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Abstract: Melanoma is a more dangerous skin cancer than other types of skin cancer because it rapidly 

spreads to other organs in its early stages. In the increasingly popular task of computer-aided diagnosis 

using deep learning methods, these models are difficult to interpret and often considered “black boxes”. 

The lack of interpretation of the model prevents the target users from fully understanding it. This study 

proposes a new interpretable hierarchical semantic convolutional neural network (MEL-HSNet) to 

diagnose melanoma. The benefits and strength of our approach are a white-box model that not only 

predicts whether a skin lesion observed in a dermoscopy scan image is melanoma but also provides 

explanatory information for decision-making. Compared to other convolutional neural networks, the 

MEL-HSNet model proposed in this study can generate interpretable information on melanoma 

prediction and obtain significantly better results compared to the other available models. 

Keywords: melanoma classification; skin cancer; deep learning; convolutional neural networks; 

model interpretability; intelligent; healthcare 

 

1. Introduction 

Gradually, cancer has become one of the leading causes of death; it poses a significant barrier 

to increasing life expectancy. In many countries, cancer deaths have exceeded those from stroke or 

coronary heart disease [1]. According to the World Health Organization (WHO) statistical report 
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for 2019, cancer has become the leading cause of death before age 70 in 62% of countries around the 

world [2].  

Melanoma, also known as malignant melanoma, is a skin cancer characterized by abnormal 

proliferation of melanocytes and invasion of other tissues. Malignant melanoma can develop from 

congenital or acquired benign melanocytic nevi, or malignantly from dysplastic nevi; however, most 

melanomas are de novo. Melanoma affects the skin, mucous membranes, and internal organs; it is 

more common in adults and is rarely reported in children. Recently, the incidence of malignant 

melanoma and the mortality rate have increased [3]. Compared to other types of cancers, the age 

pattern of mortality began to shift to younger age groups. Furthermore, delays in seeking medical care 

worsen the prognosis, leading to metastasis and even death [3,4]. 

Therefore, the early diagnosis and treatment of malignant melanoma are extremely important. 

Melanoma generally presents as a mole of the skin with asymmetric growth, irregular borders, 

color changes, a diameter of > 6 mm, and changes in appearance in a few weeks or months. These 

five diagnostic features are collectively called ABCDE [5]. A self-examination can be performed at 

home, preferably with the help of a partner, close friend, or family member following ABCDE 

criteria; however, this cannot replace the role of a dermatologist who performs a more thorough 

examination with a dermoscope. A dermoscope, known as a transdermal light microscope, is a non-

invasive skin microscope. Some studies have demonstrated that dermoscopy has extremely high 

sensitivity and specificity for diagnosing acral melanoma and that it can make correct diagnoses in 

extremely early stages when the naked eye cannot [6,7]. In addition, it is a valuable tool for 

dermatologists when it comes to diagnosing early malignant melanoma. Therefore, in this study, an 

AI model was developed for a computer-aided diagnosis (CAD) system for malignant melanoma 

based on dermoscopic images. 

Machine learning classifiers were used to develop automatic diagnosis methods for skin 

lesions [8,9]. Before modeling these classifiers, a set of image features must be manually segmented, 

such as skin lesion-related characteristics to which dermatologists pay special attention. However, 

recently, in most computer vision tasks, DL convolutional neural networks (CNN) can automatically 

extract high-level features and significantly improve classification performance. Therefore, a CAD 

system based on the CNN framework, which has been widely used by modern researchers, was 

used to detect multiple diseases [10,11]. However, most CAD systems are black-box models. Shen et 

al. [12] proposed a white-box model with a 3D HSCNN architecture to classify malignant tumors on 

lung CT images and provide information for the interpretation of decision-making. 

Based on ML or DL technology, two recent research articles [13,14] pointed out that many 

classification models have been proposed since 2016 to diagnose melanoma in skin lesions. For 

example, Nasr et al. [15] suggested a DL approach with the 8:2 holdout method to achieve 0.810 test 

accuracy for the MED-NODE data set. Matsunaga et al. [16] used cross-validation to select the best 

combination of fine-tuning CNN for an ISIC2017 test set after training ResNet-50 with different 

optimization methods. The AUC efficiency for binary melanoma classification reached 86.8%. 

Menegola et al. [17] used ResNet-101 and Inception-v4 models to assemble seven well-trained NNs 

and meta-learning models. The final result obtained the best AUC for the classification of melanoma 

(87.4%), the third best AUC for the classification of seborrheic keratosis (94.3%), and the third best 

combined/mean AUC (90.8%) in ISIC 2017 Challenge [18]. Mahbod et al. [19] used an ensemble 

learning and pre-training network to perform the binary classification of melanoma, thus achieving 

an AUC efficiency of 87.3%. According to Liu et al. [20], the AUC efficiency of binary classification 
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of melanoma was 87.0% using a two-stage algorithm of intermediate features. Iqbal et al. [21] 

proposed a CSLNet architecture and achieved a binary melanoma classification performance with an 

AUC of 95.2%. By consolidating ISIC 2018 and ISIC 2019 to produce 2299 image sets and utilizing 

the 8:2 holdout evaluation method, Chang et al. [14] suggested an XGB classifier that incorporated 

feature extraction and k-means SMOTE techniques to detect melanoma disease, the AUC achieved 

98.1%, the F1 score came to 90.5%, and the REC reached 87.8%. 

Because the above studies can only provide a black box model for the classification of malignant 

melanoma disease, it is impossible to understand why the CAD model predicts this dermoscopic image 

to be malignant. Therefore, González-Díaz [22] proposed a DermakNet architecture, which uses 

ResNet50 [23] as its core and consists of three subnetworks, to form an entire system. Among them is 

the lesion segmentation network (Lesion Segmentation Net), which can segment an image into the 

ROI map of the lesion. A segmentation net of the dermoscopic structure divides each lesion ROI into 

eight types of dermoscopic structure maps, which are used to interpret diagnostic results. Finally, for 

disease diagnosis, the diagnostic network (Diagnosis Net) integrates the lesion ROI map and its 

corresponding dermoscopy structure map. Banerjee et al. [24] used the YOLOv3 algorithm and fuzzy 

logic to perform the dermoscopic image segmentation task, followed by a pixel-based diagnosis of 

malignant melanoma. Finally, they performed mathematical operations on an ROI map of the lesion 

to extract relevant features, such as asymmetry, border, color, and diameter, to explain the diagnostic 

results. Deep learning and the stacking of machine learning models in groups were used for the 

diagnosis of skin cancer from melanoma by Alfi et al. [25]. Subsequently, using the SHAP method 

(shapely adaptive explanations) method, an interpretability approach was constructed that generated 

heatmaps to identify the regions of an image that were the most suggestive of the disease. Unlike the 

three studies mentioned above [22,24], in this study, a more direct method was developed that can 

automatically output diagnostic semantic features and CAD, in addition to AI models for the prediction 

of malignant melanoma disease. 

The research contributions of this study are listed in the following two aspects. 

1). This study describes a method for developing an interpretable CNN that dermatologists can 

use for CAD of malignant melanoma. The intermediate output of the model can predict the 

diagnostic semantic features related to the final classification of the disease, revealing the decision-

making process in the diagnosis of malignant melanoma. To our knowledge, this is the first computer-

aided diagnostic AI system with interpretable results in a single architecture for the detection of 

malignant melanoma. 

2). To improve detection performance and obtain diagnostic interpretability, we design various 

hierarchical network architectures that combine semantic and depth features to predict malignant 

melanoma. Finally, the hierarchical convolution module of the MEL-HSNet model is chosen and used 

to learn generalizable features from multiple tasks. The learned information on each characteristic of 

the skin lesion characteristic is then fed into the final task of predicting malignant melanoma. 

The rest of this study is organized as follows. In Section 2, we describe the data set used in this 

study and the proposed MEL-HSNet model. In Section 3, we present the results and compare the 

proposed method with other CNN models. In Sections 4 and 5, we discuss the results and conclusions 

of the study.  
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2. Materials and methods 

2.1. International skin imaging collaboration data set 

The International Skin Imaging Collaboration (ISIC) is sponsored by the International Society 

for Digital Imaging of the Skin (ISDIS) to improve the quality of melanoma diagnosis. The ISIC 

archive is a public data collection on skin melanoma diseases that they provide; it was used to train 

and test various methods proposed in this study. The ISIC archive has more than 13,000 

dermoscopic images collected from equipment from major international clinical centers. The data 

source of this study was taken from “ISIC 2018: Skin Lesion Analysis Towards Melanoma 

Detection” Grand Challenge Data Sets [26,27]. The ISIC 2018 data set is the public data set that 

was used by ISIC in the 2018 challenge; it includes all the dermoscopic images of multiple types 

of anatomical parts (excluding mucous membranes and nails). The entire data set comprises three 

categories: benign, seborrheic keratosis, and melanoma, as well as five image semantic features, 

including pigment network, negative network, streaks, milia like cyst, and globules. The ISIC 2018 

data set provides 2594 training set images and 100 validation set images with ground-truth labels. 

However, in the validation set, neither the corresponding real labels of the three categories are 

provided nor the training set provides any corresponding real labels to be used in our evaluation 

process. Table 1 shows the distribution of positive and negative examples for each attribute in the 

training, validation, and test sets, where 0 represents the negative example of the category and 1 

represents the positive example of the category. Table 2 shows the number distribution for each 

category in the training, validation, and test sets. 

2.2. Our usage of the ISIC2018 data set 

Our evaluation required a complete labeled data set, three categories, and five semantic 

attributes; however, the ISIC 2018 data set does not provide a three-category verification data set, 

as shown in Tables 1 and 2. Moreover, a complete test data set was required, but the test data set 

only provided the evaluation results during the challenge period. Therefore, the data used in our 

entire evaluation process was from the training set of the ISIC 2018 data set, which was divided into 

90% (training set) (2335 images) and 10% (test set) (259 images). Furthermore, Tables 1 and 2 show 

the number of data items for the category of seborrheic keratosis, which is less than the other two 

categories; therefore, we merged it with the benign category, treated it as a category without 

melanoma (2075 images), and converted it into a binary melanoma classification task. Although the 

original three categories were merged into two, the entire data set had an unbalanced data distribution. 

In particular, the negative network and streaks compared to the other three attributes and the 

melanoma compared to non-melanoma. After dividing the data into training and test sets, we 

separately performed data augmentation on the training set [28] to solve the problem of unbalanced 

data distribution. Table 3 lists the data distribution of each category of the training set, the 

augmentation set, and the test set after data splitting, merging, and balancing. 
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Table 1. Detail skin lesion features in the ISIC2018 Task 2 data set. 

Table 2. Corresponding skin lesion labels in the ISIC2018 Task 2 data set. 

Table 3. Labels count for the characteristics of the skin lesion. 

2.3. Data preprocessing 

The ISIC 2018 data set contains 8-bit RGB dermatoscopy images, and the number of 

categories is unbalanced. The dermoscopic images of the original data had different image sizes 

ranging from 771 × 750 pixels to 6748 × 4499 pixels. Therefore, to standardize the size of each image 

Feature Class Type Training Validation Test Total 

Pigment network 0 1071 27 - 1098 

 1 1523 73 - 1596 

Negative network 0 2404 91 - 2495 

 1 190 9 - 199 

Streaks 0 2494 94 - 2588 

 1 100 6 - 106 

Milia like cyst 0 1912 94 - 2006 

 1 682 6 - 688 

Globules 0 1991 81 - 2072 

 1 603 19 - 622 

Total  2594 100 - 2694 

Class Type Training Validation Test Total 

Benign 1867 - - 1867 

Seborrheic Keratosis 208 - - 208 

Melanoma 519 - - 519 

Total 2594 - - 2594 

Feature Class Type Training Augmentation Test Total 

Pigment network 0 967 1280 104 2351 

 1 1368 457 155 1980 

Negative network 0 2164 1091 240 3495 

 1 171 646 19 836 

Streaks 0 2245 960 249 3454 

 1 90 777 10 877 

Milia like cyst 0 1684 1545 228 3457 

 1 651 192 31 874 

Globules 0 1775 964 216 2955 

 1 560 773 43 1376 

Melanoma 

 

0 

1 

1868 

467 

110 

1627 

207 

52 

2185 

2146 

Total  2335 1737 259 4331 
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and ensure that the data and memory consumed meet our hardware limitations, we finally resized each 

dermoscopic image to 224 × 224 to meet our requirements. As shown in Table 3, the training set 

created from the ISIC 2018 data set had an imbalance in the number of positives and negatives in 

each category. To solve this limitation, we performed data augmentation on the training set to balance 

and increase the amount of training data. In addition, to generate the data size of the 2 to 23 times 

expanded image set from a small number of original image categories, rotation was performed at 

various angles for each small number of categories in the training set, such as negative network, 

streaks, and melanoma, with rotation angles from 10° to 340°. Ultimately, compared to the original 

un-augmented training data of 2335 images, the augmentation process added a total of 1737 

augmented images. 

2.4. Hierarchical semantic convolutional neural networks for melanoma diagnosis 

In this study, we design a conventional CNN and three interpretable semantic CNNs for the 

diagnosis of malignant melanoma from dermoscopic images, as shown in Figure 1. They are named 

MEL-CNN, MEL-HSCNN, MEL-HSMCNN, and MEL-HSNet models. Among them, the MEL-CNN 

model is a black-box model, whereas the MEL-HSCNN, MEL-HSMCNN, and MEL-HSNet models 

are all white-box models. First, these models learn the image features through one pre-trained NN 

model at the beginning of inputting the image. Second, only MEL-HSCNN, MEL-HSMCNN, and 

MEL-HSNet have a semantic network layer, which contains five variables for the decision-making 

explanation: pigment network, negative network, streaks, milia-like cyst, and globules. Finally, these 

models pass the deep features to the final classifier for the classification of melanoma. The detailed 

architecture of these four models is described below. 

In the MEL-CNN model, the popular pre-training model and the global average pooling layer are 

used as the image feature extractor, and a disease classifier is connected in series, which is designed 

with a dense layer of 256 nodes and the ReLU activation function, the batch normalization layer, and 

a dense layer with the sigmoid activation function. The MEL-CNN model is a non-semantic network 

that uses only image features for melanoma classification. 

The architecture of the MEL-HSCNN model consists of an image feature extractor, five semantic 

classifiers, and a disease classifier. Every semantic classifier contains three dense layers, two batch 

normalization layers, and a dropout layer. The image feature extraction module is the same as in the 

MEL-CNN model. The disease classifier incorporates information from both the image features and 

five semantic features of the dropout layer to predict melanoma. 

The MEL-HSMCNN model architecture contains five image feature extractors, five semantic 

classifiers, and one disease classifier. Compared to the MEL-HSMCNN model, the MEL-HSMCNN 

model uses the same image feature extractor for the classification of five semantic variables; each 

semantic classifier in the MEL-HSMCNN model has a separate image feature extraction module. 

The architecture of the MEL-HSNet model includes one image feature extractor, five semantic 

classifiers, and one disease classifier. The image feature extraction module is the same as the MEL-CNN 

or MEL-HSCNN models. Compared to the MEL-HSMCNN model, the MEL-HSNet model excludes 

image features and only considers five semantic features of the dropout layer to classify melanoma. 

The loss function is one of the most important concepts in machine learning. And optimizing the 

minimum value of the loss function is the main basis for the model training and learning process. In 

this study, the above four DL models are trained using binary cross-entropy loss. It should be noted 
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that the loss function value in each semantic network is accumulated under the same weight to calculate 

the global loss function value used in this study. 

                       

(a) No semantic network (MEL-CNN) (b) Semantic network 1 (MEL-HSCNN) 

             

(c) Semantic network 2 (MEL-HSMCNN)  (d) Semantic network 3 (MEL-HSNet) 

Figure 1. Four new hierarchical semantic convolutional neural networks: (a) No semantic 

network (MEL-CNN); (b) Semantic network 1 (MEL-HSCNN); (c) Semantic network 2 

(MEL-HSMCNN); (d) Semantic network 3 (MEL-HSNet). 

2.5. Experimental setup 

The four models of MEL-CNN, MEL-HSCNN, MLE-HSMCNN, and MEL-HSNet were 
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implemented using Python (version 3.8), TensorFlow 2.3 framework, Pandas (version 1.2) library, 

NumPy (version 1.19) library and Windows 10 version 20H2. The entire training and test process 

were run on a computer with Nvidia RTX 2060 (6 GB RAM) with CUDA version 10.1 and cuDNN 

version 7, an AMD Ryzen 5 3600 (3.6 GHz, 6 core CPU), and a main memory of 32 GB. To meet the 

memory size of the used graphics card, the batch size set during the entire evaluation process was 

standardized to 16 for the MEL-CNN, MEL-HSCNN, and MEL-HSNet models, and 4 for the MLE-

HSMCNN model. The image size was standardized to 224 × 224 × 3 pixels, the data set was divided 

into 90% for training and 10% for testing, and the experimental results were evaluated over 200 epochs. 

2.6. Evaluation measures 

In our experimental evaluation process, we used a total of four performance evaluation indicators 

to evaluate our experimental results: sensitivity (SEN), specificity (SPE), accuracy (ACC), and area 

under the curve (AUC). True positive (TP) was used when calculating certain formulas, where the 

actual positive samples are predicted as positive; true negative (TN): the actual negative samples are 

predicted as negative; false positive (FP): the actual negative samples are predicted as positive; and 

false negative (FN): the actual positive samples are predicted as negative. 

Sensitivity refers to the proportion of samples that are positive and predicted to be positive as follows: 

    SEC =
TP

TP+FN
                                     (1) 

Specificity refers to the proportion predicted to be negative in an actual negative sample as follows: 

SPE =
TN

TN+FP
           (2) 

Accuracy refers to the prediction of the correct scale in all the actual samples as follows: 

 ACC =
TP+TN

TP+TN+FP+FN
           (3) 

The AUC of the ROC denotes a positive and negative sample selected at random, and the 

classifier correctly set the positive sample with a higher probability of scoring than the negative sample 

as follows: 

AUC = ∫ 𝑇(𝐹0)
1

0
𝑑𝐹0                              (4) 

where T(F0) is the corresponding true positive rate when the false positive rate is F0. 

3. Results 

In this section, we explain the several models we used, the fine-tuning of the different 

architectures of the models, and the results of comparing them under different conditions. Subsequently, 

we evaluate the prediction accuracy of our diagnostic semantic features and provide explanations for 

the correct and incorrect predictions. 

3.1. Effect of the imbalanced vs. balanced training data 

Imbalanced data means an unequal distribution of classes within a data set. This is a common 
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occurrence in medical data sets. To balance the data set, we used a data augmentation technique to 

augment the original data and increase the training data from the original 2335 to 4072. This 

experiment used ResNet50 as the pre-training model and embedded MEL-HSNet as the classification 

model to classify the data to understand whether balanced data have different effects on the image 

classification results. Table 4 lists the results of the use of unbalanced and balanced data. The bold 

values in the table represent the results of the better model. Compared to using unbalanced data as 

training data, the sensitivity of balanced data for melanoma classification increased by 17.3% and the 

AUC value increased by 6.43%. Balancing of the data could effectively improve the performance of 

the model; therefore, balanced data was used as training data in the subsequent experiments.  

Table 4. Classification performance (%) of the test set for different training data distributions. 

Training Data SEN SPE ACC AUC 

Imbalanced 63.46 95.65 89.18 87.02 

Balanced 80.76 97.10 93.82 93.45 

3.2. Effect of with vs. without the pre-trained model 

Standing on the shoulders of giants is a common metaphor for using a pre-trained model. Using 

the learned feature maps of these pre-trained models, we can quickly obtain better results without the 

need to start from scratch by training a model. Therefore, in the subsequent experiments, after deciding 

to use balanced data as training data, we aimed to understand whether using a pre-trained model would 

influence the classification performance of our model. This experiment used balanced data as training 

data and MEL-HSNet as a classification model to test different conditions. For the experiment, we 

used the simple feature model constructed by us, InceptionResNetV2 and ResNet50, as different 

feature models for testing. Moreover, we fine-tuned the pre-trained model, and the results are shown 

in Table 5. The bold values in the table represent the results of the better model. The first two results 

demonstrate that when using the pre-trained model InceptionResNetV2 as the feature model, the 

sensitivity and AUC values significantly improved from 13.46 and 81.85% to 71.15 and 90.94%, 

respectively, compared with the feature model we built. Moreover, after using ResNet50 as the feature 

model as presented in the last row, the sensitivity and AUC values reached 80.76 and 93.45%, 

respectively. As shown in Table 5, the ResNet50 pre-trained model outperformed the non-pre-trained 

model and the InceptionResNetV2 pre-trained model; therefore, as the feature learning model, we 

decided to use the ResNet50 pre-trained model in the subsequent experiments. 

Table 5. Classification performance (%) of the test set for different pre-trained models. 

3.3. Effect of different semantic models 

In this experiment, our objective was to know whether our modified MEL-HSNet model 

Pre-trained Model SEN SPE ACC AUC 

MEL-HSNet (w/o Pre-trained Model) 13.46 99.03 81.85 70.88 

MEL-HSNet (w/ InceptionResNetV2) 71.15 95.65 90.73 90.94 

MEL-HSNet (w/ ResNet50) 80.76 97.10 93.82 93.45 
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architecture allows the semantic network to provide different layers of results ( that is, the 

concatenate layer) to the final melanoma classification layer and whether a better model architecture 

than the original results can be achieved. We tested three architectures that use each semantic 

network as the final concatenate and provided input information to the melanoma classification layer. 

They are as follows: 1) activation layer, 2) batch normalization layer, and 3) dropout layer. 

Furthermore, the classification performance of MEL-HSNet, MEL-CNN, MEL-HSCNN, and MEL-

HSMCNN models was compared. Table 6 lists the results of the final comparison. The MEL-HSNet 

model with the dropout layer version gave the best results among the three architectures. The sensitivity, 

specificity, accuracy and AUC values were 80.76, 97.10, 93.82, and 93.45%, respectively. Compared 

to MEL-CNN, the sensitivity was improved by 11.53%. Compared with MEL-HSCNN and MEL-

HSMCNN, the MEL-HSNet model performed better, in addition to reducing training costs in terms of 

time and memory. Therefore, we focused on using the MEL-HSNet (concat Dropout) model in the 

subsequent experiments. 

Table 6 shows that the MEL-HSMCNN model had the highest capacity, indicating that the model 

had the longest training time. The bold values in this table represent the results of a better model. The 

MEL-CNN model had the smallest capacity; therefore, the model had the shortest training time. In this 

study, the proposed MEL-HSNet model (concat Dropout) has a capacity and training time similar to 

the MEL-CNN model. 

Table 6. Classification performance (%) of the test set for different semantic models. 

Classification Model 

w/ ResNet50 

SEN SPE ACC AUC CPU (s) MEM (mb) 

MEL-CNN 69.23 99.51 93.43 94.87 6802 24.11 

MEL-HSCNN 71.15 95.65 90.73 91.75 7119 24.87 

MEL-HSMCNN 63.46 97.10 90.34 91.55 54,430 18.70 

MEL-HSNet (concat Activation) 69.23 98.06 92.27 95.81 7091 24.94 

MEL-HSNet (concat Batch-Norm) 76.92 95.65 91.89 94.07 7156 24.94 

MEL-HSNet (concat Dropout) 80.76 97.10 93.82 93.45 7109 24.94 

3.4. Melanoma prediction performance 

In this section, we demonstrate the overall classification performance of our model. Balanced 

data was used as training data, and ResNet50 was used as a pre-trained model in feature learning. 

The dropout layer version of MEL-HSNet was our final model, and we compared it with MEL-CNN. 

Table 7 lists the results of the comparison. The bold values in the table represent the results of the 

better model. The overall results of MEL-HSNet and MEL-CNN were improved after using 

ResNet50. Finally, MEL-HSNet achieved a sensitivity of 80.76%, a specificity of 97.10%, an 

accuracy of 93.82% and an AUC value of 93.45%. MEL-CNN had a sensitivity of 69.23%, a 

specificity of 99.51%, an accuracy of 93.43%, and an AUC value of 94.87%. Figure 2 shows the 

confusion matrix for melanoma classification using MEL-CNN and MEL-HSNet with or without 

the pre-trained model. The results show that using the ResNet50 pre-trained model, MEL-HSNet 

could better classify the positive and negative melanoma cases compared with other models. The 

receiver operating characteristic (ROC) curve was compared with the four classification models, as 

shown in Figure 3. The result in Figure 3 demonstrates that MEL-HSNet with ResNet50 pre-trained 
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model outperforms the other three models. 

The confusion matrix, the ROC map and the metric evaluation show that the MEL-HSNet method 

using semantic networks for classification performed better in predicting melanoma compared to the 

MEL-CNN method using features from the learned images directly. 

Table 7. Classification performance (%) of the test set for melanoma prediction. 

    

(a) MEL-CNN (w/o Pre-trained Model)  (b) MEL-CNN (w/ ResNet50) 

    

(c) MEL-HSNet (w/o Pre-trained Model)  (d) MEL-HSNet (w/ ResNet50) 

Figure 2. Confusion matrices of the test set for melanoma prediction: (a) MEL-CNN (w/o 

Pre-trained Model); (b) MEL-CNN (w/ ResNet50); (c) MEL-HSNet (w/o Pre-trained 

Model); (d) MEL-HSNet (w/ ResNet50). 

Classification Model SEN SPE ACC AUC 

MEL-CNN (w/o Pre-trained Model) 26.92 97.58 83.39 80.49 

MEL-CNN (w/ ResNet50) 69.23 99.51 93.43 94.87 

MEL-HSNet (w/o Pre-trained Model) 13.46 99.03 81.85 70.88 

MEL-HSNet (w/ ResNet50) 80.76 97.10 93.82 93.45 
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Figure 3. Receiver operating characteristic curve comparison. 

In addition to demonstrating the classification performance of the model in melanoma, we 

presented the results of the five semantic features predicted by the MEL-HSNet semantic network 

using ResNet50. For each diagnostic semantic feature in Table 8, the accuracy rates were 74.13, 92.66, 

96.91, 83.01, and 82.62% for the pigment network, negative network, streaks, milia-like cyst, and 

globules, respectively. Moreover, the AUC values were 82.97, 71.38, 86.70, 62.79, and 73.24%. The 

results demonstrate that the MEL-HSNet model can achieve good results in predicting the five 

semantic features it contains, as well as in classifying melanoma. 

Table 8. Classification performance (%) of the test set for the semantic feature predictions. 

3.5. Semantic feature prediction and model interpretability 

Finally, in this section, we discuss semantic network classification. Figure 4 demonstrates the 

interpretability of the MEL-HSNet model by presenting dermoscopic images, interpretable semantic 

labels for image prediction, and classification results for melanoma. As shown in Figure 4, the MEL-

HSNet model predicts three dermoscopic images as benign or malignant, which is the same as the 

actual labels. Furthermore, the predicted semantic features are also quite close to the actual labels. 

Therefore, we conclude that MEL-HSNet can predict the results with six semantic features 

simultaneously, providing better interpretability compared to the MEL-CNN model. 

Semantic Features ACC AUC 

Pigment network 74.13 82.97 

Negative network 92.66 71.38 

Streaks 96.91 86.70 

Milia like cyst 83.01 62.79 

Globules 82.62 73.24 
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Figure 4. Illustration of the MEL-HSNet (w/ ResNet50) model’s interpretability. 

4. Discussion 

Recently, studies demonstrated that DL methods perform better in terms of the binary 

classification of skin melanoma [16,17,19−21]. However, since these models are black-box models, 

they can only map image features into a category prediction for skin lesions, and therefore cannot 

provide sufficient explanatory power for medical diagnosis. In this study, the three developed models 

(MEL-HSCNN, MEL-HSMCNN, and MEL-HSNet) are white-box models that could simultaneously 

predict the malignancy of skin melanoma and detect five characteristics of the skin lesion. 

I. Gonzalez-Diaz [22] proposed a CAD system called DermakNet, which uses the Dermoscope 

Structure Segmentation Network (DSSN) subsystem to achieve the interpretability of its diagnosis. 

DSSN used a constrained CNN for lesion segmentation as a pixel-wise labeling problem, and provided 

a pixel-based dermoscopic feature map, which can be understood and interpreted by the human eye. 

In this study, the proposed MEL-HSNet architecture used the hierarchical semantic CNN to directly 

predict five diagnostic semantic feature labels for malignant melanoma. Moreover, the interpretation 

mechanism of the proposed MEL-HSNet model was relatively concise and convenient. 

S. Banerjee et al. [24] used the YOLOv3 algorithm and fuzzy logic to diagnose malignant 

 

Semantic Features True Label Prediction 

Pigment network 1 0 

Negative network 0 0 

Streaks 0 0 

Milia like cyst 1 1 

Globules 0 0 

Melanoma 0 0 

 

Semantic Features True Label Prediction 

Pigment network 1 1 

Negative network 0 0 

Streaks 0 0 

Milia like cyst 0 0 

Globules 0 0 

Melanoma 1 1 

 

Semantic Features True Label Prediction 

Pigment network 0 0 

Negative network 0 0 

Streaks 0 0 

Milia like cyst 0 1 

Globules 0 0 

Melanoma 1 1 
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melanoma in a pixel-based manner. The ROI map of the skin lesion was then subjected to mathematical 

operations to extract four features that can be used to diagnose melanoma with traditional ABCD 

(Asymmetry, Border irregularity, Color variation, and Diameter) clinical guidelines. Compared to the 

interpretation mechanism of S. Banerjee et al. [24], the MEL-HSNet architecture proposed in this study 

is a CAD model that can automatically and synchronously produce five diagnostic semantic features 

and malignant melanoma prediction scores. 

I. A. Alfi et al. [25] used SHAP to create heatmaps to identify which regions of an image are more 

associated with melanoma disease. As with SHAP, the heatmaps of the four representative images 

generated by GradCAM++ [29] are shown in Figure 5 in this study. In contrast to the MEL-HSNet 

model proposed here, using post hoc explanatory methods such as SHAP or GradCAM can only tell 

the user which regions in the image are most relevant to the class predicted by the model. The 

explanation mechanism in this study is to inform users of disease prediction results and the 

corresponding five semantic features of the image, as shown in Figure 4. 

 

(a) 

 

(b) 

Figure 5. Representative cases on ISIC2018 data set: (a) original image; (b) explanation 

by GradCAM++ analysis. 

We also compare the performance of our proposed model with the SOTA approaches for the 

binary classification of melanoma published recently. Based on the dataset, the classification method, 

the validation method, and the performance of the test set, a comparative summary of these methods 

is provided in Table 9. Since different studies use different data sizes, valid comparisons are difficult. 

However, the method proposed in this study still exhibits excellent performance. 



1836 

Electronic Research Archive  Volume 31, Issue 4, 1822−1839. 

Table 9. A comparative summary of the SOTA approaches for the binary classification of 

melanoma. 

Year Author Dataset Method Validation 
Test 

Result 

2020 
J. A. Almaraz-Damian 

et al. [30] 
ISIC 2018 DL+ML 

Holdout (75:25) 

full: 10015 

ACC: 

0.897 

2020 
J. Daghrir 

et al. [31] 

Subset of ISIC 

archive 
DL+ML 

Holdout (8:2) 

full: 640 

ACC: 

0.884 

2022 I. A. Alfi et al. [25] Subset of ISIC 

2018 

ML Holdout (8:2) 

full: 3297 

ACC: 

0.880 

2022 I. A. Alfi et al. [25] Subset of ISIC 

2018 

DL Holdout (8:2) 

full: 3297 

ACC: 

0.910 

AUC: 

0.970 

2023 
Our approach 

MEL-HSNet 

ISIC 2018 Task 

2 
DL 

Holdout (9:1) 

full: 4331 

ACC: 

0.938 

AUC: 

0.935 

There are three limitations to this study. The most significant limitation of this study is the 

small data set. The number of dermoscopic images with skin lesion features and malignant 

melanoma labels is limited; only 2594 ground truth cases (see Table 3) were obtained in this study. 

Additionally, the entire data set is divided into the training and test sets. The training set is used to 

train the model, and the test set is used to evaluate the model. Due to the lack of a validation set for 

the verification of model hyperparameters, this study relied on the relevant setting values from the 

previous literature [16,17,19−22,24], and the early stopping criterion [32] could not be used to 

improve overall model generalization. Finally, the disease category and the corresponding five 

diagnostic semantic features of this study were scaled to binary labels. These limitations can be 

improved by modeling large annotated data sets that contain discriminatory features. Therefore, the 

topic of model optimization remains to be investigated in the future. 

5. Conclusions 

Malignant melanoma, known as melanoma, is a type of skin cancer that is more dangerous than 

other types of skin cancer because it metastasizes quickly if not diagnosed and treated in its early stage. 

Recently, based on DL models, some studies have succeeded in achieving extremely promising results. 

However, most of their models are black-box models. It is crucial to provide an interpretation ability 

of a computer-aided diagnosis model for the proper detection of such fatal skin diseases. 

This study focused on the design and evaluation of interpretable deep network frameworks for 

melanoma CAD such as MEL-CNN, MEL-HSCNN, MEL-HSMCNN, and MEL-HSNet. After 
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performance analysis, we proposed the MEL-HSNet model, which can predict the melanoma score 

while classifying five semantic features of the melanoma (pigment network, negative network, streaks, 

milia-like cyst, and globules). 

Although the results of the performance evaluation of the MEL-HSNet model proposed in this 

study are encouraging and may provide a promising future application to help dermatologists diagnose 

malignant melanoma, more clinical cases need to be collected to optimize the model to meet the 

requirements of future clinical practice. 
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