training the evidential regression network with the marginal likelihood

The evidential regression network can learn the trainable parameters θ by maximizing a marginal
likelihood with unknown Gaussian parameters, µ, σ.

p(µ, σ2︸︷︷︸
θ

| γ, v, α, β︸   ︷︷   ︸
m

) =
βα
√

v

Γ(α)
√

2πσ2

(
1
σ2

)α+1

exp
{
−

2β + v(γ − µ)2

2σ2

}
(2.10)

Through Bayesian probability theory, we can get the following formula.

p (yi | m) =
p (yi | θ,m) p(θ | m)

p (θ | yi,m)
(2.11)

p (yi | m) =
∫ ∞

σ2=0

∫ ∞

µ=−∞

p
(
yi | µ, σ

2
)

p
(
µ, σ2 | m

)
dµdσ2 (2.12)

From the formula given above, we can know that for the model prediction y, it is follows the student-
t distribution.

p (yi | m) = St
(
yi; γ,

β(1 + v)
vα

, 2α
)

(2.13)

In order to maximizing the model fit, we can minimize the negative log marginal likelihood (NLL)
loss during the training procedure of evidential regression network. The definition of NLL loss function
is:

LNLL(y,m) = − log(p(y | m)) (2.14)

Replace p in the above equation with the probability density function of student-t distribution, we
can get the following optimization formula:

arg min
θ

(LNLL(y,m)) = arg min
θ

1
2 log

(
π
ν

)
− α logΩ

+
(
α + 1

2

)
log

(
(y − γ)2ν + Ω

)
+ log

(
Γ(α)
Γ(α+ 1

2 )

) (2.15)

Where Ω = 2β(1 + v).

2.3.3. Minimizing evidence deep learning on errors

Evidential deep learning also proposed a method to solve the problem that how to regularize training
by applying an incorrect evidence penalty, or high uncertainty prior, which is in order to minimize
evidence on incorrect predictions. In order to address this challenge, [31] formulate a new evidence
regularizer as following, which scaled on the i-th prediction’s error:

LR
i (w) =

∣∣∣yi − E
[
µi
]∣∣∣ · Φ = |yi − γ| · (2v + α) (2.16)

This loss function can make a penalty when there is an error in the model prediction and scales with
the total evidentce of our inferred posterior. So it can realize minimizing the evidence on errors.
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2.3.4. Final loss function

So the final loss function is:
Li(w) = LNLL

i (w) + λLR
i (w) (2.17)

The λ is a regularization coefficient.

2.3.5. Multi-task-based evidential network

The basic goal of deep learning is to achieve good prediction accuracy, not just uncertainty.
Therefore, in order to improve the prediction accuracy of evidential deep learning and it also can’t
interrupt its ability to estimate uncertainty. Lipschitz MSE loss function is proposed by [32], which as
an additional loss function in original EDL loss function and it can mitigate gradient conflicts with the
NLL loss that can improve the model prediction accuracy without disturb the ability of uncertainty
estimation.

The Lipschitz MSE loss [33] is defined as follows:

L∗mse (yi, γi) =
{

(yi − γi)2 , If λ2
i < Uν,α

2
√

Uν,α |yi − γi| − Uν,α, If λ2
i ≥ Uν,α

(2.18)

where Uν,α
def
= mini∈[1:N]

(
min

(
Uνi ,Uαi

))
, and γi is model prediction and yi is the ground truth.

The final loss function is obtained by combining this loss function with the original edl loss function.

Ltotal =
1
N

N∑
i=1

LNLL (yi,mi) + L∗mse (yi, γi) + cLR (yi,mi) (2.19)

2.3.6. Mean square error evidential network

This method comes from the [32] and is also a method that can be used to experiment for contrast.
Compared with Lipschitz modified MSE loss function, directly adding MSE loss function does not
solve gradient loss, but theoretically, it can optimize the prediction accuracy of EDL to a certain extent.
The final loss function of this method is the original loss function combined with MSE loss function.

3. Results and discussion

We hold experiments with these methods on dataset METR-LA traffic and Covid-19 incident: Point,
EDL, MT-EDL, MSE-EDL, Bootstrap, quantile regression, MIS regression. And we choose MAE and
RMSE for predictive accuracy metrics, MIS for uncertainty estimation metric.

3.1. Dataset

The METR-LA [11] dataset, which full name is METR-LA road network traffic. Compared with
other traffic data sets, it has a more complex traffic environment. It has 4 months vehicle spped
information from loop detector sensors in Los Angeles county highwat system. The task of this
dataset is to forecast the traffic speed for 207 sensors simultaneously. For the distance between two
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sensors, we use a thresholded Gaussian kernel [34] recomputing the pairwise road network distances
between sensor:

Wi j = exp
(
−

(dist(vi, v j)2

σ2

)
(3.1)

The Covid-19 dataset contains two parts, one is the reported deaths from Johns Hopkins University,
the other is the death predictions from a mechanistic, stochastic, and spatial metapopulation epidemic
model called global epidemic and mobility model (GLEAM) [12]. The dataset records information for
50 US states from May 24th to Sep 12th, 2020. We use the residual between the reported death and the
corresponding GLEAM predictions to train the model.

3.2. Implementation details

Table 1. All data is taken from the best training model.
METR-LA Dataset
Horizen Metric Point EDL MT-EDL MSE-EDL Bootstrap Quantile MIS

15 min

MAE 2.9474 2.8922 2.8881 2.8816 3.1754 2.4091 2.5639
RMSE 7.0494 7.2698 7.1418 8.7941 6.6432 4.6284 4.7128
MIS — 49.7711 54.9948 50.2000 39.5424 20.8003 20.9707
Interval width — 29.9560 26.3881 24.3664 5.0731 14.8636 14.8769

30 min

MAE 3.6837 3.4196 3.4009 3.4659 3.5616 2.6825 2.9072
RMSE 8.4398 8.8610 8.7028 8.7368 7.2318 5.4017 5.4382
MIS — 63.5237 66.6163 64.2761 40.1293 23.3577 23.3783
Interval width — 28.6619 26.5174 27.8069 6.7621 16.0293 16.3625

60 min

MAE 4.7259 4.2664 4.1318 4.2277 4.3779 3.0272 3.3969
RMSE 10.4362 10.6668 10.5993 10.8145 8.6117 6.3312 6.3390
MIS — 85.3857 81.0241 84.1179 40.0738 26.7827 26.7918
Interval width — 41.8989 41.7899 43.7021 11.1766 16.2501 17.0685

Covid-19 incident dataset
Category Metric Point EDL MT-EDL MSE-EDL Bootstrap Quantile MIS

Week1

MAE 41.1191 41.1401 40.9577 41.6395 39.9859 40.8062 40.2865
RMSE 75.4122 74.9475 74.4459 73.9358 72.3700 76.1414 76.4073
MIS — 467.5646 469.7116 438.8426 1524.6378 454.4100 394.4060
Interval width — 348.2935 354.7570 326.9575 4.0168 263.6418 333.4511

Week2

MAE 39.3436 38.0071 37.8595 38.4856 37.6186 38.1539 37.6126
RMSE 72.8770 72.6179 72.6117 72.8098 72.4540 72.8411 72.9681
MIS — 489.4117 491.3482 492.4358 1460.4114 542.4969 525.1689
Interval width — 390.3598 353.2775 382.5128 1460.4114 542.4969 525.1689

Week3

MAE 31.8655 32.4491 32.1018 31.5814 33.4619 32.2205 32.2050
RMSE 60.1569 57.2531 56.8395 57.6512 62.3746 61.4664 61.1469
MIS — 446.1847 441.5700 419.2901 1272.3398 398.4482 394.4420
Interval width — 326.4607 342.8699 329.5548 3.5607 234.8078 394.3024

Week4

MAE 50.4617 50.5435 50.7066 50.5536 49.8641 50.6653 50.7764
RMSE 109.3619 106.7713 107.2596 106.5863 108.1830 110.4269 109.8570
MIS — 740.0419 757.4979 746.7488 1954.7770 766.9339 777.5025
Interval width — 342.1250 357.4564 361.2385 2.1519 377.3929 447.0502
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Table 2. Computation cost of different methods.

Method EDL Bootstrap Quantile MIS
Computation 1 25 1 1

We adapt diffusion convolutional recurrent neural network with 6 methods of uncertainty
measurement. For the confidence level selected for the experiment is 0.95. The following are the
specific parameters of the experiment.

Point: Our parameter settings are the same as those in DCRNN [8]. And the point method only
considers the accuracy of prediction.

EDL: We use the network parameters as same as the point estimation, but the difference is that
DCRNN outputs four parameters needed to calculate EDL loss: m = γ, ν, α, β, and the loss function is
changed to EDL loss [31]. As for hyperparameter, we use 1E−4 as the evidential regularization factor.

MT-EDL: There is an additional Lipschitz modified MSE loss [32] as shown in Eq (2.20).
Combined with the loss function of EDL throught a trainable parameter.

MSE-EDL: Just like MT-EDL, the Lipschitz modified MSE loss is replaced by MSE loss.

Bootstrap: The parameters of these methods are as same as [10]. We randomly drop half training
data while keeping the original validation and testing data. We obtain 25 samples for constructing
mean prediction and confidence intervals.

Quantile, MIS: We apply the quantile loss function with the corresponding quantile (0.025, 0.5,
0.975). The design of the MIS regression is very similar to that of the quantile, but combine MAE with
MIS. Other parameters are set the same as point estimation.

How to calculate MIS: For EDL, MT-EDL, MSE-EDL, we can calculate the mis by Eqs (8) and
(11).

3.3. Analysis of experimental results

From the definition of MIS, we know that the smaller of MIS, the better of uncertainty estimate
and the higher of the model’s credibility. From Table 1, we can see that in METR-LA Dataset, the
quantile and MIS methods get the best performance in both accuracy and uncertainty estimation. For
EDL, MT-EDL and MSE-EDL, there is no big gap between these three methods. MT-EDL is slightly
better than EDL in prediction accuracy because of the addition of the Lipschitz modified MSE loss
function and the resolution of gradient conflict with NLL loss function. MSE-EDL has added MSE
loss function, but it does not solve the problem of gradient conflict, so it is not better than EDL in
prediction accuracy. Such result is also consistent with the results of the paper [32].

For Covid-19 incident dataset, we find that the bootstrap method relatively achieved better
prediction accuracy. However, for uncertainty quantification, bootstrap method is the worst. It can
also be seen that the ability of uncertainty quantification of most methods is similar in Covid-19
dataset on the whole, in both cases of week2 and week4, EDL performed better in quantifying
uncertainty. Moreover, as can be seen from Table 2, bootstrap needs much higher computation cost
than other methods.
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Figure 1. 1 hour ahead traffic forecasting over the 24 hour time span of sensor 717472 on
June 30, 2012.
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3.4. Forecasts visualization

To illustrate the results of the discussed methods more clearly, we also visualize the prediction
results including the confidence interval. As can be seen from Figure 1, the quantile and MIS methods
tend to generate narrow confidence interval. While for EDL, it tends to have a larger confidence
interval. It is also worth noting that due to the nature of the methods, quantile and MIS can only obtain
fixed confidence interval, e.g., 95% confidence interval. If different confidence intervals are needed,
we have to retrain the models. While for EDL, it can obtain a whole distribution. As can also be
seen from Figure 1, EDL can get any confidence interval according to our needs without retraining the
model.

3.5. Advantages of evidential deep learning

Based the above discussion, EDL shows the advantages among existing methods. Specifically,
compared with bootstrap, EDL does not require multiple sampling to generate confidence intervals,
so the calculation time cost is lower. Compared with quantile and MIS methods, EDL can provide
multiple confidence intervals in same training time. Moreover, in the Covid-19 dataset, EDL performs
well in both prediction accuracy and uncertainty quantification.

4. Conclusions, limitations and scope

In order to solve the limitation of uncertainty quantification on graph neural network by Bayesian
and frequentist. We applied EDL [31] and the extension of EDL [32] to N and did the experiment
on METR-LA dataset and Covid-19 dataset. The experimental results show the effectiveness and
efficiency of EDL to make uncertainty estimation in graph neural network task.

Although EDL has several advantages over other uncertainty quantification methods, we still have
to admit that its performance needs to be further improved. For example, compared with the quantile
method and MIS regression method, the uncertainty quantification score MIS is relatively high in some
cases. We consider this is mainly because EDL tends to get larger confidence interval and we leave the
further optimization in the future works. Moreover, we also plan to evaluate the performance of EDL
on other uncertainty scoring rules, such as expected calibration error (ECE) [35]. At last, the crucial
use of uncertainty estimation is to judge when the output of the model is not reliable, and further to
finish the detection of out-of-distribution (OOD) input samples. In the existing deep learning works,
most of the OOD data are detected by training samples. Since EDL does not need sampling and can
fit the data to high-order normal distribution, it can realize low uncertainty for in-distribution data and
high uncertainty for OOD data. In the future, we also plan to study the application of EDL, such as
OOD detection.
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